
Using Geometric Gradient Analysis to

detect Out of Distribution Data for

YOLO

Abel J. Oakley



Layout: typeset by the author using LATEX.
Cover illustration: Abel J. Oakley



Using Geometric Gradient Analysis
to detect Out of Distribution Data

for YOLO
a smaller subtitle

Abel J. Oakley
10653333

Bachelor thesis
Credits: 18 EC

Bachelor Kunstmatige Intelligentie

University of Amsterdam
Faculty of Science
Science Park 904

1098 XH Amsterdam

Supervisor
Hidde

Informatics Institute
Faculty of Science

University of Amsterdam
Science Park 904

1098 XH Amsterdam



Semester 2, 2022



Contents

1 Introduction 3
1.1 Artificial Intelligence and Object Detection . . . . . . . . . . . . . . 3
1.2 Real world Critical System failures . . . . . . . . . . . . . . . . . . 5
1.3 The Geometric Gradient Analysis . . . . . . . . . . . . . . . . . . . 6

2 Background 7
2.1 Robocup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 You Only look Once . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 The Neural Network Architecture . . . . . . . . . . . . . . . 11
2.2.2 Convolutions with anchor box . . . . . . . . . . . . . . . . . 11
2.2.3 Loss Function of the YOLO algorithm . . . . . . . . . . . . 12

2.3 General Machine Learning Methods . . . . . . . . . . . . . . . . . . 13
2.3.1 Convolutional Neural Networks (CNN) . . . . . . . . . . . . 13
2.3.2 Forward Pass . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.3 Max Pooling . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.4 Bounding Boxes and Intersection over Union . . . . . . . . . 14

2.4 The Geometric Gradient Analysis . . . . . . . . . . . . . . . . . . . 16
2.4.1 Cosine Similarity Matrix . . . . . . . . . . . . . . . . . . . . 17
2.4.2 Geometric Gradient . . . . . . . . . . . . . . . . . . . . . . . 18

3 Method 19
3.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 Transform Images to Tensor . . . . . . . . . . . . . . . . . . 19
3.1.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 YOLO Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Results 24
4.1 Out of Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1.1 American Football OOD . . . . . . . . . . . . . . . . . . . . 25
4.1.2 Baseball OOD . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1



4.1.3 Female Figure Skating . . . . . . . . . . . . . . . . . . . . . 26
4.1.4 GGA on OOD . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Normal, Noise Filter, Rotation and Gaussian Blur . . . . . . . . . . 27

5 Discussion 28
5.1 Susceptibility of YOLO on OOD . . . . . . . . . . . . . . . . . . . 28
5.2 YOLO, adversial examples and noise data . . . . . . . . . . . . . . 29
5.3 Geometric Gradient Analysis . . . . . . . . . . . . . . . . . . . . . . 29
5.4 Revising the hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . 29

References 31

6 Apendix 32



Chapter 1

Introduction

1.1 Artificial Intelligence and Object Detection
We are swiftly heading towards a world where our daily lives are run by Artifi-
cial Intelligent systems. Instead of humans regulating and securing safety-related
systems (e.g. life support systems, railway signals or air traffic control), computer
algorithms have taken over these tasks (Knight, 2002). Moreover, new critical
systems have emerged with a certain complexity only a computer can efficiently
operate (e.g. a nuclear reactor fail-safe, car brake systems). These safety-critical
systems are also called life-critical systems because when they fail or malfunction,
the consequence will most likely be death or serious injury to people. Therefore,
such a system must be highly reliable.

Imagine an object detection algorithm of a self driving car that detects objects
that appear in front of the car. We can teach this algorithm to detect whether the
object in front is a horse or seagull 1 (figure 1.1 has an example of objects detected
by an object detection algorithm for cars). Both objects require a different choice
of operations. In case of the horse it most definitely must brake to avoid damage
to the car and driver, in contrast to the seagull which will either fly away or get
hit, causing no damage to the driver or car. In this case the critical system is the
instruction set the algorithm has for each specific detected object. However, what
if the algorithm is confident it has detected a specific object, but this prediction
is wrong? This might be because the algorithm is not correctly trained, or the
detection algorithm detects out of distribution data.

1https://i.ytimg.com/vi/WZmSMkK9VuA/hqdefault.jpg

3



Figure 1.1: Object detection for cars

These object detection problems are easy to solve by standard AI systems.
However, there is a significant problem when it comes to out of distribution data.
Imagine that the car detects an object that it has never seen before, for example a
panda. Now the detection algorithm will refer to all the object classes it has seen
(trained on), and tries to fit the new object into one of these classes. This could
have problematic implications towards it’s decision making capabilities. The new
detected object could be classified as a seagull. The decision the car will make
is now, just drive ahead because the seagull will fly away. However, the panda
will not fly away and the car will crash, causing serious harm to the driver. To
circumvent this, a system is needed that can detect whenever the object detection
algorithm detects an object that it has never seen before. And with this implement
a new instruction set that has causes less harm to the driver.



1.2 Real world Critical System failures
In 2018 a critical system failed where a self driving car wasn’t able to recognise a
female pedestrian who was pushing a bicycle across a four-lane road, who revealed
by sources, was jay-walking 2. The car was not able to recognise the pedestrian
as a person, but instead was switching between the classifications "vehicle, bicycle
and an other". Therefore the car wasn’t able to predict a correct path. The driver
who was present for safety also couldn’t circumvent the crash, which resulted the
death of the pedestrian. Not only can failures of these systems harm others, it can
also result in the death of the driver itself.

A recent article in the New York Times describes that nearly 400 crashes have
occured in the United States in 10 months involving driver assisted cars. Accumu-
lating six deaths and five serious injuries3. A popular point of discussion is that
in Arizona, driverless taxis are tested, which means that all the control is in the
hands of an AI.

In most cases, the court ruled the drivers as responsible for the accident, and
not the critical-systems that failed. However, it is highly likely that in the future
these drivers will not be present, leaving the self driving car alone in it’s deci-
sion making. These accidents give rise to ethical questions who to blame in this
situation. Therefore it is important to prevent these accidents by improving the
reliability of these critical-systems. The next section discusses a probable solution.

2https://www.nbcnews.com/tech/tech-news/self-driving-uber-car-hit-killed-woman-did-not-
recognize-n1079281

3https://www.nytimes.com/2022/06/15/business/self-driving-car-nhtsa-crash-data.html



1.3 The Geometric Gradient Analysis
Neural Networks have been used to achieve great results and accuracy when the
distribution of the training and test data are similar. Nonetheless, when the model
is used in real-world scenarios, different distributions of data may be observed that
are not contained in the training set.

A study in the trustworthyness of object detection using geometric gradient
analysis (Schwinn et al., 2021), has positive results regarding the detection of out
of distribution data. Using saliency maps and correlation matrices, similarity be-
tween certain object classes can be measured. Thus, when an out of distribution
object is detected, a low similarity across all known object classes will be measured.
This can be used as a red flag to let an object detection algorithm know that it is
observing an object class that is not yet learned. Moreover, most other methods
used, require a retraining of the used model for more robust classification of out of
distribution data. This is not the case with the geometric gradient analysis, which
only looks at the geometry of the loss landscape based on the saliency maps of the
input.

This work focuses on the object detection of robots playing football in the
dutch Robocop, using the object detection algorithm You Only Look Once, or
YOLO. Is it possible to use geometric gradient analysis described in the paper to
detect out of distribution data and therefore, improve the confidence of the Yolo
algorithm?

Not only OOD can form a problem for correctly detecting objects. Objects
can have other complications i.e. the image can be an adversial example or the
image can have random noise. A relevant sub question can therefore be stated as;
can GGA be used to improve object classification on adversial examples or images
with noise?

In the next chapter we will go in depth on all the tools needed to answer these
questions. Additionally we will explain the functionality of the YOLO algorithm.



Chapter 2

Background

2.1 Robocup
The object detection algorithm used for this thesis focuses on the RoboCup. The
Robot Soccer World Cup is a yearly international competition founded by a group
of university professors to create more interest around robotics and AI. Moreover,
the competition pushes advancements in technology surrounding AI and robotics.
The University of Amsterdam has it’s own Robot Soccer team named, Dutch NAO
Team (see figure 2.1).

The robots playing soccer are fully autonomous and therefore require specific
AI. They are able to detect sound (e.g. to hear the referee whistling for a foul) and
to detect objects (i.e. to be aware of the location of the ball, or to avoid another
player). This thesis focuses on the object detection which is done by YOLO.

Figure 2.1: Match of the Dutch NAO Team

7



2.2 You Only look Once
To understand the geometric gradient analysis and how it is applied to YOLO, we
first need to explain a few important subjects. We briefly explain YOLO, basic
convolution and final the geometric gradient analysis.

This section discusses real-time object detection with the use of, You Only
Look Once, or YOLO. Within the field of computer vision, object detection has
been one of the classical problems. Object detection focuses on two things; the
detection of an object and the classification of the detected object. We follow the
Thesis Thuan (2021), which goes in detail on how YOLO works and has evolved
in the years.

The aim of YOLO is to segment an image into a grid of size NxN (in figure
2.2 a 3 by 3 grid is shown). Then, if the centre of an object falls into one of these
cells, that grid will focus on detecting that object. This implies that objects with
overlapping bounding boxes will still be detected by different grid cells.

Figure 2.2: 3 x 3 Grid Cells



Object detection is realised by having each cell in the grid predict the bounding
boxes with their related confident scores. The bounding box contains 4 parameters
(xcood, ycood, w, h), as seen in figure 2.3. Where the values xcood, ycood (in red) are
the coordinates of the centre and w, h (in blue) are the width and height of the
bounding box. Each class in a grid also has a predicted probability described as
p(Classi|Object).

Figure 2.3: Detected Robot with corresponding vector values

All of these parameters create the following vector,

y =



pc
bx
by
bh
bw
c1
c2


(2.1)

Here pc is the confident score, bx, by, bh, bw describe the bounding box and c1 and
c2 are the class predictions.



For the YOLO algorithm, in the case of this thesis, the classes are the robot
or the ball. Since each grid cell is responsible for detecting an object with it’s
corresponding center that is in that specific grid cell, multiple objects and different
objects can have a center inside that grid cell. Therefore, multiple vectors are
created each with a corresponding (xcood, ycood, w, h), and a classification c1, c2. In
figure 2.3 an image is shown with multiple objects and their corresponding grid
cell will create three vectors.

Figure 2.4: Two robots and a Ball



1
bx
by
bh
bw
0
1





1
bx
by
bh
bw
1
0





1
bx
by
bh
bw
0
1


(2.2)

In this situation the three vectors have pc = 1 which corresponds to the confidence
score. The first and the last vector have (c1 = 0) and (c2 = 1), which means that
the predicted class is a robot. For the middle vector c1 = 1 and c2 = 0, where the
predicted class is a ball.



2.2.1 The Neural Network Architecture

Yolo uses the DarkNet Architecture to process all image features,(Thuan, 2021),
followed by fully connected layers performing bounding predictions for objects.

Figure 2.5: YOLOv1 architecture

2.2.2 Convolutions with anchor box

To predict more than one object inside the same grid cell, Yolo uses an architecture
to predict bounding boxes instead of using fully connected layers. An anchor box
is a list of predefined boxes matching the detected objects. These bounding boxes
are predicted based on ground truth boxes and predefined k anchor boxes.



2.2.3 Loss Function of the YOLO algorithm

In this section we will briefly explain the loss function used for training networks
in Yolo. During training of a neural net, the model needs to determine the error
based on the current predictions, such that it can perform a gradient descent.
Therefor a loss function is needed. Important to note is, that there will be images
where their respective grid cells don’t contain any objects with their corresponding
confidence score of zero. Avoiding this, which can lead to training divergence and
model instability (Thuan, 2021), Yolo places a high penalty for predictions for
predictions conainting objects and a low penalty for predictions with no object.
The loss function is calculated by taking the sum of the bounding box parameters
from the vector (xcood, ycood, w, h, confidencescore, classprobability)

[1]λcood

s2∑
i=0

B∑
j=0

I
obj
i,j [(xi − x̂i)

2 + (yi − ŷi)
2]+

[2]λcood

s2∑
i=0

B∑
j=0

I
obj
i,j [(

√
wi −

√
ŵi)

2 + (
√

hi −
√

ĥi)
2]+

[3]
s2∑
i=0

B∑
j=0

I
obj
i,j (Ci − Ĉi)

2+

[4]λnoobj

s2∑
i=0

B∑
j=0

I
obj
i,j (Ci − Ĉi)

2+

[5]
s2∑
i=0

I
obj
i

∑
cϵclasses

(pi(c)− p̂i(c))
2

(2.3)

1. Computes the loss related to the predicted and ground truth bounding box
position with their respective center (xc, yc). I

obj
i,j , where this is 1 if the object

is inside the jth predicted bounding box in ith cell, else it is 0.

2. The predicted bounding box will focus on prediction an object based on the
prediction with the highest IOU with the ground truth.

3. This computes the loss of confidence score combining both cases where the
object is either in the bounding box or not.

4. Combined with [4]

5. This computes the loss of class probability.



2.3 General Machine Learning Methods

2.3.1 Convolutional Neural Networks (CNN)

The architecture of neural networks used for object detection usually are Con-
volutional Neural Networks. These neural networks utilises convolutions inside
convolutional layers (Albawi et al., 2017). A basic 2D convolution between an
image and a filter is defined as follows.

L[i, j] =
∞∑

m=−∞

∞∑
n=−∞

h[m,n] ∗ x[i−m, j − n]

2.3.2 Forward Pass

Each unit inside a neural network computes two operations: the computation of
the weighted sum and to process the sum through an activation function(Liu et al.,
2015). The most general case of a forward pass is given in the equation below,
with a single layered, densely connected network. x is defined as the single sample
input with corresponding features [X1, ..., Xn] and wi are the weights matrices of
the layers. Lastly f denotes the activation function.

y = f(x ∗ w1) ∗ w2



2.3.3 Max Pooling

Max pooling is a technique used to reduce the dimension of images, by reducing
the amount of pixels from the previous layer. This is achieved by calculating the
maximum value for regions in a feature map, followed by creating a pooled feature
map. The figure below shows how a 4 x 4 matrix is reduced to a 2 x 2 matrix
with the use of max pooling. The function calculates the maximum value in each
square, denoted by colour, and puts those values inside a new reduced matrix.

Figure 2.6: 2 x 2 Max Pool

2.3.4 Bounding Boxes and Intersection over Union

An image that contains objects will have corresponding bounding boxes for those
objects, see figure 2.7. Since the same object can have multiple bounding boxes,
a method is introduced to generate the optimal bounding box for that object.

Figure 2.7: Bounding Boxes



For this we use the IoU. The IoU has two functions here:

• When trying to find the accuracy of a model, the IoU can see how well the
predicted bounding box overlaps with the ground truth bounding box.

• When there are multiple predicted bounding boxes in an image, the most
accurate bounding box can be found while removing the other bounding
boxes.

A better IoU correlates to a better predicted bounding box. Figure 2.8 shows
three scenarios of IoU with respect to their accuracy.

Figure 2.8: IoU



2.4 The Geometric Gradient Analysis
Here we describe the Geometric Gradient Analysis and it’s vital components.
Where the general idea is reconstructed such that it works with the Yolo model
used for detecting the Robot and Ball. The GGA has two major components, the
saliency map and the cosine similarity matrix. We explain both and in final use
that to explain the GGA.

Saliency Maps

A saliency is a way of showing what is important in an image (Simonyan et al.,
2013). A neural network can put more weight on specific pixels in an image, which
therefor has a large influence on the prediction of the neural network.

To generate a saliency map, we calculate the gradient of output category with
respect to an input image. We can use this information to see how the output
category value changes with respect to small changes in the input image pixels.
The positive values in the gradients give information that a small change to that
specific pixel will increase the output value. When doing this for every pixel, we
can plot an image where the pixels who have a big influence are drawn with a light
colour, in contrast to pixels with no influence, seen in figure 2.9.

Figure 2.9: Saliency Map



To create a saliency map, we compute the gradient of output category in respect
to an input image,

δoutput

δinput

This can be used to highlight salient image regions that influence the output class
the most, removing the ’black box’ of the model. The saliency map with respective
output class will be used in the next segment, the cosine similarity matrix.

2.4.1 Cosine Similarity Matrix

In this segment we use saliency maps with their corresponding output class to
create cosine similarity matrices. A cosine similarity matrix CSM = CSM(x) for
any given sample x is defined as,

CSM = (cij)ϵR
CxC , cij =

si ∗ sj
|si||sj|

here i, j ϵ {1, ..., C} and cij produce the cosine similarity between two saliency
maps si and sj. The figure below shows the result of two saliency maps with their
corresponding CSM. In figure a CSM is created for two classes, Ball and Robot.

Figure 2.10: Cosine Similarity Matrix



2.4.2 Geometric Gradient

In this section we describe the geometric gradient analysis and incorporate it with
the yolo model. The geometric gradient analysis uses a pair (x, y) consisting of
an input sample x,∈ Rd with the corresponding class label y ∈ {1, ..., C} in a
supervised classification task (Schwinn et al., 2021). Since YOLO is able to detect
multiple objects in one image, this needs some rewriting. Now the input sample x
will be the same, however y may contain multiple detected objects in the form,

y =



pc
bx
by
bh
bw
c1
c2


(2.4)

Moreover, there are only two classes that can be detected, either a robot or a
ball. This implies that y ∈ {0, 1} where 0 stands for the class ball and 1 for the
class robot. Now we have the neural net Fθ with the parameter vector θ ∈ Θ and
with k the class predicted by the neural network given the image sample x. The
loss function for each predicted class in the image is defined as L(Fθ(x), y). The
saliency map si(x) ∈ Rd, with ith class for a given sample x and detected object
k ∈ {1, .., Objects}, we define the cosine similarity matrix as,

CSM = (cij) ∈ RCxC , cij =
si ∗ sj
|si||sj|

where i, j ∈ {1, ..., C} and cij represent the cosine similarity maps between two
saliency maps si and sj.

Whenever YOLO observes OOD data and wrongly classifies it, the GGA can
observe the geometric relations between the saliency maps of the output classes.
The geometric relation of the OOD will be different than in-distribution data,
which then can be used to classify the detected object as OOD.



Chapter 3

Method

3.1 Preprocessing

3.1.1 Transform Images to Tensor

The GGA algorithm requires saliency maps of input images with respect to their
output class. To use images we use a function that resize a given image to the
desired size 416 x 416. Then it is transformed into a Torch Tensor. The GGA
accepts a Tensor containing all input image tensors, therefore we stack the tensors
of multiple images into a new tensor with dimension (X, 3, 416, 416). Here the
size X are all the images that are included into the tensor, 3 are the channels and
416,416 is the input image size.

3.1.2 Datasets

To test the Geometric Gradient Analysis, we created several different datasets to
test on.

• Out of Distribution

• Normal

• Noise Filter

• Rotation

• Gaussian Blur

Each of the datasets have a different impact on how the yolo algorithm classi-
fies objects. In short we explain each method with corresponding impact on the
classification.

19



Out of Distribution

The most important dataset is the Out of Distribution dataset. For this we used
three seperate datasets containing images of three different sports; American Foot-
ball, baseball and women figure skating. The American Football dataset contains
191 images, the baseball dataset 174 and lastly the women figure skating dataset
contains 159 images. In figure 3.1 we see a couple of examples of these datasets.
These datasets contains no objects of balls or robots so any predicted object class
will be incorrect. The dataset has been screened to make sure no robot or ball is
present. We suspect that YOLO will perform correctly and will not detect any
object as ball or robot in these datasets. However, if YOLO does detect a ball
or robot in these images, then those images can be used as OOD for testing the
GGA. In the latter case, we can backtrack which images in the OOD dataset have
miss classifications, and create a new dataset from these images.

Figure 3.1: OOD dataset containing three different sports



Normal, Noise Filter, Rotation and Gaussian Blur

For these datasets we used a dataset from the paper Yao et al. (2022). This dataset
contains 491 images of robots playing football. To create more data we created
multiple algorithms that transformed the image into four different images; the
original, with noise filter, rotated 90 degrees and a gaussian blur. Examples are
shown in the figure below. We tested the YOLO algorithm on all the different
datasets to see if the accuracy and confidence changed. This was the case for all
datasets, where the noise filter completely removed any classification.

Figure 3.2: From top to bottem, Normal, Noise Filter, Rotation and Gaussian
Blur



3.2 Pipeline
In this section we will shortly explain how we are going to use geometric gradient
analysis to see if an detected object is out of distribution. In figure 6 we see the
pipeline for out experiment. When the input is correctly classified by the model,

Figure 3.3: The Pipeline for the experiment

the saliency map of a predicted class will point in a direction which is opposite to
the saliency maps of all the other classes (Schwinn et al., 2021), in our case the
ball or the robot. This will result in an low average cosine similarity between these
saliency maps in the rows an columns of the predicted class label seen as in figure
7.

Figure 3.4: correct predicted
class

Figure 3.5: Out of Distribution
prediction



In contrast to the OOD samples, the saliency maps of the non predicted classes
point towards different directions. Therefore the cosine similarity will be lower than
average, seen in figure 8. We will use this on the OOD dataset explained in the
previous section. We will compare the dataset of the Robocup with the OOD with
their respective cosine similarity. If our hypothesis is correct, the GGA detector
will observe a difference in it’s cosine similarity.

3.3 YOLO Model
We have printed the model of YOLO and added it to the Appendix. Since we did
not change anything of the model, or retrained the model, we conclude that the
print of the model will suffice.



Chapter 4

Results

4.1 Out of Distribution
To examine if the OOD dataset will suffice to test the GGA, we used the YOLO
algorithm to make predictions. For the dataset of each sport, we have observed dif-
ferent miss classifications. Moreover, the amount of miss classifications differs per
sport. We will examine each dataset seperatly. In Table 1.1 we see the differences
in miss classifications of the datasets.

Size Dataset Classification Ball Classification Robot Total Images
American F. 191 20 31 35
Baseball 174 10 29 29
Female S. K. 159 0 0 0

24



4.1.1 American Football OOD

In the American Football dataset we have seen the most miss classifications. In
figure 4.1 we clearly see that YOLO incorrectly classifies objects in this dataset as
either ball or robot.

Figure 4.1: OOD detection in the American Football dataset

A few observations can be made by reviewing the detected objects in this
dataset, and the most important observations can be seen in the previous image.
In every miss classification, the ball and robot have two opposite characteristics,
the bounding box of the ball is in all the images in this dataset smaller than the
bounding box of the robot. When comparing the average width and height using
part of the vector, (xcood, ycood, w, h), we see a that the average bounding box of
the robot higher. Another interesting observation is that most of the detected
miss classified balls, only contain the colours black and white. This is clearly seen
in figure 4.1, where four objects classified as balls, are all small and have a black
and white colour. This clearly exposes the weakness of training an object detec-
tion algorithm in a closed environment, whereas the real world contains numerous
objects or part of objects describing the same features as the ball.



4.1.2 Baseball OOD

The results of this dataset has the same observations as the American Football
dataset, see figure 4.2. Again we see the relative size between the bounding boxes
of each detected class. The only anomaly is the image in the upper left corner,
where it classified a human, far away as a ball.

Figure 4.2: OOD detection in the Baseball dataset

4.1.3 Female Figure Skating

This sport was chosen because it had female players, did not have grass in the
background and in all the images there was no ball present. This resulted, as seen
in the previous table, that no miss classifications occurred.

4.1.4 GGA on OOD

Using the miss classified images we were able to create an OOD dataset of 64
images. However, this was not enough to train the GGA detector. The cosine
similarity matrices abstracted from the in distribution set together with the OOD
was had no difference from each other. We will further elaborate this in the
discussion.



4.2 Normal, Noise Filter, Rotation and Gaussian
Blur

We have tested the performance of YOLO on the dataset with Noise Filter, Rota-
tion and a Gaussian Blur. In the table below we see that the noise filter completely
removes the ability of YOLO to detect any object. When looking with a human
eye, the rotation and Gaussian blur are harder to detect than a simple noise filter.
This might indicate that an object detection algorithm is dependent on pixel val-
ues and the human eye uses a more continuous observation of the image. Changing
pixel values of nearby structures might have a large influence of the detection of
objects.

Classification Ball Classification Robot Total Images
Normal 51 64 107
Noise Filter 0 0 0
Rotation 42 10 50
Gaussian Blur 40 33 72



Chapter 5

Discussion

In this section we delve into the importance and relevance of the results found in
this paper.

5.1 Susceptibility of YOLO on OOD
As earlier studies have shown, YOLO is great at detecting objects. Therefore we
had the expectation that YOLO would perform well with OOD. Moreover we pre-
dicted that YOLO would not detect anything, or wouldn’t miss classify any objects
in the OOD dataset. However, the results have shown the exact opposite. When
using the OOD dataset of an American Football match or Baseball match, YOLO
was inclined to falsely detect objects and classify them wrongly. Even though,
YOLO works well in a closed environment, when introduced to different data, it’s
effectiveness reduces greatly.

This result should get more attention in the future. Most research is focused on
improving YOLO in detecting objects on training data without taking in account
the possibility of OOD data. As mentioned in the first chapter, a lot of object
detecting algorithms are trained in a closed environment, which makes them more
susceptible for out OOD data.

28



5.2 YOLO, adversial examples and noise data
We have seen that the performance of YOLO reduces when introduced to adver-
sarial examples and noise data. Moreover, adding noise resulted in the YOLO
algorithm to detect no objects and the adversarial examples also performed worse.
When we take the example from chapter one with the self driving car we can see
that this a vital problem for object detection. For example, the probability that
a self driving car learns to identify pedestrians who walk upwards, is very high.
However when a person falls, it’s orientation is rotated and as we have seen in the
results, causes the object detecting algorithm to perform less. This can result in a
miss classification of the pedestrian, and cause a crash. Another example could be
that the observing camera is dirty or wet, which results in a blurred image. Here
too, the algorithm performed less which could also have disastrous consequences.

This can be extended towards the Robocup, where two teams of robots play
football against each other. There are many situations where a robot might have
a different angle, i.e. when a robot is laying on the ground. If the robot isn’t
detected by YOLO, it can trip over it, which can result in multiple robots falling
on the ground.

5.3 Geometric Gradient Analysis
As the results have shown, we can conclude that the Geometric Gradient Analysis
was not very effective. This is where the limitations of this research is met. For
the GGA to work, a large dataset of OOD is needed. In contrast to the findings
of the susceptibility of YOLO on OOD, where only a small dataset can suffice.
Finding OOD data was also a large obstacle. After using several datasets, ranging
from animals, different plants and in the end, different sports, only the team
sports played on grass seemed effective in creating OOD. However these datasets
themselves had a small size.

5.4 Revising the hypothesis
In the final section of this thesis we revise our hypothesis from our introduction:
Is it possible to use geometric gradient analysis described in the paper to detect out
of distribution data and therefore, improve the confidence of the Yolo algorithm?
This question can not be answered after this thesis. However the pieces to answer
the question are there. The article Schwinn et al. (2021) confirms that GGA can
be used to detect OOD, and this thesis has proven it is possible to create the OOD



dataset based on the YOLO model, to test the GGA. The next step to answer this
question lies in the creation of a larger dataset.



References

Albawi, S., Mohammed, T. A. and Al-Zawi, S. (2017), Understanding of a con-
volutional neural network, in ‘2017 international conference on engineering and
technology (ICET)’, Ieee, pp. 1–6.

Knight, J. C. (2002), Safety critical systems: challenges and directions, in ‘Pro-
ceedings of the 24th international conference on software engineering’, pp. 547–
550.

Liu, T., Fang, S., Zhao, Y., Wang, P. and Zhang, J. (2015), ‘Implementation of
training convolutional neural networks’, arXiv preprint arXiv:1506.01195 .

Schwinn, L., Nguyen, A., Raab, R., Bungert, L., Tenbrinck, D., Zanca, D., Burger,
M. and Eskofier, B. (2021), ‘Identifying untrustworthy predictions in neural
networks by geometric gradient analysis’, arXiv preprint arXiv:2102.12196 .

Simonyan, K., Vedaldi, A. and Zisserman, A. (2013), ‘Deep inside convolutional
networks: Visualising image classification models and saliency maps’, arXiv
preprint arXiv:1312.6034 .

Thuan, D. (2021), ‘Evolution of yolo algorithm and yolov5: the state-of-the-art
object detection algorithm’.

Yao, Z., Douglas, W., O’Keeffe, S. and Villing, R. (2022), Faster yolo-lite: Faster
object detection on robot and edge devices, in ‘Robot World Cup’, Springer,
pp. 226–237.

31



Chapter 6

Apendix

32



Figure 6.1: Print of Model


