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Abstract

Autonomous nano-drones are becoming increasingly popular. Their light weight
and small size provide major advantages in safety and maneuverability, being able
to navigate through dense crowds or narrow spaces. These properties make nano-
drones promising for indoor environments where they can be used in areas inac-
cessible or dangerous to humans. To push the state-of-the-art for the autonomy of
nano-drones the International Micro Air Vehicle (IMAV) organizes the Nanocopter
AI Challenge. In this competition teams need to fly a nano-drone through an ob-
stacle course. The main challenge is working with the limited hardware of the
nano-drone, being equipped with a monocular gray-scale camera and a small neu-
ral network processor. This work covers the obstacle avoidance aspect of the
competition. Using recent developments in monocular depth estimation (MDE)
for embedded devices we develop a real-time light-weight control algorithm. The
most optimal steering angle is extracted by applying a horizontal strip of average
bins and three criteria to the generated depth map. We compare the influence
on performance of using a metric or inverse depth map by testing and evaluating
two light-weight MDE models in a simulated environment. Simultaneously, the
influence of the number of average bins is tested. The best performing control
algorithm, using an inverse depth map and 5 bins, is able to reach the goal at least
80% of the time in three increasingly challenging stages.
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Chapter 1

Introduction

There is a surge of interest in the development and usage of autonomous nano-
drones [1]. These drones are thanks to their light weight able to safely operate
near humans whilst their small size allows for navigation through narrow spaces.
Both these properties make them promising for indoor environments where they,
for instance, can be used for mapping, surveillance, finding gas-leaks or assisting
in search and rescue missions by exploring areas inaccessible to humans. However
they also impose new challenges when implementing artificial intelligence for au-
tonomous flight. Large and average-size drones have the power available to exploit
high-end computational devices, but this is not a feasible option for the nano-
drones since they can only carry and power a few sensors, memory, and processing
power onboard. Autonomy of nano-drones is thus a challenge yet to be solved,
one of the key aspects of autonomous navigation is having a reliable algorithm
for obstacle avoidance. Therefore, the main aim of this thesis is implementing an
obstacle avoidance algorithm while being constrained by the hardware limitations
of the nano-drone. Research is done on the difference between using depth and
disparity maps and corresponding resolutions for the control algorithm.

1.1 Nanocopter AI Challenge
To push the state-of-the-art for the autonomy of drones the International Micro
Air Vehicle (IMAV)1 organizes a conference and multiple competitions every year.
This year it will be held in Delft, The Netherlands, from 12 to 16 September
2022.2 One of these competitions is the Nanocopter AI Challenge wherein teams
are challenged to let a nano-drone fly as fast as possible through an obstacle
course, as seen in figure 1.1. The nano-drone is equipped with a single-camera

1http://www.imavs.org/
2https://2022.imavs.org/
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(a) Cyberzoo (b) Yellow gate

Figure 1.1: Challenge environment

and a small neural network processor. The score is mainly determined by distance
flown within the allocated time, but extra points can be gained when the drone
successfully passes through one of the yellow gates. The location, shape and type
of obstacle are unknown. Obstacles can be moved during the run but never directly
in front of the nano-drone.
An reactive obstacle avoidance algorithm thus has to be implemented which is able

to generalize well on different kind of environments, next to that a path planning
solution should be created to navigate the obstacle course as efficient as possible.
The UvA Drone team, consisting of two bachelor students and supported by one
staff member of the University of Amsterdam, will participate in this competition
and work on these challenges.

1.2 Platform
The Nanocopter AI Challenge requires all participating teams to use identical
hardware which consists of a Crazyflie 2.1 and an AI Deck 1.1, both produced
by Bitcraze. Bitcraze is a company that develops and manufactures nano-drones
for research and education, they provide an open-source ecosystem with multiple
expansion decks and development tools. The Crazyflie 2.1 is an open-source robotic
development platform that, with its size of 92x92x29mm and takeoff weight of 27g,
fits in the palm of your hand. It supports multiple expansion decks with automatic
detection. One of these expansion decks is the AI Deck 1.1, which is inspired by
the PULP-Shield PCB design as presented by ETH Zurich [2]. The deck is a
processing board built around the GAP8 RISC-V multi-core microcontroller unit
(MCU) for artificial intelligence purposes. In addition, there is an ultra low power
(ULP) 320x320 gray-scale monocular camera from Himax and an ESP32 for WiFi
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(a) Crazyflie 2.1 (b) AI Deck 1.1 (c) Assembled

Figure 1.2: Platform used

connectivity. It is designed to be mounted over or under the Crazyflie 2.1.

Takeoff weight 27g
Size (WxHxD) 92x92x29mm
Flight time (stock battery) 7 minutes
Controller Bluetooth LE / Crazyradio dongle
Radio range ∼1km

IMU 3 axis accelerometer / gyroscope
High precision pressure sensor

Table 1.1: Crazyflie 2.1 Specifications

Weight 4.4g
Size (WxHxD) 30x52x8mm
Microcontroller GAP8 - ULP 8+1 core RISC-V MCU
Camera Himax HM01B0 - ULP 320x320 gray-scale camera
Power supply 3V-5V @ VCOM up to 300mA - Max 1.5W
Connectivity ESP32 (WiFi)
HyperFlash 512Mbit / 64MB
HyperRam 64Mbit / 8MB

Table 1.2: AI Deck 1.1 Specifications

The GAP8 ULP microprocessor is designed by GreenWaves and based on the
PULP open core. [3] It incorporates nine RISC-V cores along with a neural pro-
cessing unit (NPU) which is designed to accelerate convolutional neural networks
(CNN). It is capable of running up to 250Mhz. Greenwaves claims that the GAP8
offers peak performance of 200 millions of operations per second (MOPS) at 1mW
and up to 10 billions of operations per second (GOPS) at a few tens of mW.
Teams should take these hardware limitations, especially the monocular camera,
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Total processing power 22.65 GOPS
Power efficiency 4.24 mW/GOP
L1 Memory 80kb
RAM Memory 512kb
Fixed Point 8, 16, 32-bit
Floating Point None

Table 1.3: GAP8 Specifications

processing power and memory, into account when implementing their solution for
the Nanocopter AI Challenge competition.

1.3 Related Work
Obstacle avoidance for autonomous drones is a well studied area with several
widely recognized approaches available. These approaches are purely reactive or
based on a local or even global map, created with simultaneous localization and
mapping (SLAM), structure from motion (SfM) or machine learning. Using low-
cost ultrasonic [4, 5] or infrared [6] sensors are light and have a low computational
burden, however they can be noisy. Approaches using SLAM [7] or SfM [8] divide
the problem into two separate processes, mapping and planning. They use sensor
information with high-frequency feature extraction and matching to build a local
map of the surroundings [9, 10, 11], a path is planned and the local map is updated
repetitively. Though these approaches have been proven to be effective, it is not
feasible to implement them on the nano-drone due to its hardware limitations.
Using only depth information for obstacle avoidance is still an option, as shown
in [12, 13]. These depth maps are often computed from stereo images using the
triangulation ranging technique [14, 15, 16], but the nano-drone lacks a stereo
camera. The rise of deep learning has however shown major improvements in
monocular depth estimation (MDE), the task of inferring depth from one single
image [17, 18]. Obstacle avoidance based on MDE has proven to be successful
[19, 20], however the inference of the depth maps in these approaches is done
offboard whilst the goal of the competition to run as much of the model onboard.
[2] has already shown that the AI deck 1.1 is able to run deep CNN for obstacle
avoidance, albeit for only corridor-esque environments. [21, 22, 23, 24] show the
latest work on MDE for embedded devices, state-of-the-art models able to run on
devices without a GPU.
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1.4 This Work
In this thesis advantage is taken of the recent progress made in MDE by using
the MDE models made for embedded devices. By using it in combination with a
control scheme the aim is to develop an obstacle avoidance algorithm which could
be run onboard the Crazyflie nano-drone. While the potential of MDE for obstacle
avoidance has been clearly shown, there remains the challenge of implementing it
onboard a nano-drone. Therefore, the main research question driving this research
is:

Can a lightweight realtime obstacle avoidance algorithm be created using
Monocular Depth Estimation while constrained by the hardware limita-
tions of Bitcraze’s AI deck 1.1?

To answer this question we will use and compare two MDE models, FastDepth [24]
and PyD-Net [25, 26]. Both models are encoder-decoder networks where a RGB
or gray-scale image can be in inserted, they differ however in the output they
produce. FastDepth produces a depth map based on metric depth while PyD-Net
produces an inverse depth map which is proportional to a disparity map. This is
a fundamental difference which we will also research by combining them with a
similar control algorithm and comparing the performance in obstacle avoidance.
This brings about the second research question:

What are the differences in performance between using a depth map
and an inverse depth map for an obstacle avoidance algorithm?

The control algorithm will be simple and inspired by [19], using a strip of average
depth values it will be able to get an angular velocity that steers it away from
obstacles. The number of bins of this strip will determine the resolution and
number of angular velocities it can choose. This leads to our third and final
research question:

What influence does the resolution of a control algorithm based on depth
maps have on the performance of an obstacle avoidance algorithm?

Results will be obtained in the Webots simulator provided by the IMAV because
the AI Deck 1.1 was not available during research.

1.5 Outline
The remainder of this thesis is structured as follows. In the next chapter the pre-
liminary theoretical knowledge is covered, relevant for understanding the research
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that is done. This will be followed by the approach in which we will cover the
steps taken in the development of the complete obstacle avoidance pipeline. This
pipeline will be used to obtain the results in the simulator, these results will be
shown in chapter 5. In the discussion we will evaluate these results and go over
possible improvements for future work. Finally, we will conclude by answering the
three research questions.
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Chapter 2

Theory

In this chapter an overview will be given on the theoretical components of the
research.

2.1 Encoder-Decoder Network
An encoder-decoder model consists of two neural networks and a hidden state
between them, as shown in Figure 2.1. The encoder is a network that takes the
input and outputs a feature map, vector or tensor. This feature vector contains
the essential information of the input for the task and is called the hidden state.
The other network, the decoder, has usually got the same structure as the encoder
but reversed. The decoder uses the hidden state to create the intended output.
This architecture has been proven to work in natural language processing (NLP)
tasks like translation [27], by encoding sentences into a feature/context vector the
meaning of the sentence can be stored and used by the decoder for correct transla-
tion. It can also be used in computer vision (CV) tasks [28], a fully convolutional
encoder is able to extract high-level low-resolution features from the input image
which the decoder can use to return the desired output.

Figure 2.1: Encoder-Decoder Network
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2.2 (Inverse) Depth Maps
A depth map is an image that contains information about the distance relative to
the camera, it can be used to understand geometric relations within a scene. An
inverse depth map, which is roughly equal to a disparity map, is able to represent
features that are very far off in the distance. Objects like the sun or the clouds,
which have a depth value of infinite, will become zero which leads to fewer problems
[29]. This does however lead to getting relative depths between objects and not
metric depths from the camera, this can be seen in Figure 2.2 where both poles
will be perceived as equally close while clearly the second one is further away.
There are several techniques for obtaining depth maps including monocular depth
estimation and stereo vision. With stereo images a disparity map can be created
by using pixel matching and the shift of these pixels in the two images. When
the baseline (B) (distance between cameras) and the focal length (f) of the stereo
camera setup is known a depth can be inferred from the disparity map by using
the triangulation formula: depth = (B ∗ f)/disparity. [30]

Figure 2.2: Inverse depth map gives relative depths between objects
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2.3 Monocular Depth Estimation
Monocular depth estimation (MDE) is the task of inferring depth from one single
image. Traditional approaches are primarily based on computer vision (CV), us-
ing features such as perspective, occlusions, texture information and objects sizes
and localization. Even though these approaches are generally not computation-
ally heavy, they do not produce accurate outcomes. Recent approaches use deep
convolutional neural networks which has shown to give superior results [31], as
displayed in figure 2.3.

Figure 2.3: MDE using the state-of-the-art MiDaS model [31]
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Chapter 3

Approach

This chapter will discuss the approach taken for this research. It consists of showing
the complete pipeline, highlighting the two MDE models and the implemented
control algorithm, and explaining how the two models will be evaluated.

3.1 Pipeline
The pipeline is shown in figure 3.1 and consists of two modules, the MDE model
and the control algorithm. First the Crazyflie’s 320x320 gray-scale camera feed is
inserted into one of the two MDE models, where it is transformed into a metric
depth map or an inverse depth map. This depth map is inserted into the control
algorithm which uses the depth values and the angle towards the goal to determine
a yaw and a forward speed for the nano-drone.
The MDE models used, FastDepth1 and PyD-Net2, were chosen because of their
performance on embedded devices and well-documented code for training and test-
ing, this simplified the process of implementing the models into the pipeline.

Figure 3.1: Pipeline consisting of the MDE model and the control algorithm

1https://github.com/dwofk/fast-depth
2https://github.com/mattpoggi/pydnet
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3.2 FastDepth
FastDepth is a MDE model proposed by researchers at MIT in 2019 [24]. It features
an efficient and lightweight encoder-decoder network which further reduced in
computational complexity and latency by applying network pruning to the whole
network.

3.2.1 Architecture

The model consists of an encoder and a decoder, as shown in figure 3.2. The
encoder is based on MobileNet, an efficient network that employs depth-wise de-
composition to significantly lower its complexity [32]. Depth-wise decomposition
expands regular convolutions into depthwise seperable convolutions while main-
taining high accuracy [33]. The decoder uses merge and upsample operations on
the output of the encoder to form the depth prediction. By using five upsample
layers, consisting of 5x5 convolutions expanded by depth-wise decomposition and
nearest-neighbor interpolation, and a single pointwise layer at the end a slim and
fast decoder is created. By using skip connections the decoder is able to use higher-
level feature maps from the encoder to reconstruct a more detailed output. These
feature maps are added via addition to the three middle layers of the decoder.
Finally the network is pruned after training with NetAdapt [34], which iteratively
removes redundant channels until a target accuracy or complexity is reached.

Figure 3.2: FastDepth model

3.2.2 Training

The model is trained and evaluated on the NYU Depth v2 dataset [35], a dataset
comprised of 407024 single frames from a variety of indoor scenes made with both
the RGB and depth cameras of a Microsoft kinect, and implemented in PyTorch.
The encoder based on MobileNet is pretrained on ImageNet [36]. The rest of the
network is trained for 20 epochs with a batch size of 8, learning rate of 0.01 and a
stochastic gradient descent (SGD) optimizer with a momentum of 0.9 and a weight
decay of 0.0001. It uses the L1 loss as its loss function.
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3.2.3 Performance

The final model produces a metric depth map. It has a root-mean-square-error
(RMSE) of 0.604m and a δ1 accuracy, the percentage of predicted pixels where
the relative error is within 25%, of 0.771, which was at time of publishing (2019)
close to state-of-the-art.

Figure 3.3: FastDepth on camera input nano-drone in simulator

3.3 PyD-Net

3.3.1 Architecture

Figure 3.4: PyD-Net model

The model has a pyramidal architecture which is
based on a classical computer vision principle; the
image pyramid. This specific pyramid consists of
6 levels (figure 3.4), where each layer corresponds
to an image resolution from half to 1

64
of the orig-

inal image size. These resolutions are obtained by
a small encoder architecture with 12 convolutional
layers in which two 3x3 convolutional layers are ap-
plied on each level, reducing the resolution down to
the lowest resolution. Each of these down-sampling
modules produce an increasing number of extracted
features which will be used by the module’s depth
decoder made of 4 3x3 convolutional layers. The
output of this decoder can be used to extract a
depth map for that specific level but will primarily
be used to be passed on to the next level of the pyra-
mid through a 2x2 deconvolution layer with stride
2. This increases the spatial resolution by a factor
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of 2. This deconvolved feature map is concatenated to the encoded features of
that specific level. This procedure is repeated up to the level of highest resolution,
which enables the model to predict depth at full resolution. This strategy allows
to include the global context of lower image resolution and the details of the higher
image resolution while reducing the model’s complexity significantly.

3.3.2 Training

The model is trained in an unsupervised manner as proposed by [37] on a part
of the raw KITTI dataset [38], a dataset with stereo frames of hours of traffic
scenarios, and is implemented in Tensorflow. The input data is augmented by
randomly flipping the images and applying the following transformations: Random
gamma correction, additive brightness and color shifts. It is trained for 50 epochs
with a batch size of 8 and a learning rate of 0.0001 for the first 60%. For the
remaining 40% this learning rate is halved every 20%. For optimization the Adam
optimizer, an extension of stochastic gradient descent, is used with the default
settings β1 = 0.9, β2 = 0.999, ϵ = 10−8 as proposed in the original paper [39]. A
multi-scale loss function is used that computes the loss at each level of the pyramid.

3.3.3 Performance

The final model is evaluated on a test split of the KITTI dataset. It produces
an inverse depth map at the six decreasing resolutions. It has at half resolution
a root-mean-square-error (RMSE) of 5.929 and a δ1 accuracy, the percentage of
predicted pixels where the relative error is within 25%, of 0.8. For a quarter
resolution this is 6.185 and 0.789 and for an eight resolution 7.161 and 0.751. These
lower resolutions can be inferred by stopping the network early, which results in a
significant speed-up of the network of up to 18 times for an eight resolution.

Figure 3.5: PyD-Net on camera input nano-drone in simulator
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3.4 Control Algorithm
The control algorithm is similar for both the depth map generated by the Fast-
Depth model and the inverse depth map generated by the PyD-Net model. It
uses the depth map to choose the steering direction the nano-drone should take
to avoid an obstacle. It consists of two modules and is currently only limited to
one fixed-height due to limitations within the simulator environment. The control
algorithm can however, because of its simplistic nature, be easily expanded.

3.4.1 Average strip

First, the depth map is simplified by using a horizontal strip consisting of N equal
bins through the middle of the image as proposed by [19]. The depth values of
these bins are determined by taking the average of all the depth values within the
bin. The amount of bins N can be seen as the resolution of the control algorithm
and can be adjusted, it is however limited to odd numbers as a center bin for
heading straight is required. A vertical strip can be added to enable steering in
the up and down directions. Using this average strip reduces the influence of noise
and discretizes the number of commands. To finalize the first part of the algorithm
the strip of the corresponding frame is added to the front of a deque. The deque
has a max size of 50, which means that adding a new strip when the deque is
full will remove one at the back. The max size of the deque is also an adjustable
parameter and should be adjusted with the throughput time of the MDE model.
The final strip which will be given to the next part of the algorithm is an average of
this deque and thus an average of the previous 50 strips. This is done to implement
a simple memory into the algorithm which is useful when the nano-drone has the
obstacle no longer in sight even though it has not passed the obstacle yet.

(a) N=5 (b) N=7 (c) N=9 (d) N=11 (e) N=13 (f) N=15

Figure 3.6: Resolution differences for average strip

3.4.2 Direction picker

The direction picker uses the average strip, the angle towards the goal, a control
dictionary and a depth threshold to choose the most promising direction. The
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angle towards the goal is initially calculated by using the atan2 function on the
position of the goal and the drone, however this is only feasible in the simulation
as these positions cannot easily be acquired by a real nano-drone. Nevertheless,
this solution will suffice as this work mainly focuses on obstacle avoidance and
less on the path planning aspect. This angle is then used to choose the bin that
steers the nano-drone in the direction of the goal. First the bins are each given
an equal discrete angle range based on the Field of View (FoV) of the camera,
the nano-drone’s default FoV is 0.84 radians. By letting the two outer bins get all
values outside the FoV of the camera the nano-drone is able to turn around when
the goal is positioned behind it.

Figure 3.7: Example (N=5): Choosing goal bin when angle towards goal = -0.105

The depth threshold is used to determine which bins are free of obstacles and thus
which steering commands will keep the nano-drone away from obstacles. Here the
implementation slightly differs for the two MDE models. The FastDepth model
uses metric depth and thus bins above a certain metric threshold are seen as safe
bins, while the PyD-Net model uses inverse depth values so here bins below a cer-
tain threshold are considered as safe. The threshold used for the FastDepth model
is 1.4m and for the PyD-Net model the value 80, this parameter is also adjustable
and it influences how close the nano-drone gets to an obstacle before avoiding it.

Figure 3.8: Example: Determining safe bins with a depth threshold = 80

Finally, the bin will be picked that is safe and closest to the goal bin. As this is
the bin which brings you towards the goal without bumping into an obstacle.
There are however two scenarios that require special attention. The first is when
all bins are above or below the set depth threshold, this is the case when the
nano-drone is right in front of an obstacle. No bin can be picked so it forces the
nano-drone to turn around by choosing the outer bin which is closest to the goal
bin. The other scenario is when there are two safe bins with equal preference, this
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Figure 3.9: Example: Choosing a safe bin closest to the goal bin

can occur when for example the middle bin is the goal bin and only the two outer
bins are safe. They are equally far away from the goal bin so the bin with the
most depth will be chosen, if this is the highest or lowest value depends on which
model is used.

(a) No safe bins (b) Equally preferred bins

Figure 3.10: Exception cases

The index of the chosen bin is used to obtain the yaw steering and forward speed
from a predetermined control dictionary. This control dict is created by using
the resolution parameter (N), a parameter for the yaw turning speed (yawRate)
and a parameter for the forward speed (forwardSpeed). The default values for
these speeds are respectively 0.5 and 0.2. By adjusting the yawRate parameter
the nano-drone is able to do sharper turns when necessary. The bin in the middle
only moves the drone forward while the outer bins only turn the drone. The bins
in between move the drone forward and turn the drone, the yawRate increases by
a factor of 2 as the bins get closer to the outer bins.

Figure 3.11: Example: Using the chosen bin to get steering commands

This concludes the control algorithm, a simple and easily adjustable implementa-
tion which works for both MDE models. This makes for a fair comparison of the
two complete pipeline implementations.

16



3.5 Evaluation
The evaluation is done in the Webots simulator of the competition environment
which is based on Delft’s real Cyberzoo (figure 1.1)3. Both the models with their
corresponding control algorithm will be tested, with resolutions varying between
N=5 and N=15, in three different obstacle stages with increasing difficulty. Each
model + resolution combination will be tested for 10 runs, this makes for a total
of 360 runs for all possible combinations. The setup of each run is predetermined
to evaluate both algorithms on the same stages. The nano-drone will always start
at (0, -4). The goal is fixed at Y = 4 while its X-value is different for each run.
The obstacles are obtained from the cyberzoo environment and placed between
between the nano-drone and the goal, each obstacle has a randomized distance (in
a range) from the nano-drone and a randomized angle.
The performance of the algorithm will be evaluated as follows:

1. Success rate: Total number of succesful runs divided by the total number of
runs.

2. Average time (s): Sum of the duration of every successful run divided by the
total number of successful runs.

3. Average distance (m): Sum of the distances travelled of every successful run
divided by the total number of successful runs.

If the nano-drone crashes into an obstacle the simulator will reset and the run will
count as a failure. The run will be completed when the nano-drone gets within 0.2
meters of the goal.

(a) Orange pole (b) Metal panel (c) White panel

Figure 3.12: Obstacles used for evaluation

3https://tudelftroboticsinstitute.nl/labs/cyber-zoo
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3.5.1 Stage 1

The first stage consists of one single obstacle, a round orange pole with an esti-
mated diameter of 25cm. This orange pole will be positioned between 2 and 4
meters from the starting position of the nano-drone. Due to its texture and color,
it is easy to distinguish from the background. This in combination with its shape
and size make it the easiest obstacle to avoid.

(a) Simulator (b) Plotted

Figure 3.13: Stage 1

Figure 3.14: 10 predetermined setups stage 1
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3.5.2 Stage 2

The second stage consists of the orange pole and a metal panel with an estimated
with of 80cm. The metal panel will be behind the pole and between 4.5 and 6
meters from the starting position. Its angle can be in range of -1 and 1 radians.
The metal panel is harder to distinguish because the texture has a similar color
as the background, especially when using black and white images. Furthermore,
it can influence the path taken around the orange pole due to its position behind
it.

(a) Simulator (b) Plotted

Figure 3.15: Stage 2

Figure 3.16: 10 predetermined setups stage 2
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3.5.3 Stage 3

The third stage consists of the orange pole, metal panel and a white panel with
an estimated width of 1.2m. The white panel is added and positioned behind the
metal panel. The white panel is between 5 and 6.5 meters from the starting posi-
tion. Its angle can be in range of 2.1 and 4.2 radians. The white panel is due to
its size a difficult obstacle to avoid, requiring the nano-drone to make sharp turns
or turn around when it gets too close.

(a) Simulator (b) Plotted

Figure 3.17: Stage 3

Figure 3.18: 10 predetermined setups stage 3
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Chapter 4

Results

The results are presented in the tables 4.1 4.2 4.3 below, where the runs per model
per setup are also plotted. These plots show the flight-path of the nano-drone for
each resolution, they can also be found individually in a large format in Appendix
A. Referencing to a plot as an example will be done in the following format: (stage-
setup-model).
The results show that PyD-Net has an overall better performace than FastDepth,
the plots confirm this by showing PyD-Net reaching the goal more often and taking
smoother paths around the obstacle in all 3 stages. The results and plots of the
more challenging stages 2 and 3 enforce this by showing a significant difference
in average distance and therefore also average time between the models. In the
FastDepth model the nano-drone seems to take long detours when it is pointed
towards one of the corners of the room, as can be seen in plots (2-1-FastDepth),
(2-5-FastDepth), (3-9-FastDepth). Which is expected behavior as a corner has the
most depth when being enclosed by a wall left and right. This happens, though
less often, also for the PyD-Net model, as seen in (2-3-PyD-Net), (3-5-PyD-Net).
Finally, the results also show that for both models the lower resolution control
algorithm performs better than the higher ones. the only exception can be found
in the second stage for the FastDepth model. This increase in performance is
once again confirmed by the plots as the red line (N=5) can be seen maneuvering
through the obstacle course to get to the goal in most of the setups.
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4.1 Stage 1

Performance Resolution (N) 5 7 9 11 13 15

FastDepth
Model

Success rate 0.9 0.5 0.6 0.5 0.4 0.2
Average time (s) 45.96 44.01 43.78 43.40 43.72 43.52
Average distance (m) 8.34 8.08 8.17 8.05 8.09 8.00

PyD-Net
Model

Success rate 0.9 0.8 0.4 0.5 0.3 0.3
Average time (s) 44.46 43.43 44.70 44.36 44.46 44.50
Average distance (m) 8.28 8.20 8.43 8.37 8.40 8.40

Table 4.1: Stage 1 performance

Figure 4.1: Plotted results Stage 1
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4.2 Stage 2

Performance Resolution (N) 5 7 9 11 13 15

FastDepth
Model

Success rate 0.4 0.6 0.3 0.2 0.2 0.2
Average time (s) 69.50 68.57 62.03 65.02 65.71 83.30
Average distance (m) 11.79 12.25 10.60 11.40 11.49 13.69

PyD-Net
Model

Success rate 0.8 0.4 0.3 0.1 0.2 0.2
Average time (s) 55.03 43.26 44.59 44.22 45.20 45.28
Average distance (m) 9.83 8.15 8.34 8.38 8.55 8.55

Table 4.2: Stage 2 performance

Figure 4.2: Plotted results Stage 2
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4.3 Stage 3

Performance Resolution (N) 5 7 9 11 13 15

FastDepth
Model

Success rate 0.8 0.4 0.3 0.1 0.0 0.0
Average time (s) 80.31 57.38 85.70 74.82 NaN NaN
Average distance (m) 12.73 9.99 13.81 12.30 NaN NaN

PyD-Net
Model

Success rate 0.9 0.8 0.7 0.4 0.5 0.5
Average time (s) 46.67 46.16 49.65 44.78 46.03 44.85
Average distance (m) 8.54 8.48 9.19 8.38 8.56 8.36

Table 4.3: Stage 3 performance

Figure 4.3: Plotted results Stage 3
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Chapter 5

Discussion

The aim of this thesis was to develop a light-weight real-time obstacle avoidance
algorithm based on MDE for the AI Deck 1.1, which is mounted on the Crazyflie
2.1 and used in the Nanocopter AI Challenge. From the results, it becomes ev-
ident that it is possible to create this light-weight and real-time algorithm using
MDE models specifically made for embedded systems. When using a resolution of
5 bins the algorithm based on the PyD-Net model is able to reach the goal at least
80% of the time in all tested environments, while the FastDepth model has similar
performance except in stage 2. The results are however obtained in a simulator,
which will never fully match performance in the real world. Especially when con-
sidering that the models used can be very sensitive to changes in lighting, texture
or background, as can be seen in Figure 3.3 of the FastDepth model. This can also
be seen in plot (2-9-FastDepth) where the control algorithm with the FastDepth
model crashes while having an open path towards the goal. This is likely caused
by the position of the goal which was near one of the corners, as mentioned in
the previous chapter corners seem to attract the nano-drone which leads to large
distances flown. However, it can also be seen in the corresponding plots that when
the nano-drone reaches the corner at a certain distance it turns around and heads
toward another direction. The combination of these two properties plus heading
towards the goal is likely what caused the unexpected behavior of the control al-
gorithm which led the nano-drone to crash. While both models have roughly the
same δ1 accuracy the PyD-Net model produces better and less noisier results in
the simulator environment, as can be seen when comparing Figure 3.3 with Figure
3.5. This could have potentially also played a role in the lesser performance of the
FastDepth control algorithm.
The results show that the lower resolutions of the control algorithm perform sig-
nificantly better than the higher resolutions. The higher resolutions tend to get
very close to the obstacle because the smaller bins return a lower steering speed
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thus forcing the nano-drone to make a tighter turn around it. This however makes
the turn often too tight and thus making the nano-drone hit the obstacle, as can
be seen in (3-6-FastDepth). Taking a tight turn around an obstacle is not per
definition something you should avoid, as it can lead to faster times and lower
distances.
Finally, implementing the models on the AI deck 1.1 is not feasible as the power
and memory constraints of the deck cannot be matched by the MDE models.
FastDepth has an estimated active power consumption of 1.9W, requires 11MB of
storage and 100MB of RAM memory [24]. PyD-Net has similar requirements as
it has an estimated active power consumption of 2.5W, requires 8MB storage and
150MB of RAM memory [25]. Table 1.2 shows that the AI deck cannot offer these
requirements thus limiting this work to the simulated environment.

5.1 Future work
As mentioned above, there are some improvements that can be made in both the
MDE models and the control algorithm. First of all, the MDE models can be
changed for newer and more robust and light-weight models like PyD-Net2 [23]
or [40] which can serve as an improvement for the FastDepth model. This can be
easily done because the model and control algorithm are two independent compo-
nents.
The control algorithm can be extended by implementing a vertical average strip
for controlling the height of the drone. Furthermore improvements can be made in
avoiding the nano-drone being attracted by the corners of the room, a triangular
function could for example be used to detect a corner move away from it if neces-
sary.
One of the main problems of the control algorithm in this work is higher resolu-
tions having the tendency to hug the obstacle it has to avoid, this can be solved
by implementing configuration-space expansion as described in [41]. This enlarges
the obstacle in the depth map to the minimum size that guarantees the nano-drone
to safely avoid it.
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Chapter 6

Conclusion

In this work, a light-weight real-time obstacle avoidance algorithm was created
based on two MDE models for the Nanocopter AI Challenge. Furthermore, the
performance of these models was compared and multiple resolutions (N) were
tested for the control algorithm. This control algorithm is based on taking an
average horizontal strip with N bins. Using these bins, a goal angle and a depth
threshold a direction is picked and the obstacle is avoided. To compare the two
complete pipelines they were tested in three stages with increasing difficulty in the
simulator environment provided by the IMAV.
The main research question of this thesis was:

Can a lightweight realtime obstacle avoidance algorithm be created using
Monocular Depth Estimation while constrained by the hardware limita-
tions of Bitcraze’s AI deck 1.1?

As described in the previous chapter, we succeeded in developing an light-weight
algorithm which is able to avoid obstacles using MDE in real-time. Our model of
choice is the PyD-Net model as it is more stable and has an overall better per-
formance. However, even though the hardware limitations were considered while
selecting the models, implementation on the AI deck is difficult as both models
still require a significant amount of memory and power. Nevertheless, the IMAV
allows off-board processing of images at the price of a lower score multiplier, so in
principle the method proposed can still be used in the Nanocopter AI Challenge.
Especially when considering that the control algorithm is light-weight and can be
run onboard.
The following sub-question was used to compare the models in terms of perfor-
mance of their depth map combined with the control algorithm:

What are the differences in performance between using a depth map
and an inverse depth map for an obstacle avoidance algorithm?
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Comparing the depth map with the inverse depth map shows a higher overall
performance in the latter one. Because inverse depth maps use relative depth
between objects, the nano-drone turns early because it perceives the obstacle to
be closer than it actually is. This results in a safer path around the obstacle.
The FastDepth model however is noisy compared to the more stable PyD-Net
model and this leads to unexpected behavior of the nano-drone, like it taking a
longer path towards the goal. To further compare the performance of these two
depth maps one could use two state-of-the-art MDE models and compare their
performance in the simulator environment.
The following sub-question was used to compare the influence the resolution of the
control algorithm, in terms of number of bins, has on its performance:

What influence does the resolution of a control algorithm based on depth
maps have on the performance of an obstacle avoidance algorithm?

Finally, the resolution has a high influence on the performance of the control
algorithm based on MDE. As mentioned before, lower resolutions outperform the
higher ones because their turning angle is greater when avoiding an obstacle. This
results in a higher success-rate as more obstacles are cleared.
The task of implementing a control algorithm based on MDE on the AI Deck
1.1 is difficult as state-of-the-art embedded MDE models are not yet light-weight
enough to be implemented on its limited hardware. This work has however shown
that running a MDE model that produces inverse depth maps off-board combined
with a simple low-resolution control algorithm results in high performance in three
increasingly difficult obstacle stages.
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Appendix A

Plotted Runs
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