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Abstract

This thesis compares the performance of the high-resolution, light-weight LED-
Net encoder-decoder architecture with a low-resolution vision transformer-based
approach in the context of monocular robot navigation. The evaluation focuses
on lane-following accuracy and obstacle avoidance. The LEDNet encoder-decoder
architecture demonstrates superior performance in terms of navigation accuracy
and stability. Its high frame rate and resolution allow for timely recognition of
turns, enabling the robot to navigate corners and obstacles at higher speeds com-
pared to the vision transformer. The LEDNet model also outperforms the vision
transformer-based models in obstacle avoidance, accurately detecting and classify-
ing obstacles and successfully navigating around them. Additionally, the LEDNet
encoder-decoder architecture shows better visibility and avoidance of small obsta-
cles compared to the vision transformer-based models. Although the evaluation is
based on a simulated environment, the relative performance differences observed
provide valuable insights for further research and potential real-world applications.
The results of this study support the use of the LEDNet encoder-decoder archi-
tecture for enhancing monocular robot navigation, offering advantages in lane-
following accuracy and obstacle avoidance.
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Chapter 1

Introduction

Today, self-driving vehicles are equipped with a multitude of sensors and cam-
eras for comprehensive perception of their surroundings. The seamless integration
and functioning of components, such as sensors and cameras, are essential for au-
tonomous vehicles to operate safely, and so the absence or malfunction of these
aforementioned components can not only disrupt the vehicle’s perception of the
environment, but also undermine its ability to process data in real-time and make
the right decisions, such as to stay in the lane.

Consequently, given the increasing popularity of self-driving cars and other
autonomous vehicles, the need for reliable lane-following and obstacle-avoidance
algorithms is paramount. Having a simple and reliable system as a fallback option
would provide a secure alternative in cases where the main advanced system fails
to function. Such system would be able to safely stay in a lane and avoid obstacles
using only one camera in the process. This would be a reliable backup system for
autonomous vehicles, like cars and robot container movers.

An example of a simple research robot to test out algorithms for autonomous
driving are Duckiebots1. Duckiebots are small robots with a front-facing camera
(see Fig. 1.1). Duckiebots can drive around in an environment called Duckietown.
This environment is made out of tiles that show a part of a road or junction
which can be laid out in any order, to create the desired research environment.
Duckietown is also available in the form of a simulator.

1https://www.duckietown.org/
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Figure 1.1: Duckiebot in Duckietown1

Saavedra-Ruiz, Morin, and Paull (2022) demonstrated that a Duckiebot is able
to navigate through Duckietown using monocular vision and low-resolution image
segmentation. The images were processed in real-time by a vision transformer
(ViT). This ViT created image segmentations by labeling 8×8 pixel patches with
the relevant class and with this segmentation mask, the algorithm calculated the
correct steering direction to either stay in lane or avoid an obstacle. The authors
suggest that in order to perform monocular robot navigation using high-resolution
image segmentations, an encoder-decoder architectures may be applied. High-
resolution segmentation models are better than low-resolution segmentation mod-
els at detecting obstacles and lane following (Saavedra-Ruiz et al., 2022).

There are many different encoder-decoder architectures available. Generally,
encoder-decoders are computationally demanding, so there is need for a lightweight
encoder-decoder that can create image segmentations in real-time (Holder & Shafique,
2022). There are real-time performing models available like LaneNet, but this
model is only made to recognize road lines (Z. Wang, Ren, & Qiu, 2018). How-
ever, it is necessary for this lane-following and object-avoidance algorithm to em-
ploy a versatile model that can be trained to effectively recognize obstacles as well.

Consequently, this research uses a flexible and lightweight version of an encoder-
decoder, namely LEDNet. LEDNet is able to process images in real-time with 71
frames per second (fps) using an NVIDIA GTX 1080Ti, so it is suitable for robot
navigation (Y. Wang et al., 2019). LEDNet creates high-resolution image seg-
mentations, which is needed to create a reliable, high-resolution, monocular robot
navigation system. To explore the disparity in performance between ViT and
LEDNet in monocular robot navigation, the following research question arises:
How does the performance of the LEDNet encoder-decoder architecture compare
to the vision transformer-based approach in terms of monocular robot navigation,
lane-following accuracy and obstacle avoidance?
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The anticipated outcome of this study is that the LEDNet-driven Duckiebot
is able to navigate much more accurately and stably, for various reasons. First,
LEDNet is able to process images with a much higher frame rate compared to
the ViT. This enables the LEDNet-driven Duckiebot to turn corners faster than
the ViT-driven one, because of the higher frame rate the LEDNet Duckiebot will
notice on time when it has made the turn and when to straighten its wheels again.
Second, LEDNet is able to create pixelwise image segmentations, whereas ViT
only labels 8×8 patches of pixels. Therefore, LEDNet is not only able to notice
details, but smaller obstacles will also be visible in the segmentations, while, on
the other hand, the ViT needs the majority of the 8×8 image patches to be a
certain class for the whole patch to obtain that class as labels.

The structure of this thesis is as follows. To begin, the necessary theoretical
background will be discussed. This theoretical background consists of ViT and
LEDNet. Furthermore, an explanation of the simulator environment along with
the lane-following and obstacle-avoidance algorithm will be provided. Moreover,
the research setup will be explained. Finally, the results will be presented and
discussed, followed by a consideration of future research directions.
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Chapter 2

Theoretical Background

This chapter will discuss necessary theoretical background. Here, vision trans-
formers and encoder-decoder architectures will be explained. After the general
overview of encoder-decoders, follows an explanation of LEDNet, the specific
encoder-decoder for this study.

2.1 Vision Transformer
Vision transformer (ViT) is a new phenomenon in the world of computer vision.
The ViT is based on the transformer which finds its origin in the field of natu-
ral language processing (NLP). The transformer was developed by Vaswani et al.
(2017) to perform human language translation tasks. The transformer’s attention
mechanism distinguishes it from other language processing models. This attention
mechanism is enables the transformer to learn which part of the sentence or text to
focus on (Vaswani et al., 2017). Kolesnikov et al. (2021) transferred this technique
to the world of computer vision. The attention technique is used on images by
splitting up an image in patches of 8× 8 or 16× 16 pixels and dividing attention
over these patches (Kolesnikov et al., 2021).

The ViT used in this study is adapted from Saavedra-Ruiz et al. (2022). A
visual representation of this ViT can be seen in Figure 2.1. This ViT utilizes a
self-supervised, pretrained mechanism called DINO (self-distillation with no la-
bels). DINO is a self-supervised learning method that uses a teacher network to
predict the output of an image. The student network then learns from its own
predictions without any labeled data (Caron et al., 2021). By using a pretrained
weights of DINO, the model requires very little data to train.
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Figure 2.1: Vision Transformer. Image from Saavedra-Ruiz et al.(2022)

To further address the challenge of training with limited data, Saavedra-Ruiz
et al. (2022) incorporated standard data augmentation techniques into the train-
ing sequence. These augmentation techniques maximize the usage of the available
data. Data augmentation techniques used are random crops, flips, shifts, scales,
rotations, color jittering, and Gaussian blur.

The ViT used in this study creates image segmentations by splitting up the
input image in patches of 8 × 8 pixels. These patches are then passed on to the
attention head, where it will be decided on which patch to focus on. The outputs
from the attention heads are then fed into a fully connected network which is re-
sponsible for predicting the coarse segmentation mask. A visual representation of
this model is shown in Figure 2.1. Each ViT can contain a different amount of
blocks. A block consists of a self-attention layer and 2 fully-connected networks.
More blocks can lead to higher performance, but it also requires more computa-
tional power. Example outputs of ViT with 1 block and ViT with 3 blocks can be
seen in Figure 2.2.
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(a) Input Image

(b) ViT 1 Block Output (c) ViT 3 Blocks Output

Figure 2.2: ViT Image Segmentations of Duckietown

2.2 Encoder-Decoder Architecture
Encoder-decoder architectures were initially used in the field of NLP (Sutskever,
Vinyals, & Le, 2014), but in recent years these architectures were found to be
useful in computer vision tasks as well (Long, Shelhamer, & Darrell, 2015). One
function of encoder-decoders in computer vision is for pixelwise image segmenta-
tion. An encoder-decoder architecture consists of two main parts: an encoder and
a decoder. The encoder consists of a set of convolutional layers, which extract the
information from the input image. The decoder consists of a set of transposed
convolutional layers that upsample the feature maps that were produced by the
encoder. By upsampling these feature maps, the decoder creates a pixelwise seg-
mentation of the input image. An example of an encoder-decoder architecture can
be seen in Figure 2.3.
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Figure 2.3: Encoder-Decoder Architecture (SegNet) for Pixelwise Segmentation
(Badrinarayanan et al., 2017).

Training data for an encoder-decoder consists of pairs of input images and out-
put images. In the case of image segmentation, these output images are matrices of
the same size as the input images. Every instance of this matrix is an integer, and
each integer refers to a class. Training an encoder-decoder is done by performing
a process called backpropagation.

2.2.1 LEDNet

The encoder-decoder architecture selected for this study is LEDNet (Y. Wang et
al., 2019). LEDNet stands for Lightweight Encoder-Decoder Network. A visual
representation of LEDNet can be seen in Figure 2.4. Encoder-decoders are known
for being computationally demanding, because they contain a lot of convolutional
layers. In order to reduce the computational burden of the encoder-decoder archi-
tecture while maintaining its high accuracy, Y. Wang et al. (2019) made modifica-
tions to the residual block (He, Zhang, Ren, & Sun, 2016). Pointwise convolutions
demand the most computational power. At the beginning of the residual block
the input channels are split evenly, and to avoid pointwise convolutions, a set of
1D convolutions are used (Y. Wang et al., 2019). Next, the outputs of the con-
volutions of both branches are concatenated. Before continuing all the channels
are shuffled. Y. Wang et al. (2019) calls this residual block the split-shuffle-non-
bottleneck (SS-nbt).
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Figure 2.4: The LEDNet Architecture (Y. Wang et al., 2019).

The decoder part of LEDNet uses a design that is asymmetric and sequential.
The decoder uses an attention pyramid network (APN) to upscale the feature
maps created by the encoder to match the original input resolution (Hu, Shen,
& Sun, 2018). This module combines features from different scales by using con-
volutions of different sizes (3 × 3, 5 × 5, and 7 × 7), which creates a multi-scale
feature pyramid. This pyramid structure progressively combines information from
different scales, allowing for more accurate inclusion of context from neighboring
scales. To further improve performance, a global average pooling branch is added
to incorporate global context before applying attention. Finally, an upsampling
unit is used to match the resolution of the input image. By using the pyramid
architecture, the decoder effectively captures context cues at multiple scales and
produces attention maps at the pixel level for convolutional features, leading to
the improved overall performance of LEDNet (Y. Wang et al., 2019).

(a) Input Image (b) LEDNet Output

Figure 2.5: LEDNet Image Segmentation of Duckietown
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Chapter 3

Method

This chapter provides a detailed explanation of the approach employed in this
study to achieve the research objectives. This chapter first discusses the datasets,
data augmentations, and how LEDNet and the ViTs are trained using these
datasets. Furthermore, it describes the algorithm used for lane-following and
object-avoidance, and how LEDNet and the ViTs are incorporated into this al-
gorithm. The chapter concludes by explaining how the performance of the two
types of segmentation models is evaluated.

3.1 Dataset
The dataset utilized in this research study was sourced from Saavedra-Ruiz et al.
(2022) and is openly accessible1. The dataset is split up in two parts; The first
part contains data from the real world, which are images taken from the perspec-
tive of the real robot, while the second part contains images gathered from the
Duckietown simulator. The real-world dataset consists of a total of 100 images,
which are further partitioned into 70% for training, 15% for testing, and 15% for
validation purposes. Additionally, the simulator dataset comprises a total of 2500
images. These images are distributed among the various subsets as follows: 70%
for training, 20% for testing, and 10% for validation purposes. Because this re-
search solely takes place in a simulated environment, only the simulator dataset is
used.

1https://github.com/sachaMorin/dino
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3.1.1 Data Augmentation

In contrast to ViTs, encoder-decoder architectures necessitate a considerably larger
volume of data. Given the constraints of time associated with capturing additional
images and manually annotating them, the adoption of data augmentation was
chosen as a means to enlarge the existing dataset of 2500 images. By horizontally
flipping all the images, the size of the dataset was doubled. In order to assess the
influence of the data augmentation on the model accuracy, an evaluation method
known as intersection over union (IoU) was used. IoU is the standard measure-
ment technique to evaluate the efficacy of image segmentation models. The IoU is
calculated by dividing the intersection area of the predicted segmentation and the
ground truth by their union area (see Equation 3.1).

IoU =
|A ∩B|
|A ∪B|

. (3.1)

This data augmentation increased the overall IoU score of the LEDNet encoder-
decoder by almost 4% (see Table 3.1), with the largest improvement for the Duck-
iebot class. A comparison of the loss between the LEDNet model trained on the
augmented dataset and the LEDNet model trained on the original dataset is pre-
sented in Appendix B.

Class Precision (IoU)
Augmented Dataset Original Dataset

background 99.40 99.18
yellow-line 88.18 85.17
white-line 94.38 92.56
duckiebot 86.43 79.16
sign 89.40 84.82
duck 90.22 84.77

Average 91.13 87.63

Table 3.1: LEDNet IoU comparison

As mentioned before, the ViT used in this study already incorporates data
augmentations in its training sequence. Nonetheless, the augmented dataset was
also tested on the ViT to see if there was an increase in performance. This was
not the case and for the rest of this research, the standard dataset will be used
for the ViT. It is worth mentioning that the ViT’s consistent performance proves
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its robustness, indicating its resistance to overfitting. See Appendix A for the IoU
comparison between the ViT trained on the standard dataset and the augmented
dataset.

3.2 Model Training
As observed in Section 3.1.1, the augmented dataset contributes significantly to
the performance enhancement of LEDNet. Therefore, for the rest of the study, the
LEDNet trained on the augmented dataset will be used. The decision had been
made to train LEDNet using 200 epochs and a batch size of 5. The decision to
train LEDNet involved using a batch size of 5, which is standard for LEDNet, along
with 200 epochs (Y. Wang et al., 2019). The dataset is relatively simple, where
the road and obstacles exhibit consistent colors, lighting, and shapes throughout,
and therefore 200 epochs is enough. In addition, the loss graph starts to flatten
around the 200-epoch mark, further proving that 200 epochs is sufficient (see Fig.
3.1).

Figure 3.1: LEDNet Loss Graph

The ViT on the other hand is trained using the original dataset, since the
augmented dataset does not lead to any significant performance increase (see Ap-
pendix A). The ViT is trained with the same configuration as Saavedra-Ruiz et
al. (2022); 200 epochs and a batch size of 1.
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3.3 Duckietown Simulator
This research takes place in the Duckietown Simulator2. This simulator is a Python
package that uses OpenAI’s Gym Python package. The Duckietown simulator
enables the execution of code intended for the real Duckiebot within a simulated
environment.

3.3.1 Maps

Within the Duckietown simulator, the map "loop_empty" (see Fig. 3.2) will be the
designated environment for this study. This map, despite its simplicity, contains
both left and right bends. Due to the limitations of the lane-following algorithm
(see Section 3.4) in handling crossroads and junctions, these will be excluded from
consideration.

Figure 3.2: Simulated Duckietown Map: "loop_empty"

Another map utilized in this study shares the same configuration as the map
depicted in Figure 3.2. However, this map has several obstacles. There are rubber

2https://github.com/duckietown/gym-duckietown
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ducks and Duckiebots spread out over the map (see Fig. 3.3). Using this setup, the
obstacle-avoidance performance of the LEDNet and ViT Duckiebots are tested.

Figure 3.3: Simulated Duckietown Map: "loop_empty", with obstacles like: Duck-
iebots and Rubber Ducks.

3.4 Lane-Following and Obstacle-Avoidance Algo-
rithm

This section explains the lane-following and obstacle-avoidance algorithm. This al-
gorithm was sourced from Saavedra-Ruiz et al.(2022)3. A visual representation of
this algorithm can be seen in Figure 3.4. This algorithm uses real-time generated
image segmentations to compute the optimal steering direction for the Duckiebot,
enabling it to maintain its position within the lane, evade obstacles or steer cor-
rectly around bends. However, it is important to note that this algorithm does
not include a mechanism to recognize crossroads or junctions.

3https://github.com/MikeS96/object-detection/tree/daffy
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The Duckietown simulator generates images from the perspective of the Duck-
iebot at a rate of 30 fps, with each image having dimensions of 640×480 pixels.
In order to perform segmentations using various models, these images must un-
dergo a reshaping process. Specifically, for the LEDNet model, the image needs
to be adjusted to 1024×512 pixels, while for the ViT model, the image must be
of shape 480×480 pixels. Once reshaping is done, the image is then fed into the
segmentation model. The output of the model is the segmentation matrix St ∈ Z;
with similar height and width as the input image. For the rest of the algorithm,
the size of the segmentation matrix St needs to be of shape 480×480, so only the
segmentation matrix created by LEDNet needs to be reshaped.

Every integer value in St corresponds to a class, in this case: 0 corresponds
to the background, 1 to the yellow line in the center, 2 is the white line, 3 is a
Duckiebot, 4 is a sign and 5 is a (rubber)duck.

Next, the matrix Mt is created. This matrix has the same shape as St, but in
Mt, all the labels corresponding to the white lines are replaced with 1 and all the
labels corresponding to obstacles (Duckies and Duckiebots) are replaced with 2.
Then, the steering direction is calculated as follows:

ϕt+1 = ϕt − γ
∑
i,j

(P ⊙Mt)i,j. (3.2)

Here P is a matrix with −1 values in the left half of the matrix and 1 values in
the other half. This equation balances the amount of obstacle and road marking
pixels on the left and right sides of the screen. Consequently, when the Duck-
iebot encounters a right-turning bend, the road markings on the right side of the
screen will progressively disappear from its view. As a result, the Duckiebot steers
towards the right in order to restore the balance within the matrix. The higher
weight of the obstacles, compared to road markings, in the matrix Mt cause the
Duckiebot to steer around the obstacles to avoid crashing into them.

It is important to note that this lane-following and obstacle-avoidance algo-
rithm maintains a static driving speed throughout, even when navigating bends.
The algorithm focuses on optimizing the steering direction to keep the Duckiebot
within the lane and avoid obstacles, while the speed remains constant. The deci-
sion to maintain a static driving speed is intentional to simplify the algorithm’s
implementation and reduce complexity.
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Figure 3.4: Lane-Following and Object-Avoidance Algorithm. Image from
Saavedra-Ruiz et al. (2022)

3.5 Evaluation Methods
Before explaining the evaluation methods, it is important to note that all the ex-
periments are conducted on a laptop with a GeForce GTX 1050M GPU, Intel
Core i7-8565U CPU, and 16 GB of RAM.

There are several ways to assess the performance between the LEDNet-driven
and ViT-driven Duckiebot. To start, the maximum speed with which the Duck-
iebot is able to successfully drive around the map without obstacles is measured.
The Duckiebot’s speed is visible in the simulator’s interface. This method also
measures the Duckiebot’s maximum cornering speed, since the algorithm keeps
the Duckiebot at a static speed, even in corners. A successful circuit around the
map is defined as the Duckiebot remaining within the designated track and avoid-
ing any 180-degree turns at bends. However, the latter occasionally occurs when
the Duckiebot is driving too fast, resulting in the processing of the frame indicat-
ing the need to halt the turning motion being rendered too late. Consequently, the
Duckiebot ends up reversing its course, resulting in a failed attempt. To ensure
stability, the Duckiebot needs to complete four consecutive circuits around the
course before the speed is increased. The speed is increased until the Duckiebot
fails.

In addition, the obstacle-avoidance performance of both the LEDNet and ViT
Duckiebot is compared. The same map will be used, but this time there are ob-
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stacles like rubber ducks and stationary Duckiebots on the road that need to be
avoided in order to finish the course (see Fig. 3.3). In order to assess and com-
pare the performance, the ability of the Duckiebot to navigate the course four
consecutive times without making contact with any obstacles or deviating from
the designated road will be evaluated. The driving speed is fixed at 0.07 m/s.

Likewise, in order to verify the hypothesis that LEDNet can detect smaller
obstacles more effectively due to its higher resolution, the image segmentations
generated by LEDNet and ViT for images containing a small obstacle will be com-
pared. This comparison will help determine if LEDNet is capable of identifying
obstacles that may be missed by ViT.

Finally, to see if the visibility of small obstacles in the segmentations has any ef-
fect on the obstacle-avoidance, experiments will be conducted where the Duckiebot
navigates around an obstacle. Again, to ensure stability, only after four consecu-
tive successful attempts the size of the obstacle will be manually decreased. This
repeats until an unsuccessful attempt occurs. The comparison between LEDNet
and ViT Duckiebot will focus on identifying the smallest obstacle size that each
system is capable of navigating around successfully.
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Chapter 4

Results

In this chapter, the results from the evaluation methods (see Section 3.5) are
shown. These results provide insight into the performance of the LEDNet-driven
Duckiebots and the ViT-driven Duckiebots. This chapter starts by showing the
maximum speed with which the different models can navigate the course (see
Section 4.1). Furthermore, the obstacle-avoidance performance was tested (see
Section 4.2). Additionally, the chapter explores the hypothesis regarding LEDNet’s
ability to detect small obstacles (see Section 4.3). Lastly, the performance of the
models in navigating around obstacles of varying sizes is evaluated (see Section
4.4).

4.1 Maximum Speed
The first evaluation metric aimed to measure the maximum speeds at which the
LEDNet and ViT models were able to successfully complete the map (see Fig.
3.2). The results are summarized in Table 4.1.

Model Maximum Speed (m/s)

LEDNet 0.15

ViT 1 block 0.13

ViT 3 blocks 0.09

Table 4.1: Maximum Speeds Achieved by Different Models

The LEDNet model demonstrated the highest maximum speed of 0.15 m/s,
followed by the ViT 1 block model with a maximum speed of 0.13 m/s. The
ViT 3 block model achieved a slightly lower maximum speed of 0.09 m/s. These
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results indicate that the LEDNet model outperformed the ViT models in terms of
the maximum speed achieved on the map.

4.2 Obstacle-Avoidance
The second evaluation metric aimed to assess the obstacle-avoidance performance
of the LEDNet and ViT models. In this evaluation, all three Duckiebots were
required to navigate the map containing obstacles (see Fig. 3.3) in both clockwise
and counterclockwise directions. The results are visible in Table 4.2, where the
symbol ✓ signifies the successful completion of the course, while the symbol ×
indicates it failed.

Model Counter-clockwise Clockwise
LEDNet ✓ ✓

ViT 1 block ✓ ×

ViT 3 blocks × ×

Table 4.2: Ability to Drive Around Obstacles on Map (see Fig 3.3)

The LEDNet-driven Duckiebot was able to drive around the course without
touching any obstacles. The ViT with 1 block was only able to successfully com-
plete the course driving counterclockwise. Finally, the ViT with 3 blocks was
unable to safely complete the course without touching any obstacles.

The ViT with 1 block only failed to drive around the stationary Duckiebot po-
sitioned at the bottom part of the map (see Fig. 3.3) when it was on a clockwise at-
tempt. The ViT with 3 blocks on the other hand showed unpredictable behaviour.
It occasionally manages to circumvent certain obstacles, while other times failing
to do so. Furthermore, it occasionally overcorrected navigating around an obstacle
and drives off the road.

4.3 Small Obstacle Visibility
The third evaluation metric aimed to verify the hypothesis that LEDNet is able
to detect more detail and spot smaller obstacles. The results are shown in Figure
4.1.
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(a) Duckiebot Vision (b) LEDNet

(c) ViT 1 Block (d) ViT 3 Blocks

Figure 4.1: Image Segmentations Created by LEDNet, ViT 1 Block, ViT 3 Blocks

The Duckiebot’s vision is shown in Figure 4.1a. A small rubber duck is visible
on the right lane. The legend, as seen in Figures 4.1b, 4.1c and 4.1d, updates
automatically based on what is visible in the image according to the image seg-
mentation model. The presence of the class duck in the legend in Figure 4.1b
indicates that the small rubber duck was visible to LEDNet. The absence of this
class in the legend of the remaining Figures 4.1c and 4.1d indicate that the rubber
duck was not visible to the ViTs.

Furthermore, it is noteworthy that the LEDNet model was able to accurately
classify the road markings throughout the entire street. In contrast, the ViTs
started to omit parts of the road markings that were further down the road.
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4.4 Small Obstacle Avoidance
The last evaluation metric focused on the ability of the LEDNet and ViT models to
detect and navigate around small obstacles of varying sizes. Table 4.3 summarizes
the results.

Obstacle Size (cm) LEDNet ViT 3 blocks ViT 1 block
8 ✓ ✓ ✓
7 ✓ ✓ ✓
5 ✓ ✓ ✓
4 ✓ × ✓
3 ✓ × ✓
2 ✓ × ×
1 × × ×

Table 4.3: Ability of Models to Navigate Around Obstacles of Different Sizes

The results demonstrate that all the models were capable of successfully navi-
gating around obstacles of sizes 8 cm, 7 cm, and 5 cm. However, the ViT 3 block
model failed to navigate around the obstacles of size 4 cm and smaller. The LED-
Net model exhibited the highest performance, successfully navigating around all
obstacles of size 2 cm and larger. The smallest obstacle the ViT 1 block managed
to drive around is 3 cm.
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Chapter 5

Discussion

This chapter aims to provide an analysis of the results (see Chapter 4) obtained by
evaluating the LEDNet-driven Duckiebot and the ViT-driven Duckiebots. These
results contain the maximum speed with which every model is able to navigate the
course, obstacle-avoidance performance, and small obstacle visibility and avoid-
ance. Examining these results will yield proof for the hypothesis that the LEDNet-
driven Duckiebot is able to navigate more accurately and stably in comparison to
the ViT-driven Duckiebots.

5.1 Evaluation
All the results from Chapter 4 show that the high-resolution encoder-decoder archi-
tecture LEDNet-driven Duckiebots outperforms the ViT-driven Duckiebots. No-
tably, the LEDNet Duckiebot exhibits higher cornering speeds, attributed to its
higher frame rate and high resolution. A higher frame rate leads to the earlier ren-
dering and processing of the frame indicating the completion of the Duckiebot’s
turn. This allows the Duckiebot to timely recognize the end of the turn and transi-
tion to straight driving, enabling it to go through corners and around obstacles at
increased speeds. The high resolution enables the LEDNet to accurately balance
the left and right lane markings, keeping the Duckiebot in the lane.

Moreover, LEDNet’s performance in terms of obstacle-avoidance is also higher
compared to the ViTs. As shown by the results (see Section 4.2), the LEDNet
Duckiebot was the only one able to navigate around the map with obstacles (see
Fig. 3.3) both clockwise as well as counter-clockwise without touching any of the
obstacles. This has to do with the higher resolution and higher accuracy of the
LEDNet model. It was able to classify the entirety of the obstacles, causing the
algorithm to accurately steer around the obstacle. The ViTs on the other hand,
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sometimes failed to classify the entirety of the obstacles, especially the station-
ary Duckiebots, resulting in a collision with the unclassified part of the obstacle.
On some occasions, the Duckiebot was able to classify the entire obstacle, but
often this was only the case when the obstacle was too close to steer around. The
mediocre performance of the ViT with 3 blocks in obstacle-avoidance is caused by
its low frame rate, which results from the computational demands of the use of
three transformer blocks.

Furthermore, the high resolution and accuracy of the LEDNet encoder-decoder
also enabled the model to accurately detect small obstacles where the ViTs cannot
(see Fig. 4.1). In contrast, the ViTs adopted an 8×8 pixel patch labeling approach.
Therefore, if a patch does not contain enough pixels of the obstacle, it will not be
labeled with the label of the obstacle. In fact, even if the obstacle is 4 times larger,
its pixels could be distributed over 4 separate 8×8 pixel patches, and neither of
those patches contain enough pixels of the obstacle to be labeled correctly. As a
consequence, the obstacle was invisible to the ViT.

It is worth mentioning that LEDNet did not confuse the small rubber duck on
the road for the yellow road markings. This occasionally happened with the ViTs
when avoiding obstacle.

Evidently, the LEDNet proved to be the best driving around small objects (see
Section 4.4). However, it must be said that the ViT with 1 block showed better
results than anticipated. Even though the ViT was not able to identify the rub-
ber duck from afar, it became visible when the Duckiebot was close enough. The
rubber duck of size 2 cm was detected by the ViT too late to avoid a collision.

A limitation of this study is that it relied on a simulated environment. Within
the Duckietown simulator all the colors, lighting, and objects are very consistent,
and behaviour of obstacles is predictable. In contrast, the real world presents a
greater degree of randomness and unpredictability in these aspects. However, as
all three Duckiebots operated within this environment, the relative performance
quality is expected to remain relatively consistent if the algorithm utilizing these
segmentation models were to be applied in the real world.
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Chapter 6

Conclusion

This chapter will aim to answer the research question of this thesis: How does
the performance of the LEDNet encoder-decoder architecture compare to the vision
transformer-based approach in terms of monocular robot navigation, lane-following
accuracy, and obstacle avoidance?

In conclusion, LEDNet outperformed the ViTs in terms of monocular robot
navigation, lane-following accuracy, and obstacle avoidance. The results clearly
support this conclusion by showing that the LEDNet-driven Duckiebot is able to
navigate its course safely with higher speeds compared to the ViTs. It is more
accurate at recognizing bends as well as recognizing obstacles and driving around
them. Furthermore, LEDNet showed outstanding performance in detecting small
obstacles. It was also better at guiding the Duckiebot around these small obstacles
without colliding. These outcomes collectively highlight the remarkable advantages
offered by LEDNet in the context of monocular robot navigation, reinforcing its
efficacy for enabling precise lane-following and efficient obstacle avoidance.

6.1 Future Work
This study can be improved by running the algorithm on a real-world Duckiebot
and making it drive through real-world Duckietown, rather than relying solely on
a simulator. This would allow for testing the performance of LEDNet and the
ViTs in a more real-world environment. However, since the real-world dataset1 is
so small, this needs to be expanded first in order for LEDNet to work properly.

In the future, the lane-following and obstacle-avoidance algorithm could be
further improved by adding a speed regulator for when the Duckiebot is going
through bends or navigating around obstacles. For simplicity, the algorithm now
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keeps the Duckiebot at a constant speed. However, it would be more realistic to
slow down for bends and obstacles. For example, slowing down allows the algo-
rithm to accurately respond to the possible obstacles around the bend that were
not visible before going through the bend.

Moreover, the current lane-following algorithm is unable to handle junctions
and crossings. This issue can be addressed by training LEDNet to recognize traffic
signs, traffic lights, and lines that indicate junctions or crossings. Consequently,
adapting the algorithm to appropriately handle these newly recognized classes
within the segmentation masks enables the Duckiebot to navigate through these
situations successfully.
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Appendix A

Vision Transformer Trained on
Augmented Dataset

Class Precision (%)
Augmented Dataset Original Dataset

background 97.11 97.17
yellow-line 46.97 42.20
white-line 62.43 64.18
duckiebot 10.04 10.65
sign 27.74 31.63
duck 31.12 30.68

Average 64.73 65.00

Table A.1: ViT 3 Blocks

Class Precision (%)
Augmented Dataset Original Dataset

background 97.02 97.01
yellow-line 46.90 41.98
white-line 62.19 63.86
duckiebot 8.16 8.09
sign 13.67 9.51
duck 28.51 26.28

Average 64.06 63.85

Table A.2: ViT 1 Block
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Appendix B

LEDNet Loss Graph
Comparison

Figure B.1: LEDNet Loss Graph
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