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Abstract

In an adaptive convolutional neural network, there is a need for partial weight
freezing, which can lead to overfitting during the reconstruction stages of the net-
work. This thesis aims to investigate the effects of layer-wise distillation on the
reconstruction performance of adaptive convolutional neural networks in image
classification tasks. To achieve this, we implemented three training methods for
our custom adaptive convolutional neural network. Namely, knowledge distilla-
tion, cross-entropy, and layer-wise distillation. We analyzed all three training
methods on adaptive ResNet-18 and ResNet-56 architectures and found that these
distillation techniques do not improve the performance further when compared to
cross-entropy loss training. We also implemented layer-wise distillation on a ball
classifier network which can be used for robot soccer. This showcased the valid-
ity of layer-wise distillation as a training method tasked with image classification
tasks using non-adaptive convolutional neural networks.
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Chapter 1

Introduction

Modern computer vision is largely driven by deep neural networks (DNN), more
specifically convolutional neural networks (CNN) [4][5]. These network architec-
tures have become integral in achieving state-of-the-art performance on a wide
range of computer vision tasks ranging from image classification to robotics [6][7][8].
However, the deployment of CNNs is limited by their computational complexity
and memory footprint. These constraints are especially prevalent in edge devices
like self-driving cars, robotics, and other EdgeAI systems. Here, on-board compute
and storage resources can be limited and fluctuating, preventing these devices from
performing on-board data processing. While significant research has focused on
reducing the computational complexity of CNNs [9][10][11][12], a research gap per-
sists in developing solutions that achieve an optimal balance between performance
and resource efficiency, especially for EdgeAI applications where these constraints
are critical. Adaptive neural networks represent a possible solution to these chal-
lenges.

Adaptive neural networks are especially well-suited for environments with lim-
ited and fluctuating resources. They offer network elasticity, dynamically adapting
their architecture based on available system resources while balancing performance
and computational efficiency. This thesis only considers adaptive CNNs for clas-
sification tasks. In our approach, the CNN is first compressed using structured
pruning and then reconstructed using partial weight freezing and retraining.

Challenges and Solutions: A current limitation of this approach is the
saturating performance of adaptive CNNs during the reconstruction phase, see
Section 3.2. This problem emerges from the utilization of partial weight freezing,
and in order to address this challenge, we aim to investigate whether layer-wise
distillation (LWD) or an increased architecture size could provide a solution.
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1.0.1 Research Question

The overarching research question that this thesis aims to address is:
What effects do LWD and architecture size have on the reconstruction performance
of adaptive CNNs in image classification tasks.
The motivation behind researching LWD specifically is to explore the benefits of
LWD in the reconstruction phase of adaptive CNNs and whether it could help with
alleviating the saturation problem in network performance, which is an unexplored
research area.
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Chapter 2

Background and Related
Research

This chapter provides the background for CNNs, adaptive architectures, and some
performance metrics. It briefly reviews pruning, knowledge distillation, LWD in
LLMs, and early exit networks.

2.1 Background

2.1.1 Convolutional Neural Networks

In the context of computer vision, a CNN is a specialized type of neural network
that is able to learn the characteristics of a dataset called features through a process
of sliding a filter across an image or previous feature map. This sliding process
across an input image or feature map produces a feature map that can contain
important information about what is present in the input image. The accuracy
of a CNN can be improved by increasing the depth of the network [4], having a
singular input image that generates many consecutive feature maps that all work
together to extract features at different levels of abstraction. Throughout many
iterations of this process, the filters get optimized so that they become better at
recognizing features. In the process of improving network performance, CNNs have
required an increasingly large amount of computational resources, associated with
the increased depth of the network. This is often a bottleneck to deploy CNNs in
environments with constrained and fluctuating computational resources.
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2.1.2 Adaptive and Early-Exit Architectures

Adaptive Architectures

In order to increase the feasibility of DNN deployment in environments with con-
strained and fluctuating computational resources, the concept of network adaptiv-
ity has been proposed [13][14][15][16]. Adaptive networks are able to dynamically
adjust their architecture based on the availability of resources. This allows sys-
tems with limited and variable resources to utilize full network capacity when
resources are ample and scale down the network capacity when resources become
more scarce.

Early-exit Architectures

Early-exit architectures are used for similar purposes as adaptive networks by pro-
viding an alternative way to deploy networks on systems with constrained and fluc-
tuating computational resources. These networks have multiple exits throughout
the architecture which allow the network to exit early during inference if there is
not enough compute available to complete a full pass through the network [17][18].

2.1.3 Performance Metrics

This section describes the two main performance metrics which are used through-
out the experiments to test the network performance during reconstruction.

F1-Score

F1-score is a performance metric for classification problems. It combines precision
and recall into a single score [19].

F1-score =
2 · Precision · Recall
Precision + Recall

Precision =
TP

TP + FP

Recall =
TP

TP + FN

(2.1)

Where TP refers to true positive, FP to false positive, and FN to false negative.
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Accuracy

Accuracy is a straightforward measure that indicates the ratio of correct predic-
tions over all predictions.

Accuracy =
TP + TN

TP + TN + FP + FN
(2.2)

2.2 Related Research

2.2.1 Pruning

Modern DNNs such as large language models (LLM) or CNNs require a signifi-
cant amount of computational and storage resources. Furthermore, it has become
increasingly interesting to deploy these capabilities on edge devices. For exam-
ple, many self-driving cars make extensive use of computer vision to detect their
surroundings, and human-oriented robots utilize LLMs to naturally communicate
with their human counterparts. These machines often have limited hardware that
is not suitable for running large AI networks. Especially since the introduction of
the transformer [20], there has been a significant increase in pruning research, as
can be seen in Figure 2.1. This is a clear indication of people requiring compute
heavy AI capabilities in computationally constrained environments.

Figure 2.1: Research papers published over time on pruning and network compres-
sion. Source: [1]

There are many pruning variants, and the choice of pruning method is use-
case dependent. The core concept of pruning is to reduce the complexity of a

10



network by removing the components which contribute the least to the network
performance while minimizing the performance penalty. Pruning techniques can
be broadly categorized into unstructured pruning and structured pruning.

Unstructured Pruning

Unstructured pruning turns a dense neural network into a sparse one, see Figure
2.2. This is achieved by removing individual weights based on optimizing the
trade-off between network complexity and performance [21].

Figure 2.2: Unstructured pruning turns a network from a dense into a sparse one

Definition 1 [1] Given a set of weights W = w0, w1, ..., wK , a dataset con-
taining input x and output y pairs: D = (xi, yi)

N
i=1, and the amount of weights

which should be left unpruned: k with k < K. Unstructured pruning can be
mathematically described as the following optimization problem [22]:

min
W
L(W ;D) = min

W

1

N

N∑
i=1

ℓ(W ; (xi, yi))

s.t.||W ||0 ≤ k

(2.3)

Here, ℓ(·) is the standard loss function (e.g., cross-entropy loss), w is the set of
parameters of the neural network, and || · ||0 is the standard L0 norm.
Given the unstructured pruning of weights, the resulting sparse tensors maintain
the identical spatial representations of their unpruned variant. Hence, it is not
a viable option for improving the inference time on systems that utilize GPUs
that are optimized for spatial regularities in the weight tensors and thus require
a structured reduction of the weight tensors while maintaining the same spatial
regularities to achieve faster inference time.

11



Structured Pruning

Structured pruning has a more coarse-grained granularity than unstructured prun-
ing, but it is able to achieve network speedups in addition to reducing network
size. It does this through removing filters [23], channels [24], transformer atten-
tion heads [25], or even layers [26]. Structured pruning can be defined similarly
to Definition 2.1, although it now operates on filters or channels in comparison to
individual weights. Our framework for creating adaptive CNNs exclusively uses
structured channel pruning. Channel pruning reduces the width of the feature
maps making it efficient on GPU since spatial regularities are maintained [27].

2.2.2 Knowledge Distillation

Knowledge distillation (KD) is a technique that transfers knowledge from a large
and computationally complex network to a smaller one. This enables deploying
smaller AI networks on less powerful hardware while maintaining acceptable net-
work performance [11].

The most common variant of KD utilizes the logits from the teacher as trans-
ferable knowledge. In order for the student network to learn from the teacher
network, the difference between the smoothed logits from the teacher and the log-
its from the student is introduced as a distillation loss, which is added to the
total loss. The teacher network usually produces outputs where the correct class
is assigned an output probability close to 1 while all other classes are assigned an
output probability close to 0. This is not very informative for the student network
since it can benefit from information about which classes were also likely. In order
to transfer this more nuanced information, a temperature parameter is used [11].
T is the temperature parameter with a default value of 1. Using a higher value for
T produces softer target distributions, which are more informative for the student
network as they reveal the relative probabilities of incorrect classes instead of just
the correct one.

qi =
exp(zi/T )∑
j exp(zj/T )

(2.4)

where zi denotes the logits and qi denotes the class probabilities.

Hint-based KD

An alternative approach to distillation is hint-based KD. The core concept with this
approach is to not only use the outputs of the teacher but also the intermediate rep-
resentations of the activations from hidden layers, learned by the teacher as hints
for the student. This additional information can lead to improved performance of
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the student [28]. The loss function is thus extended by a mean squared error loss
between the intermediate representation of the student and teacher networks. It is
possible to construct a loss function which incorporates both distillation loss and
hint-based intermediate representation loss, or alternatively, a loss function which
only uses the intermediate representation loss in addition to the regular network
loss, as can be seen in Figure 2.3.

Figure 2.3: Hint-based KD. Source: [2]

2.2.3 Layer-wise Distillation

LWD is similar to hint-based KD; there is a student and a teacher network, and
the student distills knowledge from the teacher by mimicking the hidden repre-
sentations of the teacher at every intermediate layer. LWD has successfully been
used to compress LLMs [29].
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Chapter 3

Method

3.1 A Framework for Adaptive CNNs
This thesis utilizes a custom framework for classification that is able to generate
adaptive CNNs known as descendant networks, as illustrated in Figure 3.1. This
is done through a process of compressing a pretrained network down into the core
network and then reconstructing the network iteratively by reintroducing the pre-
viously pruned channels and retraining the weights of those channels. Compressing
the network down is done through structured pruning, and reconstructing is done
through a two-step process of partial weight freezing and retraining the unfrozen
weights, as described in Section 3.1.1. This retraining step can utilize losses like
cross-entropy or knowledge distillation but suffers from overfitting or performance
saturation. This is caused by partial weight freezing, this is described in more
detail in Sections 3.2 and 5.3.3.

The pruning criterion used is L1-Norm, we decided to use this technique since it
is computationally efficient while providing competitive performance in comparison
with other techniques [30]. The L1-Norm will be computed over the channels of
each layer to estimate their importance. The channels with the least importance
will be removed. This process happens iteratively and after each step, metadata
will be saved as a dictionary, containing information about what has been pruned
along with the associated indexing information. The smallest descendant network,
or core network, is what remains after the pruning stage. This means that if the
network is pruned in 3 steps with a 20% prune ratio each step, the resulting core
network has a size of: original size ∗ 0.23.

The reconstruction stage is an iterative process comprised of fine-tuning and
partial weight freezing stages. This process is illustrated by Figure 3.2. The
reconstruction phase initializes with the retraining of the core network. After
that, the next descendant network is initialized with the weights from the core
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network and the channels that were pruned in the compression stage pertaining
to this level. The weights of the retrained core network are then frozen, and
the reintroduced filters are retrained. This process continues until the pruned
network is reconstructed in an identical amount of steps as the pruning stages,
reconstructing the pruned network to exactly the same size as the original network.

The pruning and reconstruction process is illustrated by Figure 3.1.

Figure 3.1: Iterative pruning and reconstruction. Source: [3]

3.1.1 Partial Weight Freezing

As stated above, reconstruction is a two-step process. After the compression stage,
the last descendant network is called the core network, and the size of the core
network is based on the desired prune ratio and network architecture specifications.
The first step in the reconstruction process is the retraining of the core network,
which can be done with any loss function (e.g. cross-entropy loss, knowledge
distillation, or LWD). Retraining the core network is the only reconstruction stage
that does not utilize partial weight freezing. The core network is the lowest level
descendant network and every descendant network after that is constructed using
two components:
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• The weights that were retained and retrained in the previous descendant
network level WL−1.

• The additional weights Wl that were pruned in iteration L that are now
being reintroduced into the descendant network.

So the previously trained weights WL−1 are used directly in the new network
but kept frozen, and only the new weights Wl are being updated during training, as
illustrated by Figure 3.2. The partial weight freezing is applied through gradient
masking. Specifically, a binary mask G is used to zero out the gradients of the
shared weights during backpropagation:

WL ← WL − η(G⊙∇L) (3.1)

where Gij = 0 for all entries belonging to WL−1 (shared weights), and Gij = 1 oth-
erwise. This ensures that only the reintroduced weights are trainable, preserving
compatibility with lower level descendant networks.

3.2

Figure 3.2: Network partial weight freezing and rebuilding illustration. Source: [3]

This mechanism is the backbone of adaptive neural networks, and it allows
for multiple nested descendant networks to coexist. When weights get retrained
in a descendant network that utilizes partial weight freezing, the accuracy of the
network saturates or starts showing overfitting, as discussed in Section 3.2. We
could attribute this to the partial weight freezing.

3.2 The Saturation Problem
A major challenge that is introduced as a direct consequence of partial weight freez-
ing is the saturation or overfitting of network performance during reconstruction.
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When using the regular cross-entropy loss function on our adaptive ResNet-18
with partial weight freezing, we observe saturating performance, this is illustrated
along with the associated network parameters at each stage in Figure 3.3.

(a) Adaptive ResNet-18 accuracy (b) Adaptive ResNet-18 parameter count

Figure 3.3: Network parameters and associated network performance during net-
work reconstruction.

For all three rebuilding stages, the ratio of frozen to non-frozen parameters
increases. Consequently, the severeness of the saturation increases for every step,
as indicated by the growing discrepancy between training and validation accuracy
in Figure 3.4. The core network is intentionally left out since there is no weight
freezing implemented at this level.
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Figure 3.4: Saturating network performance in the third, second, and first recon-
struction stages.

Adaptive ResNet-18 utilizing cross-entropy loss has not overcome the satura-
tion problem, as indicated by the red arrows in Figure 3.4. This thesis aims to
investigate the effects of LWD and architecture size on the reconstruction perfor-
mance. We specifically want to explore if LWD in ResNet-18 and ResNet-56 can
overcome the saturation problem.
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3.3 Layer-wise Distillation Implementation
In order to verify whether LWD can provide a solution to the saturation problem,
we implemented it for the custom framework outlined above. The teacher net-
work is initialized with a set of pretrained weights. Furthermore, the network has
additional intermediate output layers which output the feature maps of several
intermediate convolutional layers. These outputs get aligned manually with the
intermediate output layers of the student network. These intermediate outputs are
used to calculate the layer-wise loss, which is a summation of the mean squared
error between all intermediate student and teacher outputs. The loss function is
a combination of cross-entropy loss, distillation loss, and layer-wise loss:

ℓ =α · classification_loss+

(1− α) · (ω · distillation_loss + (1− ω) · layer_loss)
(3.2)

Implementing LWD requires some considerations. In order for the student to be
able to learn from the teacher, there needs to be a degree of alignment between
the teacher and student architecture such that the intermediate outputs are mean-
ingful. We only use pretrained teacher networks with the same architecture as the
student. Other architectures would have different features altogether.

If the networks have a meaningful architecture with respect to each other,
then the LWD can be implemented by providing a list of intermediate teacher
channels and student channels. These channels will be used to indicate where the
intermediate layers are located within the network. The output feature maps of
the student and teacher networks are then aligned by a transformation layer which
takes the student channels as input and teacher channels as output and computes
a convolution with kernel size 1 to align the tensor dimensions of teacher and
student feature maps. These aligned dimensions are necessary since the layer-wise
loss is constructed as a sum of mean squared error losses between the respective
teacher and student intermediate output feature maps.

LWD is illustrated in Figure 3.5.
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Figure 3.5: LWD
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Chapter 4

Experimental Setup

4.1 Datasets and Preprocessing

4.1.1 Datasets

CIFAR-10
The CIFAR-10 dataset was used for the experiments described in Sections 5.1,
5.2, and 5.3. The CIFAR-10 dataset contains 10 classes, each with 6000 RGB
images. The total dataset thus contains 60000 32x32 images, of which 10000
are part of the test set and 50000 are part of the train set [31]. CIFAR-10 was
used for initial experimentation and the hyperparameter search since it is a widely
recognized benchmark dataset and computationally efficient due to the small image
size. CIFAR-10 was chosen over more complex benchmark datasets like ImageNet
for the experiments in Section 5.3. The reasoning behind this was that solving the
saturation problem is fundamentally different from benchmarking the network on
a state-of-the-art dataset, and it would speed up our experiment significantly to
utilize CIFAR-10.
The Standard Platform League Ball Dataset
The Standard Platform League (SPL) Ball Dataset is a dataset containing more
than 100,000 48x48 grayscale images of Robocup SPL scenes, with or without a
ball in them. This data can be used to train a binary ball classifier. This classifier
can then be deployed on the NAOv6 robots to assist them in playing autonomous
robot soccer. This dataset is used in Section 5.4.

4.1.2 Preprocessing

Data Augmentation
In order to reduce overfitting, data augmentation was applied for CIFAR-10. This
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creates a more diverse set of data, which helps the network generalize better.

• Horizontal flip: 50% probability,

• Vertical flip: 20% probability,

• Affine transformations: 50% probability to apply a random amount of shear,
rotation, scale, or translation,

• Crop: 50% probability to crop some of the images by 0-10% of their height/width.

Normalization
The pretrained networks used in our ResNet experiments use these normalization
parameters:

• Mean: [0.4914, 0.4822, 0.4465]

• Standard deviation: [0.2023, 0.1994, 0.2010]

To ensure that the input images are similar to what the pretrained networks were
trained on, the same normalization parameters are applied.

4.2 Networks and Architectures

4.2.1 ResNet

In order to facilitate training deeper neural networks, the ResNet architecture was
created. It introduced residual blocks that utilize skip connections in order to
overcome the vanishing gradient problem. This method argues that it is easier for
a network to learn the residual instead of the entire representations from scratch
[4].

We used ResNet-18 since its more compact network size is ideal for smaller
datasets like CIFAR-10. We used the pretrained PyTorch network from [32]. This
architecture was used in Sections 5.1, 5.2, and 5.3.

To research whether a deeper architecture could alleviate the saturation prob-
lem, ResNet-56 was utilized in Section 5.3. ResNet-56 uses the same concepts as
ResNet-18 but with more layers.

4.2.2 Ball Classifier

The binary ball classifier can be deployed on the NaoV6 robots in order to partic-
ipate in SPL robot soccer. We created both a student and teacher network, and
their architectures can be found in Appendix A: Figures 1 and 2 respectively.
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4.3 Hardware and Software Setup
The hyperparameter search was conducted on the monsterfish workstation, using
a NVIDIA Titan RTX. This experiment was conducted on monsterfish since the
time limit for jobs on the Snellius supercompute cluster was not enough to run the
program. The remainder of the experiments was run on the Snellius supercomputer
provided by SURF. All experiments that were run on Snellius used the A100 GPUs.
In order to construct and train our neural networks, we used the PyTorch deep
learning library [33].

4.4 Training and Fine-Tuning Setup
The reconstruction of the networks was done using three methods: cross-entropy,
KD, and LWD. We used the Adam optimizer [34] in combination with a cosine
annealing learning rate scheduler [35]. For the ResNet-18 experiments, a learning
rate of 1e-3 was used. However, this learning rate showed significant overfitting in
the ResNet-56 experiments, so we used a learning rate of 1e-4 there to reduce the
overfitting.

4.5 Evaluation Metrics
The primary performance metrics used to track and showcase the saturation prob-
lem are F1-score and accuracy. Furthermore, the parameters, network size, and
MACs were used to showcase the computational resources that were used at various
reconstruction stages.
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Chapter 5

Experiments and Results

5.1 Experiment 1: Initial Comparison
After implementing LWD, an initial experiment was conducted that set out to
explore how the core network after a one-shot prune of 20% would perform for the
various types of loss functions: cross-entropy, KD, and LWD. The results can be
seen in Figure 5.1.

Figure 5.1: Accuracy and F1 score of a 20% pruned network for various types of
training methods.
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Both the F1-score and accuracy decreased for each method that increases the
amount of transferrable information. This was opposite to our initial expecta-
tion, which was that the accuracy and F1-score would improve when increasing
the amount of transferrable information to the student. In order to explain this
result, we hypothesized that due to the increase in transferrable information, the
network might need more epochs and optimized hyperparameters in order to uti-
lize the increase in distilled information. As a result, a hyperparameter search was
conducted.

5.2 Experiment 2: Hyperparameter Search
The hyperparameter search needed to be computationally feasible, and hence only
the alpha and omega parameters, as described in equation 3.1, were considered for
the LWD hyperparameters on ResNet-18. Each experiment was run for 100 epochs.
The results are shown in Figure 5.2 and 5.3. These heatmaps show the average
of the performance over all stages and which parameter combination performs
optimally.

Figure 5.2: Accuracy heatmap for LWD.
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Figure 5.3: F1 score heatmap for LWD

From these figures, we can conclude that α = 0.5 and ω = 0.75 are the optimal
hyperparameters, and these will be used for the LWD experiments described in
experiments 3 and 4. What these values mean intuitively is that the LWD loss
function is comprised of 50% cross-entropy loss, 37.5% distillation loss, and 12.5%
layer-wise loss.

5.3 Experiment 3: CIFAR-10 on Adaptive ResNets
This experiment was conducted to research the effects of LWD and architecture
size on the reconstruction performance of adaptive ResNet-18 and ResNet-56 ar-
chitectures. The aim of this experiment is twofold. First, we would like to know if
LWD is able to better mitigate the effects of saturation due to partial weight freez-
ing in comparison to KD and cross-entropy. Second, we are interested in the effects
of increasing architecture size with respect to the saturation problem. For each
architecture, three experiments will be conducted: one using regular cross-entropy,
one using KD, and one using LWD.

Each experiment has four stages: core, stage 3, stage 2, and stage 1. Only
stage 3, 2, and 1 utilize partial weight freezing during reconstruction because the
core network has no frozen parameters during retraining. Hence, only stage 3, 2,
and 1 are considered when we discuss the partial weight freezing problem. In order
to present the results in a more concise manner, we left the figures for stage 2 out.
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5.3.1 ResNet-18

We are interested in exploring whether LWD can overcome the saturation problem.
The saturation problem for KD and cross-entropy can be seen in Figure 5.5 and
Figure 5.6 respectively.

(a) Reconstruction stage 3 network performance

(b) Reconstruction stage 1 network performance

Figure 5.4: Reconstruction performance - LWD - ResNet-18

From Figure 5.4 it can be observed that there is a similar amount of discrepancy
between the validation and training accuracy in the stage 1 network performance
as in Figure 5.5 and Figure 5.6. Furthermore, all methods seem to be experiencing
saturation at an accuracy of around 0.8. Here, partial weight freezing prevents the
validation accuracy from exceeding this limit. This indicates that LWD is not able
to overcome the saturation problem. This is discussed in more detail in Section
5.3.3.

27



(a) Reconstruction stage 3 network performance

(b) Reconstruction stage 1 network performance

Figure 5.5: Reconstruction performance - Knowledge distillation - ResNet-18
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(a) Reconstruction stage 3 network performance

(b) Reconstruction stage 1 network performance

Figure 5.6: Reconstruction performance - Cross-entropy - ResNet-18

Figure 5.7 shows the accuracy for KD, cross-entropy, and LWD methods for
ResNet-18. Layer-wise seems to be performing slightly worse or similar compared
to the other two methods. In the core network, this might be due to the smallest
network not being able to incorporate the teacher’s complexity or the network
being over-constrained by having to learn a lot of information with limited param-
eters. In the ResNet-56 experiment, the methods all had equal performance on
the core network, as illustrated by Figure 5.11.

Except for the architecture size, there was no difference in implementation,
further hinting that the cause of KD and layer-wise under-performing in the core
network of ResNet-18 might be due to the smaller network size of 75.000 param-
eters instead of the 250.000 parameter core network of ResNet-56, as illustrated
by Figures 3 and 4 in Appendix A. Furthermore, LWD is being outperformed
at stages 3, 2, and 1 as well, and this could be attributed to the partial weight
freezing. This is discussed in more detail in Section 5.3.3.
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Figure 5.7: ResNet-18 accuracy across methods

5.3.2 ResNet-56

The aim of incorporating ResNet-56 in the experiments is to explore whether a
larger architecture in itself can overcome the saturation problem due to partial
weight freezing. If a significant change in saturation occurs, it indicates that a
larger network size might inherently be able to solve the saturation problem.

Figures 5.8, 5.9, and 5.10, show the saturation problem is still prevalent. This
suggests that the partial weight freezing mechanism is causing a saturation in
performance similar to ResNet-18. The saturation does happen at a different
accuracy. Where the ResNet-18 saturation was capping validation accuracy at 0.8,
ResNet-56 seems to be capping between 0.6 and 0.65. Through experimentation,
we observed that ResNet-56 will also cap at 0.8 if the learning rate is the same as
the one used for ResNet-18, although this also led to significant overfitting that was
not due to partial weight freezing, obscuring what impact partial weight freezing
had in comparison to regular overfitting. This was the reason why we decided to
use a lower learning rate for ResNet-56, as described in Section 4.4. The result is
that the performance of ResNet-56 is significantly lower than ResNet-18, but this
is not very relevant for our investigation of the partial weight freezing problem.
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(a) Reconstruction stage 3 network performance

(b) Reconstruction stage 1 network performance

Figure 5.8: Reconstruction performance - Layer-wise - ResNet-56
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(a) Reconstruction stage 3 network performance

(b) Reconstruction stage 1 network performance

Figure 5.9: Reconstruction performance - Knowledge distillation - ResNet-56
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(a) Reconstruction stage 3 network performance

(b) Reconstruction stage 1 network performance

Figure 5.10: Reconstruction performance - Cross-entropy - ResNet-56

Figure 5.11 shows the accuracy for KD, cross-entropy, and LWD methods for
ResNet-56. The figure does not differ significantly from Figure 5.7 which is ex-
pected since increasing the network size has proven ineffective in solving the satu-
ration problem. It is noteworthy that the accuracy of the core network is equal for
each method, which is different from what we observed in the case of ResNet-18.
As discussed above, this is likely due to the increase in parameter count between
the ResNet-18 and ResNet-56 core networks which can be seen in Figures 3 and 4
in Appendix A.

33



Figure 5.11: ResNet-56 accuracy across methods

5.3.3 Evaluation of the Results

The discrepancy between the training and validation accuracy increases through-
out the stages, with stage 1 showcasing the largest gap, as can be seen in the
figures above. The performance saturation observed with partial weight freezing
is potentially caused by two side effects of partial weight freezing:

• Over-compensation of the trainable weights.

• Increasing constraints on every subsequent descendant network.

The number of parameters increases with each subsequent stage, and so does the
number of frozen parameters. With ResNet-18, the network parameters for each
stage are displayed in Table 5.1.

Table 5.1: Network Parameters by Reconstruction Stage

Stage Total Parameters Frozen Parameters Trainable Parameters
Core 78,142 0 78,142
Stage 3 118,652 78,142 40,510
Stage 2 180,281 118,652 61,629
Stage 1 272,474 180,281 92,193
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The amount of trainable parameters is about half of the frozen parameters for
each stage except for the core network. When reconstructing the network, these
trainable parameters still receive the same amount of loss as the full network would
and thus will be over-compensating for all the frozen parameters. Furthermore,
for each subsequent descendant network, the retained and retrained weights of
the previous descendant networks are frozen, and this means that the current
descendant network has additional constraints on how its weights can be updated
while the loss function and hence the optimization of the network does not take
into account these additional constraints.

We can only reason from the results that these are the main causes of the
saturation problem, but we are not able to prove this due to the black box nature
of neural networks.

LWD seems to perform even worse than KD and cross-entropy because it is
potentially even more impacted by overcompensation due to partial weight freez-
ing. This is because of the way the loss is calculated, incorporating the sum of
mean squared errors that are calculated over all selected feature maps while only
a few channels in those feature maps are unfrozen and hence able to update their
parameters. The resulting LWD accuracy and loss can be seen in Figure 5.12 and
5.13.
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Figure 5.12: Loss and accuracy of ResNet-18 in Reconstruction stage 3
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Figure 5.13: Loss and accuracy of ResNet-18 utilizing the layer-wise approach in
reconstruction stage 1

Furthermore, the increase of architecture size does not seem to alleviate the
performance saturation. While we initially hypothesized that a larger architecture
might be more suitable to manage optimizing a model with additional constraints
and associated overcompensation of the weights and overfitting of the model, ul-
timately leading to the saturation problem, we showed that it is not able to do
so. This suggests that the core issue lies more with the partial weight freezing
mechanism itself and how it is handled in the loss function, rather than simply the
capacity of the network to learn.

5.4 Experiment 4: Method Validation: Ball Clas-
sification

We would like to show that LWD is a valid method for network reconstruction.
In order to showcase this, we want to experiment with non-adaptive architectures
so that there is no influence from the partial weight freezing, pruning, and re-
construction methodologies stated above. This will allow us to experiment in an
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isolated environment, uniquely monitoring the influence LWD has on network per-
formance in comparison with logit-based KD, and regular cross-entropy loss. For
this experiment, two CNNs were constructed, a teacher network with 80.000 pa-
rameters and a student network with 40.000 parameters. They are both trained
on a classification task using the SPL ball dataset. The objective is to predict
whether there is a ball present in 32x32 grayscale images. As shown in Table 5.2,
there is almost no loss in performance when halving the network size. This is
because the classification task is relatively simple and both teacher and student
networks are able to learn adequate internal representations to achieve around a
90% accuracy. Nonetheless, the results in Table 5.2 show that without the adaptive
neural network framework and associated partial weight freezing problem, LWD
performs just as well or slightly better than the student network trained with KD
or cross-entropy loss. The loss function for LWD is identical to Equation 3.1.

Network Type Params Train Acc. Val. Acc.
Student Layer-wise 40k 0.910 0.913
Student KD 40k 0.909 0.913
Student Cross-entropy 40k 0.909 0.912
Teacher Cross-entropy 80k 0.911 0.914

Table 5.2: Comparison of Network Performance

The architectures for both the student networks and the teacher network are
displayed in Appendix A.
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Chapter 6

Discussion

This chapter discusses the current limitations of both adaptive CNNs and our
implementation of LWD. Furthermore, it discusses further research that could be
conducted in order to overcome these challenges.

6.1 Current Limitations
Adaptive CNNs utilize partial weight freezing, which over-constraints the descen-
dant models and causes overcompensation in the weights, leading to overfitting
and saturation of the model performance. This thesis did not find a solution to
the performance saturation problem that occurs due to the partial weight freezing
mechanism used in our adaptive CNN framework. Furthermore, in the current im-
plementation of LWD, the weights might be overcompensating slightly more when
compared to the KD and cross-entropy methods, which was due to the calculation
of the layer-wise distillation loss, as described in 5.3.3.

6.2 Further Research
The current implementation of LWD utilizes MSE to calculate the loss between
the teacher and student feature maps. This method was inspired by hint-based
KD, but it has shown to lead to unstable optimization in our adaptive CNNs. Fur-
ther research could be conducted towards fine-tuning the LWD loss function and
loss calculation mechanism such that the overcompensation of the weights during
reconstruction is reduced, and the stability of weight optimization improved. In
order to achieve this, it would require taking into account which weights are frozen,
calculating the loss function solely based on the non-frozen parameters.

Instead of LWD, novel techniques could be researched and implemented that
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are specifically designed to overcome the saturation problem. These techniques
could be focused on taking into account the different descendant networks and
their frozen weights. This could change the optimization problem to one where
the additional constraints due to freezing are better considered in the loss function.

Once the saturation problem is mitigated, testing in real-world environments
with constrained and fluctuating hardware can be done. This research could po-
tentially provide environment-specific knowledge such as optimal pruning ratios
and network architectures.

40



Chapter 7

Conclusion

This thesis set out to research the effects of LWD and network size on the recon-
struction performance of adaptive CNNs in image classification tasks.

We have shown that LWD does not provide a solution to the inherent problem
of performance saturation due to partial weight freezing. This is due to the effects
of partial weight freezing on our LWD implementation as described in Section
5.3.3.

Furthermore, we showed that increasing the network size from ResNet-18 to
ResNet-56 cannot overcome the saturation problem either. This suggests that the
core issue lies more with the partial weight freezing mechanism itself, rather than
simply the capacity of the network to learn, as described in Section 5.3.

Further research will have to be conducted in order to alleviate the saturation
problem and make our adaptive CNNs a viable option for deployment on systems
with constrained and fluctuating computational resources that require on-board
image processing.
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Appendix A: Complementary Figures

Figure 1: Student network architecture
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Figure 2: Teacher network architecture
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Figure 3: ResNet-18 computational resources per reconstruction stage
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Figure 4: ResNet-56 computational resources per reconstruction stage
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