NAVIGATION USING A RADAR SENSOR IN
USARSIM

Navigation using a radar sensor in
USARSim

Richard Rozeboom
6173292

Bachelor thesis
Credits: 6 EC

Bachelor Opleiding Kunstmatige Intelligentie

University of Amsterdam
Faculty of Science
Science Park 904
1098 XH Amsterdam

Supervisor
dr. A.Visser

Informatics Institute
Faculty of Science
University of Amsterdam
Science Park 904
1098 XH Amsterdam

June 26th, 2012

Abstract

This thesis describes how, in the USARSim environment ray tracing can
be used to implement a virtual radar sensor and how such a sensor can be
used for navigation. What makes the radar more desirable than other sensors
is that a radar is able to capture information through materials such as light
foliage and smoke, and is able to capture the reflection of multiple objects
at once. Previous work has analyzed large multi sensor datasets in order to
demonstrate the behavior of a radar system in a real world environment.

Contents
1 Introduction 4
2 Related Work 4
3 Radar sensor 7
3.1 Radar noise and interference 8
4 Radar sensor in USARsim 8
4.1 Testenvironment 9
42 RadarModule, 10
4.3 Simulating radar noise and interference 11
5 Navigation 13
5.1 Navigation algorithm 13
5.2 Using the simulated radar data for navigation 15
6 Results 16
7 Conclusions, discussions and future work 17

1 Introduction

Information gathering about the environment has always been one of the most
important aspects of robotics. It is crucial that a robot or agent has the in-
formation it requires to localize itself and its surroundings in an environment
that may be difficult to navigate in. To acquire information about the envi-
ronment senors are used in a wide variety of applications. Proximity sensors
can be used in car safety applications and military applications, and motion
sensors are used for security purposes, to name a few.

One sensor that can gather information of the surroundings is the radar,
which has recently become lightweight and affordable, and has several ad-
vantages compared to other sensors, one of which is being able to capture
information through certain densities of foliage and smoke whereas other
sensors like cameras and laser scanners would perceive an obstacle. Another
advantage is that a radar can perceive multiple objects from one reflection at
once.

Another important aspect of robotics is simulation, for it is necessary to
first test the behavior of the robot or agent without endangering any equip-
ment. A robot might not act as expected and damage itself in the process,
making testing of the robot an expensive procedure. Secondly a simulator al-
lows for customization of the environment and circumstances, which in turn
allows for reproducible experiments. Furthermore, a simulator grants access
to visual aides and visualizations such as the ground truth. which are not al-
ways available in a real world environment. One example of such a simulator
is USARSim (Unified System for Automation and Robot Simulation), which
is a detailed simulator made for robots and their environments, and is used
by many robotics projects such as the Urban Search And Rescue project, and
the annual RoboCup.

This thesis presents a way to implement a radar sensor in USARsim us-
ing ray tracing to capture information about the surroundings in the simulated
environment. Furthermore, a way to navigate in an environment where sev-
eral obstacles like foliage are present will also be discussed. Using the radar
sensor to map environments in conditions that prove difficult to other sensors
will make it clear that the radar has advantages compared to other sensors in
such situations.

2 Related Work

The Marulan datasets are large accurately calibrated and time-synchronized
datasets which hold the readings of multi-sensor vehicles that have been
scanning a real world environment, and are described in the work Multi-
Sensor Perception for Unmanned Ground Vehicles[6]. These datasets en-
ables research and validation towards several sensors under not only normal
circumstances such as an open field on a clear day, but also extreme circum-
stances with obscuration such as heavy rain and smoke. The scenes that the
vehicles have scanned are made of ordinary objects such as plants, poles and
boxes. One of the scenes that has been used in the making of the Marulan
datasets is shown in figure 1.

Figure 1: Static trial scene, figure from Peynot and Scheding [6, fig 5]

The vehicle is equipped with many sensors, one of which is the radar,
and in Multi-Sensor Perception for Unmanned Ground Vehicles some of the
advantages of the radar sensor become apparent when plotting the data from
the sensors. For example, the readings from a radar in clear conditions and
in heavy dust is illustrated in figures 2 and 3respectively, and the readings of
a laser range scanner in the same conditions are illustrated in figures 4 and 5.
The images make it clear that the radar has little to none interference in the
dusty conditions, whereas the laser scanner is influenced significantly. Tests
that have taken place under different conditions like heavy rain show similar
results.

Range (m)
®

g e

Angle (degrees; Angle (degrees,

(a) Figure 2: Radar readings, clear conditions (b) Figure 3: Radar readings, dusty conditions

The data from the radar in the datasets has been used for research to mea-
sure the capabilities concerning radar simulation, among other goals. More
specifically, the thesis Virtual radar sensor for USARSim[5], in which the
Marulan dataset has been thoroughly analyzed to demonstrate the behavior
of a radar in a real world environment, and to answer the question "how real-
istic a new sensor based on radar technology can be added to the USARSim

1k, 1 A, I

o
m
Range (m)

0 ! ! i 1 I ! 0 ! ! I i 1 ! I |
-40 30 20 -10 0 10 20 30 0 -40 -30 20 -10 0 10 20 30 40
Angle (degrees; Angle (degrees

(c) Figure 4: Laser readings, clear conditions (d) Figure 5: Laser readings, dusty conditions

Radar and laser readings in clear and heavy dust conditions, figure from Peynot
and Scheding [6, fig 26-28]

world’. The thesis offers a method to simulate a radar sensor, and concludes
that simulating a radar sensor in the USARsim environment is possible. In
a way Navigation using a radar sensor in USARsim is a continuation of the
research on a virtual radar in USARSim, as this thesis provides an imple-
mentation of such a radar sensor that is presented in Virtual radar sensor for
USARSim.

As stated before, simulation is a valuable asset in the field of robotics.
USARsim (Unified System for Automation and Robot Simulation) is a sim-
ulator for robots and their environment based on UDK (Unreal Development
Kit), and is used for research in the field of robotics in numerous occasions.
USARSim: a robot simulator for research and education[2] is the work that
has presented the field of robotics with USARSim, and provides its general
architecture, describe examples of utilization, and provide a comprehensive
overview for those interested in robot simulations for education, research and
competitions.

In the Metsiteho Report, ”Sensing Through Foliage”[4] the different
technologies capable of seeing through foliage are examined to achieve bet-
ter measurement and perception of trees, ground and obstacles that harvesters
might encounter in the wood production. The report concludes that the most
sensor technologies that are able to see through foliage are FMCW radars
operating on gigahertz or terahertz frequencies, and that they can form ac-
curate 3D images of the environment. Furthermore the report states that the
only drawback is that the most accurate radar systems are very expensive
measuring devices, and not easily obtained.

In the paper Mapping of the environment with a high resolution ground-
based radar imager[7] the potential is presented of microwave radar func-
tioning as a high resolution ground-based imager, in order to build radar maps
in environmental applications. A new radar sensor names K2Pi is described,
which makes use of FMCW (frequency-modulated continuous wave). Using
an algorithm that is based on SLAM (simultaneous localization and mapping)
global radar maps have been constructed using a data merging process.

In the book Principles of Robot Motion: Theory Algorithms, and Imple-
mentation[3] the advances that have taken place in the the past are reflected,
which includes sensor-based planning, probabalistic planning, localization
and mapping, and motion planning. Its presentation makes the mathematical
side of robot motion accessible to students of computer science and engineer-
ing. This book features several useful algorithms that can be used to navigate
using the radar sensor.

3 Radar sensor

In order to perceive objects, a radar sensor has a transmitter that sends out
radio waves of a certain frequency making the radar waves collide with the
surrounding environment. These reflected waves are then scattered from the
point that the wave has hit an object, and some of the reflected waves will
return and be measured by the radar receiver. The time between sending a
receiving a pulse gives a measurement of the range of the object the radio
waves reflected off of. The process of sending and receiving radio waves is
illustrated in figure 5.

R adas P_'_q'ivn

Reflecied beam 1

Figure 5: Radar beam scatter, image from Bosman [1, fig 4.3]

A radar system transmits and receives the radio waves by making use of
one or more antennas. Separate antennas can be used to send and receive
signals however due to interference it is more common to use one antenna
that is able to switch between sending and receiving. The direction in which
a radar transmitter can send its signal is 360° in one plane, which it goes
through in steps. Small steps will ensure high accuracy, but will require
more radio signals to be sent for the full range to be covered.

In the field of robotics measurements are needed of 100 meters and be-
low, which requires making use of high-frequency electromagnetic waves.
Loss of signal intensity is to be kept at a minimum to keep the transmission
energy as low as possible. The loss of signal intensity is at its lowest when
the frequency of the signal is 94GHz which is reserved for military and ex-
perimental applications such as robotics. Frequencies between 40GHz and
300GHz toughly corresponds to wavelengths between 1 and 10mm[8].

Conventional radar systems are not suitable for measurements in the field
of robotics because such a radar system would be required to be of high
precision and speed, making it very expensive equipment. An alternative to
counter this problem is a radar system that makes use of FMCW, Frequency
Modulation Continuous Wave technology. Using this the frequency shifts in

a way that makes it easier to calculate the time it took for a signal to return,
and thus to determine the range. The largest advantage to robotics of FMCW
is the lower transmission power that makes it safer and more efficient to use.

Using radar has several advantages compared to other common visual
based sensors such as laser scanners and video, the greatest advantage being
that radar readings are less effected by visual conditions such as weather,
smoke or light foliage (An example is shown in figures 2-5). Microwave
radar has been used to build maps of the environment using a radar that scans
in 360° at 24GHz[7].

3.1 Radar noise and interference

The radar can be adjusted to scan with a very high resolution, resulting in
highly accurate readings. In practice a radar module is often set to a lower
resolution, which has the benefit of reducing computational load consider-
ably. This comes at a cost however in the form of noise and interference. It is
also possible for a signal to only partially hit an object, which means that the
rest of the signal will fly past the object, potentially hitting another object.
This would cause the radar to perceive two objects in the same direction, and
on two different ranges[5]. This can occur due to the beam divergence of the
signal, which holds that the beam diameter increases with distance from the
origin. In some radar systems only the information is kept of the object that
returned the highest reflectivity, and this can cause fluctuations in readings
coming from one direction.

4 Radar sensor in USARsIim

USARsim (Unified System for Automation and Robot Simulation) is a sim-
ulator for robots based on UDK (Unreal Development Kit) with several tools
and sensors that make a realistic simulation possible. The radar sensor how-
ever, is not yet one of the implemented sensors that are available in USAR-
sim, and with the use of a tool called ray tracing it is possible to implement a
sensor that would have the same behavior as a radar. Previous research, Vir-
tual radar sensor for USARSim[5] suggests that it is indeed possible to model
such a sensor in USARsim to some extent, by having analyzed the data of a
radar from large, accurately calibrated and time-synchronized datasets, The
Marulan Datasets[6].

Ray tracing in USARsim allows for a beam to be sent from the sensor
through the scene/environment, and doing so will gather information from
the virtual objects that it goes through, making it possible to retrieve infor-
mation such as object type, density, and transparency of objects that the sen-
sor detects. Using this information it is possible to determine whether a radar
beam would go through material, and if so, how far would it go through. This
is essentially all that is needed to implement a sensor that behaves like a radar
in the simulated environment.

Once it is made clear how far the radar module should be able to see
through materials such as foliage and smoke, it is needed to build an internal
representation that can be used to localize the agent and the surroundings.
Some entities in the simulator, for example smoke, are safe for an agent to

navigate through, trying to move through a shrub however might render the
agent unable to move, even though the radar can gather information through
both of these objects. Therefore it is necessary to make a clear distinction be-
tween such virtual objects in the internal representation of the surroundings.

For the radar sensor to be able to move through a simulated environment
it will need a way of transportation. The USARsim environment has several
bots/vehicles available, which can be adjusted to be equipped with any sen-
sor. One of which is the P3AT which has been chosen to be equipped with the
new radar sensor in order to move throughout the environment, and is shown
in figure 6. The P3AT has been chosen because it resembles the vehicle used
in the Marulan data gathering[6] the most, and is also easily controlled.

4.1 Test environment

In order to test new implementations of radar sensors, a map is needed that
demonstrates the advantage of the radar. To make an environment that cause
difficulties to other sensors, a map has been made for USARSim in which
other sensors would see a solid "wall’ of objects, whereas the radar sensor
would be able to sense gaps in the wall. The basic foliage that is used is made
of spherical shapes and has been given a property for the sensor to recognize
as foliage that is thin enough to be able to penetrate. Alternatively other ob-
jects can be chosen for other scenarios. Spherical shapes have been chosen
in order to create thin sections in the wall, and the round shape ensures that
the readings are diverse enough to analyze. The foliage that is available in
the UDK environment have cubic boxes for collision models, which would
make the readings insufficiently diverse. The test map is shown in figure 6.

Figure 6: Test environment of the radar.

The map has been designed so that when passing the foliage the radar sensor
is able to sense what is behind the obscured part of the map, whereas an other
visual sensor will not be able sense in that area of the map from any position
on the left of the foliage. An other visual sensor that is available in USAR-
sim, the Hokuyo sensor has been chosen to demonstrate this behavior in the

test environment. The Hokuyo sensor is not able to sense past the obstacles,
in this case light foliage, which prevents exploration in the part of the room
that is obstructed. The readings of the Hokuyo sensor made in the test envi-
ronment are shown in figure 7.

=z

Figure 7: Sensor reading of the Hokuyo sensor module.

4.2 Radar Module

The radar implementation is a modification of the range-scanner module in
USARsim. Using ray tracing it is possible to cast a ray from the sensor
through the environment as a radar system would cast radio waves. The
raytracing method not only returns the range of the detected object, but also
the material and other information, and doing so will enable the sensor to
determine how far the beams should penetrate through the material.

The radar sensor is utilizing an algorithm that finds the range recursively
by casting rays through the scene. If a normal object is hit by the rays, there
is no need to calculate the range any further, and that range is returned. How-
ever if an object is hit that is made from material that a radar wave can pene-
trate, the algorithm casts a ray from the point of collision through the object
to a certain extent, depending on the penetration power of the radar, and the
distance the ray has gone through objects before, and the density of those ob-
jects. When a ray goes through an object, the penetration power is decreased
until it runs out, at which point the range is returned. This means if an ob-
ject is too large to sense through, the range that is acquired lies somewhere
between the ’entrance’ point of the ray, and the back side of the object.

Using this implementation, the radar sensor is able to see through the fo-
liage to a certain extent. The foliage in the test environment consist of spheri-
cal shapes, and the penetration power is insufficient to see through the center
of the foliage, yet the edges of the foliage are thin enough to see through.
This leads the sensor to see holes through the wall of foliage, and uncover

10

the section of the test environment that is obscured. This behavior can be

seen in the ground-truth of the radar sensor, and is shown in shown in figure
8.

Figure 8: The ground-truth reading of the radar sensor module.

4.3 Simulating radar noise and interference

To recreate noise and interference for the virtual radar sensor, a model has
been made to simulate beam divergence. The rays that are cast in the UDK
environment are infinitely thin, therefore the model uses not only one beam,
but also casts two ’side beams’ for each original ray that the sensor would
cast. Because the sensor is scanning in a horizontal plane, the extra beams
that are cast are also in that plane. The are cast to the left and to the right
of the original beam, relative from the position of the sensor. Each ray has a
chance to be used to acquire the range. In this way, interference that occurs
when a beam comes close to grazing an object is simulated. The offset of the
side beams is measured in units in the UDK coordinate system, which will be
referred to as N. The simulation of noise becomes visible in the ground truth,
and two examples with N=50 and N=100 is shown in figure 9 and figure 10
respectively.

To illustrate how this takes place in the UDK environment, images 11
and 12 demonstrate the extra beams that are cast. The red lines represent
the beams that are cast left of the original beam, the blue lines are the beams
that have been cast on the right side. The space where the two kinds of
beams overlap each other does not seem to be giving much information, how-
ever on the left and right side, it is clear that the beams exceed each other.
The amount N=100 is shown for demonstration purposes only, as 100 units
would be of little use to simulate usable or realistic noise. The recommended
amounts for N are 50 and lower, however these amounts are insufficient for
demonstration purposes. The sensor is mounted on a P3AT vehicle from the
USARsim environment.

11

_‘_Z

(e) Figure 9: Radar readings in test environment with (f) Figure 10: Radar readings in test environment with
N=50 N=100

Figure 11: The radar module on the P3AT with visible offset-beams with
N=50.

12

Figure 12: The radar module on the P3AT with visible offset-beams with
N=100.

5 Navigation

In order for a agent to fully localize and map a space that is larger than its
senor range or obstructed from the view of its sensors, the agent needs to
move throughout the space. Navigation of agents equipped with a sensors
such as a radar to create a map of the surroundings can be done in several
ways, for example the agent could head in a different direction each time it
would be close to a wall or other obstacle, much like how a basic vacuum bot
would navigate through a house. Making a map in an efficient way however,
can be done in a much more systematic way such as following a wall once it
has been found to find the contours of the room, after which the agent needs
to put the interior of the room on the map. This method proves useful for
environments such as enclosed rooms, however it might be possible for the
agent to be in a border-less environment, in which case a center-out approach
would be of more use to map the surroundings and find objects. Ultimately
the agent should navigate using the information that it acquires (or does not
acquire), choose between exploration strategies, and act accordingly to effi-
ciently map the area.

5.1 Navigation algorithm

To demonstrate that complex navigation is possible using a radar sensor, a
basic algorithm has been chosen to illustrate how radar sensor data can be
used for the purpose of navigation. The algorithm is simple and is similar
to the vacuum bots’ behavior mentioned earlier. The chosen algorithm is the
Bug algorithm[3], which is best explained using the image shown in figure
13.

13

Figure 13: The Bugl algorithm. (Top) The Bugl algorithm finds a path to
the goal. (Bottom)The Bugl algorithm reports failure.

The Bugl algorithm holds the following: Go for the goal or way point in
a straight line until an obstacle is encountered. The place location where the
agent has detected the obstacle for the first time will be called the hitlocation.
Follow the boundary of the obstacle (either left or right) until the goal is
reached or until the hitlocation is reached again. If the hitlocation has been
reached again, determine the closest point from the boundary of the obstacle
to the goal, this point shall be called the leaving point. Traverse to the leaving
point and repeat the process, starting from going to the goal in a straight line.
If the line connecting the leaving point to the goal intersects the obstacle that
was previously encountered, conclude there is no path to the goal.

There is also a variation of the Bugl algorithm, simply called the Bug2
algorithm. This algorithm will cover less ground than the Bugl algorithm,
but still ensures finding a path to the goal if it is possible. The Bug2 algorithm
is similar to the Bugl, and is as follows: Head for the goal in a straight line
until an obstacle has been detected. Follow the boundary of the obstacle until
the initial line going to the goal has been crossed. If at this point the agent
is closer to the goal, repeat the process. If the agent is not closer to the goal
once it crosses the line, conclude there is no path leading to the goal. The
Bug? algorithm is shown in figure 14.

14

Figure 14: The Bug2 algorithm. (Top) The Bug?2 algorithm finds a path to
the goal. (Bottom)The Bug2 algorithm reports failure.

At a first glance it might seem like the Bug?2 algorithm is more efficient
since it will cover less ground. However it might be more desirable for the
agent to explore the surrounding area before reaching the goal, in which case
the Bugl algorithm would be more appropriate. Besides the difference of
how much ground coverage might be desirable, it is possible to think of an
obstacle in which the Bug?2 algorithm is less efficient than the Bugl algo-
rithm. Consider an obstacle boundary that intersects the line to the goal n
times. The Bugl algorithm will traverse at most one and a half of the bound-
ary before leaving for the goal or other obstacle, whereas the Bug?2 algorithm
will traverse at most almost the entire boundary n times. The most suitable
algorithm of the two therefore entirely depends on what obstacles are present
in the environment. For simple object the Bug2 algorithm will perform best,
whereas the Bugl algorithm will outperform Bug2 when there are more com-
plex obstacles encountered.

5.2 Using the simulated radar data for navigation

To use the radar data for navigation purposes, the range of each individual ray
must be considered. Due to the large amount of rays that are cast, it would
be best to make several groups that categorize parts of the beams, making
a long range "bumper’. Navigating using four to eight bumpers instead of
360 rays(for a full circle with a 1 degree step size) is considerably easier.
The groups could be simply ’left, right, front and back’ but more bumpers
are also suitable, depending on the task at hand, and the objects the sensor

15

will encounter. The ranges to which a bumper must activate depend on the
vehicle the sensor is mounted on, and the density/penetration of the objects
that the radar can sense through. For this radar module mounted on a vehicle
using default settings, it is recommended to stay away from obstacles for two
to three times the length of the vehicle. This will ensure that there will be no
collision with the vehicle and surroundings, and also takes into consideration
the amount of the foliage the sensor senses through. Once the agent stays
away from obstacles, it must be determined when a bumper is pressed safely.
This can be done in the following way: If all rays in the left bumper are
between the safety-distance and safety-distance + 50cm, the left bumper is
pressed. This length of course depends again on the situation and obstacles
that are encountered.

Once the groups of rays are configured to activate on the right times, a
few simple rules must be created to be able to use the Bug algorithm. When
an object is encountered by the bumpers, the agent must align itself with the
obstacle boundary and must turn until only one of the side bumpers is being
activated. This means in the four-sided example, that the three other bumpers
two of which are front and back, are all not being activated. The agent can
then move forward and backward, following the boundary of the obstacle
until the state of one of the bumpers has changed. If the previously activated
bumper is not activated anymore, lets say the left, the agent has gone too
far from the boundary and must move towards the left until the bumper is
activated again. If the front (or back) bumper is activated the agent must
have found a corner or turn in the boundary. To follow the turn the agent
must steer away from the already pressed side bumper, and move towards the
right until the front bumper is no longer activated, but instead the back is now
activated. The agent is now aligned again and can move forward, along the
boundary of the object. Once these rules have been implemented to follow
boundaries and to align to surfaces, the Bug algorithm can be implemented.

6 Results

The radar sensor module has been mounted to the P3AT vehicle, which has
been driven through the test area using the interface USARCommander. The
USARCommander can not only control the agents in the USARsim environ-
ment, but can also use the sensors used to make a map using SLAM, Simul-
taneous localization and tracking. The result of driving through the area and
using SLAM to create a map is shown in figure 15. The blue area is where
the sensor cannot sense, the white area is what the sensor can sense, a series
of black dots represent obstacles such as walls, and gray areas are clear space
to the sensor.

16

Figure 15: Top-down view of explored test environment. Image generated
by UsarCommander.

As is shown the area to the right side of the foliage is mostly white, and
accessible for the sensor. Small cores of blue reside in the center of the
pieces of foliage, where it is too deep for the rays to penetrate through. The
gray space that is also present in the foliage is clear to the sensor, however
not clear for the agent himself, as indicated by the series of black dots around
the foliage. Other sensors showed similar results as shown in figure 7, as they
are not able to sense through the foliage they leave the right side of test room
blue in the readings.

7 Conclusions, discussions and future work

A basic model of radar module has successfully been implemented in US-
ARsim which can now be used to test radar sensors in a safe and simulated
environment. The radar has a distinct advantage compared to other sensors,
as it is able to sense through some visual obscuration, in this case foliage.
Results show that the virtual radar sensor is capable of sensing through the
simulated foliage, where other visual sensor are not. Furthermore it has been
made clear that navigation using a radar sensor is possible using this imple-
mentation of the radar system.

The radar module is a model, and has not been fine tuned to a specific
model, however it is possible to make adjustments to the module with little
effort, to make it behave like a specific commercial model. Doing so would
require to adjust the specifications such as resolution, step size, range and
noise level to achieve similar results of the desired commercial model. Such
modifications require minimal effort as the variables that account for those
parameters are accessible and are easily adjusted.

The current implementation of noise (illustrated in figures 10-13) uses a
chance model that gives all rays(one original, 2 offset rays) that are cast an

17

equal chance to be chosen to determine the range. Adjustments can be made
for the chances to increase or decrease depending on the angle of the surface
that was hit by each ray. Two rays are cast, however beams diverge in all
directions, not only left and right. To approach a model that is more similar
to beam divergence, more rays could be added pointing towards certain di-
rections. The amount of rays have been kept low due to the computational
load it requires to cast more rays. Each ray that successfully hits an object
the radar can penetrate requires retrieving the range recursively. There could
be improvement in optimizing the algorithm that calculated the range.

The navigation algorithm discussed earlier can also be implemented to
demonstrate that a vehicle equipped with a radar sensor can navigate in an
area without the use of other sensors. Other improvements are also possible
for example adding new behavior to materials, such as radio wave absorbing
substances and reflecting surfaces. New objects can also be added, however
this will require building a collision model for the objects. Objects such as
trees and other foliage exist in the UDK environment, however the collision
models are not very detailed, giving readings that would be the same as de-
tecting a cube or box. Adding collision models to these objects would allow
for more realistic scenes and readings.

References

[1] D. Bosman. Radar image fusion and target tracking. 2002.

[2] Stefano Carpin, Michael Lewis, Jijun Wang, Stephen Balakirsky, and
Chris Scrapper. Usarsim: a robot simulator for research and education.
In ICRA, pages 1400-1405. IEEE, 2007.

[3] Howie Choset, Kevin M Lynch, Seth Hutchinson, George Kantor, Wol-
fram Burgard, Lydia E Kavraki, and Sebastian Thrun. Principles of
Robot Motion: Theory, Algorithms, and Implementation. Intelligent
Robotics and Autonomous Agents. Mit Press, 2005.

[4] Heikki Hyyti. Sensing through foliage, April 2012.
[5] Niels Out. Virtual radar sensor for usarsim, June 2010. Bachelor Thesis,
University Of Amsterdam.

[6] T. Peynot, S. Scheding, and S. Terho. The Marulan Data Sets: Multi-
Sensor Perception in Natural Environment with Challenging Conditions.
International Journal of Robotics Research, 29(13):1602—1607, Novem-
ber 2010.

[71 R. Rouveure, M.O. Monod, and P. Faure. High resolution mapping of
the environment with a ground-based radar imager. In Radar Conference
- Surveillance for a Safer World, 2009. RADAR. International, pages 1
-6, oct. 2009.

[8] M.IL Skolnik. Introduction to radar systems, 1980.

18

