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Abstract

Quadruped robots offer a promising alternative to their wheeled counterparts due
to their ability to navigate diverse terrains and overcome various obstacles. How-
ever, the control problem for legged robots is challenging as it requires precise
control of actuators and good coordination between all four legs. With the ad-
vent of machine learning, learning-based methods have shown promising results in
both simulation and real-world robots. This work investigates the application of
learning-based methods, specifically the Soft Actor-Critic (SAC) and Augmented
Random Search (ARS) algorithms, for gait generation. The study focuses on the
mini-Pupper 2 robot, a recently developed platform by Mangdang Robotics. By
replicating experiments performed in a previous study, we demonstrate the gen-
eralisability of the framework and learning methods. Our results show that these
techniques successfully generalise to different robot platforms and both SAC and
ARS can effectively be used to learn legged locomotion that provides a robust and
versatile solution for navigating diverse terrains.
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Chapter 1

Introduction

Legged robots are a promising alternative to wheeled robots due to their distinct
advantages [1]. These robots, with the small contact area of their feet, are better at
navigating diverse terrains and overcoming various obstacles. However, locomotion
for legged robots is a challenging control problem as it requires precise control of
actuators combined with good coordination between all four legs. With the recent
advancements in machine learning, learning-based methods have shown promising
results in both simulation and real world robots [2]–[4].

Research into legged robotic locomotion has been primarily done in simulation,
because of the high cost and complexity associated with real-world electronics.
Training with a real-world robot is also significantly slower as simulations can sim-
ply reset whenever the robot falls over, but real robots need to be manually reset.
Additionally, locomotion learned in simulation does not necessarily transfer to a
real robot seamlessly due to aspects of reality that are difficult to model accurately
in simulation. For instance, real-world physics are comprised of complex interac-
tions between objects such as friction, collisions, deformations and contact forces
making them hard to simulate accurately. Secondly, actuator dynamics are also
difficult to model due to latency in the physical response, non-linear behaviour
meaning their responses are not proportional to the applied input. Lastly, perfor-
mance of actuators can change over time due to wear. Therefore, to bridge the
gap between simulation and reality, researchers often use robot platforms equipped
with state-of-the-art actuators and sensors. Examples of such platforms include
the ANYmal robot by ANYbotics (Figure 1.1a) and the Spot robot by Boston
Dynamics (Figure 1.1b) [5], [6].
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(a) ANYmal (b) Spot

Figure 1.1: Two examples of high-end robots with state-of-the-art actuators and
sensors. Left is the ANYmal quadruped robot, developed by ANYbotics. Right is
the Spot quadruped robot, developed by Boston Dynamics.

However, these high-end robots tend to be expensive, limiting access primarily
to well-funded research groups. Therefore recent developments have introduced
more accessible platforms, such as the Stanford Pupper robot released by Stanford
in 2021 [7] as seen in Figure 1.2a. This low-cost open-source platform is designed
to reduce complexity and cost in order to facilitate undergraduate students in
robotics research. Another more accessible platform is the SpotMicroAI1 robot
as seen in Figure 1.2b, this quadruped was designed by Deok-yeon as a low-cost
alternative to the Spot robot. Due to the lower cost, these robots have significantly
lowered the barriers to testing machine-learning-based control approaches on real
world robots [7].

(a) Stanford Pupper (b) SpotMicroAI (c) mini-Pupper

Figure 1.2: Three low-cost open-source robot platforms. Left is the Stanford
Pupper developed by Kau [7]. Center is the SpotMicroAI robot developed by
Deok-yeon and further improved by Rahme et al. [8]. Right is the mini-Pupper
robot developed by Mangdang Robotics based on the Stanford Pupper.

While these platforms do not come equipped with state-of-the-art actuators
and sensors, Rahme et al. [8] demonstrated that state-of-the-art actuators and

1https://spotmicroai.readthedocs.io/en/latest/

https://spotmicroai.readthedocs.io/en/latest/


sensors are not required when applying learning-based methods to robot research.
By applying the Augmented Random Search algorithm to learn a policy and ran-
domising the domain and dynamics during the training process, Rahme achieved
promising results in dynamic quadruped gaits on the SpotMicroAI robot [8]. Build-
ing on this study Eshuijs [9] applied a Soft Actor-Critic learning approach to the
framework proposed by Rahme, also showcasing promising results.

In this thesis, we explore whether the D2GMBC techniques explored by Es-
huijs [9] generalise to other quadruped robots. Specifically, we will apply these
techniques to the recently released mini-Pupper 2 robot2, developed by Mangdang
Robotics. By replicating the experiments performed in the study by Eshuijs [9],
we show the generalisability of the framework and learning methods.

2https://github.com/mangdangroboticsclub/mini_pupper_2_bsp

https://github.com/mangdangroboticsclub/mini_pupper_2_bsp


Chapter 2

Related Work

Over the last three decades with advancements in computing and mechanics, the
quadruped robots have been getting increasingly more advanced [10]. Concurrently
the rapid advancements in Artificial Intelligence (AI) have given rise to exciting
new methods of learning robot gaits.

In 1999, Hornby et al. [11] introduced a technique for the autonomous evolution
of a dynamic gait in the Sony Quadruped Robot. The robot’s gait was evaluated
using its digital camera and infrared sensors. It was discovered that the evolved
gaits exhibited a higher traversal speed compared to those developed manually.

A few years later Kohl et al. [2] presented a machine-learning approach to
optimising a quadruped gait. They demonstrated that by using policy gradient
reinforcement learning to find a set of parameters, they significantly outperformed
a variety of existing hand-coded solutions. Specifically Kohl et al. [2] uses rein-
forcement learning to tune a parameterised gait for the Sony Aibo ERS-210 robot.
While this resulted in a fast gait it resulted in unsteady camera motions which
degrade the robot’s visual capabilities [12]. To address this issue, Saggar et al.
[12] presented an implementation of the policy gradient algorithm with a learning
objective that optimises for both speed and stability. The resulting gait was rea-
sonable fast but considerably more stable compared to the gait developed by Kohl
et al. [2].

The emergence of complex behaviours in reinforcement learning agents has
been explored by Heess et al. [13]. Their work suggests that training agents in rich
environments, can facilitate the learning of complex behaviours without relying on
carefully designed reward functions that incentivise specific behaviours. In context
of locomotion, Heess et al. [13] demonstrated this principle by training simulated
bodies on a variety of challenging terrains and obstacles. By exposing the agents to
diverse environmental conditions, the agents were able to learn robust and adaptive
locomotion skills that could handle unseen terrain types.
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Chapter 3

Theoretical Background

This chapter provides a concise introduction to quadruped gait generation and
reinforcement learning. Additionally, a brief introduction is given to the Soft
Actor-Critic learning algorithm.

3.1 Quadruped Gait Generators
A quadruped gait refers to the pattern of movement exhibited by a four-legged
robot. Typically a gait consists of two phases, swing and stance. During the swing
phase, the foot moves through the air to its next position and during the stance
phase, the foot contacts the ground and moves the robot using ground reaction
forces. The gait alternates ground contact between the diagonal legs as seen in
Figure 3.1. Here, the front left (FL) and back right (BR) legs initiate in the stance
phase, meanwhile the front right (FR) and back left (BL) legs start off in the swing
phase.

Figure 3.1: Leg phases for trotting from [8], where red is the stance phase.

Generating this gait requires creating coordinated limb movements that ensure
stability, energy efficiency, and adaptability to various terrains. This process re-
quires the integration of sensor feedback, control algorithms and bio-mechanical
principles to generate robust and versatile gaits.
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Methods for finding suitable gaits for legged locomotion can be broadly classi-
fied into methods that require modeling and tuning [14], evolutionary approaches
[11], [15] and learning approaches [2] [4]. Our focus lies on a learning-based method
proposed by Rahme et al. [8], which combines an extended version of the Bezier
curve-based gait generator initially proposed by [14] with reinforcement learning
techniques. A detailed explanation of this technique can be found in Chapter 4

3.2 Reinforcement Learning Preliminaries
Reinforcement learning (RL) is a machine learning technique that focuses on train-
ing agents to make optimal decisions and take actions in an environment to max-
imise a cumulative reward. In RL the agent interacts with the environment by
observing its current state and taking actions based on that state, the environ-
ment then responds with a reward or penalty based on the chosen action. The
objective of the agent is to learn a policy, denoted as π. This policy is a func-
tion mapping from states to actions, and it is optimised to maximise the expected
cumulative reward over time.

Throughout the RL training process, the agent implements an exploration-
exploitation strategy. This strategy seeks an equilibrium between investigating
novel actions and capitalising on established actions previously associated with
high rewards. To accomplish this, various techniques could be used such as value
functions [16] and Q-learning [17], both of which enable the agent to forecast the
potential rewards of specific actions, thereby facilitating more informed decision-
making processes.

To formalise this decision-making problem and effectively handle the complex
dynamics of environments, RL often relies on describing the problem with math-
ematical structures. One such structure commonly used in RL is the Markov
Decision Process (MDP).

3.2.1 Markov Decision Process

Markov Decision Processes are a widely-used mathematical approach for modelling
decision-making problems in RL. MPDs are built on the concept of an environment
consisting of different states. An agent can perform various actions to transition
between these states, and each action has a certain probability of leading to a par-
ticular new state. Additionally, the agent receives a reward or penalty associated
with each transition.

Formally, an MDP is represented as a tuple (S,A, R(s, a, s′), P (s′|s, a)). Here,
S is the state space, which comprises all possible states of the system. A is the
action space, encompassing all actions the agent can take. R(s, a) is the reward



function; it denotes the reward (or cost) the agent receives when it transitions from
state s performing action a. P (s′|s, a) is the state transition probability function,
which indicates the probability that action a in state s will lead to the new state
s′. The policy is used by the agent to make decisions and is a mapping from the
state space to the action space, a = π(s).

The goal of an MDP is to find a policy π, which maximises the expected sum
of rewards over time:

∞∑
t=0

E
[
γtR(st, at)

]
(3.1)

Where γ is a discount factor which determines how much rewards in the distant
future should impact the decision, at is chosen by the agent at = π(st), using the
current policy.

Implementing an MDP requires access to comprehensive state information for
decision-making. In simulation, this information is typically readily available.
However, in real-world scenarios, obtaining the full state of a robot is often im-
practical or challenging due to limitations such as noisy or incomplete sensor data.

This is why consider a generalisation of an MDP, a Partially Observable Markov
Decision Process (POMDP). With a POMPD, the agent is not given access to the
actual state of the environment, but observations that provide partial information
about the state.

A POMDP is formally defined by introducing the term O to the MDP tuple,
(S,A,O, R(s, a), P (s′|s, a)) where O is the observation space, containing a set of
all possible observations the agent can receive, and unlike the policy function in
an MDP, the policy in a POMDP is a mapping from the observation space to the
actions.

3.3 Soft Actor-Critic
Soft Actor-Critic (SAC) is a maximum entropy reinforcement learning algorithm
designed to find optimal policies in environments with high dimensional state and
action spaces.

3.3.1 Maximum Entropy Reinforcement Learning

In contrast to standard RL, which maximises the expected sum of rewards, the
SAC algorithm proposed by Haarnoja et al. [18] considers a more general maximum
entropy objective. This objective incorporates the expected entropy of the policy,



which favours stochastic policies:

∞∑
t=0

E
[
γtR(st, at) + αH(π(·|st)

]
(3.2)

Where H is the entropy and α denotes the temperature parameter which de-
termines the relative importance of the entropy term against the reward, thus
controlling the stochasticity of the optimal policy.

This augmented objective has the advantage that the policy is incentivised
to explore more widely during the training process, while giving up on clearly
unpromising avenues. This is shown to considerably improve the learning speed
over methods that optimise for the conventional RL objective [19].

3.3.2 Soft Actor-Critic

Building on the principles of Maximum Entropy Reinforcement Learning, the SAC
algorithm employs an actor-critic architecture which consists of an actor and a
critic. The actor, also known as the policy takes the current state of the envi-
ronment as input and produces a continuous action as output. The critic, also
known as the value function evaluates the quality of the actions taken by the actor
by approximating the reward function. To learn and update the policy, typically
policy iteration is used, which alternates between a policy evaluation step and a
policy improvement step. During the policy evaluation step, the value function
is computed for the current policy. After which, during the policy improvement
step, this new value function is used to optimise the policy.

During the training process, the algorithm steps through the environment by
using the current policy and stores each step tuple (st, at, st+1, rt) in the replay
buffer D. This is done because value functions estimate the expected reward as-
sociated with particular actions in specific states. By sampling from the replay
buffer, we obtain tuples comprising of a state, action, and the corresponding re-
ward, enabling us to compute the error and update the value functions through
gradient descent [20]. This makes the SAC algorithm significantly more sample
efficient than other popular RL algorithms such as TRPO [21] or PPO [22] which
require new samples to be collected for each gradient step.



The algorithm as proposed by Haarnoja et al. [18] uses a parameterised state
value function Vψ(st) and a soft Q-function Qθ(st, at) as critic. The state value
function represents the value of being in a state, thus providing an estimate of how
good a state is for the agent. The soft Q-function is used to estimate the reward
the agent can achieve by choosing action at in a given state st.

The actor is a tractable policy πϕ(at|st).
The value function Vψ(st) is trained to minimise the squared residual error

objective in Equation 3.3.

JV (ψ) = Est∼D

[
1

2
(Vψ(st)− Eat∼πϕ [Qθ(st, at)− log πϕ(at|st])2

]
(3.3)

Where a state st is sampled from the replay buffer D. at is sampled from the
action distribution given by the current policy πϕ. The soft Q-function is an
approximation of the reward function, and can therefore be used to compute the
expected value achieved by taking action at under the current policy.

The soft Q-function is trained by minimising the squared error between the
current state-action value and the expected value. The expected value is based
on a sample drawn from the replay buffer, which consists of the actual reward
received and the value of the next state, as per the current policy:

JQ(θ) = E(st,at,rt,st+1)∼D
[
(Qθ(st, at)− (rt + γVψ(st+1)))

2
]

(3.4)

The policy is learned by minimising the KL distance between the action dis-
tribution and the state-action distribution, for a sampled mini-batch of states:

Jπ(ϕ) = Est∼D,at∼πϕ [log πϕ(at|st)−Qθ(st, at)] (3.5)

In this case, the action batch is sampled from the current policy, which means the
loss cannot be back-propagated to update ϕ. However, this problem is mitigated by
employing the reparameterisation trick, as proposed by [23]. Here, the stochasticity
of the sampling arises from an externally sampled noise variable, rather than from
the action batch itself. Thus, the action outputted by the policy is obtained in a
deterministic manner.



Chapter 4

Method

4.1 Problem statement
The locomotion task of a quadruped robot can be formulated as a POMDP. Which
is formulated by the tuple (S,A,O, R(s, a), P (s′|s, a)) as described in Chapter 3.
The state space encompasses all possible permutations of the robot’s state. This
includes its position within the environment, orientation, and velocity.

The action space comprises all feasible actions that the robot can undertake.
Each action corresponds to a specific set of control inputs for the GMBC-gait
system, as described in the next section. These control inputs dictate the desired
leg movements and coordination, enabling the robot to execute different gaits and
adapt its locomotion strategy.

The observation space consists of a set of all possible observations that can
be made by the robot. Each observation includes data collected from the robot’s
Inertial Measurement Unit (IMU) in its current state. By limiting the observations
to the IMU data the gap between simulation and reality is minimised [8].

We approach this problem, by training an RL agent to learn a policy π, which
is parameterised by learnable parameters ϕ. The objective of this policy is to
select the best action for each state to maximise the expected reward. Therefore,
for each observation o ∈ O, the agent selects an action a.

4.2 Dynamics and Domain Randomized Gait Mod-
ulation with Bezier Curves

At the core of their method lies the Dynamics and Domain Randomized Gait
Modulation with Bezier Curves (D2GMBC) framework as proposed by Rahme
et al. [8]. The framework builds upon previous work by Hyun et al. [14], and
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uses an extended and open-loop variation of the Bezier curve gaits. They achieve
transverse, lateral and rotational motion by combining multiple 2D gaits into a
single 3D gait.

4.2.1 Bezier Curve Gait

Figure 4.1: Schematic of foot placement adapted from Rahme et al. [8].

A gait trajectory, as illustrated by the purple curve in Figure 4.1, is a closed curve
followed by a foot during locomotion. The trajectory is parameterised by a phase
variable S(t) ∈ [0, 2). Specifically, the leg is in stance when S(t) ∈ [0, 1), and it is
in swing when S(t) ∈ [1, 2). In their work, Rahme et al. [8] use a trajectory that
includes a Bezier curve during the swing phase and a sinusoidal curve during the
stance phase.

The trajectory is controlled using three control inputs: ζ =
[
ρ ω Lspan

]
.

Here, ρ represents the rotation angle of the trajectory relative to the robot’s for-
ward direction within its frame, ranging from −π

2
to π

2
. The variable ω denotes the

robot’s yaw velocity, while Lspan corresponds to half of the stride length. Addition-
ally, the trajectory also depends on curve parameters β =

[
ψ δ

]
. Here, ψ shapes

the Bezier curve trajectory used during the swing phase. Concurrently, δ controls
the shape of the sinusoidal curve trajectory applied during the stance phase.

By manipulating these control inputs, planar trajectories are converted into
3D foot-position trajectories which is then converted into a frame relative to each
leg’s rest position to get the final foot trajectory for leg l, denoted as f lxyz in Figure
4.1.

4.2.2 Gait Modulation

The generated trajectory is further influenced by a policy πϕ(ot), where ϕ repre-
sents the learnable parameters. This policy takes the observation ot of the robot’s
current state as input and produces a delta value ∆fxyz that serves to modulate
the foot positions generated by the Bezier curve generator. Additionally, the pol-
icy also outputs parameters β for the Bezier curve generator, which is then used



to generate the foot positions fxyz. These two values are then added together,
resulting in the final foot positions that are used to control the leg motors of the
robot as illustrated in figure 4.2.

Figure 4.2: GMBC System diagram from Rahme et al. [8]

4.2.3 Dynamics and Domain Randomisation

To promote the transferability of the learned policy from simulation to reality,
Rahme et al. [8] introduces randomisation techniques to address the significant
differences between the simulated and real-world dynamics. This involves ran-
domisation the mass of each robot’s link and the friction between the feet and
the ground, which are crucial factors affecting locomotion. Additionally, domain
randomisation is applied by introducing variability in the terrain geometry en-
countered by the robot during training.

By incorporating these randomisation techniques, the agent is exposed to a
wide range of dynamic and environmental conditions during training, leading to the
acquisition of a more robust and adaptable gait. Experimental results demonstrate
that the learned gait exhibits enhanced stability and achieves greater distances
when transferred to real robot platforms. The successful transfer of the learned
policy from simulation to reality highlights the effectiveness of these randomisation
strategies in improving the generalisation capability of the trained agent.

4.3 Augmented Random Search
Rahme et al. [8] originally used the Augmented Random Search (ARS) algorithm
to learn the policy used to modulate the gait, achieving decent results. Similar
to the study conducted by Eshuijs [9], we adopt the Augmented Random Search
(ARS) algorithm as a baseline in this thesis. By employing ARS as a benchmark,
we aim to compare and evaluate the performance of the Soft Actor-Critic (Section
4.4), in a consistent manner.

ARS is a method for training static, linear policies aimed at continuous control
problems and is as the name suggests based on Random Search but with a few
augmentations.



4.3.1 Random Search

Random search is a method which explores the parameter space rather than the
action space, which essentially makes it derivative-free optimisation. It works
by selecting a direction uniformly at random in the parameter space and then
optimising the function along this direction. A primitive version of random search
simply computes a finite difference approximation along the random direction and
then takes a step along this direction. ARS is based on this exact simple strategy.

4.3.2 Augmentations

ARS introduces three augmentations to the Basic Random Search (BRS) algorithm
to improve it, the first improvement consists of scaling its update steps by the
standard deviation of the rewards collected at each iteration. The second augment
normalises the trained policies using a mean and standard deviation which are
updated during the training process. The last enhancement is that ARS is able to
drop perturbation directions that yield the least improvement of the reward [24].

ARS applies different rollouts in parallel, where the sampled environment vari-
ables remain the same. For training in simulation this means that for each episode,
16 rollouts are performed under the same parameters for the dynamics and the
domain. Each rollout contains a slightly different permutation of the previous
best policy and by using the same dynamics and domain randomisation the best
mutated policy is found. The policy function of ARS consists of a single layer
neural network θ that maps from the observation space O to the action space A.
By sampling a set of residual parameters ∆θi from a zero mean normal distribu-
tion with a standard deviation of 0.05, each rollout i gains its own policy function
θi = θ +∆θi. We then use the best policy to update the current policy, using the
same learning rate η as [8], 0.03.

By examining the source code1 of the ARS implementation used in [8] we
discover that an additional action filter was used for the the implementation of
ARS.

This filter works by slowly interpolating between two actions in order to reduce
the risk of abrupt motions during training, however this does result in the agent
being unable to get a good set of actions during the start of an episode. To solve
this the agent is kept in a fixed position for the first 20 steps of each episode, in
order to obtain a decent baseline for the actions values. The interpolation is done
as follows:

action = α · prev_action + (1− α) · new_action (4.1)

with α being the interpolation parameter, set to 0.7.
1https://github.com/OpenQuadruped/spot_mini_mini

https://github.com/OpenQuadruped/spot_mini_mini


Unfortunately this change makes comparing the training procedures between
SAC and ARS difficult. As the observation space, environment and action space
the same for both models are no longer the same. Eshuijs [9] showed that using
the action filter with the SAC algorithm prevented learning. Eshuijs [9] explains
that the reason for this failure, is the alpha filter breaks the Markov Property [25],
which states that each next state is only dependent on the current state, action and
observation, and independent of other previous states and actions. The alpha filter
makes the model dependent on older actions, thus breaking the Markov Property.
Yet, removing the action filter from the ARS implementation resulted in the ARS
algorithm not learning.

4.4 SAC for learning legged locomotion
The second RL algorithm used to learn a policy for the GMBC parameters, is
an extended version of SAC algorithm as described in Chapter 3, proposed by
Haarnoja et al. [4] specifically to learn a robot gait using reinforcement learning.
This extension eliminates the requirement for manual tuning of the temperature
parameter α, which can be labour-intensive due to the unpredictable variability of
entropy during the training process.

This is achieved by modifying the RL objective, by treating the expected en-
tropy as an additional constraint. This results in a slightly altered version of
objective function used to learn the policy, in the standard soft actor-critic algo-
rithm (Equation 3.5) by including a dynamic temperature parameter a.

Jπ(ϕ) = Est∼D,at∼πϕ [α log πϕ(at|st)−Qθ(st, at)] (4.2)

The dynamic temperature parameter is learned exactly like the other parame-
ters in the standard soft actor-critic algorithm, by minimising:

J(α) = Est∼D,at∼πϕ [α log πϕ(at|st)− αH] (4.3)



4.5 The robot

(a) Physical mini-Pupper 2 (b) Simulated mini-Pupper 2

Figure 4.3: The mini-Pupper 2 robot and the simulated version.

4.5.1 Physical robot

The robot utilized in this thesis is the mini-Pupper 2, a recent creation by Mang-
dang Robotics, as depicted in Figure 4.3a. It is an enhanced version of Stanford’s
original mini-Pupper, which was introduced in 2021 [7]. The mini-Pupper 2 incor-
porates several improvements to enhance its functionality and performance.

One notable enhancement is the upgraded servo system, which enables the
robot to collect real-time feedback from its environment. This feedback allows
for better control and interaction with the surroundings. Additionally, the mini-
Pupper 2 is equipped with an Inertial Measurement Unit (IMU) that includes a
gyroscope to measure angular rate and an accelerometer to measure acceleration.
This IMU provides crucial data about the robot’s orientation and motion.

The mini-Pupper 2 is powered by a Raspberry Pi 4B, supplemented by an
additional CM4 compute module, ensuring efficient processing capabilities. It is
powered by a 1000mAh battery, providing ample power for its operations.

4.5.2 Simulation

The simulation used in this thesis is based on the the PyBullet physics engine [26].
As the mini-Pupper 2 is an open-source platform, Mangdang Robotics provides the
mesh of the robot body alongside a physical description of each component of the
robot in URDF format2, enabling an accurate representation of the robot in the
simulator. While the simulation does not perfectly replicate real-world conditions,
we acknowledge its limitations. To address this, we employ the aforementioned
technique of randomising the robot’s dynamics and the environment we train the
robot in. By doing so, we aim to develop a policy that exhibits sufficient generality
to effectively transfer to the real-world environment.

2http://wiki.ros.org/urdf/XML/model

http://wiki.ros.org/urdf/XML/model


Chapter 5

Experiments and Results

In this section the we will discuss the experiments conducted and the achieved
results. In order to verify that the techniques explored in Eshuijs [9] generalise to
different quadruped robots we replicate the simulation environment used in that
study. We then train an RL agent using both SAC and ARS and compare the
results to those achieved by Eshuijs [9].

5.1 Experiment setup
In order to compare the results achieved by Eshuijs [9] we aim to replicate the
simulation environment as closely as possible. Therefore we use the code1 provided
by Eshuijs [9] and adapt it to the much smaller mini-Pupper robot, as seen in
Figure 5.1 .

5.1.1 Simulated environment

Figure 5.1: SpotMicroAI on the left vs. mini-Pupper 2 on the right.

1https://github.com/watermeleon/spot_micro
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The simulation environment used for the experiments is based on the environment
used by Eshuijs [9] but with two modifications. First, the mini-Pupper 2 robot was
implemented replacing the SpotMicroAI robot. This was done by adjusting the
gait controller slightly, ensuring the correct joints and motors were selected when
setting the simulation dynamics. The original inverse kinematics (IK) implemen-
tation for the SpotMicro robot did not work for the smaller Pupper robot, due to
the significant difference in joint lengths as seen in Figure 5.1. Luckily Mangdang
Robotics provides an IK implementation2, which we altered to work with the gait
generator.

(a) Side view (b) Top view

Figure 5.2: Domain randomisation of the simulated environment.

The second modification involves adapting the domain randomisation to suit
the smaller size of the Pupper robot. The original terrain randomisation posed
challenges for the smaller legs of the Pupper, particularly due to steep inclines.
To address this, the parameters used for terrain generation was altered. The
height-field used as terrain is generated using a grid-based algorithm, wherein a
uniformly distributed random offset is added to each point on the base plane. For
the SpotMicroAI, Eshuijs [9] used a range of [−0.08, 0.08]. For the mini-Pupper
we used a range of [−0.035, 0.035] as seen in Figure 5.2a. Early experimentation
showed that ranges higher than the proposed range resulted in the Pupper being
unable to climb over some of the terrain.

2https://github.com/mangdangroboticsclub/StanfordQuadruped/blob/mini_pupper/
pupper/Kinematics.py

https://github.com/mangdangroboticsclub/StanfordQuadruped/blob/mini_pupper/pupper/Kinematics.py
https://github.com/mangdangroboticsclub/StanfordQuadruped/blob/mini_pupper/pupper/Kinematics.py


5.1.2 Reward function

The reward function used in the original report is a simple weighted sum, incor-
porating multiple metrics to assess the effectiveness of the agent’s actions. These
metrics include:

• Forward reward: This metric measures the relative distance between the
previous position and the current position. It encourages the agent to make
progress in the forward direction.

• Orientation reward: This metric imposes a penalty for non-zero pitch and
yaw values. It incentivises the agent to maintain a stable and upright orien-
tation.

• Rate reward: This metric penalises non-zero velocity. It discourages ex-
cessive or undesired movement speed, promoting smoother and controlled
motions.

5.1.3 Parameters

Apart from the number of simulation steps, the original report does not provide
specific details regarding the learning rate or the weights assigned to different met-
rics in the reward function. Despite attempting to use the parameters from the
original code, our attempts to replicate the reported results using the SpotMicroAI
were unsuccessful. Due to the lack of specific parameter values mentioned in the
original report, comparing the results directly proved challenging. However, by
iteratively adjusting the parameters, we were able to identify values that yielded
a similar learning pattern as observed in the original study. This iterative process
involved fine-tuning the parameters to approximate the desired learning behaviour
and achieve comparable results. Although not identical, the observed learning pat-
terns allowed for a meaningful comparison between our findings and the outcomes
reported in the original report.

5.2 Experiments

5.2.1 Stable gait

The first experiment focused on reproducing the stable gait achieved in the original
work by [9]. To attain this, we carefully selected the weights in the reward function
to prioritise traversal distance while ensuring gait stability. The objective was to
replicate their findings and establish a baseline for comparison.

The final weights are described in Table 5.1



Reward Weight
Forward 500
Orientation 2
Rate 0.03

Table 5.1: Metric weights for the reward function used while training the stable
gait.

The forward reward has a relatively high weight in the reward function due to
its computation at each simulation step, capturing the relative position difference.
On the other hand, the orientation and rate metrics are absolute values and have
a larger range. Consequently, to prioritise the forward metric as the primary
performance indicator, it requires a significantly higher weight.

By assigning a higher weight to the forward reward, the agent is encouraged to
prioritise forward progress in its decision-making process. This weight adjustment
allows for a stronger emphasis on achieving desired forward motion, while still
considering the orientation and rate metrics to maintain stability and control.

5.2.2 Fast gait

The goal of the second experiment was to learn a gait with a higher traversal speed.
To achieve this we took the parameters of the first experiment and increased the
weight of the forward reward. The final weights are described in Table 5.2.

Reward Weight
Forward 625
Orientation 0.5
Rate 0.09

Table 5.2: Metric weights for the reward function used while training the fast gait.

By increasing the weight of the forward reward, the agent is motivated to
prioritise decisions that result in significant forward movement at each simulation
step. Conversely, by reducing the weight assigned to the orientation objective, the
agent places less emphasis on maintaining a precise orientation. This intentional
adjustment aims to encourage the agent to explore gait patterns that may be less
stable but potentially lead to higher traversal speeds.

Additionally, the weight of the rate objective has been significantly increased.
This adjustment is intended to incentivise the agent to maintain a consistent non-
zero velocity throughout the locomotion task. By assigning a higher weight to the



rate objective, the agent is encouraged to achieve smoother and more controlled
forward motion, contributing to overall stability and improved traversal speed.

These weight adjustments were made strategically to influence the agent’s
decision-making process and gait generation. By re-balancing the priorities within
the reward function, we aim to steer the agent towards the desired outcome of
achieving a higher traversal speed, even if it comes at the expense of some stabil-
ity.

5.3 Results

5.3.1 Stable gait

The training performance of both the SAC and ARS agents in various environments
is illustrated in Figure 5.3. Similar to the figure of the original study, we publish
the moving average window over 50 episodes.

The results closely align with those reported in the original study, demonstrat-
ing that the SAC agent exhibits notably faster learning compared to the ARS
agent. This outcome is consistent with our expectations, as the ARS agent up-
dates its policy only once per episode, whereas the SAC agent initiates updates as
soon as the replay buffer contains a sufficient number of samples. This disparity
in the update frequency contributes to the SAC agent’s accelerated learning rate,
enabling it to converge more quickly towards optimal performance. The acceler-
ated learning rate also results in the ARS agent starting out with a slightly lower
reward, because the SAC agent is able to adapt before the first episode is complete.

(a) SAC (b) ARS

Figure 5.3: Training curves in simulation for the two agents using D2 randomisa-
tion. Left in green the agent trained with SAC, right in red the agent trained with
ARS.



Figure 5.4 illustrates the distance covered during each episode throughout the
training process. It is evident that the SAC agent makes rapid progress in terms
of distance covered during the initial stages of training, reaching a peak of approx-
imately 1.50 meters per episode. However, as the training progresses, the agent’s
performance plateaus, and there is limited improvement in the distance travelled.

Upon analysing the training performance in relation to the distance travelled,
it becomes apparent that the agent faces challenges with respect to the other
metrics. Despite the distance travelled remaining relatively constant, the reward
achieved by the agent exhibits fluctuations and occasional drops. This suggests
that the agent may struggle with optimising the orientation and rate metrics,
potentially impacting its overall performance and hindering further improvement
in the distance travelled.

The ARS agent achieves a higher distance traveled, approximately 1.65 meters,
compared to the SAC agent. However, it is important to note that the ARS agent’s
training reward is slightly lower than that of the SAC agent. This suggests that
the ARS agent may have incurred higher penalties for orientation and rate metrics,
indicating a less stable gait. Although the ARS agent covers more distance, the
lower training reward implies that it may have sacrificed stability for speed.

(a) SAC (b) ARS

Figure 5.4: Distance travelled during the training process in simulation for the two
agents. Left in green the agent trained with SAC, right in red the agent trained
with ARS.

5.3.2 Fast gait

The training performance of both the SAC and ARS agents for the fast gait is
illustrated in Figure 5.5. Similar to the results of the stable gait, we publish the
moving average window over 50 episodes.



The training performance of the fast gait using the SAC algorithm exhibits a
similar pattern to the stable gait, with the agent quickly reaching a high reward
and then plateauing. On the other hand, the ARS agent achieves a higher overall
reward, but requires a significantly longer number of episodes to reach it.

(a) SAC (b) ARS

Figure 5.5: Training curves for a fast gait in simulation for the two agents. Left
in blue the agent trained with SAC, right in purple the agent trained with ARS.

By comparing the distance travelled during an episode for the fast gait, as
depicted in Figure 5.6, to the distance travelled by a stable agent, as shown in
Figure 5.4, it becomes evident that the fast gait yields a slightly greater distance
covered. Since the episode time steps are consistent, this finding indicates that
the fast gait enables a higher traversal speed.

The observed increase in distance travelled implies that the fast gait exhibits a
more efficient locomotion pattern, allowing the agent to cover more ground within
the same time-frame.



(a) SAC (b) ARS

Figure 5.6: Distance travelled during the training process in simulation for the
two fast agents. Left in blue the agent trained with SAC, right in purple the agent
trained with ARS.



Chapter 6

Conclusion

In this thesis, our primary objective was to investigate the generalisability of RL
techniques explored by Eshuijs [9]. Specifically, learning policies for the D2GMBC
framework with both SAC and ARS. Although making direct comparisons with
the results presented in the original report was challenging due to the absence of
specific training parameters, the performance exhibited by both the SAC and ARS
agents aligns with our anticipated outcomes. During the simulation training, the
SAC agent demonstrated a faster learning rate, while the ARS agent achieved a
higher overall reward. This discrepancy is anticipated since the SAC algorithm
begins updating the policy as soon as the replay buffer contains a sufficient num-
ber of actions, whereas the ARS agent updates its policy once per episode after
completing 16 rollouts.

The parameters selected for the fast gait experiment yielded training perfor-
mance that closely aligns with the findings reported by Eshuijs [9] in their original
study. This suggests that the parameters employed in our stable gait experiment
were more similar to those utilized in their study. This suggests that the parame-
ters employed in the fast gait experiment were more similar to those used in their
study, compared to the ones used in our stable gait experiment.

In conclusion, the results obtained in this study provide evidence that the
techniques investigated by Eshuijs [9] have the potential to generalise successfully
to different quadruped platforms.
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Chapter 7

Discussion

Regrettably, due to unforeseen circumstances, the arrival of the real robot was
delayed, preventing us from conducting tests to evaluate the learned locomotion
on it. In the original report by Eshuijs [9], a section on the performance of the
agents on the real robot was included, which indicated that the gaits learned in
simulation performed slightly worse than the baseline.

Future work will involve conducting experiments once the robot arrives, en-
abling us to test the learned gaits on the physical robot and compare the results
with those reported in the original study. This additional evaluation will provide
valuable insights into the transferability of the learned gaits from simulation to
the real-world setting and further enhance our understanding of the performance
of the implemented RL techniques on the physical robot platform.

Upon the arrival of the real robot, another aspect that can be explored is
the traversal speed. Initial experiments indicated that increasing the weight of
traversal speed in the reward function led to an unstable learning process. This
instability is likely attributable to the randomization of the terrain, which intro-
duced excessive bumpiness, thereby hindering the robot’s ability to maintain a
consistent traversal speed and incurring significant penalties.

In future research, it would be worthwhile to investigate the impact of reducing
the noise in the randomised terrain. By creating an environment with smoother
terrains, it may be possible to facilitate higher traversal speeds without compro-
mising stability. This avenue of exploration holds potential for optimising the
locomotion capabilities of the robot and further refining the reward function to
achieve desired performance in terms of traversal speed.
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