Intersection Navigation
utilizing Bird’s Eye View representations
from 3D Image Features

A I ITIIT

'-.r

Jasper Mulder

Cover illustration: Identified stop-lines in a Bird’s Eye View of an intersection.

Intersection Navigation
utilizing Bird’s Eye View representations
from 3D Image Features

Jasper Mulder
12567299

Bachelor thesis
Credits: 18 EC

Bachelor Kunstmatige Intelligentie

X

)

X

University of Amsterdam
Faculty of Science
Science Park 904

1098 XH Amsterdam

Supervisor

Dr. A. Visser

Informatics Institute Faculty of Science
University of Amsterdam
Science Park 900
1098 XH Amsterdam

March 3rd, 2023

Abstract

This research examines the effectiveness of using a 3D-encoded image feature rep-
resentation for navigating unprotected intersections with autonomous vehicles,
specifically focusing on DuckieBots. The current solution proposed by

() utilizes a Bird’s Eye View (BEV) represen-
tation, which transforms a camera image to a BEV plane using camera intrinsics.
However, due to the lack of depth information in a 2D camera image, this approach
has limitations. MILE (,) addresses this limitation by encoding 3D
image features before transforming to BEV space, achieving state-of-the-art driv-
ing scores in the CARLA simulator (

). This study aims to integrate the BEV encoding from MILE into the in-
tersection navigation approach proposed by (), and evaluates its
performance. While MILE achieves state-of-the-art performance in the CARLA
simulator, this thesis shows that, without additional training, its generalization to
other applications is limited.

Contents

1 Introduction

2 Theoretical Background

2.1 The Pinhole Camera Model
2.2 Homography Transformations
2.3 Lift-Splat
3 Methods
3.1 Homographic BEVs 0.
3.2 MILE
3.3 Lane Following
3.4 Intersection navigation o000

4 Experiments

4.1 Experimental setup L
4.2 Metrics Lo
4.3 Results.

5 Discussion
5.1 Future work

6 Conclusions

References

11
11
12
13

15
18

19

20

Chapter 1
Introduction

Autonomous vehicles (AVs) can observe the world around them using many differ-
ent methods, such as cameras, LIDAR, and radar (Ignatious, Khan, et al.,; 2022).
Each of those methods has its strengths and weaknesses, as seen in Figure 1.1, but
regardless of the method used, the surroundings of the vehicle must be represented
in a way that is suited for path planning, obstacle recognition, and other possible
self driving tasks. These tasks must be executed well in order to avoid collisions
(see Figure 1.2 and reach a destination. For camera input, a possible representa-
tion is a Bird’s Eye View (BEV), which displays the observed surroundings in a
top-down view with the vehicle at the center. BEVs offer a spatial layout which
is useful for tasks such as path planning and trajectory prediction, something the
an image directly taken by a camera lacks.

Blind Surround view Traffic sign
spot recognition
detection

= - . Radar/LIDAR
Emergency braking Adaptive c

H amera
Pedestrian detection cruise .
Collision avoidance control . Ultrasound

Park
assist

Surround \ l

view

| G

Rear
collision .
warning Surround view

Lane departure
warning

Figure 1.1: Different sensor technologies employed in autonomous driving and their
strengths. Source: EETimes

There are several methods of constructing a BEV from 2D images, which can
be split up into 2 categories (Saha, Mendez, Russell, & Bowden, 2021): Using the
explicit camera geometry to construct the necessary transformation (Giles ot al.,

https://www.eetimes.com/why-sensor-technology-is-the-key-to-autonomous-vehicles/

Accident 1

—=—a
—~—— [

;o

Accident 3

Figure 1.2: Possible simulated accidents starting from the same scenario. Source:
NVIDIA

2019), or learning the representation implicitly without knowledge of the camera
geometry.

This thesis will research the use of BEVs for autonomous driving with the Duck-
ietown platform !, more specifically, using DuckieBots (DBs) and the Duckietown
simulator 2. DBs mainly rely on a single front-facing camera to observe their sur-
roundings, making the use of a suitable representation of the camera observations
more important.

As autonomous driving is a broad subject with many different challenges, this
thesis will be focused on crossing unprotected intersections. Giles et al. (2019) have
proposed an approach to this problem, specifically targeted at DuckieBots. Their
implementation of BEVs is a direct projective transformation from image-plane to
BEV-plane. This fairly simple approach leaves plenty of room for improvement.

Hu et al. (2022) propose a method of constructing BEVs which involves learn-
ing 3D features from the 2D image before converting to a BEV representation. The

https://wuw.duckietown.org/
2https://github.com/duckietown/gym-duckietown

https://developer.nvidia.com/blog/generating-ai-based-accident-scenarios-for-autonomous-vehicles/
https://www.duckietown.org/
https://github.com/duckietown/gym-duckietown

improvement of performance using this method shows the importance of using 3D
features to navigate a 3D world. Implementing this approach in the solution pro-
posed by (), could therefore also show improvement in navigating
unprotected intersections with DuckieBots.

Thus the following research question is posed: To what extent can the naviga-
tion of unprotected intersections for DuckieBots be improved by utiliz-
ing a Bird’s Eye View (BEV) representation created from 3D-encoded
image features?

Along with the research question, this study also aims to answer the following
subquestions:
SQ1: Does MILE trained on data from the CARLA simulator (,

) generalize well to the Duckietown simulator?

SQ2: Are the metrics proposed by () well suited for evaluat-
ing intersection navigation in the duckietown simulator?

Chapter 2
Theoretical Background

Creating bird’s eye view representations from monocular camera images is not a
new field of research and many different methods of achieving this goal already
exist (,). This chapter will present the theoretical background
for the two different methods employed in this thesis. First, in order to understand
the implemented methods, a high-level summary of the pinhole camera model is
provided. The theory of homography transformations and the lift-splat technique
is then outlined, as well as the adaptations to the latter proposed by

(2022).

2.1 The Pinhole Camera Model

The pinhole camera model is the simplest version of a camera model, a model
which describes the projection of a 3d world onto a 2d plane, such as a camera
Sensor.

Figure 2.1: The pinhole camera model maps a point P in world space to a pixel
(u,v) on the image plane F

2.2 Homography Transformations

When utilizing a pinhole camera model, and assuming the world space to be a flat
plane, the world plane and the camera projection plane can be seen as two planes
within the same 3D space. A projective transformation between two such planes is
defined as a homography transformation. When the exact position of the camera
plane in the world space is known, the appropriate homography matrix H for the
transformation can be constructed, thus enabling the creation of a homographic
BEV representation from an image.

2.3 Lift-Splat

Philion and Fidler (2020) propose the Lift-Splat technique, which does not make
assumptions about the world space, unlike a homographic BEV. The images are
first encoded with an Image Encoder (Ile, Zhang, Ren, & Sun, 2016), and then
"lifted" to 3D. Lifting entails the per image feature prediction of a categorical
depth distribution using a CNN (see Figure 2.2), which enables the encoding of
3D image features. These 3D features are then sum-pooled to BEV space

. dopC QiC . apet
depth distribution a . -
a ; —
o e D

per-pixel outer product

Figure 2.2: "Lift" step of Lift-Splat

Chapter 3

Methods

In this chapter, the two methods implemented for creating BEVs from a monocular
camera are described, along with their integration with the intersection navigation

solution proposed by (). Firstly, the method proposed by
() is outlined, along with its limitations. Secondly, the method proposed
by () is presented. The lane following architecture provided by the

Duckietown environment is then outlined, and finally the intersection navigation
architecture is described.

3.1 Homographic BEVs

The original method used by () to create their BEV’s uses the in-
trinsic and extrinsic properties of the camera to create a homography matrix. This
is then used to perform a projective transformation. The Duckietown development
documentation provides a homography matrix H defined as:

—4.89775% 107> —0.0002150858 —0.1818273
H = 0.00099274 1.202336 % 1076 —0.3280241 (3.1)
—0.0004281805 —0.007185673 1

Applying this transformation to a camera input provided by the Duckietown sim-
ulator results in a BEV representation as seen in Figure 3.1b. An apparent disad-
vantage of this approach is its assumption of a flat world plane, which results in
the distortion of all objects which are not perfectly flat. This is not a significant
issue in the experiments of this thesis, which will be illustrated in Section 4.3.

https://docs.duckietown.org/daffy/duckietown-robotics-development/out/duckietown_simulation.html
https://docs.duckietown.org/daffy/duckietown-robotics-development/out/duckietown_simulation.html

(a) Example camera input. (b) BEV generated using homographic
transformation. (Hu et al., 2022)

Figure 3.1: Example of transforming a camera input to BEV space using homog-
raphy matrix H (Equation 3.1).

3.2 MILE

The method used by [Tu et al. (2022) for generating BEV’s is an adaptation of the
Lift-Splat technique (Philion & Fidler, 2020). The camera input images are first
encoded by the Image encoder (Table 3.1), and compressed further to a 1D vector
using a pretrained ResNet18 model (He et al., 2016). To construct the segmented
BEV, this 1D vector is decoded by the BEV Decoder (Table 3.2), which has a
similar architecture to StyleGAN (Iarras, Laine, & Aila, 2019)

Layer Output size Parameters
Input 3 x 320 x 832 0
ResNet18 [128 x 40 x 104, 256 x 20 x 52, 512 x 10 x 26| 11.2M
Feature aggregation 64 x 40 x 104 0.5M
Depth 37 x 40 x 104 0.5M
Lifting to 3D 64 x 37 x 40 x 104 0

Pooling to BeV 64 x 48 x 48 0

Table 3.1: Image encoder architecture of MILE model

3.3 Lane Following

The Duckiebot environment provides basic lane following behaviour, which nav-
igates the vehicle until it approaches a stop line, and keeps it within the lane

https://docs.duckietown.org/daffy/opmanual_duckiebot/out/demo_lane_following.html

Layer Output size Parameters
Input [512 x 3 x 3, 1024, 512] 0
Adaptive instance norm 512 x 3 x 3 1.6M
Conv. instance norm 512 x 3 x 3 3.9M
Upsample conv. instance norm 512 x 6 x 6 7.9M
Upsample conv. instance norm 512 x 12 x 12 7.9M
Upsample conv. instance norm 512 x 24 x 24 7.9M
Upsample conv. instance norm 256 x 48 x 48 3.3M
Upsample conv. instance norm 128 x 96 x 96 1.2M
Upsample conv. instance norm 64 x 192 x 192 0.5M
Output layer [8 x 192 x 192, 1 x 192 x 192, 2 x 192 x 192] 715

Table 3.2: BEV decoder architecture of MILE model

markings. When a stop line is detected within 0.1 meters in front of the vehicle,
intersection navigation is activated.

3.4 Intersection navigation

The generated BEV representations are then utilized by the intersection navigation
model proposed by (). First, stop lines are detected by filtering
red pixels and clustering them with the DBSCAN algorithm (,).
The estimated position and orientation of the Duckiebot is constantly calculated
based on the naive assumption that the initial position of the vehicle is straight
in front of a stop line. This estimation is utilized to predict the location of stop
lines, enabling the classification of the stop line clusters in the BEV based on the
nearest predicted stop line. An example of this can be seen in Figure 3.2. If the
number of pixels within a cluster is below a set quality threshold, the cluster is
ignored.

The intersection is then navigated by following a precomputed trajectory which
is mapped to the intersection using the estimated stop line positions. If there are
no detected stop lines, the trajectory is based on the predicted stop line positions
instead.

w
-
-
=
=
-
L
L]
L

Figure 3.2: Classified stop line clusters in a BEV. The coloured dots represent the
predicted stopline locations, each detected stop line is coloured according to the
closest predicted stop line, and its center represented by a white dot.

10

Chapter 4
Experiments

This chapter presents the experiments conducted to evaluate the two methods
described in the previous chapter, the metrics used for evaluation, and the results
of these experiments.

4.1 Experimental setup

1
e
[
1
4
n,
|
|
1
1
1

Figure 4.1: Three possible trajectories for navigating the intersection.
Both methods are evaluated on the same experiment, which consists of nav-

igating a 4-way unprotected intersection 20 times per possible trajectory (left,
straight, right), as seen in Figure 4.1, from a position close to the stop line. There

11

are no other vehicles or obstacles present in the intersection. To ensure variability
between starting positions, the DB is first driven from a randomized position on
the road to the stop line using the existing lane following architecture described in
Section 3.3. Hu et al. (2022) provide pre-trained weights, trained on the CARLA
Simulator (Dosovitskiy et al., 2017), which are utilized to construct a trained MILE
model, and no additional training is conducted. The experiments are run with a
camera input size of 320 x 832, which is the input size of the pre-trained MILE
model. Figure 4.2 shows an example of a camera input during the experiment.

Figure 4.2: Example of camera input utilized for generating BEVs during inter-
section navigation

During intersection navigation, BEVs are generated and utilized by the in-
tersection navigation architecture to detect stop lines. The estimated stop line
positions are then used to reconstruct the position and orientation of the vehicle
within the intersection, which in turn is used to calculate the optimal trajectory
through the intersection. When there are no clear stop lines detected, the tra-
jectory of the DB within the intersection is estimated based on the velocity and
heading of the vehicle, assuming the start position to be straight in front of a stop
line.

4.2 Metrics

The success rate for both methods is evaluated by measuring the percentage of
intersection navigations that result in the test vehicle exiting the intersection cor-
rectly and in the correct lane. In addition, metrics proposed by Cacsar et al. (2021)
for evaluating the navigation of autonomous vehicles are employed to assess the
experimental results. The drivable area compliance and ride comfort metrics are
selected as they are applicable to the experiments and do not require an expert’s

12

trajectory for comparison. Given the absence of expert driving data for these ex-
periments, it is not feasible to compare the autonomous driving data with that of
an expert driver.

Drivable area compliance (DAC) is simply whether or not the vehicle stays on
a drivable area (road surface) during the entire navigation. Ride comfort consists
of evaluating the minimum and maximum longitudinal accelerations, maximum
absolute value of lateral acceleration, maximum absolute value of yaw rate, maxi-
mum absolute value of yaw acceleration, maximum absolute value of longitudinal
component of jerk, and maximum magnitude of jerk vector. If all of those vari-
ables are within thresholds defined by () (see Table 4.1), the
navigation is evaluated as comfortable. The metrics definitions and threshold val-
ues are obtained from the Nuplan devkit documentation. Both DAC and Comfort
are evaluated as a percentage of test runs which achieved a positive score.

Metric Threshold
min_lon accel —4.05 m/s*
max_lon_accel 2.40 m/s?

max_abs lat accel | 4.89 m/s?
max_abs yaw_accel | 1.93 rad/s?
max_abs yaw_ rate | 0.95rad/s
max_abs_lon_jerk | 4.13m/s?
max_abs mag jerk | 8.37m/s?

Table 4.1: Thresholds for ride comfort metrics, obtained from Nuplan metrics.
When all metrics are within their thresholds, the comfort metric is evaluated as
true.

4.3 Results

The experiments as described in the previous section resulted in the evaluations
given in Table 4.2. For both methods, the success rate is equal to the DAC percent-
age, meaning the vehicle consistently either successfully exited the intersection, or
navigated over a non-drivable area. Comfort percentages are 0 for all experiments,
meaning for each test run, at least one of the metrics presented in Table 4.1 was
not within its respective threshold.

As illustrated by the results presented in Table 4.2a, navigation utilizing Proj-
LFI BEVs achieves a significantly lower success rate for the right trajectory com-
pared to the left and straight trajectories.

13

https://nuplan-devkit.readthedocs.io/en/latest/metrics_description.html

trajectory trajectory

metric Left ~ Straight Right metric Left Straight Right

Success rate 100% 100% 55% Success rate 85% 100% 90%

DAC 100% 100% 55% DAC 85% 100% 90%

Comfort 0% 0% 0% Comfort 0% 0% 0%
(a) Results using Proj-LFI (b) Results using MILE

Table 4.2: The evaluated metrics of the experiments for the two implemented
methods; Drivable Area Compliance percentage and Comfort percentage.

Navigation utilizing MILE BEVs demonstrates an equivalent success rate for the
straight trajectory and a superior success rate for the right trajectory in comparison
to Proj-LFI. This is despite the MILE-generated BEVs being non-representative of
the actual road surface. Figure 4.3 illustrates that the BEV generated by Proj-LFI
clearly represents the intersection, whereas the MILE BEV does not.

As outlined in Section 4.1, when the BEV fails to detect any clear stop lines, nav-
igation is exclusively based on the trajectory calculated from the DB’s velocity
and heading. This assumes the start position of the intersection navigation to be
straight in front of the stop line, which is not necessarily the case. Thus, the results
presented in Table 4.2b essentially reflect the outcomes achieved when navigating
based on intrinsic vehicle position estimation.

14

-
-
-~
-
-
=
L]
=
Ry

(a) BEV generated by Proj-LFI (b) BEV generated by MILE

Figure 4.3: BEVs from both methods, generated at the same position during
intersection navigation. Each estimated stop line is colored according to the closest
predicted stop line position. The center of the estimated stop lines are indicated
by the white dots

Chapter 5

Discussion

The results presented in Section 4.3 will now be evaluated in relation to the re-
search question and subquestions posed in Chapter 1. Secondly, the opportunities
for future work will be outlined.

SQ1: Does MILFE trained on data from the CARLA simulator generalize well

to the duckietown simulator?
As was clearly illustrated by Figure 4.3b, the BEVs generated by MILE are not a

15

sufficient representation of the actual intersection. Figure 5.1 demonstrates that
MILE is significantly more accurate at representing the road with an input from
the CARLA simulator. This outcome is to be anticipated given the model’s train-
ing solely on data from the CARLA simulator. The colorization of the road surface
varies significantly between the input from the CARLA and Duckietown simula-
tor, resulting in MILE barely recognizing any road surface when presented with
an input from the latter.

(a) Example camera input from CARLA simulator. (b) Example
BEV generated
from (a).

(c) Example camera input from Duckietown simula- (d) Example
tor. BEV generated
from (c).

Figure 5.1: Comparison of MILE-generated BEVs from input data obtained from
the CARLA simulator (a) and the Duckietown simulator (c¢). The differences in
colors are purely aesthetic, with gray indicating the road surface in both BEVs.
White in (b) and black in (d) represent non-drivable areas. The figure highlights
the significant difference in the accuracy of MILE’s representation of the road
surface between the two simulators. (a) and (b) are provided by Hu et al. (2022)

SQ2: Are the metrics proposed by Nuplan well suited for evaluating intersection
navigation in the Duckietown simulator?
The metrics presented in Table 4.2 display both methods failing to achieve a single

16

comfortable ride, according to the comfort metric proposed by Nuplan (

,). Per definition of this metric, a navigated trajectory is only deemed
comfortable if all of the metrics presented in Table 4.1 are within their respective
threshold. This is not the case for a single experiment run, suggesting the in-
tersection navigation in all experiments was uncomfortable according to Nuplan’s
metrics. However, the thresholds used for evaluating these metrics are based on
expert driving behaviour in the CARLA simulator, which is designed with real-
world vehicles in mind. This is in contrast to the Duckietown simulator, which
is designed with Duckiebots in mind. Duckiebots have a significantly lower maxi-
mum speed and acceleration, and a significantly smaller turn radius. Thus it is to
be expected that the longitudinal and lateral accelerations of the DB stay within
their respective thresholds, and that turns are significantly sharper resulting in
higher yaw and jerk metric values than expected from a real-world vehicle.
Adequate evaluation of ride comfort in Duckiebot navigation requires expert driv-
ing data collected specifically with Duckiebots to establish suitable thresholds.

RQ: To what extent can the navigation of unprotected intersections
for DuckieBots be improved by utilizing a Bird’s Eye View (BEV) rep-
resentation created from 3D-encoded image features?

Despite the limitations of MILE’s BEV representation when applied to the Duck-
ietown simulator, the intersection navigation results obtained with this model, as
presented in Table 4.2b, exceed expectations considering the non-representative
state of the BEV. The success rate achieved utilizing MILE averaged over all tra-
jectories is higher than Proj-LFT’s average success rate. These results seem to
suggest that using a model that creates BEVs from 3D encoded image features
can achieve more generalized navigation compared to Proj-LFT.

However, as outlined in Section 4.3, this is clarified by the understanding that
when stop lines can not be clearly detected, intersection navigation depends on
the vehicle’s internal velocity and heading to estimate its location within the in-
tersection. This demonstrates that even when relying solely on intrinsic vehicle
position estimation, satisfactory intersection navigation in the Duckietown simula-
tor can still be achieved, assuming there are no other vehicles or obstacles present
in the intersection.

Considering this, the results obtained suggest a different conclusion: achieving suc-
cessful intersection navigation in Duckietown, assuming no road obstructions exist,
does not necessarily require an accurate BEV representation of the surroundings.

17

5.1 Future work

To conclusively determine whether BEVs generated using MILE could improve
intersection navigation in Duckietown, a follow up study could gather training
data specifically from the Duckietown environment. This data could then be uti-
lized to train MILE, enabling it to accurately predict BEVs in that setting. Such
an approach could help determine the effectiveness of MILE in the Duckietown
simulator and potentially pave the way for further improvements in intersection
navigation. In order to accurately evaluate the efficacy of MILE in this context,
experiments would need to incorporate other vehicles and obstacles on the road,
which would thoroughly test the model’s capabilities.

Another possible expansion of this thesis could be construct more suitable
thresholds for the metrics proposed by (), by analyzing training
data with expert trajectories created within the Duckietown environment. This
would greatly expand the effectiveness of development for this environment, as
such planning specific metrics do not currently exist for Duckiebots.

18

Chapter 6

Conclusions

The implementation of MILE presented in this thesis does not generalize well to
the Duckietown environment, and was unable to generate more accurate BEV
representations when compared to a homographic BEV. Despite this, intersection
navigation success rates utilizing such limited BEV representations are higher on
average when compared to a more representative homographic BEV. This demon-
strates that navigating a Duckietown intersection not containing any obstructions
is a reasonably simple problem not requiring detailed representations of the im-
mediate surroundings. Employing a pre-determined trajectory from a set start
position is arguably a more reliable solution in such cases, as opposed to con-
structing BEVs from a singular low-resolution camera.

19

References

Caesar, H., Kabzan, J., Tan, K. S., Fong, W. K., Wolff, E., Lang, A., ... Omari, S.
(2021). Nuplan: A closed-loop ml-based planning benchmark for autonomous
vehicles. arXiv. Retrieved from https://arxiv.org/abs/2106.11810 doi:
10.48550/ARXIV.2106.11810

de Marez Oyens, P. (2022). Predicting abstract bird’s-eye-view representations
from monocular camera images using deep learning. https://scripties
.uba.uva.nl/search?id=record_28905.

Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., & Koltun, V. (2017). Carla: An
open urban driving simulator. In Conference on robot learning (pp. 1-16).

Giles, S. N., Leopoldseder, C., & Wieland, M. (2019). Project lane following inter-
section (project-lfi). Project report. Eidgenossische Technische Hochschule
Zirich (28 pages).

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image
recognition. In Proceedings of the ieee conference on computer vision and
pattern recognition (pp. 770-778).

Hinneburg, A. (1996). A density based algorithm for discovering clusters in large
spatial databases with noise. In Kdd conference, 1996.

Hu, A., Corrado, G., Griffiths, N., Murez, Z., Gurau, C., Yeo, H., ... Shotton, J.

20

https://arxiv.org/abs/2106.11810
https://scripties.uba.uva.nl/search?id=record_28905
https://scripties.uba.uva.nl/search?id=record_28905

(2022). Model-based imitation learning for urban driving. In Advances in
neural information processing systems (nips). (paper 662).

Ignatious, H. A., Khan, M., et al. (2022). An overview of sensors in autonomous
vehicles. Procedia Computer Science, 198, 736-741.

Karras, T., Laine, S., & Aila, T. (2019). A style-based generator architecture for
generative adversarial networks. In Proceedings of the ieee/cuf conference on
computer vision and pattern recognition (pp. 4401-4410).

Philion, J., & Fidler, S. (2020). Lift, splat, shoot: Encoding images from arbitrary
camera rigs by implicitly unprojecting to 3d. In 16th european conference on
computer vision (eccv) (Vol. Part XIV 16, pp. 194-210).

Saha, A., Mendez, O., Russell, C., & Bowden, R. (2021). Enabling spatio-temporal
aggregation in birds-eye-view vehicle estimation. In 2021 ieee international

conference on robotics and automation (icra) (p. 5133-5139).

21

	Introduction
	Theoretical Background
	The Pinhole Camera Model
	Homography Transformations
	Lift-Splat

	Methods
	Homographic BEVs
	MILE
	Lane Following
	Intersection navigation

	Experiments
	Experimental setup
	Metrics
	Results

	Discussion
	Future work

	Conclusions
	References

