
Reconstructing vehicle tracks
from a fish-eye lens dataset

Henk Schaapman



Layout: typeset by the author using LATEX.
Cover illustration: Author, made using COLMAP



Reconstructing vehicle tracks
from a fish-eye lens dataset
A comparison of COLMAP and hloc pipelines

Hart Th. H. Schaapman
11676892

Bachelor thesis
Credits: 18 EC

Bachelor Kunstmatige Intelligentie

University of Amsterdam
Faculty of Science
Science Park 904

1098 XH Amsterdam

Supervisor
Dr. A. Visser

Informatics Institute
Faculty of Science

University of Amsterdam
Science Park 904

1098 XH Amsterdam

January 21st, 2022



Abstract

The task of localization is central to autonomous driv-
ing. Simultaneous Localization And Mapping (SLAM) and
Structure-from-Motion (SfM) algorithms provide localization
in and reconstructions of an environment from images. In this
thesis, two SfM pipelines are tested on images from the IPLT
dataset, a dataset containing images taken by two fish-eye lens
cameras, front and rear, on a vehicle moving trough a park-
ing area. A comparison was made between COLMAP and
hloc, two pipelines capable of sparse reconstruction. SIFT,
used by COLMAP for feature matching, had difficulty match-
ing features from different perspectives, in two images taken
by different cameras. SuperPoint and SuperGlue, part of the
hloc pipeline for feature extraction and matching, proved valu-
able for reconstructions involving opposing perspectives in the
IPLT dataset. The feature matches generated by SuperPoint
and SuperGlue proved more reliable in producing reconstruc-
tions with geometrically correct angles. The Unified Cam-
era Model was implemented for use in the pipelines, allowing
known IPLT intrinsic camera parameters to be used in the re-
construction process. The effect of the Unified Camera Model
implementation was compared with existing camera models in
the pipeline.
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Chapter 1

Introduction

According to a 2015 report by the US National Highway Traffic Safety Adminis-
tration, the percentage of vehicle crashes caused by the driver in the US at 94%
[1]; progress in research into autonomous vehicles could prevent many accidents.

One of the crucial tasks for autonomous vehicles is localization: finding the ego-
position in an environment [2]. Simultaneous Localization And Mapping (SLAM)
is one of the techniques used for this purpose [3]. SLAM entails creating a map
or model of the environment while simultaneously placing oneself in this model.
SLAM techniques have contributed significantly to the world of autonomous driv-
ing [4].

The question of whether the SLAM problem is a solved problem is sometimes asked
in the AI community. In their review of the current state of SLAM, the authors of
[5] say this question cannot be answered without providing information about the
robot/vehicle, the environment and the performance, since questions remain open
in the field: SLAM could be more robust still, for example, and currently lacks a
high-level, semantic understanding [5].

Modern autonomous vehicles often have multiple sensors. Different SLAM algo-
rithms involve different streams of data: LIDAR, for example, or RGB-D images.
Visual SLAM (VSLAM) is defined as performing the SLAM task using plain im-
ages only. This will be the focus of this thesis.

Structure-from-Motion (SfM), closely related to VSLAM, entails recovering the
three-dimensional structure of a scene from a set of 2D images. Recently, neural
network architecture approaches have been included in SLAM and SfM. SfM-net
[6], for example, is an end-to-end neural network approach to SfM. Another ex-
ample is SuperGlue [7], a feature matching neural network, trained end-to-end
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on image pairs. Many SLAM algorithms are split up into a front-end for visual
feature extraction and a back-end for bundle adjustment or pose estimation [8].
SuperGlue is structured in such a way to be a middle-end : it matches keypoints,
but it is trained end-to-end on images. Its creators believe that "when combined
with a deep front-end, SuperGlue is a major milestone towards end-to-end deep
SLAM." [7]. When combined with SuperPoint [9], a deep feature extraction neural
network, SuperGlue achieves state-of-the-art results on the task of pose estimation
in challenging real-world environments [7]. It can be integrated into other software
to be used to perform SfM or SLAM tasks.
SuperGlue was integrated by its creators into an SfM-pipeline called hloc [10]. It
uses the feature matching capabilities of SuperGlue, combined with the 3D scene
reconstruction functionalities of COLMAP [? ], an SfM pipeline created in 2016.
In this thesis, the COLMAP pipeline, using SIFT [11] for feature matching, is com-
pared to the hloc pipeline, using SuperGlue for feature matching and COLMAPs
reconstruction functionalities. The testing is done on the Institut Pascal Long-
Term (IPLT) dataset [12].

The Institut Pascal Long-Term dataset [12] is a dataset suitable for SLAM research
purposes and contains challenging conditions, such as recording at different times
of day and changing weather conditions. Two wide-angle fish-eye lenses with a
field of view (FOV) of 100 degrees were used to record the images. The dataset
consists of sequences of images taken by cameras on a vehicle, that followed the
same path along a parking area multiple times over a period of 16 months. Besides
providing images from a front and back camera, the dataset contains lidar data,
GPS data and parameters of the cameras expressed in the Unified Camera Model
[13]. Tags are provided to describe the circumstances in each image, e.g.: "day",
"dusk", "rain" or "fog".
For this thesis, the author implemented the Unified Camera Model in the COLMAP
pipeline, allowing it to be used in the COLMAP and hloc pipelines.

This thesis compares the effect of using the different feature matching processes
(SIFT and SuperGlue) on the reconstruction process of the IPLT dataset. This
might provide insight into the benefits of neural network approaches to feature
matching in challenging conditions.



Chapter 2

Theoretical framework

This chapter provides a background and explanation of relevant topics for this
thesis. Firstly, a brief background on autonomous driving is provided. Secondly,
the feature extraction and matching algorithms used in this thesis (SIFT and
SuperPoint+SuperGlue) are explained. After a background then on SLAM, SfM
and camera projection models, the dataset used in this thesis will be introduced.
Finally, the pipelines used in this paper, COLMAP and hloc, are described.

2.1 Autonomous driving
The 2019 autonomous driving (AD) survey by Yurtsever et al. [3] shows that clear
gaps in the AD research remain. The optimal sensor for use in localization, map-
ping and perception is still disagreed upon, and algorithms still lack efficiency and
accuracy, to name some examples [3]. The survey also lists multiple techniques
employed in autonomous driving, both modular and end-to-end ones [3]. As men-
tioned before, SLAM techniques have contributed significantly to the world of AD
[4]. SLAM is mentioned in the survey as having a medium-high robustness, a high
accuracy, but a very high computational cost [3].

2.2 Features
In this section, relevant feature extraction and matching techniques will be de-
scribed.
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2.2.1 Features/keypoints

The terms features and keypoints will be used interchangeably in this thesis. Fea-
tures are points of interest in an image, to be matched with features in other
images. Feature extraction entails finding suitable features in an image. Feature
matching is the process of finding the same point in two or more images.

A keypoint descriptor describes characteristics of a keypoint and is used as a
metric to match keypoints (as will be showed in Section 2.2.2).

2.2.2 Scale Invariant Feature Transform

First introduced by David Lowe [11], the well-known Scale Invariant Feature Trans-
form is a method for finding features in images and comparing them, to find the
same features in different images.

Finding keypoints

The first step taken by SIFT involves convolution with a Gaussian kernel. A scale
space L(x, y, σ), first introduced by Witkin [14], is produced by the convolution of
a Gaussian G(x, y, σ) with an input image I(x, y) [11]:

l(x, y, σ) = G(x, y, σ) ∗ I(x, y), (2.1)

with convolution sign ∗ and

G(x, y, σ) =
1

2πσ2
e−(x

2+y2)/2σ2

. (2.2)

This L(x, y, σ) represents a "smoothed out" version of the image.
A difference-of-Gaussian (DoG) D(x, y, σ) can be calculated, which finds so-called
scale space extrema. Two Gaussians with different scales σ are subtracted from
one another, and then convolved with the image:

D(x, y, σ) = (G(x, y, kσ)−G(x, y, σ)) ∗ I(x, y)
= L(x, y, kσ)− L(x, y, σ).

(2.3)

The result of this operation is equal to performing the convolution on both images
and subtracting the resulting scale spaces.

In this DoG, local extrema are found, by comparing pixels to their spatial
neighbours (8) and their neighbours in scale (16).



Figure 2.1: Neighbours in space and scale [11]

The local extrema are selected based on their suitability, meaning some will need
to be rejected. This rejection process involves the Taylor expansion up to quadratic
terms of the DoG D(x, y, z), and then setting its derivative with respect to x =
(x, y, z) to zero. This process removes keypoints with low contrast.

Matching keypoints

The keypoint descriptor creation process is described in this paragraph, as it works
in SIFT [11]. A descriptor is generated for each keypoint. In the SIFT algorithm,
this happens by first using the scale of the keypoint (the magnitude of the gra-
dient at the location of the keypoint) to select an L, one of the smoothed out
Gaussians (one of the layers in figure 2.1). This makes sure the descriptors are
created in a scale-invariant manner. Using this image L(x, y), a gradient magni-
tude, m(x, y), and a gradient orientation, θ(x, y), for this scale can be computed,
using the difference between neighbouring pixels:

m(x, y) =
√

(L(x+ 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y − 1))2, (2.4)
θ(x, y) = tan−1((L(x, y + 1)− L(x, y − 1))/(L(x+ 1, y)− L(x− 1, y))). (2.5)

This computation is done for a number of sample points around the keypoint
location, as can be seen in figure 2.2. The orientations θ(x, y) are entered into a
histogram, divided into 36 bins for the 360 degrees. Each entry into this histogram
is weighted by its magnitudem(x, y) and by "a Gaussian-weighted circular window
with a that is 1.5 times that of the scale of the keypoint" [11]. The histogram is
illustrated on the right in figure 2.2. This image, however, shows a 2x2 descriptor
array computed from an 8x8 set of samples, whereas the experiments in the SIFT
paper use 4x4 descriptors computed from an 16x16 sample array [11].



Figure 2.2: SIFT keypoint descriptor creation [11]

Keypoint descriptors are matched as follows: the best candidate match is found
by finding its nearest neighbour in the database of training image keypoints, the
nearest neighbour being the keypoint with minimum Euclidean distance in the
space of descriptors [11].

2.2.3 Superpoint

Superpoint [9] is a framework for training detectors of interest points in images,
and creating descriptors to go along with them. Superpoint is a fully convolutional
network: it takes in full images, and in one pass computes both the interest points
and the descriptors [9]. In this thesis, these points and descriptors are then passed
on to serve as input for the SuperGlue algorithm.

2.2.4 SuperGlue

SuperGlue is the feature-matching neural network used in the hloc pipeline. It
makes use of an Attentional Graph Neural Network. This architecture enables
it to disambiguate similar keypoints or repeating patterns in an image, enabling
SuperGlue to perform better in some challenging conditions [7]. Before describing
the network architecture, two concepts will be elaborated upon below.

Multi-Layer Perceptron
A Multi-Layer Perceptron is used as a blanket term to describe feed-forward neural
networks. Two separate MLP’s are defined in SuperGlue’s architecture [7].

Graph Neural Networks
A graph is simply a set of nodes with edges between them. These edges can either
be directional, meaning one-way, or undirected, meaning two-way. In the case
of the SuperGlue network, the keypoint descriptors of two images are the graph
nodes of the first layer in the GNN. The edges are undirected, and are split into



self edges εself , connecting keypoints from the same image, and inter-image edges
εcross, connecting keypoints to keypoints from another image.

Network Architecture

SuperGlue consists of two main parts: an Attentional Graph Neural Network and
an Optimal Matching Layer. Its structure can be seen in the figure below:

Figure 2.3: The SuperGlue Architecture [7].

Attentional Graph Neural Network
Keypoints (extracted by a feature extraction algorithm, e.g. SIFT/SuperPoint)
pi := (x, y, c)i (coordinates x and y as well as detection confidence c) and visual
descriptors di are combined into high-dimensional vector xi, with pi being encoded
into a multilayer perceptron: (0)xi = di +MLPenc(pi).

All vectors (0)xi are fed into a message passing graph neural network in the fol-
lowing way:

(l+1)xAi = (l)xAi +MLP
([

(l)xAi ‖mε→i
])
. (2.6)

The vectors xi get updated by way of a message: the concatenation of the vector
xAi and the message mε→i it receives are fed into an MLP, the outcome of which
forms the next iteration of xi.

The message is calculated using aggregation, a weighted average of all the
messages received from the representations of every other keypoint: "Akin to
database retrieval, a representation of i, the query qi, retrieves the values vj of
some elements based on their attributes, the keys kj" [7]. These keys are used
to calculate the weights in this average, called attention weights, by using their
similarity to the query: αij = Softmaxj(qT

i kj). These weights determine how much
the value from each other keypoint will contribute to the aggregated message, in
the following way:



mε→i =
∑

j:(i,j)∈ε

αijvj. (2.7)

The queries, keys and values are all linear projections of deep features in the neural
network. The projection parameters "are learned and shared for all keypoints of
both images" [7].

This attention structure allows for information flow between the keypoints
representations in the layers. This, combined with the fact that the keypoint’s
position is encoded in its representation as well, enables SuperGlue to, to some
degree, disambiguate keypoints that look alike or are part of a repeating pattern
in an image.

The final matching descriptors are linear projections as well: they are projec-
tions of the parameters in the last layer of the network.

fAi = W · (L)xAi + b, ∀i ∈ A. (2.8)

Multihead attention [15] is used to improve expressivity.

Optimal Matching Layer
In the second part of the SuperGlue algorithm, a score matrix is computed. Entry
Si,j in this matrix represents the score between keypoint i and j from image A
and B respectively. The score matrix is populated in the following way:

Si,j =< fAi , f
B
j >,∀(i, j) ∈ A× B, (2.9)

,
where <·,·> is the inner product.

After using dustbins to allow the network to suppress unmatched keypoints, the
final assignment P is obtained by calculating the optimal transport between dis-
tributions a and b.

2.3 SLAM
Simultaneous Localization And Mapping (SLAM) entails creating a map or model
of the environment and simultaneously placing oneself in this model. While a
robot moves through an environment, it updates its environment model and its
estimation of its location and orientation. Cadena et al. [5] describes that the



model is used twofold: one, for other tasks, such as enabling the robot to perform
tasks in its environment and creating a visualization for humans, and two, to help
update its estimation of its state (position and orientation). Some SLAM tasks
involve a-priori knowledge, for example: a robot navigating a pre-mapped space,
or a space that has beacons installed for the robot to use as guidance [5]. In other
problems, the map is being built from scratch using the robots sensors, as the
robot moves through the environment for the first time. Different SLAM algo-
rithms run by using different kinds of sensor data. ORB-SLAM3 [16], for example,
is a SLAM method that is able to use either monocular, stereo or RGB-D cameras.
The more detailed data the algorithm is allowed to use, the better its performance.

Some SLAM algorithms, like COLMAP [17], extract features from images and
then attempt to match the features to find the same point in different images.
The feature matches can then be used to create the 3D model of the environment.
Other SLAM algorithms for example use the images directly, and track the camera
orientation from image alignment, like in Engel et al. [18]. Different SLAM meth-
ods use different streams of data. Like mentioned before, SLAM methods using
images are called Visual SLAM (VSLAM) methods.

2.4 Structure from Motion
The problem of Structure from Motion (SfM) is closely related to the SLAM prob-
lem: [19] describes the SLAM problem as a specific case of the SfM problem. One
distinction between SLAM and SfM lies in the fact that SfM is mostly an offline
process, while SLAM can also be performed in real-time. Another distinction is
that images are the main input for an SfM algorithm, possibly with GPS or odom-
etry data, while SLAM sometimes involves many other streams of data, as seen
for example in ORB-SLAM3 [16].

The process of SfM can, according to [19], be broken down into three steps: (1)
the extraction of features in images and the matching of features between these im-
ages, (2) camera motion estimation and (3) calculating the 3D structure from the
features and camera motions. The SfM-net end-to-end approach does not adhere
to these steps. Its Convolutional Neural Network (CNN) has multiple components
chained together, but not exactly in the order displayed above. It does not use a
feature extraction step: it employs a separate, parallel motion network and struc-
ture network, that take in a video frame pair and a video frame respectively. The
point cloud resulting from the structure network is used together with the output
of the motion network to create the reconstruction [6].



2.5 Camera Models
When performing a SLAM or SfM task, cameras with a wide angle or large field of
view can be beneficial [20]. An example of these is the fish-eye camera: a camera
with a large field-of-view lens. A system using only lenses is called a dioptric
system. Another example of a large field-of-view system is called a catadioptric
system: a camera system consisting of both refractive and reflective components,
of both lenses and mirrors. To calculate the projection process in these systems,
many models have been proposed.

COLMAP comes with eleven built-in camera models: simple_pinhole, pinhole,
simple_radial, radial, opencv, full_opencv, simple_radial_fisheye, radial_fisheye,
opencv_fisheye, fov and thin_prism_fisheye [21]. Some information about their
use in COLMAP can be found in the COLMAP tutorial [21]. The Unified Camera
Model, one of the models used in this thesis, is not one of them, and was imple-
mented in COLMAP (further explained in Section 3.2.1). Several of the models
will be elaborated upon below.

2.5.1 Pinhole model

The pinhole camera model is the simplest of the camera models. It can be visual-
ized in the following way (the scene being that which is photographed): the light
from a scene passes through a small hole, and is projected onto a screen behind
this hole, thereby forming a projection from the 3D scene to the 2D screen (a side
effect is that the image is mirrored along both axes). It is described as having four
projection parameters [22]: i = [fx, fy, cx, cy]

T , with f being the focal length and
c the principal point parameters. The projection function is as follows:

π(x, i) =
[
fx

x
z

fy
y
z

]
+

[
cx
cy

]
. (2.10)

COLMAP has a simple pinhole camera model, which uses only three parameters
[f, cx, cy]

T . This means that in the projection process, the image can be "stretched"
or "compressed" only at the same rate in the x direction as in the y direction.

2.5.2 Field-Of-View model

The Field-Of-View (FOV) camera model was created to be a new way to model
fish-eye lenses (wide-angle cameras that use only lenses for the projection). Its
design is meant to mimic the non-linear radial distortion effects that a fish-eye lens
created [23]. Earlier ways to address these non-linear distortions were a logarithmic
or a polynomial model, as seen for example in the Fish-Eye Transform (FET) or



the Polynomial FET (PFET) [24]. The FOV models this distortion using one
parameter w, which is the field of view in degrees of the ideal fish-eye lens that
the modeled lens corresponds to [23]. This means it will not be exactly equal to
the actual field of view of the lens being modelled. With the extra parameter as
an extension of the pinhole model, FOV’s parameters are i = [fx, fy, cx, cy, w]

T .

2.5.3 Unified Camera Model

The Unified Camera Model (UCM) was first proposed in 2001 to be a unifying
model for all central catadioptric cameras [25]. Catadioptric camera systems uti-
lize a system of mirrors and lenses; a central catadioptric camera is one with a
single central viewpoint [25]. The model has been shown to work with fish-eye
cameras [26], although the fit with any given fish-eye lens is not necessarily per-
fect, which means an additional distortion model is sometimes added [22]. The
image is projected onto a unit sphere in this model, then onto the image plane of a
pinhole camera [22]. The model works with five parameters i = [fx, fy, cx, cy, ξ]

T ,
with the projection function:

π(x, i) =
[
γx

x
ξd+z

γy
y

ξd+z

]
+

[
cx
cy

]
,

d =
√
x2 + y2 + z2.

(2.11)

The parameters of cameras used for creating the images in the IPLT dataset [12]
were included in the dataset, and provided in the UCM format. For the COLMAP
UCM implementation in this thesis, the rewritten projection and unprojection
functions as proposed in [22] were used:

π(x, i) =

[
fx

x
αd+(1−α)z

fy
y

αd+(1−α)z

]
+

[
cx
cy

]
. (2.12)

This rewritten version has parameters i = [fx, fy, cx, cy, α]
T , with α ∈ [0, 1].

Since the model was simply rewritten, the parameter can be converted as fol-
lows: ξ = α

1−α , γx =
fx
1−α , γy =

fy
1−α .



The unprojection function of the rewritten model is as follows:

π−1(u, i) =
ξ +

√
1 + (1− ξ2)r2
1 + r2

mx

my

1

−
00
ξ

 ,
mx =

u− cx
fx

(1− α),

my =
u− cy
fy

(1− α),

r2 = m2
x +m2

y,

ξ =
α

1− α
.

(2.13)

The conversion of the Unified Camera Model IPLT dataset camera parameters to
the rewritten form can be found in Appendix C.

Extended Unified Camera Model

Extensions or expansions of the UCM have been proposed. One example is the
Extended Unified Camera Model (EUCM), a model with one extra parameter
β, thus with six in total [27]. This EUCM can be described with the tuple
i = [fx, fy, cx, cy, α, β]

T . In the "regular", non-rewritten UCM, ξ denotes the
distance from the pinhole camera to the center of the unit sphere (and thus α

1−α
denotes this distance for the rewritten version and for the EUCM) [22]. The EUCM
does not have a unit sphere, but uses the parameter β to transform the unit sphere
into an ellips for the projection.
The EUCM works well for both catadioptric and fish-eye cameras, without an addi-
tional distortion model; the further improvement in reprojection error from EUCM
to UCM-D (a UCM with an additional distortion model, totalling 10 parameters)
is negligible, but the EUCM is significantly less computationally intensive [27].

2.6 Institut Pascal Long-Term dataset
The Institut Pascal Long-Term dataset [12] is used for localization algorithms, and
was created with challenging conditions in mind. The dataset consists of sequences
of images taken by cameras on a vehicle, driving along the same path in a parking
area multiple times over a period of 16 months. Providing images from a front and
rear camera, the dataset contains other streams of data: intrinsic and extrinsic
camera parameters, wheel odometry and GPS data and lidar readings.
The shape of the track driven by the vehicle looks like this:



Figure 2.4: Shape of the tracks driven by IPLT dataset vehicle [12]

The challenging aspect of this dataset is twofold. Firstly, data recording is done
in a parking area, which means that some days the cars are in different spots
than other days. The parked cars can thus not always be used in the localization
process, and a localization algorithm would have to treat them as noise to be looked
past. Secondly, the weather and the time of day can differ every time the data
was recorded. Each data recording (one lap around the parking area) is assigned
a tag: "sun", "cloudy", "dusk", "rain" or "fog". The data can thus be grouped
into different groups, each with similar environmental circumstances. Appendix A
provides a table of these groups and some examples of images from the groups.

2.6.1 ROS

Every data recording (one lap around the parking area: one front_camera folder,
one back_camera folder and the other data) is stored in a rosbag [28]. A ros-
bag, with file format extension .bag, combines several sensor streams with their
timestamp, which makes the data easily accessible for further experimentation.



2.7 COLMAP

2.7.1 COLMAP architecture
COLMAP has both a graphical and a
command-line interface. Both exhibit
the full functionality of COLMAP, aside
from one aspect: the graphical inter-
face allows the user to view a gener-
ated reconstruction, which is not possi-
ble from the command line. The bene-
fit of the command-line interface is that
it can be called from a script, mean-
ing one could write a script that per-
forms an experiment several times, in-
crementally changing a parameter, for
example. COLMAPs command-line in-
terface has 43 available commands. Ex-
cluding "help" and "gui", COLMAP
has 41 different functionalities. Each
of these functionalities comes with
some required arguments, for exam-
ple: when running the command colmap
feature_extractor, among others, the
argument –-image_path (the location of
the images) is required. Each function
has many optional arguments as well.
All arguments can be passed to a func-
tion in the command line, or in a file. In
the case of the latter, the only argument
passed to the function is the location of
said file.

Figure 2.5: Passing arguments in the
command line via a python script

Figure 2.6: Passing arguments in a file

The COLMAP pipeline creates an sqlite database, where it stores the image paths,
features, feature matches and camera info/parameters. The reconstruction process
then takes this database and creates a 3D reconstruction, which it stores in a des-
ignated output folder in the form of three binary files: one for the cameras, one
for the images and one for the 3D points. These files can then be opened by the
COLMAP GUI to view the reconstruction.

The following subsections outline COLMAP’s structure: it adheres to the three



steps mentioned in Section 2.4 (feature extraction, camera motion estimation,
calculating 3D structure) quite well.

2.7.2 Feature extraction

COLMAP utilizes the SIFT algorithm for extraction of the features.

2.7.3 COLMAP camera models

The COLMAP software has built-in support for camera intrinsic parameters in
eleven different models, mentioned in Section 2.5. As mentioned in the COLMAP
tutorial, not all camera models are suitable for use with fisheye lens cameras. Only
simple_radial_fisheye, radial_fisheye, opencv_fisheye, fov and thin_prism_fisheye
are suitable for this [21].

2.7.4 Feature Matching

COLMAP has several modes for feature matching [29]:

Exhaustive: Every image is matched with every other image, using SIFT.
Custom: A file containing image pairs is provided to the algorithm. These pairs
are matched using SIFT.
Sequential : Each image is matched to a certain amount of its neighbours in name:
this means that the images have to be named sequentially. This mode has built-in
loop detection using a pre-built vocabulary tree.
Vocabulary Tree: Images are matched [30] using a pre-trained visual vocabulary
tree.
Spatial : This image mode requires GPS or odometry data to be passed to the
algorithm: the images will be matched with their spatial neighbours, using SIFT.
Transitive: This image mode matches image A with C, if A had many matches
with B, and B with C, using SIFT.

2.7.5 Reconstruction

Two of the 41 COLMAP functions mentioned earlier (in Section 2.7.1) are the
mapper and the hierarchical_mapper. These are the tools that COLMAP pro-
vides for creating a 3D reconstruction from feature matches. Many different argu-
ments can be passed to the mapper functions to change parameters in the recon-
struction process.

During the reconstruction process, COLMAP also calculates and refines the



camera parameters of the cameras used in a reconstruction and saves them to a
database, unless they are provided from the start.

2.8 hloc - the hierarchical localization toolbox
The winner of CVPR 2020’s Indoor/Outdoor localization challenges [31] was a
Hierarchical Localization algorithm hlocworking with SuperPoint, a fully convo-
lutional feature extraction algorithm [9], and SuperGlue, a Graph Neural Network
for feature matching [10].
The hloc toolbox include multiple pipelines: one pipeline called pipeline_Aachen.ipynb,
applied to the Aachen Day-Night dataset [32] and one called pipeline_InLoc.ipynb,
applied to the InLoc dataset [33]. Both serve as examples of an application
of the hloc pipeline, and to show its performance. The third pipeline is called
SfM_pipeline. In the example, it is applied to the South_Building dataset [34],
but it can easily be applied to another set of images. This third pipeline was used
in this thesis.

All three pipelines share some "backend" scripts, but the first two utilize some
scripts specific to their respective datasets.

2.8.1 Pipeline structure

The hloc pipelines are structured as follows: SuperPoint and SuperGlue do the
feature extraction and matching, then the COLMAP mapper is used for the recon-
struction. In this thesis, this point onwards, the third pipeline mentioned in the
paragraph above, SfM_pipeline, will be referred to as the hloc pipeline.
The hloc pipeline extracts and matches features with SuperPoint+SuperGlue, and
then, after creating an sqlite database in COLMAP format, imports the matches
into said database. The COLMAP (hierarchical) mapper can then be run from
this database to create the reconstruction, as mentioned in Section 2.7.1.



Chapter 3

Method

In this chapter, the data and the software used in this thesis will be described in
further detail, as well as the way they were utilized and the changes made to them.

3.1 Institut Pascal Long-Term dataset

3.1.1 Extraction

For this thesis, a script was written for convenient extraction of multiple rosbags
at once. The script extracts the images, extracts GPS and odometry data, crops
images if desired (see Section 3.1.2), mirrors images from either the front camera
or the rear camera folder if desired (see Section 3.4.3), or takes a subset of the
images and deletes the rest if desired (mentioned in Section 4.1.2).

3.1.2 Modifications

In the first part of the dataset, the rear camera captures a black bar at the top
of each image, which makes up approximately 1/4th of the image. The camera
configuration on the vehicle taking the images was changed a little after halfway
through the data collection, so in the images taken by the rear camera from the
10th of January 2019 onward the black part is somewhat smaller. The images
taken by the front camera do not have this black part present.
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(a) original rear camera image (b) cropped rear camera image

Figure 3.1: images from 2018-10-22-18-24-58.bag, with the larger black part

The decision was made to crop part of the rear camera images, to get rid of the
black bars at the top, before using them (thus, images from before the 10th of
January 2019 were cut somewhat shorter than those from after). This was done
only to the images made by the rear camera, since the front camera does not have
these black parts.

3.1.3 Camera model

The images in the Institut Pascal Long-Term Dataset are taken by 100° field-of-
view (FOV) lenses. The intrinsic parameters for these cameras are provided by
the creators of the dataset. They are expressed in the Unified Camera Model, and
are as follows:

Figure 3.2: IPLT dataset intrinsic camera parameters [12]

The parameters provided with the IPLT dataset are in the form [γx, γy, cx, cy, ξ].
For use of the parameters in COLMAP, the parameters were converted to a rewrit-
ten version of the model, further elaborated upon in Section 2.5.3.



3.2 COLMAP
COLMAP is described by its creators as a "general-purpose Structure-from-Motion
(SfM) and Multi-View Stereo (MVS) pipeline" [17], and extensively described in
Section 2.7. The implementation details are described in this Section. The original
code is publicly available at [35].

3.2.1 COLMAP UCM implementation

The Unified Camera Model [22], which was used to express the intrinsic camera pa-
rameters in the IPLT dataset, is not one of the eleven mentioned in 2.5. COLMAP
allows for the possibility to implement a custom camera model, following the steps
laid out in the source code file camera_models.h [36]. These steps were taken
for the UCM, in the rewritten form mentioned in Section 2.5.3. The code can be
found in Appendix B. The IPLT dataset camera parameters could thus be used
in the COLMAP software in the reconstruction process.

3.2.2 Feature Matching

Of the COLMAP feature matching modes mentioned in 2.7.4, the exhaustive,
sequential and custom matching modes were used for this thesis. The exhaustive
matching mode worked well for smaller image collections, and will be featured in
the results. For using larger image collections, however, the amount of image pairs
increases quickly.

The sequential feature matching mode seems a good choice for this dataset,
since it automatically generates image pairs of images taken closely in time to
each other, and because it has built-in loop detection. However, because images
have to be named sequentially, only the images from one rosbag at a time can be
used, since images from other rosbags have a different timestamp. The matching
mode was used for some experiments, but results were not included in this thesis.

The spatial feature matching mode was explored as well. The automatic image
pair generation based on spatial location seemed like a convenient option to find
suitable image pairs. The extraction script mentioned in Section 3.1.1 was modified
to generate one .json file containing timestamped wheel odometry data and one
file containing timestamped GPS data for the images from all the desired rosbags
involved. The odometry data did not prove very useful: the axes of the data were
not aligned between rosbags, as can be seen in in figure A.1 in Appendix A.1.

The GPS data was more suitable for use in the spatial matching mode, but
ultimately the custom image pair generation proved more useful in non-exhaustive
image pair generation.
The custom matcher (named matches_importer in the COLMAP software) was



used in several tests. The main reason for this choice is that the custom matching
feature allows the user to pass an image pair list. To generate an image pair list,
a python script was written. This will be elaborated upon in Section 3.4.2.

All results included in this thesis were generated using the exhaustive or the
custom feature matching modes.

3.2.3 Reconstruction

In the experiments for this thesis, both the mapper and the hierarchical_mapper
mentioned in 2.7.5 were used. The hierarchical mapper parallelizes the reconstruc-
tion process, by first generating overlapping submodels, then merging them into
one [37]. The creators of COLMAP recommend running the functions
point_triangulator and bundle_adjuster a few times after the hierarchical
mapper [37]. This was done as well: four times for both.

After reconstruction, the mapper sometimes yields multiple models. These can
sometimes be merged using the COLMAP function model_merger. This function-
ality, however, is best suited to merge models generated in different reconstruction
attempts. When multiple models are produced in a single reconstruction, however,
one can assume that the merging failed, resulting in multiple proposals, with only
one resembling the actual situation. The model_merger often cannot add any
value in this situation.

3.3 hloc toolbox
The hloc toolbox is structured into three python notebooks (described in Section
2.8). It comes with a folder of python3 scripts that are used in these notebooks,
named, for example, match_features.py or reconstruction.py. These scripts con-
tain the working code of the pipeline, and they were used in these experiments:
they were called from python scripts written for this thesis.

3.3.1 Feature extraction and matching

The hloc scripts folder containing the SuperPoint+SuperGlue scripts were used
for feature extraction and matching. For image pairs, the scripts have an exhaustive
option, but custom image pairs can also be passed in a file. For this, the same
script used for COLMAP (further explained in Section 3.4.2), was used. In this
thesis, both the exhaustive and custom image pairs options were used to generate
reconstructions with the hloc pipeline.



3.3.2 Reconstruction

The hloc pipeline then uses the COLMAP mapper or hiermapper to generate a
3D sparse model.

3.4 Feature matching

3.4.1 Cameras

The IPLT dataset contains images from two cameras: the front and the rear
camera. A few reconstructions were first made using only images from the front
camera and using only images from the rear camera. This worked with varying
degrees of success, as can be seen in the Results chapter. Using images from only
one camera has one flaw: objects in the surroundings of the vehicle taking the
pictures are only viewed from one side, meaning that only features from that side
of the object will be extracted and used in the matching. When another image is
entered into the model (say, in the hypothetical scenario that a robot drives around
in the IPLT dataset parking lot and is trying to localize), it would be difficult to
find matching keypoints if the camera is oriented in the opposite direction from
the camera used in the IPLT dataset. For this reason, the front and rear camera
images were also paired to be matched. It (naturally) proved much more difficult
for both COLMAP and SuperPoint+SuperGlue to find and match features in a
pair of one front camera image and one rear camera image. The performance of
feature matching of these image pairs was tested for both pipelines to find an
optimal configuration for creating a sparse 3D model using both front camera and
rear camera images. One parameter in this configuration is the image pairs used
in the matching, discussed in the next paragraph.

3.4.2 Image pairs

The script mentioned in Section 3.2.2 can generate three types of image pairs:
front-camera front-camera (front-front) pairs, front-camera rear-camera (front-
rear) pairs and rear-camera rear-camera (rear-rear) pairs. The script takes as
input a time threshold for each of these types of pairs: an image a only gets
matched with an image b if their timestamps are within a certain range. Since the
images in the IPLT dataset are named after their Unix timestamp with nanosec-
ond resolution, the script that generates the image pairs takes the aforementioned
thresholds in nanoseconds. For example, if for the front-front image pairs a thresh-
old of 5×109 nanoseconds was chosen, a front camera image would be paired with
all front camera images that were taken five seconds before and five seconds after
it was taken.



For the front-rear image pairs, a different approach was chosen. There is a time
delay between the front camera taking a picture and the same features coming into
view for the rear camera. This means that front camera images get paired only with
rear camera images taken, say, 5 to 15 seconds later, instead of the aforementioned
5 seconds earlier to 5 seconds later window used for front-front pairs. In front-rear
pairs, the 5 second later would be the lower threshold for the window, and the 15
seconds the upper threshold.

3.4.3 Front-rear matching test process

To test the feature matching of COLMAP and of SuperGlue, one rosbag from
the IPLT dataset was used: 2018-10-22-18-55-41. This one has the tag "cloudy",
meaning there is less solar glare for the algorithms to be confused by (COLMAP’s
creators recommend using images without high dynamic ranges and shiny surfaces
[38]).

The matching windows (image pair generation thresholds) used were varied, so
as to find an optimal point with the highest mean of matched features per image.
Early experiments showed that both pipelines had very little trouble matching a
large number of features in front-front and rear-rear images pairs; a larger challenge
lay in matching features in front-rear image pairs. Thus, tests were run varying
the lower window threshold and the upper window threshold for the front-rear
pairs. With the COLMAP pipeline, this process was repeated for multiple camera
models: OPENCV, THIN_PRISM_FISHEYE, UCM, FOV, RADIAL and RADIAL_FISHEYE.
Also, the matching parameter guided_matching was tested on both true and false,
to explore the effects of these changes.

Mirroring images

The above-mentioned tests were performed twice for both pipelines: once with the
rear camera images mirrored horizontally, once without any mirroring. The mir-
roring of the images of one of the folders can be beneficial to the feature matching
process: features extracted in a front camera image would appear flipped in a rear
camera image. Mirroring the images from either the front or rear folder improves
keypoint matching performance. However, the parking lot, the environment of the
vehicle, seen in the mirrored rear camera images looks different from the one in
the front camera images: a mirrored environment appears. This poses a problem
for the reconstruction process, since the mapper would be trying to reconstruct
two mirrored environments into one. Thus, no reconstruction was made involving
any mirrored images.



3.5 Reconstruction
The reconstruction process happens exclusively with functions from the COLMAP
algorithm. The COLMAP software has two functions, mapper and hiermapper ,
which produce a 3D reconstruction based on matched features (which are provided
by either SIFT, called COLMAP pipeline in this thesis, or by SuperPoint+SuperGlue,
called hloc in this thesis). This 3D reconstruction can be viewed in the COLMAP
GUI, and is represented by a point cloud of black dots. Each image used for to
create the reconstruction is represented in the reconstruction as well, by a red
figure (see Fig. 3.3). The reconstructed location and orientation of the camera can
thus be seen for each image.

(a) camera representation (b) reconstruction example

Figure 3.3: COLMAP GUI reconstruction

In figure 3.3b an example of a COLMAP reconstruction can be seen. The camera
representation shown in figure 3.3a can be seen many times, forming something
of a track. If the reconstruction goes well, this track thus takes the shape of the
path driven by a vehicle taking pictures (in the case of a dataset like IPLT, where
a driving vehicle is taking the pictures used in the dataset).

In the next chapter, the results of all the methods



Chapter 4

Results

The results of the methods presented above are laid out in this chapter. In the
first section, results (of feature matching and reconstruction), obtained using only
front-front and rear-rear image pairs, are presented. In the second section, results
obtained using front-rear image pairs are presented.

4.1 Front-front/rear-rear image pairs
The COLMAP and hlocpipeline were first tested on images from one of the cam-
eras in the dataset only, as described in Section 3.4.1, so only front-camera front-
camera image pairs and rear-camera rear-camera image pairs. Results of both
pipelines will now be presented separately. For both, statistics about the feature
extraction and matching will be presented first, followed by reconstruction results.

4.1.1 COLMAP

Feature matching

COLMAPs SIFT feature matching is tested here. The images used here are from
rosbag 2018-10-22-18-55-41, which has the tag "cloudy".

The time window matching front_cam images to rear_cam images is of size 5×108,
which is equivalent to 0.5 seconds. The amount of feature matches between two im-
ages decreases with the time between taking both images. This short time window
of 0.5 seconds pairs an image with only a few other images taken in its temporal
vicinity. Since images taken right after each other will be similar, these image
pairs provide a good view of the maximum amount of feature matches generated
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by either pipeline.

The mean amount of keypoints extracted from images from this rosbag is 965.42;
the highest is 2462, the lowest 534. The mean amount of feature matches per
image are shown below:

front-front pairs mean feature matches rear-rear pairs mean feature matches
555.150 499.9312

Reconstruction

As shown in Section 4.1.1, the COLMAP pipeline did not struggle to find feature
matches in pairs of images that were made by the same camera. This allowed for
a good number of matches that the COLMAP mapper can then use for creating
the sparse models. A couple of reconstructions will now be shown.

One experiment involved the images from the front camera folder from one rosbag.
This experiment was done with the camera model set on OPENCV and a custom
image pair generation window of 5 seconds. The result was as follows:



Figure 4.1: COLMAP pipeline: custom match mode

The COLMAP pipeline managed to bring all the images together into a track.
The shape of this track, however, is incorrect (see figure 2.4 for reference). The
top right part of the image, where the track seems to be overlapping, corresponds
to the right of figure 2.4, the part where the vehicle start and ends its loop. On
the left side of the image, one can see trees: three blobs of points in a row next to
the track. The trees (five) can be seen at the top of figure 2.4. All corners in the
reconstruction are too "shallow", not sharp enough, resulting in a cut in the track
and an open loop.

In the dataset images, trees appear like in the iamge below:



Figure 4.2: Trees next to the road [12]



Another experiment involves the images from the front camera folders from two
of rosbags. The result can be seen in the figure below:

Figure 4.3: COLMAP pipeline: two front_cam folders

This experiment utilized the exhaustive feature matching mode. Although the
corners in the reconstruction are still not sharp enough, the shape of the track
resembles the true parking lot more closely and the cut in the loop is smaller. The
trees seen in figure 4.2 are clearly visible on the bottom right side of the recon-
struction.

4.1.2 hloc

Feature matching

hloc ’s SuperPoint+SuperGlue feature matching is tested here. The configuration
for this test was the same as for COLMAP, described in Section 4.1.1: images from
rosbag 2018-10-22-18-55-41, a time window of 0.5 seconds.
The mean amount of keypoints found in images from this rosbag is 571.70. The
highest amount of keypoints found is 925, the lowest 359.



front-front pairs mean feature matches rear-rear pairs mean feature matches
419.733 419.555

Reconstruction

The following reconstruction is one performed with the hlocpipeline (SuperPoint
feature extraction, SuperGlue feature matching, COLMAP mapper (see Section
2.8.1). The images were paired and matched exhaustively. It was performed on
the images from the front cameras from two rosbags, 2018-10-22-18-24-58.bag and
2018-10-22-18-29-07.bag, both with the tag "cloudy".

Figure 4.4: hloc on two rosbags

A problem arose with trying to create reconstruction from these images (and more
broadly in other experiments performed for this thesis): the mapper exits "too
early", which results in a reconstruction containing only a handful of the input
images and only a couple hundred points in the pointcloud. The COLMAP
mapperhas some parameters that allow for making adjustments in, for exam-
ple, the amount of iterations in the bundle adjustment process, or the parame-
ter init_num_trials, the amount of trials that the mapper initializes with. Even
with parameters like these set to high values, the mapper would often exit without
producing a reconstruction containing more than a handful of the input images.
One of the attempted solutions for this problem was to use a subset of the images
for feature matching and reconstruction. In the above reconstruction, five out of
every six images were skipped, resulting in the total amount of input images for
this reconstruction being 183, out of the 1097 present in the front camera folders
of the two rosbags combined. This allowed the mapper to create a reconstruction



that uses all input images, but it does mean that fewer points are present in the
pointcloud, and the generated path is less precise.

4.1.3 Comparing COLMAP and hloc

SIFT (in COLMAP pipeline), on average, extracted many more features, and
matched more features in the front-front and rear-rear pairs than SuperPoint+SuperGlue
in the hlocpipeline. It is hard to say whether the increased amount of extracted
features are of the same quality/usefulness for the reconstruction as SuperPoint’s
extracted features.
The feature matches shown in the COLMAP examples above proved sufficient for
the COLMAP reconstruction functions to create a track of images. The same is
not quite true for the hloc pipeline: in figure 4.4, the track looks straight, although
one part of it is in the wrong place.
Producing a reconstruction from images from the same camera, the COLMAP
pipeline’s biggest problem was not being able to get the angles of the turns taken
by the vehicle right, which also resulted in an incomplete loop. The hloc pipeline
seems not to produce this problem.
With both pipelines the COLMAP (hierarchical) mapper often exited, like men-
tioned in Section 4.1.2. Sometimes running the (hierarchical) mapper on the same
database again helps, and does produce a reconstruction.

4.2 Front-rear image pairs
In order to a model that encompasses different perspectives of the environment
(as explained in Section 3.4.1), tests were run that involved both images from the
front and the rear camera. The results will be discussed below: first for feature
matching, then reconstruction results.

4.2.1 Feature matching

For feature matching, tests were run as described in sections 3.4.2 and 3.4.3, with
varying matching windows. In the feature matching tests of this subsection 4.2.1,
images are paired only with images from the other camera; front-rear image pairs
only, no front-front or rear-rear. For COLMAP, its SIFT feature matching tested.
For hloc , SuperPoint+SuperGlue is tested.

Results for both the COLMAP and hloc pipelines are presented here (their fea-
ture extraction and matching components, meaning SIFT for COLMAP and Su-
perPoint+SuperGlue for hloc ) . For each pipeline, a table and two graphs are



shown. The table shows the mean amount of matched features in the images for
different combinations of the lower_threshold and upper_threshold. If an image a
has 20 feature matches with image b and 30 feature matches with image c, image
a will account for 50 points being added to the total score. This total score will
then be divided by the amount of images to acquire the mean amount of matched
features in the images (the 20 points for image b and 30 points for image c are not
added to the score, since each match would be doubled then).
The graphs shows two lines: the amount of extracted and the amount of matched
features per image. There is a graph for the front camera images and one for the
rear camera images. The images are sequentially ordered along the x-axis, with
the time since the first image was taken shown as the x-axis ticks. This means
each datapoint is the data of one image.
Say, an image a has 500 features extracted, its point on the blue line will be at
500. And say, this image a has 20 feature matches with an image b and 30 with
an image c, its point in the red line will read a value of 50.
The graphs were generated using the database produced by the widest matching
window: 6 to 23 seconds. This means that features in a front camera image that
are matched with features from a rear camera images taken 6 to 23 seconds later
are counted towards the score.
The feature matching experiments were also performed with mirrored rear camera
images (elaborated upon in Section 3.4.3). The tables and graphs for these exper-
iments can be found in Appendix D. After each subsection, some considerations
and sub-conclusions discussing the graphs and tables will be presented.

COLMAP

With the COLMAP pipeline, the described experiments were performed for multi-
ple camera models as well as for both settings (true/false) of the guided_matching
parameter, as described in Section 3.4.3. However: these all yielded the same re-
sults: these settings are only relevant in the reconstruction process. The images
used here are from rosbag 2018-10-22-18-55-41, with the weather tag "cloudy".

The mean amount of keypoints extracted from images from this rosbag is 965.42,
the highest is 2462, the lowest 534.



time (s)→ 12 13 14 15 16 17 18 19 20 21 22 23
time (s)↓
6 1.655 1.779 1.845 1.880 1.894 1.887 1.869 1.844 1.813 1.772 1.735 1.699
7 1.861 1.9373 2.022 2.041 2.038 2.017 1.9386 1.9349 1.9308 1.858 1.813 1.770
8 2.079 2.170 2.196 2.193 2.171 2.134 2.088 2.039 1.9387 1.9327 1.874 1.824
9 2.238 2.314 2.316 2.293 2.255 2.202 2.143 2.084 2.023 1.9355 1.895 1.840
10 2.353 2.417 2.394 2.351 2.297 2.230 2.161 2.093 2.024 1.9350 1.885 1.826
11 2.485 2.515 2.452 2.384 2.312 2.232 2.151 2.076 2.001 1.9321 1.853 1.791

The highest mean amount of features matched in an image: 2.515, with
lower_threshold = 11s and upper_threshold = 13s.

Figure 4.5: COLMAP, no mirrored images

A clear spike can be seen in the red line in the graphs, especially the rear camera
one. If t0 is the time at which the first image was taken, the front camera spike
peaks at t+68 seconds while the rear camera spike peaks at t+80 seconds. The



front image at t+68 s and the rear image at t+80 s are shown in figure 4.6 be-
low. The structure appearing in these images apparently provided the COLMAP
pipeline with keypoints that were easy to match. One remarkable aspect about
this is that there is no real spike in the blue line coinciding with the spike in the
red, especially in the rear camera graph, where the blue line dips a little at t+80
s. The amount of features extracted from an images does not seem to have a large
influence on the amount of matched features in an image in this test case (also
clearly visible in other parts of the graph), suggesting that COLMAP extracts
many features that it is subsequently unable to match (in this test case).

(a) front camera image at t+68s

(b) rear camera image at t+80s

Figure 4.6: images from 2018-10-22-18-55-41.bag

COLMAP considerations
The graph clearly shows that some images had many features matched, while other
had close to zero features matched (red line). This does not seem to be propor-
tional to the amount of features extracted from an image (blue line): while that
number varied much as well, the peaks do not coincide with those of the amount
of matched features. It should be noted that the COLMAP feature matching pa-
rameter min_num_inliers was set to 10 in these tests, down from the COLMAP
default of 15. This means that any image match with fewer than 10 features
matched does not end up in the database, and is subsequently not shown in the
graphs. Setting this variable below a value of 10 yielded unstable results. This
threshold of 10 matches is one of the causes of the flat parts in the graphs: some
images never get paired with an image they have 10 or more feature matches with,
so the sum of their feature matches will then be 0.
Upon inspection of the graphs of the test with mirrored rear images in Appendix
D.1, it is apparent that the amount of feature matches in front-back image pairs
are considerably larger in number when the rear camera images are mirrored. This



means COLMAPs SIFT does have trouble finding the keypoints in these images,
when taken from the opposite perspective.

SuperPoint+SuperGlue

The images used here are from rosbag 2018-10-22-18-55-41, with the weather tag
"cloudy", same as with COLMAP.
The mean amount of keypoints found in images from this rosbag is 571.70. The
highest amount of keypoints found is 925, the lowest 359.

time (s)→ 12 13 14 15 16 17 18 19 20 21 22 23
time (s)↓
6 43.078 44.045 44.878 45.475 45.9321 46.184 46.345 46.462 46.521 46.494 46.468 46.444
7 44.893 45.731 46.453 46.9336 47.277 47.438 47.505 47.540 47.526 47.428 47.342 47.265
8 46.566 47.247 47.845 48.206 48.437 48.491 48.465 48.419 48.334 48.170 48.026 47.9302
9 48.000 48.502 48.9375 49.214 49.338 49.291 49.175 49.057 48.9308 48.684 48.491 48.327
10 48.9374 49.325 49.715 49.858 49.898 49.765 49.578 49.402 49.205 48.9334 48.704 48.511
11 49.674 49.855 50.202 50.261 50.230 50.021 49.770 49.548 49.313 49.002 48.744 48.531

The highest mean amount of features matched in an image: 50.261, with
lower_threshold = 11s and upper_threshold = 15s.



Figure 4.7: SuperPoint+SuperGlue, no mirrored images



SuperPoint+SuperGlue considerations
The SuperPoint+SuperGlue pipeline shows interesting periodic peaks in the amount
of extracted features, which is probably either the trees coming into view or the
trees leaving the frame.

Keypoint matching considerations

The tables and graphs show SIFT, used in COLMAP, extracting considerably more
features from the images than the SuperPoint+SuperGlue pipeline. It does not
manage to match them very well though, in these front-back image pairs. Super-
Glue performs considerably better on the feature matching. Perhaps SuperGlue’s
ability to "reason about the 3D scene" [7] enables it to avoid confusion caused by
the different viewpoints when matching front-back camera image pairs.

With both pipelines, the highest mean amount of matched features (the "optimal
setting" mentioned in 4.2.1) is produced by a short matching window: pairing rear
camera images with front camera images taken 11 to 12 or 15 seconds later. This
short time window yields the highest mean matched amount of features per image,
but is most likely not as suitable for the reconstruction process, since only a small
"slice" of matched features gets created at each physical point in the reconstruc-
tion.

4.2.2 Reconstruction

COLMAP

One experiment involved images from the front and rear camera folders from a
rosbag, and the COLMAP-default



Figure 4.8: COLMAP pipeline

This figure shows the COLMAP pipeline reconstructing two different "tracks":
one of front camera images and one of rear camera images. It does not manage
to bring them together into one reconstruction. One cause of this could be that
COLMAP did not generate enough feature matches in the front-back image pairs
(like shown in figure 4.5). This did however, result in the shape of both "tracks"
being similar, albeit not very accurate: the corners taken by the vehicle do not look
as sharp as the corners seen in figure 2.4, causing both track to not be completed
into a closed shape.

hloc

The following results were obtained using the hloc pipeline (SuperPoint feature
extraction, SuperGlue feature matching, COLMAP mapper (see Section 2.8.1). A
custom matching window with a lower threshold of 7 seconds and an upper thresh-
old of 21 seconds was used; the camera model used was OPENCV.



Figure 4.9: hloc pipeline

In this reconstruction, the hloc pipeline managed to bring together some pictures
of the font and rear cameras. This reconstruction also shows a more accurate
shape: the corners look like they have the correct angle. However this reconstruc-
tion still has a significant part missing, seen in the top right of the image.
Where one of the "tracks" seems to go in the right direction, the other seems
to have veered off, causing it to seperate and fall apart into two directions. This
causes the cameras in the reconstruction to have different viewpoints, with a messy
pointcloud.



Figure 4.10: hloc pipeline

In this reconstruction, one can also see that the corners are at the right angles
(this corresponds to the left side of image 2.4), and there is an overlap between
the front and rear camera images. It is, however, incomplete.

Reconstruction considerations

In none of the performed experiments, the COLMAP pipeline was able to integrate
the front and rear camera images into one reconstruction. The hloc pipeline had
some more success: in figure 4.10, tracks in opposite directions are merged. The
feature matches provided by SuperPoint+SuperGlue prove more valuable for the
reconstruction than those provided by SIFT.
The hloc pipeline also did not have much trouble with the angle of the corners in
the reconstruction.

4.3 Camera models
Different camera models were used in the different reconstruction attempts: the
COLMAP simple_radial model, for example, the opencv_fisheye model, the



thin_prism_fisheye model and the custom Unified Camera Model, which when
used also allowed for insertion of the camera parameters beforehand. The difference
in results was not very clear, multiple reconstructions attempts had difficulties in
the "sharpness" of the corners.



Chapter 5

Conclusion

The feature extraction and matching experiments in this thesis showed SIFT ex-
tracting and matching more features than SuperPoint+SuperGlue in pairs of im-
ages taken from a similar perspective. Both the COLMAP and the hloc pipelines
had little trouble reconstructing a vehicle track. However, in images from oppo-
site perspectives (front-rear pairs), SIFT often did not find any feature match in
a given image pair, whereas SuperPoint+SuperGlue managed to find enough to,
sometimes, bring two image tracks (front and rear camera) together.

One of the main difficulties in generating reconstructions from feature matches gen-
erated by the COLMAP pipeline was the angles of the turns taken by the vehicle
not being sharp enough in the reconstruction. At first glance, the problem seems
to lie with the camera model involved: the WorldToImage and ImageToWorld
(un)projection functions play a large role in generating the 3D structure from the
features matches. However, the hloc pipeline does not seem to experience this prob-
lem. Since both pipelines use the same reconstruction mapper or hiermapper , the
difference seems to stem from the feature matching step in the pipelines. Super-
Point+SuperGlue provides the mapperwith features/feature matches that make
for a better reconstruction.
In addition, the use of the customly implemented UCM and the a-priori camera
parameters provided in the IPLT dataset had little effect. COLMAPs ability to
calculate and refine camera parameters seems to be performing well.
Future research could be isolate the variable of the fish-eye lens, and explore the
effect of the different camera models more in-depth.

Another problem experienced during this research is the exiting of the mapper ,
with a reconstruction of only a handful of the input images. The workaround,
only using a subset of the images, causes the reconstruction to be less detailed and
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dense. Ideally, more experimentation with the mapper yields a configuration in
which the mapperdoes not exit prematurely, opening the door to use significantly
more images for a single reconstruction.

The approach taken to image pair generation in this thesis was using a temporal
threshold (see Section 3.4.2). A downside of this is that the image pairs are not
always arranged according to what is in the view of a camera at a given moment,
seeing as the vehicle speed is not constant. A better approach would be a spatial
threshold. The COLMAP spatial matching mode, used with the IPLT GPS data,
is not perfect for front-rear image pairs, since images from the front camera taken
behind the location where a rear camera image was taken will not be a good match.
A custom spatial threshold for front-front/rear-rear pairs and for front-rear pairs
could solve this.

The different weather conditions present in the IPLT dataset and their effects on
the tested pipelines have not been thoroughly studied in this thesis. To further
discover the advantages of using SuperPoint+SuperGlue or other neural network
approaches in a reconstruction pipeline with a challenging dataset, this could be
interesting further research.



Appendices
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Appendix A

IPLT dataset

A.1 Wheel odometry
The wheel odometry data for some of rosbags with tag "sun" is plotted here.

Figure A.1: Wheel odometry data for "sun" rosbags

45



A.2 Images

(a) sun (b) cloudy (c) dusk

(d) night (e) fog (f) rain



A.3 Groups of different conditions tags

tag rosbag names
sun 2018-10-19-10-54-31.bag, 2018-10-19-10-59-14.bag, 2018-10-19-15-06-22.bag, 2018-10-19-15-08-49.bag, 2018-10-22-15-29-04.bag,

2018-10-22-15-31-42.bag, 2019-10-02-15-03-40.bag, 2019-10-02-15-05-44.bag, 2019-10-02-15-08-10.bag, 2020-01-15-11-13-20.bag,
2020-01-15-11-15-33.bag, 2020-01-15-13-20-56.bag, 2020-01-15-13-23-09.bag, 2020-01-15-13-25-22.bag, 2020-01-16-14-03-10.bag,
2020-01-16-14-05-24.bag, 2020-10-05-16-20-11.bag, 2020-10-05-16-22-29.bag, 2020-10-05-16-25-05.bag, 2020-10-05-16-27-52.bag

cloudy 2018-10-22-18-24-58.bag, 2018-10-22-18-29-07.bag, 2018-10-22-18-42-29.bag, 2018-10-22-18-55-41.bag, 2018-10-22-19-00-29.bag,
2018-10-26-08-10-02.bag, 2018-10-26-08-16-54.bag, 2018-10-26-08-23-22.bag, 2018-10-26-08-29-00.bag, 2018-10-26-08-35-24.bag,
2018-10-26-08-42-04.bag, 2018-10-26-08-48-22.bag, 2018-10-26-09-01-00.bag, 2018-10-26-09-05-09.bag, 2018-10-26-09-11-01.bag,
2018-12-11-16-53-49.bag, 2018-12-11-17-04-02.bag, 2018-12-11-17-13-18.bag, 2018-12-12-10-12-15.bag, 2018-12-12-10-20-11.bag,
2018-12-12-10-30-44.bag, 2019-01-09-14-32-39.bag, 2019-01-09-14-35-22.bag, 2019-03-08-14-57-34.bag, 2019-03-08-15-03-07.bag,
2020-01-20-10-15-30.bag, 2020-01-20-10-18-02.bag, 2020-01-22-10-17-33.bag, 2020-01-22-10-19-51.bag, 2020-01-22-10-22-06.bag,
2020-01-31-16-00-24.bag, 2020-01-31-16-02-46.bag, 2020-01-31-16-07-34.bag, 2020-02-05-17-53-21.bag, 2020-02-05-18-01-14.bag,
2020-02-05-18-04-18.bag, 2020-10-07-18-41-17.bag, 2020-10-07-18-45-00.bag, 2020-10-07-18-53-57.bag, 2020-10-07-19-09-15.bag,
2020-10-07-19-13-46.bag, 2020-10-07-19-21-02.bag, 2020-10-07-19-24-29.bag

dusk 2018-10-22-19-06-21.bag, 2018-10-22-19-09-43.bag, 2018-10-22-19-15-15.bag, 2018-10-22-19-20-21.bag, 2018-10-22-19-25-34.bag,
2018-10-26-07-44-01.bag, 2018-10-26-07-50-29.bag, 2018-10-26-07-56-31.bag, 2018-12-11-17-23-53.bag, 2018-12-11-17-33-30.bag,
2020-02-05-18-14-00.bag, 2020-02-05-18-19-19.bag, 2020-02-05-18-25-23.bag, 2020-10-07-19-30-56.bag, 2020-10-07-19-36-16.bag,
2020-10-07-19-40-03.bag

night 2018-10-22-19-30-22.bag, 2018-10-22-19-35-38.bag, 2018-10-22-19-40-27.bag, 2018-10-26-07-27-00.bag, 2018-10-26-07-31-09.bag,
2018-10-26-07-39-10.bag, 2020-02-05-18-29-17.bag, 2020-02-05-18-37-10.bag, 2020-02-05-18-41-39.bag, 2020-02-05-18-46-02.bag,
2020-10-07-19-44-33.bag, 2020-10-07-19-50-14.bag, 2020-10-07-19-54-47.bag

fog 2018-12-13-10-32-31.bag, 2018-12-13-10-36-57.bag, 2018-12-13-16-06-52.bag, 2018-12-13-16-09-32.bag
rain 2019-01-10-17-09-16.bag, 2019-01-10-17-21-20.bag, 2019-01-10-17-32-57.bag, 2019-10-01-16-54-55.bag, 2019-10-01-16-59-02.bag,

2019-10-01-17-01-27.bag, 2019-10-01-17-13-22.bag, 2019-10-01-17-15-45.bag, 2019-10-01-17-17-52.bag, 2019-10-01-17-19-57.bag,
2019-10-22-14-53-20.bag, 2019-10-22-14-57-27.bag, 2019-10-22-14-59-26.bag, 2019-10-22-15-01-25.bag, 2020-10-02-15-17-49.bag,
2020-10-02-15-20-28.bag

dusk rain 2019-01-10-17-41-09.bag, 2019-01-10-17-48-31.bag, 2019-01-10-17-57-03.bag
night rain 2019-01-10-18-05-41.bag
snow 2019-01-23-10-33-15.bag, 2019-01-23-10-36-01.bag, 2019-01-23-10-39-20.bag, 2019-01-23-16-03-09.bag, 2019-01-23-16-05-30.bag
sun rain 2019-02-04-10-58-40.bag, 2019-02-04-11-01-16.bag
rain other-path 2019-10-01-17-03-27.bag, 2019-10-01-17-08-17.bag, 2019-10-01-17-10-34.bag
day/dusk/night 2019-12-05-16-43-56.bag



Appendix B

COLMAP UCM

B.1 Projection functions
The functions WorldToImage, ImageToWorld, Distortion and Undistortion imple-
mented for the Unified Camera Model

1 // //////////////////////////////////////////////////////////////////////////////
2 // Uni f i ed Camera Model
3

4 std : : s t r i n g UnifiedCameraModel : : I n i t i a l i z ePa r ams I n f o ( ) {
5 r e turn " fx , fy , cx , cy , alpha " ;
6 }
7

8 std : : vector<size_t> UnifiedCameraModel : : I n i t i a l i z eFo c a lL eng t h I dx s ( ) {
9 r e turn {0 , 1} ;

10 }
11

12 std : : vector<size_t> UnifiedCameraModel : : I n i t i a l i z e P r i n c i p a l P o i n t I d x s ( ) {
13 r e turn {2 , 3} ;
14 }
15

16 std : : vector<size_t> UnifiedCameraModel : : I n i t i a l i z eExt raParams Idx s ( ) { re turn {4} ;
}

17

18 std : : vector<double> UnifiedCameraModel : : I n i t i a l i z ePa r ams ( const double foca l_length
,

19 const s i ze_t width ,
20 const s i ze_t he ight ) {
21 r e turn { foca l_length , foca l_length , width / 2 . 0 , he ight / 2 . 0 , 1e −2};
22 }
23

24 template <typename T>
25 void UnifiedCameraModel : : WorldToImage ( const T∗ params , const T u , const T v , T∗ x ,
26 T∗ y ) {
27 const T f1 = params [ 0 ] ;
28 const T f2 = params [ 1 ] ;
29 const T c1 = params [ 2 ] ;
30 const T c2 = params [ 3 ] ;
31
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32 // D i s t o r t i on
33 Di s t o r t i on (&params [ 4 ] , u , v , x , y ) ;
34

35 // Transform to image coo rd ina t e s
36 ∗x = f1 ∗ ∗x + c1 ;
37 ∗y = f2 ∗ ∗y + c2 ;
38 }
39

40 template <typename T>
41

42

43 void UnifiedCameraModel : : ImageToWorld ( const T∗ params , const T x , const T y , T∗ u ,
44 T∗ v ) {
45 const T f1 = params [ 0 ] ;
46 const T f2 = params [ 1 ] ;
47 const T c1 = params [ 2 ] ;
48 const T c2 = params [ 3 ] ;
49

50 // L i f t po in t s to normal ized plane
51 const T uu = (x − c1 ) / f1 ;
52 const T vv = (y − c2 ) / f2 ;
53

54 // Und i s to r t i on
55 Undi s to r t i on (&params [ 4 ] , uu , vv , u , v ) ;
56 }
57

58 template <typename T>
59 void UnifiedCameraModel : : D i s t o r t i on ( const T∗ extra_params , const T u , const T v ,
60 T∗ du , T∗ dv ) {
61

62 const T alpha = extra_params [ 0 ] ;
63 const T d = ce r e s : : s q r t (u ∗ u + v ∗ v ) ;
64

65 T f a c t o r ;
66 f a c t o r = 1 / ( alpha ∗ d + (1 − alpha ) ) ;
67

68 ∗du = u ∗ f a c t o r ;
69 ∗dv = v ∗ f a c t o r ;
70 }
71

72 template <typename T>
73 void UnifiedCameraModel : : Und i s to r t i on ( const T∗ extra_params , const T u , const T v ,
74 T∗ du , T∗ dv ) {
75 T alpha = extra_params [ 0 ] ;
76

77 const T m1 = u ∗ (1 − alpha ) ;
78 const T m2 = v ∗ (1 − alpha ) ;
79

80 const T rad ius2 = m1 ∗ m1 + m2 ∗ m2;
81

82 const T x i = alpha / (1 − alpha ) ;
83 const T xi2 = x i ∗ x i ;
84

85 T f a c t o r ;
86

87 const T numerator = x i + c e r e s : : s q r t (1 + (1 − x i2 ) ∗ rad ius2 ) ;
88 f a c t o r = numerator / (1 + rad ius2 ) ;
89

90 ∗du = u ∗ f a c t o r ;
91 ∗dv = v ∗ f a c t o r ;
92 }



B.2 Test case
The specialization of test case for unified camera model to camera_models_test.cc

1 BOOST_AUTO_TEST_CASE(TestUCM) {
2 //
3 // Using parameters from the I n s t i t u t Pascal Long−Term Dataset f r on t cam pre 2019−04−01,
4 // in r ewr i t t en format [ fx , fy , cx , cy , alpha ] :
5 // ( see : https :// arx iv . org /pdf /1807 .08957 . pdf )
6 //
7 // alpha = xi / ( x i + 1) = 0.5920532
8 // fx = gamma_x ∗ (1 − alpha ) = 766.3141 ∗ (1 − 0 .5920532) = 312.6154
9 // fy = gamma_y ∗ (1 − alpha ) = 769.5469 ∗ (1 − 0 .5920532) = 313.9342

10 std : : vector<double> params = {312.6154 , 313 .9342 , 324 .2513 , 239 .7592 , 0 .5920532} ;
11 TestModel<UnifiedCameraModel >(params ) ;
12 }



Appendix C

UCM camera parameters

The conversion of the UCM camera parameters described in Section 2.5.3 is shown
here.

1 from_2018−10−19_to_2019−03−08:
2 camera_back
3 [gamma_x, gamma_y, cx , cy , x i ] = [763 . 5804 , 766 .0006 , 326 .2222 , 250 .7755 , 1 . 4 523 ]
4 // alpha = xi / ( x i + 1) = 0.59221954899
5 // fx = gamma_x ∗ (1 − alpha ) = 763.5804 ∗ (1 − 0.59221954899) = 311.373159894
6 // fy = gamma_y ∗ (1 − alpha ) = 766.0006 ∗ (1 − 0.59221954899) = 312.360070142
7 [ fx , fy , cx , cy , alpha ] = [311 .373159894 , 312.360070142 , 326 .2222 , 250 .7755 , 0 .59221954899 ]
8
9 camera_front

10 [gamma_x, gamma_y, cx , cy , x i ] = [766 . 3141 , 769 .5469 , 324 .2513 , 239 .7592 , 1 . 4 513 ]
11 // alpha = xi / ( x i + 1) = 0.5920532
12 // fx = gamma_x ∗ (1 − alpha ) = 766.3141 ∗ (1 − 0 .5920532) = 312.6154
13 // fy = gamma_y ∗ (1 − alpha ) = 769.5469 ∗ (1 − 0 .5920532) = 313.9342
14 [ fx , fy , cx , cy , alpha ] = [312 . 6154 , 313 .9342 , 324 .2513 , 239 .7592 , 0 .5920532 ]
15
16
17 from_2019−10−01:
18 camera_back
19 [gamma_x, gamma_y, cx , cy , x i ] = [764 . 4637 , 763 .1171 , 322 .6882 , 247 .8716 , 1 . 4 565 ]
20 // alpha = xi / ( x i + 1) = 0.59291675147
21 // fx = gamma_x ∗ (1 − alpha ) = 764.4637 ∗ (1 − 0.59291675147) = 311.200366379
22 // fy = gamma_y ∗ (1 − alpha ) = 763.1171 ∗ (1 − 0.59291675147) = 310.652188077
23 [ fx , fy , cx , cy , alpha ] = [311 .200366379 , 310.652188077 , 322 .6882 , 247 .8716 , 0 .59291675147 ]
24
25 camera_front
26 [gamma_x, gamma_y, cx , cy , x i ] = [770 . 0887 , 768 .9841 , 330 .3834 , 222 .0791 , 1 . 4 666 ]
27 // alpha = xi / ( x i + 1) = 0.59458363739
28 // fx = gamma_x ∗ (1 − alpha ) = 770.0887 ∗ (1 − 0.59458363739) = 312.206559641
29 // fy = gamma_y ∗ (1 − alpha ) = 768.9841 ∗ (1 − 0.59458363739) = 311.758736727
30 [ fx , fy , cx , cy , alpha ] = [312 .206559641 , 311.758736727 , 330 .3834 , 222 .0791 , 0 .59458363739 ]
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Appendix D

Feature matching: mirrored
rear images

This appendix D contains the results of the feature matching tests where the rear
camera images were mirrored, according to the process described in Section 3.4.3.
The tables and graphs are structured in the same way as those in the results
Section (4.2.1).

D.1 COLMAP
In this test, the rear camera images were mirrored (see Section 3.4.3).
The mean amount of keypoints extracted from images from this rosbag is 965.37,
the highest 2462, the lowest 532.

time (s)→ 12 13 14 15 16 17 18 19 20 21 22 23
time (s)↓
6 9.167 9.327 9.409 9.448 9.429 9.376 9.271 9.165 9.041 8.9308 8.755 8.590
7 9.529 9.658 9.706 9.714 9.664 9.583 9.450 9.321 9.175 9.022 8.852 8.670
8 9.836 9.9332 9.9343 9.9320 9.838 9.729 9.567 9.416 9.250 9.079 8.892 8.695
9 10.038 10.108 10.087 10.036 9.9326 9.792 9.605 9.434 9.251 9.065 8.864 8.653
10 10.278 10.293 10.221 10.133 9.9389 9.826 9.611 9.420 9.218 9.018 8.802 8.579
11 10.436 10.380 10.254 10.136 9.9361 9.775 9.535 9.328 9.113 8.9301 8.675 8.442

The highest mean amount of features matched in an image: 10.436, with
lower_threshold = 11s and upper_threshold = 12s.

52



Figure D.1: COLMAP, mirrored rear cam images

D.2 hloc
The images used here are from rosbag 2018-10-22-18-55-41, tag "cloudy". The
rear camera images were mirrored (see 3.4.3).
The mean amount of keypoints extracted from images from this rosbag is 572.20.
The highest amount of keypoints found is 925, the lowest 359.



time (s)→ 12 13 14 15 16 17 18 19 20 21 22 23
time (s)↓
6 74.789 75.333 75.738 76.032 76.119 76.199 76.150 76.040 75.837 75.585 75.249 74.891
7 76.250 76.650 76.9331 77.119 77.099 77.093 76.9362 76.778 76.504 76.188 75.790 75.377
8 77.363 77.626 77.796 77.891 77.774 77.696 77.492 77.245 76.9310 76.539 76.087 75.626
9 78.095 78.245 78.328 78.353 78.155 78.019 77.758 77.459 77.074 76.656 76.159 75.658
10 78.660 78.674 78.672 78.635 78.357 78.173 77.859 77.515 77.084 76.626 76.087 75.551
11 78.745 78.724 78.705 78.650 78.311 78.104 77.753 77.376 76.9311 76.421 75.848 75.283

The highest mean amount of features matched in an image: 78.745, with
lower_threshold = 11s and upper_threshold = 12s.

Figure D.2: SuperPoint+SuperGlue, mirrored rear cam images
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