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Abstract

This thesis researches the object detection and avoidance performance of a driving
model trained in simulation. This model will eventually be deployed in off-road
scenarios which are harder to be trained due to a lack of available data, thus the
training in simulation. To evaluate its performance both its vision and driving
model were tested with various experiments in the real world and in simulation.
These experiments were focused on finding scenarios where performance of either
was lacking or unreliable. In the real world detection suffered under conditions
with little available light, or when objects were occluded. The driving model also
failed to avoid any objects in the real world, although tests in simulation showed
mainly issues with estimating its own size.
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Chapter 1

Introduction

In the field of self-driving, specifically using artificial intelligence, a lot of research
has already been conducted. Tesla for example is even famous for their Autopilot
software on their cars which they claim to be a safer driver than human drivers 1

2. These systems are however designed to work properly on highways and in cities,
but do not support driving in off-road or rural scenarios. There are however a
multiple of applications for these self-driving systems in off-road scenarios: these
systems could be used for example to enable autonomous farming, rescuing hu-
mans in hard to reach areas after a natural disaster or bringing essential supplies
to remote locations to name just a few. Which shows that it is of the utmost
importance to develop models which can perform well in off-road scenarios.

In this field quite a lot of research has already been performed into training
algorithms to be used for segmentation of different terrains and the mapping of
multiple objects. But while there are a lot of available data sets with images
from city and highway driving, which are useful for training models specialised
in city driving, the collection of data sets usable for off-road driving is limited.
One of the reasons for this is that most driving occurs on highways and in cities,
so there are fewer vehicles which could be used for gathering data. And since
off-road driving is also more difficult and often slower, reaching the same average
speed, and thus the amount of miles covered in a similar time-span, is near im-
possible. This makes the training of algorithms and models a lot more challenging.

Due to the limited availability of real-world data that can be used for train-
ing, it is thus interesting to consider other methods for training the models and
gathering data. Generating synthetic data, training models in simulation, adding
random noise or variation to existing data sets or finding methods to increase train-
ing efficiency such that less data will be needed are just a few of the options. This
research will be focused on training a model in simulation and then evaluating its
real-world performance. This heading was chosen since using a simulated environ-
ment for training means that the only limiting factor in terms of data gathering is
the amount of processing power.

1Relevant article: https://futurism.com/the-byte/tesla-safety-autopilot-safer-human
2Tesla safety claims: https://www.tesla.com/VehicleSafetyReport
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This heading is also relevant for the company under which this thesis was con-
ducted, Saivvy. Saivvy specialises in training models using computer vision and
reinforcement learning to operate and control robots which will eventually be used
in off-road scenarios. Before this research was conducted a simulated environment
to train these models for object detection was already set up with the help of other
students. This research aims to further that development by evaluating the real-
world performance of these models by finding their shortcomings and differences
in the real world, since training in simulation rarely transfers perfectly to the real
world.

The goal of this thesis is to evaluate these shortcoming by deploying the trained
models in the real world. These insights will then be used to improve the accu-
racy of the simulation and to determine methods to increase performance and
reliability. Which leads to the main research question for this thesis: Does an
autonomous self-driving model trained in simulation perform to a similar degree
in the real world, specifically in off-road scenarios?

To evaluate this question properly, multiple parts of the model will need to
be evaluated, such as the object detection model, driving model and the overall
controlling system. Only when these separate parts have been evaluated, we can
get an understanding of the entire model’s performance. To evaluate these the
following sub-questions will be answered:

• Does the real world object detection perform similarly compared to the simu-
lated environment?

• Is the driving model capable of navigating to the same accuracy in the real
world?

• Can the control system deal sufficiently with the inconsistencies of the real
world?

The rest of this thesis will be dedicated to explaining the set-up of the rover, the
technical difficulties that occurred during set-up, the experiments that were ran
to evaluate performance, the metrics that were used to measure performance, and
the results we gathered. This will enable these research questions to be answered,
which will help evaluate in what areas the simulated environment needs to improve
to increase real world performance.
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Chapter 2

Related work

As mentioned a lot of research has already been conducted in the area of au-
tonomous off-road driving. For this thesis, two areas of research are relevant.
First off, research into algorithms for localisation and segmentation of objects for
obstacle avoidance is important. Secondly, research into transferring findings from
specific environments to different and unrelated areas is of relevance. Both are
investigated since it is important to understand the underlying algorithms which
need to be trained, and the processes needed to transfer findings to other environ-
ments. Some of the most relevant articles will be discussed in this chapter to get
a better understanding of this field.

2.1 Object detection and localisation

Previous research by Choi et al. 2012 describes an algorithm to detect landmarks
with cameras that can not be detected by LIDAR. These landmarks include speed
bumps, crossings and lane markings. For detecting these obstacles the paper used
a set of three different camera sensors. The image from these cameras was trans-
formed to a top down view and processed using image filters to extract only relevant
details, as pictured in figure 2.1. By utilising these cameras the researchers were
able to create a robust system which performed well in avoiding obstacles along
its path. This research can be used for this thesis to inspire possible algorithms
for obstacle avoidance.
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Figure 2.1: Landmark detection

In a paper by Blanke et al. 2012 an in-depth description of a controlling sys-
tem deployed in a real orchard is provided, which is a similar environment to the
one the robot eventually will have to navigate. This system is divided into multi-
ple independent parts which communicate with each other. Dividing the system
into multiple parts allows for self-regulation which improves the reliability of the
system. There is also a controlling system which ensures higher-level control to
enable path planning and obstacle avoidance. By choosing this design philosophy
the robot can be controlled safely and efficiency while also allowing changes to
individual parts. This design could prove useful for this thesis to allow for quick
changes to certain systems of the rovers while still ensuring reliability.

Finally, in a paper by Bochkovskiy et al. 2020 another algorithm for object de-
tection is proposed, called YOLOv4. This Convolutional Neural Network (CNN)
is trained on the MS COCO data set which contains images of multiple classes
of objects in a single picture. The model manages to outperform other object
detection models on this same data set when taking both speed and accuracy into
account, as pictured in figure 2.2. Although less accurate than some models, this
model requires relatively little processing power to run, which allows for a higher
frame rate, and thus a higher inference speed. These properties are crucial for
autonomous driving since the rover is not that powerful, and the detection speed
thus impacts the ability to make well timed decisions. This model was the inspi-
ration for YOLOv5, which is deployed on this rover in this thesis.

8



Figure 2.2: YOLOv4 performance

2.2 Transfer Learning

The paper by Sharma et al. 2019 is a relevant paper in the field of transfer learning,
the second relevant field for this thesis. It describes a new way of training CNNs
for semantic segmentation. Normally these neural networks are trained using a
data set which is as closely related to the actual task as possible, ideally gathered
from the real world. However, for this training data sets with irrelevant labels and
synthetic data sets were used. The irrelevant labels were filtered out which allowed
for a reduction in the size of the network, and the synthetic data was afterwards
used to further train the network. The researchers also took inspiration from other
well performing networks for the architecture of their own CNN. By combining all
these techniques the researchers were able to achieve fast and accurate results in
segmentation for off-road driving, as shown in figure 2.3. This research is relevant
since it shows unique ways of achieving good performance while having access to
sparse amounts of data.
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Figure 2.3: Evaluation of Learned model

Another paper by Osinski et al. 2020 describes the training of a Reinforcement
Learning based approach in a simulated environment. For this simulation they
used built-in environments for their engine and provided a goal which needed to
be reached. Using this goal the driving policies could be trained completely in
simulation. While for the training of semantic segmentation real and simulated
images were used to enable diversified learning. Testing the trained model resulted
in decent performance in reaching the goal, but it showed inaccurate or over-fitted
results in some cases when the simulation was too simple. This was because small
idiosyncrasies in the design of certain environments made for strange behaviour.
They also observed worse performance in the real world compared to simulation,
which was caused by an increased amount of noise. This paper is relevant since it
shows that even though learning in simulation can be useful, there is still a need
for real world training and testing.
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Chapter 3

Technical Explanation

Since this thesis uses simulation programs, controlling systems, machine learning
techniques and other technical terms, it is important that these are explained
clearly. This section of the thesis will thus be dedicated to explaining the most
relevant terms.

3.1 ROS

ROS is the main operating for the control system of the robot. This operating
system allows for several components of the robot to operate independently. Each
component or system is represented as a node, which functions as a small section of
a network. Nodes can then subscribe or publish messages to certain topics, which
allows these nodes to communicate with each other by sending and receiving mes-
sages. The set-up of this operating system is very similar to the system proposed
Blanke et al. 2012, and thus allows for more independence, adaptability and the
ability to properly detect errors in the program. An overview of the general control
system of the rover is also shown in 8.3 to show the inspiration it took from this
filosophy.

3.2 Rover

The off-road robot, or rover, used for this thesis is the R1 Autonomous Rover
UGV Platform by Aion Robotics. This is a relatively small but capable all-wheel
driven off-road skid-steer platform, which means no wheels can be angled for steer-
ing. Inside is an Nvidia control system tasked with the processing of sensor inputs
and controlling movement. This robot can also be simulated within the Gazebo
simulation environment so that a comparison can be made between simulated and
real-world performance. Below in figure 3.1 the rover is pictured along with an
external battery, the external computer and the RealSense camera.
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Figure 3.1: Picture of the rover

3.3 Gazebo

Gazebo is a simulation toolbox designed to allow easy and accurate simulation
of robots within different environment. It uses physics simulations to accurately
mimic movement of the robot. It also allows for the placing of multiple objects to
test obstacle avoidance, while including multiple maps and environments built-in
as well, which can be used to evaluate performance in different scenarios. One
caveat with this simulator is that there is no direct way of simulating computer
vision. The state machine uses topics which contain the position and size of each
existing object. This means the rover is not restricted in its knowledge of the
world, which makes an impact on the gap we are evaluating. Pictures of this
environment will be shown in the experiments and results sections of this thesis.

3.4 RealSense

The camera system used on the rover is an Intel RealSense depth camera. This
system uses multiple cameras to measure the depth of objects while also trying
to understand their dimensions and shape. This system is well known for good
performance and can be easily installed on the robot to extend its functionality.
The system creates an output for the location and size of detected obstacles which
is used as an input for the driving model. The system is mounted nearly at the
front of the rover on a mount to ensure a higher viewing point for better overview,
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it can be seen in figure 3.1.

3.5 State machine

The state machine is is responsible for making decisions for the rover on where to
go, what objects to avoid and how to reach its goal. To make these decisions, the
model has a list of options (states) which it evaluates and chooses from, depending
on the situation. To choose from these states it uses multiple different parameters.
These determine at what distance it should start avoiding an obstacle, what speed
it can use to do so, what distance to maintain while performing the manoeuvre,
and when to make an emergency stop among other options.

While in motion, the model can perform a basic forward, backwards and idle
movement, depending on the input of the user. Once it detects an object it should
automatically start manoeuvring around it by entering an avoidance state when
in a certain range. This distance is configurable as well as many other parameters
such as the safety margin used when avoiding an obstacle. Once this move is
completed it should then continue moving in the specified direction. If an object
is however detected too late to start a manoeuvre, or no suitable path is found, the
rover enters an emergency stopping state to protect it from running into an object.
An overview of all states of this model is included in Appendix A. Overall the state
machine allows for good configuration while remaining simple and efficient in its
decision making.

3.6 YOLOv5

To detect obstacles in front of the rover the YOLOv5 1 model is used, which was
also trained on the same MS COCO 2 data set. This model is an improved version
of the YOlOv4 model which was mentioned previously in Chapter 2. It is an even
further improved version, mainly with regards to its performance and optimisation.
By utilising the PyTorch framework it is possible to run the model on less powerful
hardware. This is ideal for this application since including a massively powerful
computer to process the visions would add weight, increase power consumption,
and decrease range.

The implementation for this model is achieved by the creation of a vision node
within ROS. This vision node receives the raw data of the RealSense camera and

1YOLOv5 model: https://github.com/ultralytics/yolov5
2Coco dataset: https://cocodataset.org/
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scans it for any objects. Once an object is detected, it is marked with a bounding
box, which describes the size of the detected object by a best fitting rectangle.
This rectangle is then processed to give an output of the predicted size of the
object and its location. Interestingly, the model can also be configured to include
uncertain predictions or only include predictions with a high certainty by changing
its sensitivity value. Normally this value is set to 50%, which was unchanged for
these experiments to reduce the amount of incorrect detections, while also ensuring
most objects are detected.

14



Chapter 4

Thesis Background

This thesis was performed, as mentioned before, under supervision of the Saivvy
company. Since this project is quite intensive and demanding, it was performed
by two students, Rhuben Vlugh and me. We were asked to work together to
set-up a simulated and real-world test to evaluate the differences between these
environments so the company can further improve its training for future models.
This meant that we had to find a way to split tasks and create a personal heading
for the project, while also having our research fit together. Our theses were how-
ever written completely independently, including the interpretation of results. We
also ended up splitting our efforts mostly between the two different environments,
where I focused my efforts on the real world, Rhuben focused on the simulation.

The next section will highlight the progress that was made on the hardware and
software side of the rover, and other tasks that were performed. These achieve-
ments might normally not be mentioned, but they highlight the difficulties that
were overcome to set-up the rover and actually achieve desired performance. While
setting up the Rover I also took the responsibility of organising the weekly meeting
between the supervisors and students, suggested changes to the internal documen-
tation of the company and tested the impact of changes in the code. Working with
hardware provides difficulties which would not show up when doing only software
development, or when training and performing experiments in simulation. These
difficulties originate from the fact that unexpected behaviour can both be caused
by hardware or software errors which are often hard to diagnose, costing signifi-
cantly more time.

4.1 Software

First of all it was important to understand the software side of this project. Since
this project was performed with help from Saivvy, quite a lot of development and
thinking had already been performed to make the controlling of the robot possible.
As mentioned above, ROS is the control system that is used to enable controlling
the rover using software while also reading data from its sensors. To get an actual
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understanding of how this system functions, multiple tutorials 1 were followed to
grasp the different relevant terms and properties of this system.

Once a thorough understanding of ROS was achieved, Docker images needed
to be unserstood. Docker is a way of running applications in a portable and self
sufficient environment, which makes them function independently from the com-
puter they are run on. This allows for changes in the code of the applications
to be immediately implemented on multiple systems, while also ensuring that all
dependencies are actually installed. To use Docker it is needed to actually under-
stand the management of files and the function of images, which are basically the
packages containing all relevant applications. Since these are separate from the
main operating system, making changes to code is also a bit more involved.

After understanding the operation of both of these concepts, Gazebo was the
next relevant piece of software to understand and familiarise with, even though
Rhuben eventually was the main user of this software. As mentioned above,
Gazebo is the simulation environment where experiments can be performed with
the rover. To run these experiments, objects need to be placed in the environment
and the robot needs to receive instructions in a consistent manner. Gazebo also
simulates the sensors of the rover which means that this environment can be used
to create ways of measuring and storing the path which the rover travelled, which
is useful to evaluate its performance. The environment itself is pictured below in
figure 4.1.

Figure 4.1: Overview of Gazebo Simulator

The last part of the software configuration that needed to be investigated was
the detection of the current turning angle of the rover. To allow the state machine

1Ros tutorials: https://wiki.ros.org/ROS/Tutorials
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to properly make decisions it needs information about its current rotation in terms
of position, and rotation. For the rotation it needs information specifically about
its current yaw, rotation over the y-axis, to determine its current heading. While
Gazebo provides this information for every object, in the real world other sensors
need to be used. The task was thus to figure out what sensors could provide
accurate information such that navigation around obstacles was possible. After
trying topics from the internal accelerometer, GPS compass and an estimated
orientation based on previous movements, we were unable to get an estimation of
the yaw. This means the rover is not able to navigate around objects or change
its direction, which impacted the experiments directly.

4.2 Hardware

After covering and creating an understanding of the software side of the rover and
this project, there were also quite a lot of hardware changes that needed to be
made. The rover itself comes installed with an Nvidia module, called the TX2,
which is responsible for actually running all of the software needed for control,
while also processing data from the sensors. While it is directly integrated into
the rover and links to other components, it is not powerful enough to perform all
processing related to computer vision, and thus needed to be upgraded to a Xavier
module. Since the TX2 component is built-in, it took quite a lot of thinking to
figure out a way to connect the motors, controllers and camera to the new module.
They all connected with strange connectors and often didn’t directly communicate
which meant figuring out if this was due to a software or hardware problem.

The first issue that was encountered was the communication between the
Rover’s built-in controller and the Nvidia module. The built-in controller, a Pix-
hawk PX4, is responsible for sending commands to the wheels and reading from
their sensors, while also sending information about the GPS, Wheel sensors and
other sensors back to the module. This module communicates to the Nvidia mod-
ules over what is called the FCU_URL, which specifies what port is used for commu-
nication and at what speed. The TX2 is directly connected to the PX4 through
a serial port directly on its board. This port is not available on the Xavier so it
needed to be converted to a USB connector, which meant figuring out the wiring
used for this connector and switching to USB. This connection is shown below in
figure 4.2 for context. After that it was possible to verify what FCU_URL could be
used to enable communication, which could be found after some online research.
This allowed the Xavier to gather updates about every sensor and send commands
to the motors.

17



Figure 4.2: Connector conversion to USB

After enabling this communication the focus was shifted on figuring out how
to fake a GPS location. The rover uses GPS to constantly check its location and
account for any variations. The problem is that the rover needs a solid GPS lock
before the it is actually allowed to do any sort of driving, which can not be dis-
abled. In bad weather conditions the Rover can not go outside since multiple
parts are not weather proof, so finding a way to use the Rover indoors was deemed
worthwile. There is a built in ROS node that uses the internal sensors of the rover
to estimate a position and print the position as if coming from the GPS. A few
days were spent unsuccessfully trying to enable this node.

Since it turned out not to be possible to enable this node, focus shifted to
enabling control in outdoor environments. Even though the ability to communicate
with the built-in controller through the USB port on the Xavier now existed,
it turned out that it was not yet possible to actually send driving commands,
although all other functions of the PX4 were available and the responses were
identical when compared to the TX2. The error code seemed to indicate a software
error since communication with the motors was reported to be impossible. But
after a week of trial and error with no results, the motors turned out to be powered
only when a separate battery on the rover was enabled. A simple solution which
was difficult to find since all other systems powered on perfectly using the power
from the Xavier.
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Chapter 5

Methodology

As mentioned before, this thesis is aimed at evaluating the gap between a model
trained in simulation and its real world performance. To evaluate this gap, mul-
tiple experiments will need to be performed for evaluation of the model in both
environments. Due to the rover not being able to navigate around objects, no
direct comparisons could be performed between the rover and the simulation. The
simulation is also not capable of simulating the actual output of the vision model
as mentioned before which further restricts the direct comparisons that can be
made. Since the simulator is however capable of navigating around obstacles, it
can be used as an example of the performance that is actually desired.

To make the testing results from both environments relevant for further devel-
opment, it is focused on pushing both environments to their respective limits. This
means that scenarios were developed where we can evaluate current performance
and also evaluate edge cases where performance is not expected. For the simula-
tion this included small gaps and complex environments to evaluate performance.
While in the real world performance the following challenges were evaluated: vi-
sion under different lighting, avoidance with multiple objects, detection of objects
with multiple sizes and performance with partially occluded objects. The next
section will highlight why these scenarios were chosen and how performance was
measured.

5.1 Simulation Performance

First off, we want to challenge the simulated environment in multiple ways. Since
this functions as a demonstration of the desired behaviour we will create multiple
scenarios to evaluate its performance. These scenarios will be varied in terms of
configuration and the amount of objects to avoid. In these scenarios the size of
objects is changed, the robot is tasked with avoiding multiple objects, and it is
tasked with evaluating whether it can fit in between a small pathway. Using these
scenarios we want to measure and evaluate the path the rover takes to avoid an
object, and the amount of safety margin the rover takes.

The consistency of the state machine in making choices about what direction
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to take and when to start avoiding the obstacle will also be evaluated. This
consistency needs to be evaluated since it will show whether the model itself has
some randomisation in its decision making, or if any random behaviour is caused
by external factors when evaluating the real world. The actual set-up of these
scenarios will be explained with the experiments.

5.2 Computer vision

The next part of the rover we want to evaluate is the computer vision model,
YOLOv5, which is used to detect objects. The output of this model mainly influ-
ences the decision making of the state machine and thus needs to show consistency
in terms of detection in multiple scenarios. For this thesis the model will be chal-
lenged with different lighting conditions, multiple objects in one scene, different
sizes of objects and the occlusion of objects by others. The next section will
highlight the importance of each of these and the metrics used for evaluation.

5.2.1 Lighting conditions

When using an autonomous driving system, it needs to be capable of functioning
in light and dark conditions. This is mostly relevant for night time operation since
vision is very limited in those cases, but these systems could also be deployed in
dark forests or weather conditions which limit vision. To properly evaluate the
impact of lighting conditions on the detection of objects, the vision will be tested
from a stationary position, for a period of 1 minute. During this minute an object
will be placed in front of the sensor and the amount of frames where the object
was properly detected will be counted for evaluation. The number of detected
frames is divided by the total amount of detected frames to produce a detection
rate, which evaluates the performance of this model. This test will be performed
in lighting conditions ranging from being outside during daytime, to a dimly lit
room, and nighttime conditions.

5.2.2 Occlusion

When using the previously described model to detect obstacles, it is also important
to evaluate the ability to detect objects which are partly covered by others. This
can both help in creating an understanding of an environment to ensure proper
navigation, as well as in reacting in a timely manner, since an object is already
detected before the avoidance of another obstacle is for example performed. To
measure the detecting accuracy of the model when part of an obstacle is occluded,
all observations over a period of 1 minute were once again stored. It was then

20



counted how often the partially occluded object was detected during this period to
create a detection rate. To evaluate multiple scenarios, the objects were occluded
for 10, 30 and 50 percent.

5.2.3 Multiple Objects

Another important factor for evaluating the performance of the model is the ability
to separately detect multiple objects. If the model had a limit on the amount of
objects it could detect, it could possibly run into obstacles or create dangerous
situations. Thus we want to evaluate how the model deals with multiple objects.
To evaluate this, a varying amount of obstacles were placed in front of the sensors
of the robot. During a period of 1 minute, the detection rate was once again
measured to evaluate performance in this scenario.

5.2.4 Inference rate

The last part of the computer vision model on its own that was evaluated was
the average publishing rate for detected objects. This rate is important since a
low amount of updates means that the model can also evaluate its choices at a
lower rate, since it depends on new information being available. If the amount
of updates per second (Hertz or Hz) is low, this means that the model will take
longer to react to changes and it might lead to worse understanding of the scene.
The main impact on this rate is the amount of detected objects, which was thus
the variable for this method. ROS has a built-in command which measures the
publishing rate on a certain topic, in this case the object detection topic, that
was used for this evaluation. Over a period of 1 minute this produced an average
update rate, and a standard deviation of this update rate. The same test was also
performed in the simulation to give a comparison on the relative performance gap.

5.3 Real world

To evaluate the performance of the state machine when placed in a real world situ-
ation, multiple different scenarios were created. The main focus was on evaluating
the impact that the distance of an object, the size of an object, and the amount of
objects made on the ability of the rover to stop at a safe distance from the objects.
This metric was chosen since it was, as mentioned above, not possible to actually
navigate around objects in the real world. To further enhance the depth of the
testing we also chose to measure the distance at which the objects were actually
detected. Due to a lack of time because of difficulties with setting up the rover,
each of the following scenarios were tested 3 times. This ensured that some average
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was actually measured, while also allowing a variety of scenarios to be tested. The
following section will explain what variables were tested in these scenarios.

5.3.1 Distance

The first variable that was tested is the impact that the initial distance of the
object to the rover makes. The thinking is that first of all objects should be
detected from a further distance. But when an object is further away, the rover
is also afforded more time to think and predict whether it will collide with said
object.

5.3.2 Size

The second variable that was tested is the impact of an object’s size for detection
and avoidance. Larger object might be easier to detected, are more likely to be
positioned on a collision course for the rover, and can also possibly be detected
from further away. Once again the distance till detection was evaluated, while also
noting any peculiar behaviour during the test.

5.3.3 Amount of objects

The last variable that was tested was the impact that placing 4 different objects
in front of the rover instead of 1 would make. The ideas was that, when placed
closely together, at least one of the obstacles would be guaranteed to be in a direct
path of the rover. These obstacles were placed closely together to ensure that
there would not be a gap between them that the robot might consider to be large
enough to fit through. Once again performance in detection and avoidance was
evaluated in the same way as the other variables.
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Chapter 6

Experiments

To measure the performance of the rover in each of the scenarios which were
mentioned above, multiple experiments had to be performed in a consistent and
repeatable manner. In the simulation this was quite easy to achieve since a scene
can be reloaded such that all obstacles are placed at the exact same starting lo-
cation, which ensures they can be repeated. This made experimenting quick and
easy, and not easily influenced by other conditions.

When testing in the real world this repeatability can not be achieved so eas-
ily. One of the main factors which impacted this was the sensitivity of the GPS
sensor on the rover. This sensor is highly sensitive and needs direct line of sight
with multiple satellites to ensure accurate navigation and control. Unfortunately
some locations worked at one moment, and were too obstructed the next day. To
account for this variation, the experiments were always ran on the same type of
pavement, at the Science Park. The camera was also always angled down at 15
degrees such that mostly the objects directly in front of the rover occupied its
vision.

Another challenge was finding suitable objects for the rover to detect and pos-
sibly collide with. In the end mostly plastic bottles, filled partly with water were
used. These were stable enough to stay standing, are a trained class in the YOLOv5
model, and wouldn’t damage the rover when a collision did occur. A 500ml bottle
was used as the baseline object for most testing. While in the simulation unit
boxes, square or rectangular boxes with a standard size of one unit, since they
were the only enabled object that would actually be avoided by the state machine.
Using this object reduces the complexity of testing since the dimensions can easily
be changed.

6.1 Simulation

For testing in the simulation, 5 scenarios were evaluated. In figure 6.1 below these
scenarios are shown. Scenario a) evaluates the performance of the rover in the
most simple case. A cube unit box with size 1 was placed in front of the rover.
This scenario tests its ability to detect this object and efficiently navigate around
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it. Scenarios b) and c) vary this test slightly by increasing and decreasing the
width of the object ahead of the rover. Scenario d) places three objects in front of
the rover such that it has to evade two objects in a row, and Scenario e) evaluates
the ability of the rover to take its own size into account for fitting between a gap.
As mentioned before, each scenarios was ran three time to evaluate consistency,
and the rover always starts at a distance of 4 units from the obstacles.

(a) Unit box (b) Slim box (c) Wide box

(d) Multiple boxes (e) Small gap

Figure 6.1: Simulation testing scenarios

6.2 Computer vision

6.2.1 Lighting conditions

To evaluate the performance of the rover in different lighting conditions, multiple
scenarios were considered. In each of these scenarios the amount of available light
was tested with the use of a cellphone. Using the sensor on a phone, the level of
luminance can be measured. This detection is for a very specific area. Thus the
phone was placed directly in front of the rover and pointed at the object to be
detected. Then an average value for the light availability, measured in lux, was
measured over a period of 15 seconds. For these tests the rover was placed at
a distance of 0.5, 0.75 and 1 meters. Since these are the kind of distance where
detection is crucial to still ensure a possibility to a avoid the obstacle at low speed.
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To establish a baseline, the rover was first tested outside on a day with consis-
tent but light cloud coverage. The light level was measured to be around 400 lux
which should be more than enough. The test was performed on pavement with a
neutral background to ensure little interference, pictured in picture 6.2a. To add
to this experiment the rover was tested next in the RoboLab of the University with
the lights switched off to create a lighting value of around 100 lux for the objects.
In terms of positioning, the rover was facing a white wall with little pattern to
ensure little impact. This situation is pictured in picture 6.2b.

To increase the difficulty even more the rover was also tested in an outside
environment in the evening at dusk. In these scenarios the lux was reported to
be around 0, which was a clear shortcoming of the sensor since dusk should still
be around 1-10 lux. Thus as a final experiment a phone was placed on top of the
rover behind the camera with its flashlight enabled, pictured in image 6.2c. A
phone was chosen since it highlight a wide area, where a normal flashlight focuses
the light to a smaller area. Since this produced inconsistent amounts of light, the
light level needed to be measured at each distance. From 0.5 meters, the light level
was around 40 lumens, 30 lumens were measured from 0.75 m, and at 1 meter the
level was around 25 lumen.

(a) Daytime (b) Dim room (c) Dusk with flashlight

Figure 6.2: Three different lighting conditions

6.2.2 Occlusion

To measure the performance when objects were occluded, as mentioned before,
one object was placed partly behind the other. These experiments were also ran
in the RoboLab with full lighting since no GPS was needed and performance was
consistent in this environment. To ensure consistent location and distance between
all experiments, the robot was placed on the middle of the football pitch, with the
objects on a white patch 1 meter in front of the rover. Once again plastic bottles
were used since these could be detected consistently and were easily available. The
percentage of occlusion was calculated by measuring the width of the object and
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dividing this by the width of the covered area. Pictured below in figure 6.3 is a
cropped image of the rover’s view for each of these experiments.

(a) 10% (b) 30% (c) 50%

Figure 6.3: Three different levels of occlusion

6.2.3 Multiple Objects

To evaluate the performance in differentiating multiple objects, the rover was once
again placed in the RoboLab with the lights on. The objects were all placed on the
same location as described above. After the baseline of one object and its detection
rate was established, two, three and five bottles in total were placed in front of the
rover. The picture below, in figure 6.4 was taken by a phone directly above the
real camera of the rover, so it is not completely representative but illustrates the
view of the rover quite well.

Figure 6.4: 5 objects in front of rover

6.2.4 Inference rate

While evaluating the ability of the rover to deal with multiple objects, the same
environment and set-up was also used to evaluate the inference rate, as described
before. From the same location a baseline was established with no objects in front,
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then one, two and three bottles were added to evaluate the impact these made on
performance. In the simulation one unit box was placed in front of the rover, and
the inference rate was measured in the same way as the real world.

6.3 Real world

To evaluate the performance of the rover in the real world, a baseline was first
established. This meant using the same plastic bottle as used in previous experi-
ments. This bottle was placed at a distance of 2 meters from the rover on a cloudy
day. This distance was chosen since most objects could be decently detected from
this distance, while there was still enough distance to make a decision and eval-
uate performance of the rover. The rover was situated on the same pavement at
Science Park and was tasked to drive towards the bottle. This driving speed for
each experiment was capped at 0.3 of the max speed of the rover, which equalled
around 2 kph. This speed was chosen to allow the rover enough time to detect
objects, while also not being unrealistically slow.
While experimenting, the distance where detection of the object occurred in real
life was estimated by looking at the detection location and marking the spot to
measure the distance to the bottle. Since this is an inaccurate way of measuring,
these serve more as an indication rather than an accurate measurement, there was
unfortunately no time to implement a stopping command once an object was de-
tected to accurately measure this distance in the real world. 4 experiments were
ran since in one of the the vision failed to recognise the bottle, this run was elim-
inated to create a more consistent baseline. The testing set-up is also pictured
below in figure 6.5.

Figure 6.5: Baseline experiment

6.3.1 Distance

After establishing this baseline, the rover was placed at the same location but at
a distance of 5 meters from the bottle. The rest of the experiment was unchanged
but the bottle needed to be placed slightly to the right of the rover since its path
was not directly straight. This did not seem to be caused by any incline since the
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behaviour was consistent throughout other experiments. The placing of the object
means that it might not be considered to be in the collision path from the start
since it is not directly in front.

6.3.2 Size

To evaluate the performance of the rover when objects of different sizes are placed
in front, two objects were used. The first object was a plastic bottle of 1.5 litres,
used to increase the footprint and the chances of the object being detected as: "In
the way." Once again this object was placed at two meters distance from the rover
although at a slightly different location. Once again on the pavement but the GPS
was not cooperating so the tests were performed about 50 metres away from the
previous experiments. After the bottle was placed, a backpack, which was around
50 by 30 cm in front profile, was also placed in front of the rover. The class of
this object was not really detected by the vision model but its position and size
seemed accurate, so it was used to experiment with substantially larger objects.
Once again placed at two meters distance, and this bag compared to the normal
bottle are shown in figure 6.6a below.

6.3.3 Amount of objects

To finally evaluate the performance of the rover when driving towards multiple
objects, one extra scenario was considered. In this scenarios 4 different bottles
were placed in front of the rover at 2 meters distance. The rover was then driven
towards these obstacles, once again outside on a cloudy day. When the rover came
within touching distance of these objects, they basically were directly in front of
the rover. Below, in figure 6.6b, is a picture of these obstacles from the viewpoint
of the rover.

(a) Different sized objects (b) Multiple objects outside

Figure 6.6
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6.4 Miscellaneous

While running these aforementioned experiments, and while setting up the rover
some other miscellaneous experiments were also ran. These experiments were not
in-depth enough to be scientifically significant since they were often only ran once,
and not measured to the same accuracy as other experiments. They are however
worth highlighting since they give some extra insights into the functioning of the
vision model and the performance of the state machine in the real world.

The first experiment that was performed when the wheels could actually be
turned was to manually instruct the rover to turn around its y axis on pavement
and in the grass while specifying different turning rates. These experiments were
ran to evaluate if different surfaces impacted the ability of the rover to complete
a turn, while also finding the minimum amount of power needed to perform a turn.

The second experiment that was performed was the evaluation of the model
to deal with other objects than it was trained for. A cardboard box, pictured in
figure 6.6b, was used for this experiment. It was originally meant to represent an
object of medium size for evaluating the impact of size, but was eliminated for
reasons specified in the Results.

6.5 Expectations

6.5.1 Simulation

In terms of expectations for the experiments, the most consistent results are ex-
pected to be shown in the simulated environment. In this environment the rover
should for example be able to avoid any obstacle perfectly fine when that obstacle
is placed directly in front, since it should not be impacted by possible detection
flaws. When dealing with multiple objects however we expect it to detect the
object in front, start avoiding and after this avoidance return to a regular driving
mode, while it has neared the next obstacle too close. Thus it is expected that the
rover will perform an emergency stop.

6.5.2 Computer vision

When evaluating the computer vision model, the different lighting conditions are
expected to make the biggest impact on performance. In the dark, there is a lot
less light to be used for the sensors, and a lot more noise to make an impact on
the detection model. The inference rate of the rover is also expected to suffer
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when multiple objects are placed in front, since more calculations will need to be
performed. When looking at multiple objects at the same time however, detection
should still remain accurate since the model is trained to detect multiple objects in
a single image. On the contrary, when detecting occluded objects the performance
is expected to suffer, especially when a large percentage of the object is covered.
When an object is covered it shows a lower amount of significant features and the
shape differs, which should make detection more difficult.

6.5.3 Real world

For the experiments in the real world, the predictions are a bit harder to make
since there are many variables. We do however expect the best performance to be
shown when multiple objects are placed in front. Since the vision model should be
able to handle this, the multiple objects have a greater chance of being in the way
of the rover such that it needs to make a stop. Bigger objects should also show
good performance, but they might not completely cover the field of view when at
a close distance, which might result in failed detection. Detection from a distance
should not make much of an impact, since detection should still be fine from a
closer distance if the rover fails for some reason.
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Chapter 7

Results

For this results section, the performance metrics of each of the experiments are
shown below in their respective graphs and tables. These provide numeric insights
in the results of the performance, but there will also be descriptions of the discov-
eries about behaviour during some of the experiments. This is done since numbers
don’t always show this behaviour, or because some behaviour was hard to measure
in this way. All results for the simulation side were provided by Rhuben, while I
provided him with my data from the real world.

7.1 Simulation

When testing in the simulation, as expected the results are very consistent. During
3 runs the performance of the rover was even identical enough that only one line
trace had to be drawn in the top down view, shown below in figure 7.1 to represent
the path the rover had taken. No metrics were measured by Rhuben to see at what
distance, but the top down views provided below of each experiment do show a
grid on the floor. Each cell in this grid has a size of 1 unit by 1 unit, so they can be
used to roughly estimate the distance where an avoiding manoeuvre was started,
and the safety margin during this manoeuvre. Both were estimated manually and
shown in table 7.1, with their respective mean and standard deviation. Experiment
e was excluded for both of these measures since the rover was unable to avoid the
obstacles, thus scoring 0.

Label Distance (unit) Safety margin (unit)
a. 1.94 0.7
b. 2.10 0.87
c. 2.50 0.35
d. 1.91 0.58
e. 0 0

Mean 2.11 0.63
Standard deviation 0.24 0.19

Table 7.1: Manually estimated results from simulation
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(a) Unit box (b) Slim box (c) Wide box

(d) Multiple boxes (e) Small gap

Figure 7.1: Top down view of simulation experiments with visualised path

7.2 Computer Vision

The results for testing the computer vision are summarised below in the following
graphs. Each experiments is explained by their individual graph. First off, table
7.2 shows a decrease in inference rate for every added object. This inference rate of
itself is however also quite low considering the rate is at 1000 Hz in the simulated
environment, no matter the amount of objects. The graph after this table shows
the results from the occlusion testing. In figure 7.2a a drop in performance is shown
once 30% of the object is occluded. While the results from detecting multiple
objects are shown in figure 7.2b, where no performance drop was measured. The
results from the the detection in different lighting conditions are shown in figure
7.3, where the best performance overall occurs at a distance of 75 cm, with a
distance of 1 m showing second best results.

Amount of objects Inference rate (Hz) Standard deviation (σ)
0 0.88 0.20
1 0.76 0.22
2 0.68 0.15
3 0.60 0.21

1 in Gazebo 1000 0.01

Table 7.2: Inference rate in real world and simulation
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(a) Occlusion detection (b) Multiple objects detection

Figure 7.2

Figure 7.3: Performance in varying lighting conditions

7.3 Real world

Performance during the real world testing, the average results of the 3 runs in each
experiment are shown in table 7.3. The measured distances until detection do not
represent actual meters, but are distances for the internal coordinate system of the
rover, which are identical to the coordinates used in Gazebo. A differentiation was
also made between the distances for the first detection, and the correct classifica-
tion. The distance for first detection evaluates at what distance the rover realises
something is ahead of him, even though not knowing what that is. While the
correct class distance measures when the correct class of the object was actually
detected.
The results of these experiments seem to be pretty consistent in terms of detec-
tion distance for most objects, while for some reason the multiple objects were
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identified correctly almost at the start of the experiment, whereas for other exper-
iments correct classification only occurred from a distance of around 1.5m. The
bag was also not classified correctly at all. The standard deviation for this correct
identification was however more consistent overall than the standard deviation for
first detection. Which shows there are pretty consistent points where the rover
actually identifies an object. To explain these sections a bit further a description
is provided for the testing in each scenario, where any noteworthy discoveries of
behaviour is also discussed.

Experiment First detection (unit) Std. dev. (σ) Correct class (unit) Std. dev.(σ)
Baseline 3.52 0.42 1.64 0.29
Big bottle 3.31 0.25 1.67 0.11

Bag 3.3 0.24 - -
Long distance 5.04 0.48 1.9 0.03

Multiple 2.7 0.14 2.7 0.14
objects

Table 7.3: Real world testing results

7.3.1 Baseline experiments

When performing the baseline experiments correct classification of the bottle oc-
curred quite consistently at a distance of around 1 meters, with one run even
resulting in detection from a distance of 1.3 meters. The rover did however not
make any attempts to slow down for these objects, and collided during all three
experiments, while the bottles were basically straight ahead. One earlier run which
showed identical behaviour has been uploaded to youtube 1 so this is more clear.

7.3.2 Size experiments

During the experimentation with objects of different sizes the behaviour was pretty
similar when the larger bottle was placed in front. Even though it was immediately
detected, although not classified, in 2 of the 3 runs, the robot failed to evade the
object. It did in fact not even slow down on any of these runs. A video of one of
these collisions is also available on youtube 2. When the bag was placed in front
of the rover it was also immediately detected, but it was not correctly identified
and was also hit in all experiments.

1Baseline collision: https://youtu.be/L41ZwVZY7pY
2Big bottle collision: https://youtu.be/wgnBrZIwKyE
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7.3.3 Long distance

For the experimentation with a longer detection distance, more interesting be-
haviour was shown. The object was detected from a further distance than the
other experiments, since it was coming from a further distance. Correct classifica-
tion however occurred a little earlier. While closing in the rover was also slowed
down during one of the runs since it detected an extra unrecognisable object, which
resulted in a slower approach. Unfortunately a hit was still registered in each run.

7.3.4 Multiple objects

While experimenting with multiple objects in front of the rover, detection was
consistent and occurred from a further distance than other experiments. While it
took longer for the bottles to be detected, the classification was correct once they
were. This did unfortunately not result in any avoidance or slowing down of the
rover.

7.4 Miscellaneous

During the other experiments that were not considered for actual evaluation, one of
the findings was that the cardboard box, as pictured in 6.6a, could not be detected
whatsoever at multiple distances. This hints to the limitations of the COCO data
set. Furthermore, when manually instructed to start turning, the turning speed of
the rover was highly variable. This behaviour was especially noticeable on a grass
surface as can be seen in this youtube video 3. There was no easy way to measure
the turning speed however, so no further research was performed.

3Inconsistent turning speed: https://youtu.be/9otK7wCtpoM
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Chapter 8

Evaluation

8.1 Discussion of results

8.1.1 Object avoidance

When evaluating the performance of the rover, especially in the real world, per-
formance was a bit disappointing. The expectation was that some scenarios, espe-
cially with bigger objects would result in an avoiding or a stopping response from
the rover. Given that the detection of objects was actually pretty consistent with
an accurate prediction of their location, these expectations were thought to be
confirmed. However, this did not happen, which makes it seem like there is some
sort of configuration error in the state machine which causes errors in avoidance
or slowing down.

To explain further, the state machine actually uses a different module which
calculates the projected path of the rover and sees if any obstacles are in its path.
Since in simulation this same module also sent the rover on a path between two
obstacles where it was not actually able to fit, this might indicate an error in this
module. Where it only considers one line, instead of its actual width. This could
also explain the difference between real and sim, since in the simulation it is sure
of the positions of each object which allows for good decision making. In the real
world less information is available due to the lower inference rate, and this infor-
mation is also less consistent due to small variations in the vision model. This
might mean the rover is not sure enough where the detected object is and when it
will collide, resulting in no avoiding action.

In other scenarios where the rover should have more of a chance to detect the
fact that an obstacle was in its way, especially with larger or multiple objects,
performance was not any better. The inability to correctly classify the bag or to
detect the box at all shows that the vision model is also not sensitive enough to
untrained classes of objects, which could cause more problems in the real world.
When starting at a distance performance was also not that much better, which
shows the limited range of the RealSense system. The most probable explanation
is a lack of detail on the sensor to discern features of an object, but there could
also be other reasons for this lack in performance.
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The simulation on its own did however show good performance in all other
scenarios, simple objects were easily avoided. And contrary to expectations, the
model also performed well in accounting for the objects behind the first object and
avoiding them as well. This calculation did however only seem to happen once the
first avoidance manoeuvre was completed, since there are two clearly different
paths, instead of one more optimal path to avoid both. The distance where the
avoiding manoeuvre was started also seemed to vary, as well as the safety margin
away from any object. This variation could however also come from the measuring
methods used to calculate this distance since counting pixels from an image is not
always accurate. Further testing would be needed.

8.1.2 Computer Vision

The evaluation of the computer vision lines up pretty well with the expectations
that were described. The performance and accuracy of the model suffered mostly
when the availability of light was lowered. In the lab and outside with good
lighting, performance was consistent. But the dim room was already enough to
dramatically decrease performance, and performance at dusk was lacking to the
point that a flashlight needed to be used. Interestingly this flashlight helped sig-
nificantly at close distances, which can possibly be explained by the fact that this
configuration basically only lit the bottle, and little other background objects. The
camera could thus theoretically adjust so that only the lit object was visible. At
further distances this performance was lacking however. So either a bright light
would need to be installed, or possibly an infrared camera if night performance is
to be improved.

The dropping inference rate when multiple objects were detected was also
pretty much as expected. It shows a limitation in either the processing power
of the processor, or a possible need for further optimisation of the code. A higher
inference rate could help in improving object detection and possibly in avoiding
obstacles.

In terms of the actual detection of multiple objects the model did show good
performance. As mentioned, it was trained to deal with multiple objects and thus
this observation was not surprising. This does however mean that as long as the
other components and the state machine are also capable of dealing with multiple
objects, the rover should not be quickly confused in more complex environments.

Lastly, the performance when evaluating the ability of the rover when dealing
with occluded objects met the expectations. The significant drop-off in perfor-
mance was however not quite the desired result. It would definitely be a benefit
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for performance and reliability if the rover was able to actually detect partly oc-
cluded objects. When a navigation manoeuvre is performed it is important to get
an accurate understanding of the size of the object. Otherwise errors could be
made since an object is not detected. Possibly this error is however not that se-
vere since during this manoeuvre more of the occluded object also becomes visible,
which creates higher chances of detection.

8.1.3 Sub-questions

Using the discoveries of this thesis, it is now possible to evaluate each of the sub-
questions that were posed for this research. First off: "Does the real world object
detection perform similarly compared to the simulated environment?" While the
object detection is also relatively consistent when evaluated in ideal conditions,
in most scenarios the real world model doesn’t match the simulated environment
closely. The most obvious difference is the significant gap in terms of inference
speed, where the simulated environment provide way more updates. But the vision
model also struggles with accurate detection and is only reliable from a relatively
close distance. This shows clearly that the real world object detection does not
perform similarly to the simulated environment.

The second question: "Is the driving model capable of navigating to the same
accuracy in the real world?" was unfortunately not evaluated to an extent where
answering this question is possible. No comparison to the simulation in regards to
the accuracy of its location using its GPS sensor, or the consistency of a driven
path could be made. The short experiment with manually instructing the rover to
turn on uneven grass did however demonstrate that some uncertainties will need
to be accounted for.

The last question: "Can the control system deal sufficiently with the incon-
sistencies of the real world?" was however evaluated and can be answered with
a clear no. The control system did not seem to understand when an object was
actually in its way such that it would decide to take avoiding action. In one of
the experiments it did slow down, but this seemed to be caused by an incorrect
understanding of its situation since the actual object was still hit.

8.2 Conclusion

The goal of this project was to evaluate if a model trained in simulation was capa-
ble of avoiding objects in the real world with similar performance. Due to issues
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with setting up the rover the avoidance could not be tested, but it was still possi-
ble to evaluate the ability to detect objects and stop before they are hit. At the
same time the simulated environment was tested to find situations where it showed
incorrect behaviour, and to understand what behaviour was generally desired.

In the real world two different types of experiments were performed, aimed
at evaluating the performance of the vision model, and the driving model of the
rover. While the vision model showed decent performance in certain situations, its
detection was certainly not flawless when challenged further. The driving model
also showed an inability to avoid all objects, seemingly indicating some software
error. Testing in simulation showed that the model only seems to take objects
straight ahead into account, which could be a possible explanation for insufficient
performance in the real world.

After evaluating these scenarios the main question for this thesis can be an-
swered: "Does an autonomous self-driving model trained in simulation perform to
a similar degree in the real world, specifically in off-road scenarios". The answer
to this question is an obvious no, the vision model is limited in its speed, detection
accuracy and can not sufficiently deal with occluded models. The driving model
also does not seem to stop or slow down for detected objects.

8.3 Future Research

The first heading for any further research into this subject, specifically using this
rover could be done into the reason that the rover did not attempt to avoid any
obstacles. As mentioned before, it seems to be some configuration fault within the
driving model, but it could also have to deal with a lack of information about the
current yaw of the rover. Making the collision detection is also a relevant heading
for this research since it is also still not perfect in simulation.

A second improvement on this research would be to dive further into the vi-
sion model. Using objects of different classes provides an extra challenge for the
model since their shapes might be even more irregular or their position harder to
estimate. It would also be very interesting to see how the rover would react to
moving objects, since it would then also have to start predicting the path of these
objects. Further challenges could be created by changing lighting conditions more,
or possibly evaluating performance in different weather conditions.

One more interesting heading would be to do more research into the perfor-
mance of the driving model. It is now only capable of driving in a straight direction,
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and was not really evaluated in terms of the accuracy of its chosen path. There
are multiple parameters which could be changed to evaluate their impact on per-
formance. Using better path estimations in the simulation should also provide
more insights into the consistency of the model’s decision making, and once the
rover can also avoid objects it would be interesting to evaluate the similarity of
the driven paths between the real world and the simulation.

As a final challenge, once the model is capable of performing consistently in
more random scenarios and it shows consistent avoidance of objects, the rover
could actually be evaluated in more rough scenarios. The impact of inclines, dust,
loose surfaces and less visible paths should make for an interesting evaluation.
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Appendix

Appendix A

Figure 8.1: State machine configuration
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Appendix B

Figure 8.2: Controlling software information flow
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