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Abstract

The RoboCup is an international initiative with the goal to have a full team of
robots beat the winner of the FIFA World Cup in the year 2050. One of the leagues
hosted by RoboCup, the Standard Platform League, requires all participants to
use the NAO 6 humanoid robot. In order to precisely control this robot and with
modifying hardware being forbidden by the rules of the league, teams have sought
to predict the sensor measurements needed for walking. However, due to joint wear
the dynamics of the robot change over time, reducing the effectiveness of such a
prediction model. This thesis focuses on liquid time-constant networks, a novel
addition to the class of neural ODEs, and their potential to adapt to the joint
wear condition of the robots. It demonstrates that although LTCs are relatively
better at adapting to joint wear, their absolute performance is significantly worse
than previous methods in terms of both inference time and MAE.
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Chapter 1

Introduction

The RoboCup is an international competition and initiative with the goal to have
a full team of robots beat the winner of the FIFA World Cup in the year 2050.
RoboCup hosts multiple leagues, each of which has a different set of rules. For
the Standard Platform League (SPL), all participants use identical robots, this is
currently the humanoid NAO 6 developed by Aldebaran. The different teams are
allowed to upload their own code to the robots before the match, but the robots
must operate autonomously during the match.

Figure 1.1: Two NAO 6 robots photographed during a RoboCup SPL match.

In order to control the NAO 6 precisely and reactively, fast feedback is required.
Because the hardware is fixed under the rules of the SPL, it is not possible to bring
down the latency between joint angle commands and measurements by optimizing
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it. Marginal improvements could always be made in software, but the software
overhead is insignificant in comparison.

As it is not possible to reduce this latency, another approach is to more opti-
mally use the available information. Although it is not possible to receive the
measurements faster than is physically possible, some degree of predictability can
be exploited. One such approach then is to train a model that predicts these
measurements n time-steps in the future. These predictions can then be fed into
subsequent models and systems that ultimately control the robot. If the model is
accurate, the effect will be as if the latency has been reduced.

For this to work, the dynamics of the NAO 6 needs to be captured by this model.
To analyse these dynamics, we must discern between the interior and the exterior.
The internal state is partially observable through the measurements of the joint
angles, but also consists of another part which can only be indirectly observed
(e.g., the joint wear). Although this hidden state might be reconstructable, it is
only necessary for its effect to be capturable by the model (i.e., it can be a black
box). The exterior can then be defined as the boundary to the interior in so far
as what is behind it should not be included, but still influences it. In order for
the model to be robust and properly constrained to the dynamics of the NAO 6,
the dynamics behind the external factors (e.g., the control system) must not be
learned. Rather, the external factors themselves (e.g., the control signal) must be
taken directly.

The goal then, is to train a model that takes as input previous observations of its
own state alongside any external factors and outputs the next set of observations.
These external factors consist for the most part of the control commands sent to
the platform. If this was not the case, the robot would barely be controllable. Of
course, the robot may be held or restricted, but these circumstances are outside
of its operating environment and do not need to be accounted for.

B-Human, a team from the University of Bremen, has already implemented such
a model in their framework (Fiedler and Laue 2023; Reichenberg and Röfer 2023).
However, as the joint wear significantly changes the dynamics of the robot, it is
worth investigating if other neural network architectures can outperform the LSTM
presented by Fiedler and Laue. For this purpose, this thesis is an investigation
into the performance and adaptability of liquid time-constant networks (LTCs)
with regards to this task.
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1.1 Liquid Time-Constant Networks

Liquid time-constant networks are a type of time-continuous neural networks that
belong to the broader class of neural ordinary differential equations (neural ODEs)
(Hasani et al. 2021). The state of a neural ODE x(t) is determined by the differ-
ential equation (Chen et al. 2018):

dx

dt
(t) = f(x(t), I(t), t; θ) (1.1)

Where f is a neural network parameterized by θ. To solve such an ODE requires
the usage of numerical integration methods such as those belonging to the family
of Runge-Kutta methods. This equation is reminiscent of the equation that defines
continuous-time recurrent neural networks (CT-RNNs), which exhibit more stable
behavior (Funahashi and Nakamura 1993):

dx

dt
(t) = −x(t)

τ
+ f(x(t), I(t), t; θ) (1.2)

Liquid time-constant networks multiply the second term by A− x(t), yielding:

dx

dt
(t) = −x(t)

τ
+ f(x(t), I(t), t; θ)(A− x(t)) (1.3)

= −
[
1

τ
+ f(x(t), I(t), t; θ)

]
x(t) + f(x(t), I(t), t; θ)A (1.4)

Such a network gains its name from the fact that its time-constant τsys is param-
eterized by the neural network f embedded in it, which can be seen by rewriting
the preceding equation in the form τsys

dx
dt
(t) + x(t):

1

1/τ + f(x(t), I(t), t; θ)

dx

dt
(t) + x(t) =

Af(x(t), I(t), t; θ)

1/τ + f(x(t), I(t), t; θ)
(1.5)

This adaptation of CT-RNNs, in part inspired by the dynamics of neurons in small
species, has been proven to show a marked improvement on similar methods in
modelling time-series, measured in terms of expressivity, stability and performance.
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It is expressable as a differentiable computational graph, and can therefore be
trained using gradient-based methods (Hasani et al. 2021).

Alongside this state equation, Hasani et al. also introduce a novel ODE solver which
can be characterised as a fusion between implicit and explicit Euler methods. The
reason for this is that LTCs realize a system of stiff equations that would require
an exponential number of steps when using a more common Runge-Kutta based
algorithm.

In particular, the update step for an LTC using this method is:

x(t+∆t) =
x(t) + ∆tf(x(t), I(t), t; θ)A

1 + ∆t(1/τ + f(x(t), I(t), t; θ))
(1.6)

For this reason, LTCs are hypothesized to be effective in joint angle prediction. In
this thesis we explore whether or not LTCs are effective in modelling the dynamics
of the NAO 6 and its adaptability to different wear conditions it was not trained
on.
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Chapter 2

Method

2.1 The NAO 6 Platform

The NAO 6 has 25 distinct motor positions, of which 2 are in its head, 8 are in
its arms, 4 are in its hands, and 11 are in its legs. For locomotion, only the 11
joint angles in its legs are critical. Although controlling the head, arms and hands
might shift the center of mass to a more optimal position, the walking engine does
not require as low a latency for these motors. These are therefore excluded from
the prediction model, in order to reduce the model complexity. The joint angles in
the legs are at its hip, ankles and knees and can be controlled individually. These
are mirrored on each side, with the hip and ankles having both a roll and pitch
component whereas the knee just has a pitch component. Alongside the left and
right hip joints, there is also a central yaw-pitch control for the hip.

In order to interact with the hardware, the NAO 6 libraries include a real-time
process called LoLA (Low Level Abstraction). LoLA runs at 83Hz (12ms) and
communicates each cycle with the hardware through the HAL (Hardware Ab-
straction Layer). This means that software frameworks can simultaneously receive
measurements are send commands to the platform every 12ms.

For the controller, the NAO 6 houses an Intel ATOM E3845 running at 1.91 GHz
with 4 GB of DDR3 RAM, alongside 32 GB of eMMC flash memory (Franco 2022).
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ankle roll
pitch

(a) The 11 joint angles of interest. (b) Positions of the motors on the
NAO 6.

Figure 2.1: Overview of the controllable joint angles.

2.2 B-Human Dataset

For training the models, I have opted to use the datasets made publicly available
by B-Human (B-Human 2023b). Dutch NAO Team, the RoboCup team at the
University of Amsterdam, did not a have a way to collect the data before the start
of this research project. Although it would have been possible to start collecting
this data, B-Human has a collection spanning multiple events. Crucially, their
data set starts at the 2019 German Open, which is the first year the NAO 6 was
introduced. This means that at the time, all the robots were in good condition and
are useful as a baseline for comparing the wear in the subsequent years. Because
the data was collected during real matches, there is no risk of training on data
that does not accurately reflect its operating environment.

The dataset is formatted as a comma-seperated list of values (CSV) with header.
The B-Human dataset consists of one CSV per match per robot, or 266 CSVs in
total. The smallest CSV consists of just 2170 rows, the largest has 94273 rows. As
we know that every row corresponds to a LoLA cycle, this works out to a recording
time between about 26 seconds and 19 minutes.

All CSVs follow the same column order: first 11 outputs, then 11 measurements
(alongside an index column). These are named “request” and “sensor” angles re-

7



spectively, and these names will from now on be used to refer to them. The request
and sensor angles use the same angle order.

Robot 2019 GO 2019 RC 2022 GORE 2022 RC Total
DasKaenguru 293270 283246 101864 295509 973889
DerPinguin 434366 303977 398843 375052 1512238
ElseKling 0 505379 0 0 505379

FriedrichWilhelm 0 0 440246 347038 787284
Gott 0 0 453895 295654 749549
Herta 343231 536729 70869 393544 1344373

JuliaMueller 232933 404322 0 271322 908577
Krapotke 280547 513428 374497 252404 1420876
MarcUwe 492172 430532 0 403282 1325986
OttoVon 208429 327846 168344 377008 1081627
Sarah 337739 522151 394362 248123 1502375

Figure 2.2: Row count per robot, per event for the 2019 German Open, the 2019
RoboCup, the 2022 GORE and the 2022 RoboCup.

request

left

hip roll
pitch

knee pitch

ankle pitch
roll

center hip yaw-pitch

right

hip roll
pitch

knee pitch

ankle pitch
roll

sensor

left

hip roll
pitch

knee pitch

ankle pitch
roll

center hip yaw-pitch

right

hip roll
pitch

knee pitch

ankle pitch
roll

Figure 2.3: Order and grouping of the fields in the datasets.

2.3 Measuring Latency

In order to measure the base latency, we need a method of correlating request
angles with sensor angles. Using Mean Squared Error, we expect the offset with the
smallest average MSE between the request and the sensor angles over all datasets
to correspond to the latency. These results are given in Figure 2.4.
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latency offset MSE
0 ms 0 0.001483
12 ms -1 0.000712
24 ms -2 0.000320
36 ms -3 0.000339
48 ms -4 0.000766
60 ms -5 0.001555

Figure 2.4: MSE between requests and sensors, offset relatively to each other. 24
ms is the closest match, although the real latency is likely between 24 and 36 ms.

2.4 B-Human LSTM and Input-Output Structure

To run their LSTM within their framework on the NAO 6, B-Human has compiled
their deployed model into an ONNX model, which is then loaded by ONNX Run-
time (B-Human 2023a). The model deployed in their codebase, lstm_i03l5u48.onnx,
consists of 5 layers and 48 units per layer. For their models, they have opted to
use 3 frames of input, with an offset of -1 between requests and sensors. Although,
as they have noted, a larger window does show a slightly higher precision, for the
sake of direct comparison and faster training and inference, this experiment will
use the same format.

right

ankle roll
pitch

knee pitch

hip pitch
roll

left

knee pitch

ankle roll
pitch

hip pitch
roll

center hip yaw-pitch
(a) Order and grouping of the

fields in the model, note that this
order differs from the order

presented in Figure 2.3.

request sensor
i− 3 i− 3
i− 2 i− 2
i− 1 i− 1
i i

i+ 1 i+ 1
i+ 2 i+ 2

(b) The window taken
as input (light gray)
and the output (dark

gray).

Figure 2.5: Structure of the inputs and outputs of B-Human’s model.
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2.5 Experimental Setup

2.5.1 Training

The experimental setup involves the training of six LTC models on the 2019 Ger-
man Open dataset with a varying number of units and layers. While LTCs in their
original paper were using learning rates ranging from 0.01 to 0.02, this yielded infe-
rior results during preliminary training runs. Through experimentation it became
evident that a lower learning rate of 0.001 yielded more desirable convergence
characteristics. The reason for this is unknown, but could possibly be due to the
nature of the data and in combination with other hyperparameters.

Compared to the LSTM used by B-Human, the number of units and layers has
been kept relatively small, due to the higher computational complexity and the
fact that the expressivity demonstrated by LTCs means that a smaller number of
units and layers should nevertheless be comparable to larger models with simpler
internals.

For numerical integration, the LTCs use the semi-implicit Euler method introduced
by Hasani et al., with 6 as the fixed number of steps.

Moreover, a batch size of 128 was deemed a good compromise between compu-
tational efficiency and model performance. Higher batch sizes, while significantly
decreasing training time, did underperform, while lower batch sizes did not yield
significantly better results to justify the increased training time.

The optimization process was guided by the Adam algorithm (β1 = 0.99, β2 =
0.999, ϵ̂ = 10−7). For both the training and validation loss, the Mean Absolute
Error (MAE) was used. The rationale for this is that possible anomalies in the
dataset are hard to identify, as we only have the joint angles to go off, and so while
the Mean Squared Error (MSE) would be the more common approach for this kind
of regression model, it gives a much heavier weight to these potential anomalies.

Alongside these LTCs, an LSTM with the same parameters as the one used by
B-Human was trained. While it would have been possible to use their compiled
model, this would leave differences in the training data and other hyperparameters
uncontrolled for.

The dataset was partitioned using the typical scheme of 60% training data, 20%
validation data, and 20% test data. As the dataset consists of multiple series of
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Name Units per layer Layers
lstm-48-5 48 5
ltc-16-1 16 1
ltc-32-1 32 1
ltc-64-1 64 1
ltc-16-2 16 2
ltc-32-2 32 2
ltc-64-2 64 2

Figure 2.6: Overview of the evaluated models.

data that differ in length, the partitioning of this data takes the form of a subset
sum problem. A stochastic method was used to solve this problem, the combined
row counts of each partition are laid out in Figure 2.7.

Partition Split Target Actual Error
Training 60% 1573612.2 1573614 +1.8

Validation 20% 524537.4 524542 +4.6
Test 20% 524537.4 524531 −6.4
Total 100% 2622687 2622687

Figure 2.7: The partition sizes of the dataset in rows.

2.5.2 Evaluation

To evaluate the trained models, they were run on the test partition after conver-
gence. As this partition is part of the 2019 German Open dataset, it is a measure
of the models’ overall performance. Again, the MAE is used for the same rea-
sons as outlined in the previous subsection. Because of the limited data available
in this partition per robot, it is insufficient to evaluate the models’ performance
per robot from this partition alone. Rather, the entire dataset was used, includ-
ing training data, to serve as a baseline measurement. This is possible, because
the final analysis looks at their relative performance, and the per robot baseline
provides a normalized index for the subsequent events.

Afterwards, each model was run on each robot in each subsequent event. These
results were normalized as a fraction of the aforementioned baseline. This way,
the results can be compared to each other as an insight into the models’ ability
to adapt to the accumulated joint wear. The robots that were absent during the
2019 German Open have been omitted from the results.
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Lastly, while there are too many variables to conclusively say whether or not the
models can run on the NAO 6, as this depends on the load that the rest of the
framework takes up, we can measure the inference time relative to the LSTM as a
hint of the models’ performance.
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Chapter 3

Results

Figure 3.1a shows that all models have converged after 75 epochs. For the 16
unit-variants of the LTC, the single-layer LTC initially converged faster than its
dual-layer complement. This is true for the other LTCs as well, although the effect
becomes less pronounced as the number of units increases.

The validation loss as shown in Figure 3.1b is a lot noisier, as the validation
partition is only one third the size of the training partition, but nevertheless shows
the same ordering of the different models and roughly the same loss as Figure 3.1a

As can be seen in Figure 3.2, the overall performance of all LTCs is worse than
the LSTM in terms of the MAE. For every number of units, the dual-layer LTC
performs better than its single-layer equivalent. The same is true for the average
absolute MAE as presented in Figure 3.4, where the LSTM still outperforms the
LTCs at every event.

However, the results from Figure 3.5 do show that all LTCs relatively outperform
the LSTM in adapting to the different wear conditions in subsequent events. The
relative MAE of the 2019 RoboCup is very close to 1 relative to the other events.
This is to be expected, as wear between the 2019 German Open and the 2019
RoboCup is negligable compared to the three year gap between 2019 RoboCup
and the 2022 GORE. Especially the ltc-32-1 performs well in this regard, with
both the smaller and larger models performing worse. It is important to note that
this LTC has the second-worst MAE on the test partition. Interestingly, every
dual-layer LTC performs worse than its single-layer equivalent.

Looking at Figure 3.3, it is clear that running any LTC is much more CPU intensive
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than the LSTM, even though the LSTM has many more layers, with the largest
LTC being more than two orders of magnitude slower. Even the fastest LTC, the
ltc-16-1, still takes 3.5 times the amount of time to run. The dual-layer LTCs
take roughly twice the amount to run as their single-layer counterparts. A doubling
of the number of units corresponds to a 3.5 to 4.5 times increase in inference time.
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3.1 Performance on the Test Partition

(a) Training

(b) Validation

Figure 3.1: Loss (MAE) per epoch, although (b) is very noisy compared to (a)
(due to less data), the order is the same.
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Figure 3.2: MAE on test partition of the 2019 German Open dataset.

3.2 Performance in Terms of Inference Time

Figure 3.3: Inference time relative to lstm-48-5 (running on an Intel i9-13900KF).
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3.3 Performance on Subsequent Events

Figure 3.4: Absolute MAE per model per event averaged over all robots.

Figure 3.5: Relative MAE per model per event averaged over all robots.
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Chapter 4

Discussion

Although the LTCs do seem to adapt relatively better to joint wear than the
LSTM, the additional computational complexity and especially the worst absolute
performance as presented in Figures 3.3, 3.2 and 3.4 make them an infeasible
alternative to the LSTM.

While the inference time of ltc-16-1 might still be acceptable, it is signifi-
cantly outperformed by every other model. The closest contender to the LSTM is
ltc-64-2, but the inference time of the latter is more than two orders of magnitude
larger than the former, which forecloses the possibility of training and deploying
an even larger LTC model.

It might be possible to reduce the number of integration steps performed by the
LTC to bring down the inference time, but this would be detrimental to its per-
formance. There does not seem to be an obvious way to alter the model to bring
both the MAE and inference time down at the same time.

As such, a better approach would simply be to periodically re-train an LSTM on
new data, which can be passively collected during use. As the wear condition might
differ from robot to robot, this would ideally mean training a separate model for
each robot. Another approach could be to perform a calibration run where certain
pre-defined movements are performed to assess the current joint wear of the robot.
From this calibration, the robots could be grouped based on similarity, and the
data collected by them could be merged into a single dataset per group.
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4.1 Conclusion

In conclusion, although LTCs have generally shown good performance on time-
series prediction tasks in the relevant literature, they are unsuitable for adapting
to joint wear compared to previous methods. In particular, this is due to the
worse absolute performance and the significant increase in inference time. Still,
they did show some relative improvement over the LSTM when comparing their
performance between the event they were trained on and the subsequent events.

My recommendation for dealing with joint wear would be to periodically re-train
an LSTM if a robot has sustained significant wear compared to the last data it
was trained on. Additionally, a calibration test could be performed to group the
robots by wear level if the data collected during runs is insufficient to adequately
train a model on.

4.2 Future Research

Even though the LTCs did not perform better than the LSTMs, it might be possible
to combine to combine the architectures into a single model (e.g., an LTC layer
followed by an LSTM layer or vice versa). Since they did do relatively better at
adapting to joint wear, other architectures in or proximate to the family of neural
ODEs might also be worth investigating.

With regards to the broader context in which this model is deployed, rather than
have a model architecturally completely separate from the walking engine, a more
closely coupled solution which might leverage information about the walking engine
could outperform current frameworks. However, all the drawbacks of a closer
coupling apply, as it would make development and tweaking of either system much
harder.
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Appendix A

Relative MAE per Model per
Event per Robot

Figure A.1: Relative MAE on subsequent events for lstm-48-5.
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Figure A.2: Relative MAE on subsequent events for ltc-16-1.

Figure A.3: Relative MAE on subsequent events for ltc-16-2.
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Figure A.4: Relative MAE on subsequent events for ltc-32-1.

Figure A.5: Relative MAE on subsequent events for ltc-32-2.
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Figure A.6: Relative MAE on subsequent events for ltc-64-1.

Figure A.7: Relative MAE on subsequent events for ltc-64-2.
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