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1 Introduction

The perception of depth is essential for the understanding and creation of a 3D world. It can be
used in a wide variety of applications such as 3D scene reconstruction and AR but is especially
useful in robotics, where information of three dimensions can be used for perception, navigation
and planning [1]. Depth can be retrieved by a range of different sensors such as an active range
sensor or a camera. While the first can provide highly precise depth information, it is generally
more expensive. The camera however has a relative cheap production cost and recent develop-
ments in deep learning have made it a viable option to consider for retrieving depth. The task
of measuring depth from either a monocular image or stereo images is called depth estimation
and is seen as a computer vision task. In this paper I will primarily focus on the theory behind
stereo vision, providing a mathematical background of the triangulation process and use this to
show the differences and similarities between a metric depth, disparity and inverse depth map.

2 Stereo Vision

Stereopsis is the perception of depth using binocular vision and one of the depth cues used by
humans and other animals. The different lateral positions of the eyes result in two slightly dif-
ferent images which get projected to the retinas [2]. These differences are primarily in the rela-
tive horizontal position of objects in the scene and can be referred to as horizontal disparities.
These disparities are processed in the visual cortex which eventually yields the ability to perceive
depth. Other depth cues include size of objects, texture, linear perspective and motion parallax.

This capability of stereopsis can be emulated by computational systems in the form of stereo
vision. By finding correspondences between points that are seen in both images and using a
known baseline separation between cameras it is possible to compute the 3D location of these
points.

2.1 Linear Camera Model

Background knowledge is needed on the workings of a single camera before explaining the pro-
cess of acquiring depth using two cameras and a triangulation method, for this the linear camera
model is used. This model is also known as the pinhole camera model, it can be used to describe
the mathematical relationship between the coordinates of a point in 3d space and its projection
onto the image plane. The aperture of the camera is as a point hence the name pinhole.

In figure 1 two models of the pinhole camera are displayed from the side. The left model
shows the projection plane behind the pinhole while the right model shows it in front of it. The
right model is also called the virtual pinhole camera as it cannot be implemented in practice,
but provides a theoretical camera which is simpler to analyse because it produces an unrotated
image. This model will be used for the remainder of this section.
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Figure 1: Physical model of pinhole camera on the left, virtual model where the projection
plane is in front of pinhole on the right, by [3]

The model used puts the projection plane at Z = f where Z is along the axis perpendicular to
the walls and f is the focal distance. Since this creates two similar triangles it follows that:
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These equations can be used to describe the relation between the 3d coordinates and its image
coordinates on the image plane.

To map these image plane coordinates to the camera’s image sensor, the pixel densities
should be taken into account. Pixels may be rectangular so the density (pixel/mm) m is differ-
ent for the x and y direction. This mapping can be described as follows:

u = mxx = mxf
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Both mxf and myf can be combined to get the focal lengths in pixels in the x and y directions:

u = fx
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Z
, v = fy
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The principle point is the point where the optical axis intersects the image plane, it can also be
referred as the image center. Pixel coordinates are usually not given with respect to a frame that
is centered at the pixel coordinates, most often the top-left corner of the image sensor is treated
as its origin. This should be accounted for by adding the pixel coordinates (ox, oy) of the princi-
ple point to our equations:
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Using homogeneous coordinates the non-linear equations can be represented in linear matrix
form, which is more convenient. The 3x4 matrix in the middle is called the internal camera ma-
trix K: uv

1
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Rewriting the equations also benables the computation from 2D to 3D shows that it is not possi-
ble for a point as Z can’t be isolated, which emphasises that a stereo camera model is required:

X =
Z

fx
(u− ox), Y =

Z

fy
(v − oy), Z > 0
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2.2 Simple Stereo System

Figure 2: Simple Stereo System, by [4]

In order to reconstruct 3D more information is needed,
a simple way of doing this is by using two identical
cameras where one of the cameras is displaced along
the horizontal direction. This displacement can be seen
in figure 5, it is called the horizontal baseline and is in-
dicated with B. This setup with a left camera and a
right camera is called a simple stereo system and is a
form of binocular vision. It can also be simulated using
a single camera which takes two images with a horizon-
tal displacement of B.

First, a matching scene point must be found in
both images. This process of finding matching scene
points is called stereo matching and will be covered
later. In figure 5 these points are represented by x for
the left camera and x′ for the right camera. They can
also be written in the pixel format introduced earlier:

(ul, vl), (ur, vr)

The point where both camera rays, which go through their respective pixel point, intersect is
where the scene point is located corresponding to the two image points.

Using the linear camera model equations as seen in the previous section equations can be
obtained for both pixel points, notice the minus B in the right camera which corrects for the
horizontal displacement:
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These equations can be solved for X, Y and Z:
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The final equations for X, Y and Z thus are:

X =
B(ul − ox)

(ul − ur)
, Y =

Bfx(vl − oy)

fy(ul − ur)
, Z =

Bfx
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In all three denominators (ul − ur) is found, this is the difference of the u coordinate of the same
scene point in the two images also known as the disparity. The equation for depth Z and figure
3 show that depth Z is inversely proportional to disparity. Which means that the disparity will
be large when a scene point is very close to both cameras and will shrink as it moves away from
the cameras. When the scene point approaches infinite depth the disparity will go to zero, which
means that there is no difference of the position of the point in the images.

Similarly, the disparity is proportional to the baseline B. As you increase the baseline the
difference and thus the disparity between the two images will also increase.

Finally, by rearranging the depth equation Z it can be showed that disparity is proportional
to inverse depth:

Z =
Bfx

(ul − ur)
Rearrange
−−−−−−−→

(ul − ur) =
Bfx
Z

An inverse depth map is able to represent features with a depth value of infinite, as these values
will become zero which leads to fewer problems [5].

Figure 3: Depth and disparity are inversely related, so precise depth measurement is re-
stricted to nearby objects, by [6]
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Figure 4: Disparity map (right) obtained with a mobile device on a robot arm, using the
technique of [7]

Figure 3 shows the extraction of a disparity map from two images, if the camera calibration
is known a metric depth map can be generated using these disparities. This example also shows
that for some areas no disparity can be extracted, which is indicated with the black color. This
is called the correspondence problem, a fundamental problem in computer vision. [8]

2.2.1 Stereo matching

Finding the correspondences between two stereo images is called stereo matching and is required
for extracting the disparity values. Traditional approaches are based on finding matching fea-
tures or templates, where two corresponding points are found using similarity metrics. Newer
stereo matching methods based on deep learning have achieved performance far exceeding the
traditional approaches. [9]

Figure 5: Template matching, by [10]

The traditional matching approaches use the
fact that vl = vu, indicating that there is
no vertical disparity. As a result, it can be
concluded that corresponding scene points lie
on the same horizontal scan line. By taking
a small template window from the left im-
age and sliding it along its horizontal scan
line on the right image a correspondence can
be found. A small template window will give
good localization but is sensitive to noise, a
larger window has poor localization but is less
sensitive as it obtains more robust matches.
A solution for this is using an adaptive win-
dow size approach where the window size
with the best similarity measure for that spe-
cific point is used. [11] Commonly used similarity metrics are: Sum of Absolute Differences, Sum
of Squared Differences and Normalized Cross-Correlation. [12]

3 Conclusion

This paper has shown the geometric and mathematical background behind stereo vision and the
maps it can produce using a simple stereo system and the triangulation process. The extracted
equations show that disparity is inversely proportional to depth Z, making the disparity map
proportional to the inverse depth map. A disparity map visualizes the horizontal displacement
of a 3D scene point’s projections between the left and right image, metric depth can be obtained
by using the equation for Z but this is only possible when camera calibration is known. Stereo
matching is needed to find corresponding points between the two images, these correspondences
are used to extract the disparities. Traditional stereo matching algorithms use a horizontal slid-
ing window approach, the window size can be adjusted to increase or reduce noice and localiza-
tion quality. Newer algorithms using deep learning have a greatly increased accuracy and thus
are now the preferred approach.
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