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Abstract

On November 26th, 2015 a planetary rover drove across the Katwijk beach.
Man-made rocks were arranged on the beach to imitate a Martian landscape. While
driving the rover recorded several datasets. These can be used for the application
of different SLAM techniques. In this thesis the focus is on a single sensor in the
datasets: the stereo camera. Three SLAM techniques are applied to the stereo
camera footage, to get a good estimate of the position of the rover and a reliable map.
These techniques are: visual SLAM using points clouds, Structure from Motion, and
a combination of both techniques.

Using the point clouds from visual SLAM and the location estimations from
Structure from Motion, this thesis was able to create a visually more comprehensible
map with a more accurate location estimation of the rover. The results indicate that
by combining the techniques a better performance on both mapping and localisation
can be achieved.
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1 Introduction

Where have you been, where are you, and where can you go? These are three important
questions in robotics [10]. In order to answer these a map of the environment is needed.
However, not every map is equally capable in answering these questions correctly for
an autonomous vehicle. When using pre-existing maps to represent the environment
there is a risk that the maps are no longer representative. Moreover, an autonomous
vehicle must not only be able to avoid crashes with stationary objects, but also avoid
coming into contact with dynamic objects. A pre-existing map is thus not sufficient for
an autonomous vehicle to move without incident.

An autonomous vehicle bases its route on a map of its current environment. This
map depicts objects and obstacles, such as rocks or buildings, as well as the autonomous
vehicle’s current position within the map. When the location of the autonomous vehicle
itself is incorrect, the planned route will likely lead to a crash. The route assumes the
location of the autonomous vehicle and plans from there, meaning that a wrong location
will likely send the rover into the obstacles it was meant to avoid. An incorrect map
would also lead to a crash, for similar reasons.

These factors illustrate why it is important that the autonomous vehicle is in posses-
sion of both an accurate environment representation and an accurate estimation of its
own location within this environment.

Commonly GPS is used to provide this. However, GPS systems have a varying
degree of accuracy, which can cause an inaccurate location estimate. Furthermore, there
are locations where GPS is not available, such as underground mines, urban canyons, or,
most notably, different planets. This is where SLAM comes into play. SLAM stands for
Simultaneous Localization And Mapping and is the collective name for techniques which
use information provided by sensors to map the environment of these sensors and locate
them within the environment.

SLAM techniques do not require pre-existing knowledge about the environment, nor
does it require a GPS system to determine the location of the vehicle. This allows the
autonomous vehicle to explore unknown territories and tailor its reaction to dynamic
changes. SLAM techniques have wide application potential and as of now it is already
used in self-driving cars, soccer robots, and autonomous grass mowers. The planet Mars
does not have the satellites needed to create an accurate location description using GPS,
nor can one rely on a hypothetical pre-existing map of Mars because its landscape is
dynamic, due to the notorious sandstorms [20]. SLAM techniques are therefore a suitable
approach for Mars rovers.
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Figure 1: Mars rover Perseverance, developed for the 2020 NASA Mars mission1.

1.1 Research Background

On the 26th of November 2015 man-made rocks were arranged on Katwijk beach to
simulate a Martian landscape. A research group led by Robert A Hewitt then released a
Heavy-Duty Planetary Rover (HDPR) equipped with nine sensors to gather a dataset that
was exceptionally large [4]. The article that followed this experiment made this dataset
public with the goal of enabling users to test and apply different SLAM techniques [11].

One of the SLAM techniques explored in this thesis is visual SLAM. This uses the
stereo camera footage of the Katwijk beach dataset to create a 3D point cloud. Depth,
the third dimension, can be determined by overlaying the left and right images from
the stereo camera, this concept is similar to human eyesight. By overlaying consecutive
point clouds, it is possible to determine the displacement between recordings. This
gives an indication of how much the vehicle has moved since the previous recording.
By continuously combining consecutive overlays a 3D RGB map of the environment is
created.

Another SLAM technique is Structure from Motion. In contrast to visual SLAM
this approach does not require stereo camera images, the footage of a single camera and
its accompanying camera parameters suffice. Key points from consecutive images are
extracted and matched. The camera parameters describe how a camera captures and
distorts an image, this combined with the distance between each key point match makes
it possible to calculate the relative position of the camera. The key points are stored as
a 3D point cloud, which has no meaningful color. Over time the key point cloud extends
and becomes a 3D representation of the environment.

Both SLAM approaches have aspects which could be improved. The camera position
estimate of visual SLAM is a prediction which is not always correct. This can lead to an
inaccurate map. The camera position estimate of the Structure from Motion technique
generally performs relatively well, however the map representation, which consists of
colourless points, is difficult to comprehend. A possible solution to this could be to

1Perseverance on Mars, NASA, March 2020, for more details see https://mars.nasa.gov/mars2020/
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combine the strengths of each technique.

1.2 Research Question

A possible strong combination is to use the camera position estimations from Structure
from Motion as a basis for the merging of point clouds generated by visual SLAM.
This thesis studies the potential outcomes of mapping the route travelled by the HDPR
when calculated through Structure from Motion, visual SLAM, and a combination of both
SLAM techniques. The goal is to illustrate how these results differ, what their accuracy
is compared to ground truth, and expound which factors could be of influence on their
performance. The desired outcome is a completely accurate 3D map with an accurate
location description. The assumption is that the combination of both techniques will lead
to a result with a closer resemblance to the ground truth. The dataset, the techniques
and their results are expounded in this thesis.
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2 The Katwijk Beach Planetary Rover Dataset

2.1 Introduction

The Heavy-Duty Planetary Rover (HDPR) is equipped with sensors which in total collect
nine sensor-datasets per route [11] [3]. The HDPR completed three routes with varying
lengths and speed, their length and average speed can be found in Table 1. Route 1 is
divided in eight parts and covers roughly the same terrain as route 2 which is divided
in six parts. The difference is that route 1 travels northbound while route 2 travels
southbound. This has an effect on the image quality, the southbound route suffered from
sunlight in the camera lens causing blooming on most of the images. Blooming refers to
white patches of pixels caused by overexposure. Route 3 is a relatively short route and
is divided in five parts. The amount of time between data collection points, referred to
as timestamps, is always equal, which is why there is a difference between route 1 and 2,
and route 3 when it comes to data collection. The slower speed of route 3 means that the
distance travelled between two data collection points is less, indicating that images are
more similar which allows for better detail. Whereas route 1 and 2 have images that are
further apart. Further differences stem from the direction of the routes, route 1 and 2
are both travelling in a continuous direction, whereas route 3 makes a loop. Route 3 has
therefore more corners and images both with blooming and without. The timestamps of
the nine sensors are not synchronised, meaning that each has a different interval for data
collection. The routes can be seen in Figure 2.

Length in Kilometers Average Speed in Meters per Second
Route 1 1.026 0.5077
Route 2 0.797 0.5057
Route 3 0.221 0.1813

Table 1: Table displays distance and average speed of the routes.

When applying SLAM, the route and the map can greatly improve when loop-closure
occurs. This means that the sensors detect objects which are known from previous
sections of the route and recognises them. The algorithm can use that recognition to get
a higher degree of accuracy of the position estimate of the HDPR. Furthermore, these
known objects can be used as landmarks to reduce the accumulation error. Route 3 has
multiple occasions in which loop-closure occurs, while route 1 and 2 do not.

In this thesis the focus will be on route 3. This route has the most divers route,
including both straight sections and sections with multiple curves, as can be seen in
Figure 2 (b). Route 1 and 2 are between four and five times as large as route 3. Due
to limited computing power is route 3 divided into five and at most ten parts. The
size of route 1 and 2 implies that the amount of sub routes with this approach would
be abundant. When more computing power is available the subsections can be merged,
which would make the results of route 1 and 2 more comprehensible. For these reasons
are route 1 and 2 not used in this thesis.
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All data can be downloaded from Estec’s website2.

(a) Satellite image of route 1 and 2. (b) Satellite image of route 3.

Figure 2: Satellite images of the terrain and all routes. Images can be found on the Estec
website3

2.2 Description of Recordings

2.2.1 Location of the Rocks

The rocks are made of cardboard, all have the same shape and come in three different
sizes: small, medium, and large. The location of the rocks is recorded in northing and
easting in the UTM31N coordinate system. However, the altitude of the rocks is not
recorded, which means that it is only possible to make a 2D map of the ground truth.
The data points describing the location of the rocks can be found in the files:
large-rocks-traverse12.txt
medium-rocks-traverse12.txt
small-rocks-traverse12.txt

2https://robotics.estec.esa.int/datasets/katwijk-beach-11-2015/
3https://robotics.estec.esa.int/datasets/katwijk-beach-11-2015/
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large-rocks-traverse3.txt
medium-rocks-traverse3.txt
and small-rocks-traverse3.txt

2.2.2 GPS-Latlong

The location of the HDPR per timestamp is recorded in RTK (Real Time Kinematics)
GPS, which is an approach with a relatively high level of accuracy [3]. This dataset
describes the location of the HDPR per timestamp. The timestamps have an interval of
roughly three seconds. The measurements are expressed on the WGS84 ellipsoid, which
is the standard coordinate system for GPS, and are recorded in latitude, longitude and
altitude. The dataset also includes the standard deviation in meters per timestamp. The
inaccuracy of the GPS, represented by the standard deviation, appears to be negligible,
since it is mostly between 4 and 9 millimeters.
The data points describing the location of the HDPR can be found in the file:
gps-latlong.txt

2.2.3 GPS-UTM31

This file should contain the location of the HDPR per timestamp recorded in northing
and easting in the UTM31N coordinate system. However this file seems to contain the
same data as the GPS-latlong file. The authors of the article have been contacted and
this should be rectified in the near future.

2.2.4 IMU

The information collected by an Internal Measurement Unit (IMU) includes a timestamp,
acceleration in the x, y, and z direction recorded by an accelerometer. The angular
velocity measured in the x, y, and z direction recorded by a gyroscope. It also includes
another acceleration measurement in the x, y, and z direction recorded by an inclinometer.
The data collected through the IMU can be found in the file:
imu.txt

2.2.5 Odometry

Odometry refers to the information which keeps track of the displacement of each wheel
between timestamps. This file contains both the angular displacement and the steering
angular displacement of each wheel per timestamp. Also included is the orientation of
the rocker, and the left and right bogie. However this file contains more columns than
was specified in the article [11]. This because each wheel and steering joint has two extra
columns that follow after the displacement value, these correspond to angular velocity
and the analogue value reported by the encoder. According to the author where these
accidentally left in the dataset.
The odometry data can be found in the file:
odometry.txt
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2.2.6 LocCam

The images taken by the stereo cameras, a PointGrey Bumblebee2, are stored in the zip
file LocCam. Stereo means that two cameras take the same image at the same timestamp.
The images differ in the fact that the cameras are situated 12 centimeters apart. Using
two cameras with a known distance between them enables the user to reconstruct a 3D
image of the scene. By combining and overlaying images depth can be extracted.

2.2.7 PanCam and Ptu

During the route panorama images were taken by a PointGrey GrassHopper2. This is a
stereo camera of which the cameras are placed fifty centimeters apart and rotate while
the HDPR is traversing. The information about the orientation of the pan-tilt frame on
which the sensor is mounted is stored in the file ptu.txt. It contains a timestamp, and
the pan and tilt displacement between timestamps. The images taken by a panorama
camera are stored in the zip file PanCam.

2.2.8 ToF

Depth and intensity images were recorded with a SwissRanger. This is a sensor based
on the Time of Flight (ToF) principle. The sensor sends out a light pulse and an object
reflects this light back into the sensor. The time it took to travel from the sensors to
the object and back is the time of flight. The speed of light is known and via a simple
calculation the distance between the sensor and the object can be determined. Through
this the sensor is able record both the intensity of the image as well as depth. The zip
file named ToF contains the data recorded by the SwissRanger.

2.2.9 Velodyne

The zip file named Velodyne contains data which is collected through a 3D LiDAR
sensor. LiDAR stands for Light Detection And Ranging, this is a technique which sends
out laser pulses and measures the time between sending out the pulse and the pulse
returning. This sensor provides dense point-clouds. The recorded data can be found in
the zip file Velodyne.

10



Figure 3: The HDPR with indicator of where the sensors are. In the background the
artificial rocks of the parkour can be seen. Image can be found on the Estec website4.

4https://robotics.estec.esa.int/datasets/katwijk-beach-11-2015/
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3 Simultaneous Localization and Mapping

In the following chapters 4, 5 and 6 the theory which is the foundation of this thesis
will be discussed. There are many different SLAM approaches, each with its own ben-
efits and disadvantages [27]. The approaches tested in this thesis are: visual SLAM
via point clouds, Structure from Motion, and a combination of both. In order to test
the accuracy of these methods a comparison needs to be made against an independent
medium which has a relatively high accuracy. This medium would establish a ground
truth that describes the route and environment that SLAM is compared against. The
amount in which the route and map calculated through the SLAM approaches differs
from the ground truth represent their performance.

For this thesis MATLABR2020a was used with the Computer Vision toolbox. Note that this
toolbox is not standard and does require an additional licence provided by Mathworks
as main sponsor of the RoboCup.
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4 Ground Truth

The ground truth describes the location of the rocks and the movements that the Heavy-
Duty Planetary Rover (HDPR) has made. How much the calculated route and map differs
from the ground truth, determines the quality of the produced route. The accuracy of
the SLAM approach is relatively high when there is little to no difference between its
map and route and the ground truth.

The location of the HDPR is based on the data from the GPS-latlong dataset. The
latitude, longitude, and altitude describe the position of the HDPR per timestamp.
However, GPS is known for the tendency to be inaccurate. The standard deviation
of the GPS is included in the dataset and shows the deviation to be between 4 and 9
millimeters, which is negligible.

The exact locations of the rocks is ambiguous. The files do not include where on the
rocks the measurements were taken, nor is the standard deviation of these measurements
given. The assumption that the measurements are based on the center of the rocks does
not hold because the rocks do not have a clear center point, as illustrated in Figure 4.
The altitude of the rocks is not recorded, therefore it is not possible to produce a 3D
map of the environment.

Figure 4: 3D models of the different rock sizes, illustrates that there is not a clear center
point on the rocks5

5This image is Figure 3 from Hewitt et al [11]
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5 Visual SLAM Using Point Clouds

5.1 Point Clouds

SLAM based on imagery is called visual SLAM. The imagery used in this thesis is cap-
tured by a stereo camera, a PointGrey Bumblebee2. Stereo cameras are two cameras
that capture the same scene, but which are located slightly apart. The distance between
the cameras is known, which makes it possible to overlay the images and create depth.
An example of the stereo images can be seen in Figure 5.

(a) Left image. (b) Right image.

Figure 5: Left and right stereo camera image from route 3.

In order to overlay the 2D images and create a 3D scene, it would be convenient if
the corresponding point between the two images have the same row coordinates. The
images captured by the stereo camera do not possess this quality. There is distortion
caused by the camera lens and other factors inherent to the cameras. The influence of the
camera on the image needs to be removed in order to properly overlay the images. In this
dataset the camera parameters, which include the data needed to correct the images, were
provided by the makers of the dataset [11]. The process in which the original images are
corrected for distortion caused by the camera is called rectification [9]. This is illustrated
by Figure 6 which displays the influence of distortion before and after rectification.

14



(a) Overlay before rectification. (b) Overlay after rectification.

Figure 6: (a) is the overlay of the stereo images before rectification. (b) is the overlay of
the stereo images after rectification

Image (b) of Figure 6 illustrates the degree of shift between the scene caught by the
left and the right stereo camera. Shift is referred to as disparity. Objects nearby display
a relatively large amount of disparity, while objects far away have little to none. The
severity of disparity is therefore a representation of depth. When comparing the amount
of disparity it is possible to translate the overlaying 2D images to a 3D representation.
This is the disparity map. This map displays the difference in pixel positioning for every
feature in the images and this can be used to extract depth from the rectified images.

There are multiple approaches for calculating the disparity map, the approaches ex-
plored in this thesis are block matching and semi-global matching. Block matching is a
local method which looks for matching pixels within a region, which is a small number
of pixels, surrounding the pixel of interest [15]. This is in contrast with the semi-global
matching where the program looks for the matching pixel in directions instead of in
regions [12].

15



(a) Block matching. (b) Semi-global matching.

Figure 7: Disparity map results.

The differences between the result of semi-global matching versus block matching can
be seen in Figure 7. The techniques do not have a vast difference, but the semi-global
matching appears to be more complete, this is why this approach has the preference in
this application.

By combining the rectified images, the camera parameters, and the depth information
from the disparity map, it is possible to create a 3D point cloud of the scene captured by
the stereo cameras. This point cloud has an additional axis which represents the depth
of the scene. This additional axis allows the user to optimise the point cloud and reduce
the level of unnecessary objects in the background. Figure 8 exemplifies what adjusting
this axis does. Reducing objects in the background could be convenient, since the sea is
visible in most images and there are occasions where there are people walking in the far
distance. As of now there are no people on Mars, nor is there an ocean. Therefore they
are considered a disturbance which could be removed by applying a depth limit.
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Figure 8: Image shows what is between 5 and 10 meter distance of the camera.

Other noise is visible in Figure 9. Some of this visual noise was already removed by a
Matlab denoise function, however, as the image shows it was not capable of removing all
noise. The leftover noise is underneath the ground level and in a white cloud above the
scene. This noise can be removed by putting a mask on the point clouds which excludes
all data which is outside a certain height.
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(a) Frontal view of point cloud. (b) Side view of point cloud.

Figure 9: Frontal and side view of the first point cloud after application of Matlab denoise
function and before additional noise removal.

The stereo camera is positioned with a small downward angle on the HDPR. This
causes the point clouds to be angled as well, as can be seen in Figure 9 (b). This can be
altered by rotating the scene with 1

10π. The final point cloud can be seen in Figure 10,
11, and 12.

Figure 10: Side view of de-noised point cloud.

Figure 11: Front view of de-noised point cloud.
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Figure 12: Top view of de-noised point cloud.

5.2 Merging Point Clouds

The point clouds of each timestamp visualise what the stereo cameras observe per times-
tamp. However, this observation is quite limited. The data captured by the stereo cam-
eras can be optimised by merging the point clouds, hereby creating a 3D representation
of the surrounding area. In order to merge two point clouds, they must be pre-processed.
The first step is to downsample them. The downsampling is done to limit the influence
of noise on the final output. The downsampled point clouds are used to determine the
displacement between them. A box grid is applied to the point clouds, which divides
them into cubes. The points which are located within this cube are combined to produce
the average colour value of all points within this cube. The size of the cubes is deter-
mined by the grid size. If the grid size is relatively small, the grid will produce a precise
representation of the original point cloud. This precise representation could however be
prone to noise, hereby overruling the function of downsampling. Additionally, a small
grid size uses a lot of memory and needs a lot of processing time. If the grid size is rel-
atively large then processing will be quick, but imprecise. An example of downsampling
can be seen in Figure 13.
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(a) The original point cloud. (b) Downsized point cloud.

Figure 13: Illustration of effect of downsampling with grid size of 10 centimeter

The two point clouds of different timestamps are given the names ’fixed’ and ’moving’.
The fixed point cloud is the first point cloud produced by the stereo cameras. All following
point clouds are transformed relative to the original first fixed point cloud. Between
the two images the HDPR has moved and changed position. Both point clouds are
self centred, meaning that each new image puts the stereo camera at the origin. The
position of the moving point cloud must be altered in order to merge with the fixed point
cloud. The transformation between the point clouds is a rigid one and can be calculated
through the Iterative Closest Point (ICP) algorithm. ICP is an approach to estimate
which transformation must be applied to align the moving point cloud with the fixed
point cloud [5].

The two down sampled point clouds are overlain, and the closest point within the fixed
point cloud is calculated for each individual point in the moving point cloud. This is the
data association step. Subsequently, the moving point cloud is repeatedly transformed
and aligned with the fixed point cloud to lessen the error. The error is defined as the least
square error, this is the squared sum of the distance between the points of the moving
point cloud and their closest point in the fixed point cloud. The data association and
alignment steps are then repeated until the two point clouds converge. After applying the
rigid transformation calculated via ICP, the two point clouds largely cover the same data,
meaning that some data points are displayed twice. In order to discard the double data,
the separate point clouds can be merged to form a new point cloud. The overlapping
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point clouds are merged using a box filter. The size of the box filter determines the
memory which is needed and the resolution of the scene. One can increase the merge
size to reduce the storage requirement of the resulting merged point cloud, and decrease
the merge size to increase the scene resolution. An example of merging point clouds can
be seen in Figure 14.

(a) First image from left camera. (b) Accompanying point cloud.

(c) Second image from left camera. (d) Accompanying point cloud.
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Figure 14: The two point clouds are merged to form a new larger point cloud.

This process must be slightly altered in order to align and merge all the following
timestamp point clouds accordingly. All moving point clouds must not only be trans-
formed and aligned in accordance to the coordinate system of their direct predecessor.
They must also be transformed in accordance to the fixed point cloud. The aligned point
cloud will merge with all preceding point clouds. How much the point cloud has moved
with respect to the previous timestamp is the displacement of the HDPR and is recorded
in the rigid transformation produced by the ICP algorithm. By storing all intermediate
rigid transformations it is possible to reconstruct the route of the HDPR. This technique
thus enables the HDPR to map the environment and locate itself within the map hereby
making it simultaneously locate itself and map the environment.
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6 Structure from Motion

Structure from Motion is a technique that uses the most unique features in a series of
images to produce a 3D point cloud. These features are key points and are matched
between multiple images to decipher the distance between them. This distance allows
for the making of a 3D space where the key points and camera locations are displayed.
Before the key points can be extracted the images must first undergo two pre-processing
steps. The first step of this approach is to turn the original images into grayscale images,
seen in Figure 15.

Figure 15: The original six images are turned to grayscale.

The second step is similar to the visual SLAM approach, namely removing the camera
distortion from the image. In this dataset the camera parameters, which include the data
needed to correct the images, was provided [13]. The original image and its undistorted
version can be seen in Figure 16.
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Figure 16: Example of original grayscale image and the undistorted version.

6.1 Key Points

Turning the images to grayscale and rectifying them is preparation for the key point
extraction. Key point extraction can be done in a variety of ways, but the Speeded-Up
Robust Features (SURF) algorithm was chosen in this thesis because it is scale invariant
as well as invariant to geometric and photometric variations [1]. This is very fortunate
when applying SLAM, because its very use implies the occurrence of these variations.
The groundwork of SURF is the Harris–Stephens algorithm [8], also referred to as Harris
Corner Detector. The Harris–Stephens algorithm detects corners in an image, which
are in essence key points. The drawback is that this algorithm is not scale-invariant [2].
SURF makes it scale invariant by incorporating techniques such as Laplacian of Gaussian
[22] and Scale Invariant Feature Transform (SIFT). SIFT makes use of the difference of
Gaussian function [18]. An example of the key points from an image can be seen in
Figure 17.
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Figure 17: The key points are calculated by the SURF algorithm and are circled in green.

To prevent the registering of unnecessary key points SURF can be set with a region
of interest. A border is put on an image which is then excluded when the key points
are determined. Key points are given an identity in order to match them across frames.
This identity must be as unique as possible in order to prevent false matches. A possible
approach for making it more specific per key point is to attach features which are directly
above the key point to the identity of the key point. However, this is only possible if there
is little to no in-plane rotation. The Katwijk beach dataset is suited for this because all
images are taken with approximately the same image orientation, which is only changed
slightly by the terrain across which the HDPR travels. Since the terrain is fairly level,
this should not pose a problem.

The distance between matched key points indicates what the distance is between the
recording locations. It is imperative that key points are matched with just their unique
counterparts and not with another that might be close. Meaning that a key point can
not be matched with multiple other key points in a different image. An example of what
key point matches look like can be seen in Figure 18.
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Figure 18: Visualisation of the matching key points across two images. Note that there
are some outliers.

6.2 Essential Matrix

The position of the camera can be estimated by using the essential matrix E. The
distance between key point matches and the camera parameters are used to describe the
geometric relation between images. This matrix contains information which describes
the relative orientation from corresponding points. E is determined by the coplanarity
constraint of the matching key points. The constraint implies that there is a 3D plane
which contains the locations x′ and x′′, which are the same key point across frames, and
the 3D representation of this key point. [17].

Mathematically this looks like:

x′ = key point in image 1
x′′ = same key point in image 2

x′TE x′′ = 0

The HDPR travels an inconsistent distance between timestamps. This means that in
some instances there is too little difference between the images from consecutive times-
tamps to make an accurate essential matrix E. This is because the influence of noise
is large when there is little difference between two images. An example of a case where
there is too little difference between images can be seen in Figure 19.
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Figure 19: There is too little difference between image 1 and 2 to calculate E.

The accuracy of E can be determined by the fraction of key points for which the
equation x′TE x′′ = 0 holds. When this fraction is too low E must be recalculated. If,
after recalculation, the fraction is still too low then the accompanying image is discarded.
When there is a satisfactory amount of inliers, the position of the cameras, their rotation,
and the location of all inlier key points can be computed.

E enables the user to find more matching points between images by using epipolar
lines. Given a point in the previous image, E can be used to span a plane which cuts
a line, the epipolar line, through the next image. Somewhere along this line the image
point is located. Using epipolar lines drastically limits the search space of an image for
locating matching key points. By using these lines the locations of key points in 3D space
are determined and a point cloud containing all key points is created.

In the approach used in this thesis the essential matrix E was determined by the M-
estimator Sample And Consensus algorithm (MSAC). MSAC is an extension to RANSAC
in the fact that it also takes the likelihood of matching point pairs into account [24]. This
is important because, even though the key points should have a unique identity, it is still
possible that key points are wrongfully matched. The key point matches which are
deemed likely to be true are used to determine E.

By using the essential matrix, the camera parameters, and the inlier key points, the
orientation and the baseline vector of the camera can be produced. The orientation
describes how the next image has rotated with respect to the previous image. The
baseline vector describes the location of the next camera with respect to the previous
camera, but not what the actual distance is between the cameras. Meaning that the
direction of the camera is known but not the distance between cameras. Due to this,
the coordinate system of Structure from Motion is not in meters, but uses pixels of the
camera coordinate system as the distance measure.
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6.3 Bundle Adjustment

The estimate of the camera location and the locations of the key points in 3D space, can
be further optimised by applying bundle adjustment. This works with the notion that
there is a set of 3D key points: Xj . These key points are observed by cameras which
each have their own projection matrix: Pi. This matrix describes where in the image
a key point would project. Thus, the location of a specific key point is described by
xij = PiXj , where xij are the image coordinates of the j-th key point in the i-th image
[25].

Bundle adjustment is an approach which limits the summed square reprojection error
by adjusting the projection matrix(Pi) and the world coordinates(Xj). The reprojection
error can be seen as a quality marker which calculates the 3D coordinates of a key point
based on two or more images. These coordinates are based on the internal and external
parameters of the camera, as well as the position of the point in the images. Once the
3D coordinates of the point are computed, the 3D point is re-projected on all images
where the point is present. The distance between the actual location of the point and
the re-projected location is the reprojection error. The smaller the error the better the
location of the camera is recorded.

Mathematically this looks like:

min
Pi,Xj

∑
ij

d(PiXj , xij)
2

Where d(x, y) is the Euclidean distance between image points x and y [25].
Bundle adjustment is a non-linear minimization problem which can be solved using

iterative non-linear least squares methods such as the Levenberg-Marquardt algorithm
[21][16].

The bundle adjustment re-determines the locations of all previous cameras, and all
3D key points, based on the information which is provided by a new image [25]. Hereby
lessening the influence of an accumulating error. By repeating these steps for all consec-
utive images it is possible to create a 3D world scene consisting of the key points, which
also displays the position of the cameras. An example of this can be seen in Figure 20.
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Figure 20: 3D representation of the scene, based on 6 images.
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7 Method

In the approach of this thesis the map calculated through Structure from Motion has little
texture and is relatively difficult to comprehend, compared to a map produced via point
clouds. The latter one produces a more visually pleasing map representation, however,
Structure from Motion delivers a more accurate location prediction. For these reasons
the proposed SLAM technique of this thesis is a combination of both techniques. The
goal is to apply the rigid transformation calculated through Structure from Motion to the
point cloud, which is called ’moving’. After the rigid transformation, the ’moving’ point
cloud should be located in the correct position with respect to the ’fixed’ point cloud.
Subsequently, the point clouds can be merged in the same manner as visual SLAM.

The point clouds from visual SLAM are in a meter coordinate system, whereas Struc-
ture from Motion uses the camera coordinate system. This illustrates the necessity to
transform the location descriptions from Structure from Motion to a system that also
uses meters. A possible approach to transform the camera coordinate system into a me-
ter coordinate system is to use the known distance between the left and the right camera
to extrapolate the distance in meters between the coordinates. The distance between
the left and right stereo camera is known to be 12 centimeters. This distance can be
seen as a vector with the same length. However, in Structure from Motion the distance
between the two cameras is constantly adjusted by the bundle adjustment. Therefore an
average of this vector length has to be taken between multiple image pairs in order to
approximate the right value. Following, there are occasions where the distance between
individual camera pairs is far greater or smaller than the average distance. These image
pairs are outliers and therefore must be removed. The mean distance between the left
and right camera is recalculated. While it is known that the distance between cameras
is 12 centimeters, the current system uses an arbitrary value to represent this distance.
The following step is to find a factor by which to multiply this arbitrary value so it will
equal 12 centimeters, thus transforming the system in a meter coordinate system. This
factor is produced in the following manner:

baseline = mean(distances between left and right camera)
scale = baseline/0.12m

factor = 1/scale

If the computation is done right then the first camera position, the left camera of the
first timestamps, is located at [0 0 0]. This means that the coordinates of the cameras are
left camera centered. However, the point clouds base the location on the stereo camera,
not just the left camera. In order to simulate this all camera locations must be translated
6 centimeters to the left.

The translation and rotations which describe the location of the stereo camera is an
average of the left and right camera rotation and translation. The rotation of the left
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and the right camera should be very similar because the cameras are mounted in the
same frame and therefore have the same orientation.

Indexes are created with the images that comply with the accuracy demands, out-
liers are excluded. Visual SLAM produces point clouds of the images and merges them
according to the camera locations from Structure from Motion. By applying the rigid
transformation calculated through Structure from Motion to the point clouds used in
visual SLAM it is possible to create a 3D map of the environment and locate the HDPR
within this environment.

31



8 Related work

The work presented in this thesis builds on multiple previous studies. A study from 2014
modeled the terrain of a river by using aerial images to generate 3D point clouds and
stitch these together using Structure from Motion [13]. Another research paper with a
similar approach also used aerial images to map both the structure of a vineyard and
where its vegetation was located [23]. Both of these studies used aerial images, whereas
the Katwijk beach dataset consists of ground level imagery. Images taken at ground level
have the added complexity of multiple perspectives. This is more similar to another study
from 2014, where the same method was applied to ground level images. Specifically, this
study was interested in making 3D RGB models of archaeological sites [7].

These three studies do not show an interest in location data, which is an essential
element of SLAM. Nor do they show an interest in the production of a comprehensible
RGB map of the terrain. A study which does have interest in location data and which
subject is similar to this thesis, was performed by Paul Timothy Furgale [6]. In his thesis
Furgale researched how a stereo camera and LiDAR can be used for SLAM purposes on a
Martian dataset. Structure from Motion was used to determine the location of the rover,
but no 3D representation of the terrain using point clouds was made. The accuracy of
the route calculated by Furgale can be seen in Figure 21.

Figure 21: The route according to vision deviates greatly from the GPS route. However,
locally the route is correct as can be seen in the two images taken at the same location.6

6This image is Figure 5.6 in Furgale’s thesis [6].

32



The dataset used by Furgale was supplied by the University of Toronto Institute
for Aerospace Studies. No previous research was found that applies point cloud and
Structure from Motion techniques to the Katwijk beach dataset [11].

Where this thesis differs from the related work is in its use of visual SLAM to create
point clouds. Visual SLAM also allows for the creation of a more visually comprehensive
map, with more detail and colour than previous studies were interested in creating.
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9 Results

The data of the route was provided in five parts, where possible this distribution was
used. In this chapter only the most interesting results are displayed. The results of all
parts can be found in the appendix. The results are displayed per section of the route,
per technique.

9.1 Ground Truth

Figure 22: Complete ground truth of route.

Figure 22 displays the ground truth of the whole route. The route starts at the origin. It
overlaps for the first and last quarter, for this reason some parts of the route are displayed
in red instead of black.
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(a) The last location of part 2 is the black
dot closest to the rocks.

(b) The last image taken in part 2.

Figure 23: Last location of part 2 according to the GPS (a) and according to the camera
footage (b).

The accuracy of the ground truth should be high. Millimeter accuracy is guaranteed
for over 95% of the dataset’s traverse, as it is based on RTK GPS. Yet, as illustrated
by Figure 23, there is a discrepancy between the images and the GPS data. The last
image of part 2 appears to be closer to the rock than it should be according to the GPS.
Because the GPS is guaranteed to have high accuracy is the most likely explanation for
this discrepancy a fault with the timestamps.
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9.2 Visual SLAM Using Point Clouds

The results of visual SLAM are presented in the five parts in which the dataset was
provided. Only the most notable results are displayed here, all others can be found in
appendix B.

9.2.1 Part 1

(a) Map en route of part 1 according to visual SLAM. The
route can be seen as a gray line.

(b) Map and route of part 1 in ground
truth.

Figure 24: Part 1 according to visual SLAM(a) and ground truth (b).

The map and route of part 1 according to visual SLAM can be seen in Figure 24 (a).
Figure 24 (b) is what the map and route should look like according to the ground truth.
At the beginning of the route are two medium sized rocks. These rocks, though stretched,
are still recognisable and in the correct position, this is not the case for rocks further
along the route. The computed route diverges significantly from the ground truth, this
means that computing the mean distance between ground truth and visual SLAM be-
comes obsolete. There seems to be an overlaying problem. A likely cause of this is an
accumulating error, due to which both the map and the location of the HDPR become
more inaccurate as the route continues.

36



Figure 25: Frontal view, the route can be seen floating above the scene.

In the frontal view of part 1, as seen in Figure 25, the contours of the first two medium
sized rocks can be seen between 0 and 4 meters in the x direction. The left side of the
image represents the beginning of the route, as the route continues the contours of the
rocks become unclear. Furthermore, there is a relatively large height difference on the
right side of the image, which is another indicator of incorrect image overlaying. There
should be hardly any height difference because this dataset was recorded on the Dutch
seaside.

Side views of part 2 can be found in appendix B.

37



9.2.2 Part 2

(a) Map en route of part 2 according to
visual SLAM. The route can be seen as a
gray line.

(b) Map and route of part 2 according to ground truth.

Figure 26: Map and route of part 2 according to visual SLAM(a) and ground truth (b).

The map and route of part 2 according to visual SLAM can be seen in Figure 26 (a).
Figure 26 (b) is what the map and route should look like according to the ground truth.
When comparing image (a) to (b) it is not possible to identify individual rocks, because
of their stretched appearance. This indicates another merging problem, which could be
caused by a faulty location estimation. A wrong estimation of the camera position causes
a mismatching problem when trying to overlay images. However, the route calculated
by visual SLAM, (a), is very similar to the ground truth route, (b), likely due to this
part being relatively straight. The assumption could be made that a better location
estimation should result in less stretching. However, even with the better estimation in
the straight part of the route the same problem remains. This indicates that the location
estimation is not solely responsible for the merging problem.
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Figure 27: Frontal view, the route can be seen floating above the scene in gray.

The frontal view of part 2, as seen in Figure 27, shows that there is a lot of height dif-
ference between the point clouds. This height difference illustrates the merging problem
once more.

Side views of part 2 can be found in appendix B.

9.2.3 Part 3

(a) Map en route of part 3 according to visual
SLAM. The route can be seen as a gray line.

(b) Map and route of part 3 according to ground
truth.

Figure 28: Map and route of part 3 according to visual SLAM(a) and ground truth (b).
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The map and route of part 3 according to visual SLAM can be seen in Figure 28 (a).
Figure 28 (b) is what the map and route should look like according to the ground truth.
Part 3 of the route has blooming problems. Figure 28 shows that these problems start
halfway through the route, when the HDPR makes a u-turn to go southward. The
blooming makes the map more chaotic, causing white sections throughout the map.
Furthermore the route according to visual SLAM follows the outlines of the ground
truth route until the HDPR makes the turn, after this the route is no longer visible.

Figure 29: Left side view of part 3, the route can be seen floating above the scene.

Figure 29 displays the left side view of the scene depicted in Figure 28 (a). The
blooming also appears to have affected the merging of point clouds, resulting in an
inaccurate overlay and more height difference when blooming is present.

Figure 30: Frontal view of part 3, the route can be seen floating above the scene.

Figure 30 displays the frontal view of the scene depicted in Figure 27 (a). On the
upper left side of the figure the contour of a rock is visible. In the middle of the route
the image quality is lower due to blooming once more.

Part 4 and 5 consist mostly of images with blooming therefore their results are very
similar to part 3 after the HDPR changes direction. All images of part 4, 5, and the
right side view of part 3 can be found in appendix B.
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9.2.4 Structure from Motion

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 31: The route and map of part 1 are rendered nine different times.

Figure 31 displays the difference in results when computing the map and route via Struc-
ture from Motion. Each computation has a different result. (a), (c), and (i) display a
route which gets lost, this is likely caused by the limited number of discernible objects
in the images. In general deviation is more likely in the last section of the route. In
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order to limit the possibility of the route going astray the total dataset is divided into
ten equal parts instead of the five original parts.

(a) Map en route accord-
ing to Structure from Mo-
tion line.

(b) Map and route in ground truth. Route can be
seen in red.

Figure 32: Route according to Structure from Motion(a) and ground truth (b).

Figure 32 displays the route and map according to Structure from Motion (a) and
according to ground truth (b). The route according to Structure from Motion is very
similar to the ground truth. When observing Figure 32 (a) it appears that Structure
from Motion handles straight sections better than parts where there are more corners
such as the beginning of the route.

The routes and maps of all individual parts can be found in appendix C.
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(a) Part 1. (b) Part 2. (c) Part 3.

(d) Part 4. (e) Part 5. (f) Part 6.
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(g) Part 7. (h) Part 8. (i) Part 9.

(j) Part 10.

Figure 33: Overlay of the ground truth and the path according to Structure from Motion
of each part.
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The route created by Structure from Motion is compared to the ground truth by
overlaying them with the ground truth, as can be seen in Figure 33. Some parts such as
part 4, 5, 8, and 10 are very similar to the ground truth. However some parts deviate quite
substantially, such as part 1, 2, 6, and 7. Because these are the sections with the most
curves is the deviation likely caused by rough corner handling in the estimation matrix.
In part 6 and 7 is it evident that the Structure from Motion routes are significantly
shorter than the ground truth. These are parts with a lot of blooming, therefor is it
probable that blooming has a negative influence on the location estimation.

Figure 34: Side view of route

The assumption that the angle of the route would be 1
10π is wrong, when looking at

Figure 34 it is visible that the angle is not consistent throughout. This is against the
expectations that were based on the camera angle.
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(a) (b)

Figure 35: Example of what rocks look like from the side in Structure from Motion.

The map of Structure from Motion consists of dots without a meaningful colour.
This makes it difficult to discern the rocks. An example of what rocks look like in the
Structure from Motion map can be seen in Figure 35. Their rough outlines are visible,
but it is difficult to identify individual rocks.
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9.2.5 Combined Method

9.2.6 Part 1

(a) Map and route of part 1 according to the combined method.
Originally the route is a white dotted line, but for visualisation
purposes it is accentuated in red. The original image can be found
in the appendix.

(b) The ground truth route of part 1
is displayed in red.

Figure 36: Map and route of part 1 according to the combined method (a) and ground
truth (b).

Figure 36 (a) shows what the map and route of part 1 is according to the combined
method. The rocks appear stretched, which is an indication that there is a problem with
the merging of point clouds. The route is identical to the Structure from Motion route,
meaning the quality is also the same.
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Figure 37: Left side view of part 1

The side views of Figure 36 (a) are displayed in Figure 37. The scenes are angled,
which is expected due to the angle of the camera. The height problems encountered in
visual SLAM maps are not present, this indicates that the rotation of the point clouds
is correct.

All images of part 2, 3, 4, and the right side view of part 1 can be found in appendix
D.
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9.2.7 Part 5

(a) Map and route of part 5 according to the combined method.
Originally the route is a white dotted line, but for visualisation
purposes it is accentuated in red. The original image can be found
in the appendix.

(b) The ground truth route of part 5
is displayed in red.

Figure 38: Map and route of part 5 according to the combined method (a) and ground
truth (b).

Figure 38 (a) displays the map and route of part 2 according to the combined method.
The figure shows two scenes rather than one. The likely cause is inaccurate location
estimation, which was not accurately filtered out. The upper point cloud is the depiction
of the route and map. The rocks are stretched but can be identified, especially when
compared to the ground truth in Figure 38 (b).
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(a) (b)

Figure 39: Left(a) and right(b) side view of part 5.

The side views of part 5, depicted in Figure 39, show that there is little height
difference in the final merged point cloud.
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9.2.8 Part 6

(a) Map and route of part 6 according to the combined method.
Originally the route is a white dotted line, but for visualisation
purposes it is accentuated in red. The original image can be found
in the appendix.

(b) The ground truth route of part 6
is displayed in red.

Figure 40: Map and route of part 6 according to the combined method (a) and ground
truth (b).

Figure 40 displays part 6, which is the section where the blooming images start to occur.
In the upper right corner of Figure 40 (a) is a separate point cloud visible. This is caused
by noise that was not accurately recognised and filtered out. All following parts have
blooming and their results are very similar to the second half of part 6.
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(a) (b)

Figure 41: Left(a) and right(b) side view of part 6.

Figure 41 displays the side view of part 6. Due to the noise it is difficult to visualise,
but there is little height difference in the map representation.

The result form all following parts can be found in appendix D.
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10 Discussion

10.1 Ground Truth

The Used GPS approach has a very high accuracy level, with at most a 9 millimeter
deviation. However, it appears that the locations in images do not match the locations
of the GPS. Considering that it is very unlikely that the GPS itself has this level of
inaccuracy, is the most likely cause a problem with the timestamps.

Because the timestamps of the datasets might be incorrect is it difficult to make a
direct comparison between the ground truth location and the locations according to the
SLAM techniques.

10.2 Visual SLAM

The maps calculated through visual SLAM show stretched rocks. This indicates a prob-
lem with the merging of point clouds. This problem is likely to do with the ICP algorithm.
This algorithm does not always perform flawlessly, nor does it correct its errors, leading
to an accumulation error. Additionally, the ICP algorithm performs better when images
have a larger amount of distinctive features, sand is not that distinctive. This dataset is
recorded on the Dutch seaside and should therefore display a terrain which is fairly level.
However, the resulting maps show a terrain with a lot of height difference, this indicates
that the ICP algorithm incorrectly determines the orientation of the cameras. Overall
the routes and maps are inaccurate, but there are occasions, such as straight sections,
where they appear to be more correct.

A possible solution is to apply a Kalman filter [14]. A Kalman filter uses two or more
location estimations and bases the ultimate location of the camera upon the certainty of
these estimations. The Katwijk beach dataset includes an Internal Measurement Unit and
an odometry recording. By incorporating one of these files into the location estimation
via a Kalman filter, a more correct location estimate could be made. The assumption is
that a more accurate location will lead to a better point cloud merge.

10.3 Structure from Motion

The route calculated through Structure from Motion shows great similarity to the ground
truth. The position of the rocks is unclear, because the map lacks distinctive features
and meaningful color.

Even though the route is more similar to the ground truth than the visual SLAM
route, it still deviates. The bundle adjustment could have improved the overall map
quality, but because the route had to be split up into ten parts, it was unable to make use
of loop closure, which could have improved both the route and the map. The application
of bundle adjustment, though limited, is a likely reason why this approach suffers less
from accumulation errors than visual SLAM. However, it does not solve the lack of
discernible objects. The sections of the route with more corners are less accurate, this
indicates that there is rough corner handling by the estimation matrix.
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Blooming also causes deviation with this method, the route quality lessens with
blooming images. This could also be one of the causes of the deviation from ground
truth. The sections where blooming is present have less key points, this makes it more
difficult to merge the point clouds. Again, the Kalman filter could offer a possible so-
lution for both the blooming and the limited features problem, for similar reasons as
before.

The coordinate system of Structure from Motion has not been converted to meters
for this approach, which limits its comparability to ground truth in terms of distance.
However, it is apparent that the route of Structure from Motion has a closer resemblance
to the ground truth than the visual SLAM route.

10.4 Combined Method

The route in this method is the same as the route in Structure from Motion and has
therefore the same qualities and shortcomings. The rocks in the maps produced by the
combined method appear to have the same flaw as the rocks from visual SLAM, they are
stretched and therefore difficult to identify. This indicates that there is still a merging
problem. This could be caused by the ICP algorithm, but another likely cause is that
the camera coordinate system from Structure from Motion was not correctly translated
to a meter coordinate system.

However the map from this method is arguably more comprehensible than the map
from visual SLAM, because there is less height difference between the point clouds. This
indicates that the orientation of the cameras was correctly determined by Structure from
Motion. In some images there are extra point clouds visible, this is noise, likely caused by
a faulty location estimate from Structure from Motion which was not correctly filtered. A
possible solution would be another processing step which removes point clouds of which
the location deviates too much from the previous location.

Each technique has benefits and disadvantages but overall the desired outcome, a
completely accurate map and accurate location description, was not achieved.
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11 Conclusion

In summary, the goal of this thesis was to study the routes and maps produced by visual
SLAM, Structure from Motion, and a combination of both techniques. This was done
by computing their individual results and comparing their quality relative to each other
and to the ground truth.

Results indicated that none of the techniques are ideal. The visual SLAM approach
had, when applied to small numbers of images, a clear map representation. But when
it is applied to a larger dataset the location of the HDPR is inaccurate due to an accu-
mulation error which causes the images to no longer merge without fault. The resulting
map therefore looks stretched and with each added image the map becomes less clear.
The route depicted by Structure from Motion, according to the results from this thesis,
appears to have a closer resemblance to ground truth. However, the map is made of
dots without a meaningful color. This makes it difficult to comprehend the map from
a human standpoint. Also, the route needed to be separated in smaller parts in order
to prevent the HDPR from getting lost. This is because the images have very little
distinctive features. All sand looks the same to the HDPR. This led to faulty locations
estimations which could not be rectified.

By combining the approaches the goal was to use the best of both, namely the com-
prehensible map from visual SLAM and the location description from Structure from
Motion. The main problem with applying this technique was transforming the coor-
dinate system from Structure from Motion into a coordinate system in meters. In the
results the images do not merge well together and rocks are depicted multiple times. This
is probably caused by the coordinates system transformation malfunctioning. However,
the map is still easier to comprehend than the map from Structure from Motion and,
while not perfect, is also more accurate and has less height difference than the map from
visual SLAM.

Overall the techniques did not produce the intended outcome, which was both an
accurate map and route. But the results indicate possible enhancement which could
improve the quality. One of those enhancements could be a Kalman filter which prevents
the HDPR from getting lost due to the indistinguishable surroundings. Another could
be taking a different approach for transforming the Structure from Motion coordinate
system into a meter coordinate system.

11.1 Future Work

The Katwijk beach dataset consists of multiple sensors which could be used for SLAM. In
this thesis the choice was made to focus on the stereo cameras, however LiDAR could very
well be more suited for Martian terrain applications. LiDAR stands for Light Detection
And Ranging and is a type of sensor which uses laser pulses to make a 3D image. LiDAR
might be more suited because it does not rely on a stable light source to produce quality
images. This would solve the blooming problems encountered in this thesis. In fact,
LiDAR does not rely on a light source at all, which makes it possible to also explore
terrain on the dark side of Mars, underground, or in craters where there is little light.
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The author of the article which describes the Katwijk beach dataset, Robert A Hewitt,
has done his PhD thesis on bundle adjustment for LiDAR, applying this technique to
the dataset could give interesting results.

Furthermore the techniques used in this thesis could be expanded on by applying
the earlier mentioned Kalman filter [14]. The dataset includes odometry data and an
Internal Measurement Unit which should make this possible. However, due to incomplete
data descriptions and unusual sensors this was not applied in this thesis. This approach
therefore requires more research into how to use the datasets and would require contact
with the producers.

While producing the visual SLAM point clouds, there are a relatively large number of
variables, including but not limited to downsizing for merging and how to merge the final
point clouds. More research can be done on deciding which variables function optimally.

It is likely that the camera coordinate system was not correctly translated to a meter
coordinate system. An approach which also takes the possible warping of the terrain into
account and which better corrects for noise could potentially improve the quality.

The map produced by Structure from Motion is difficult to understand and can be
improved by creating a more dense point cloud. This can be achieved by tracking key
points across frames. This is an enhancement because it also stores information which
describes the location of key points relative to each other. Making it possible to produce a
point cloud with more accuracy and more key points, allowing for a more comprehensive
map and a better route. A possible approach for this is the Kanade-Lucas-Tomasi (KLT)
algorithm [19][26].

In some articles Structure from Motion was used in such a way that there was RGB
data [7]. RGB data could improve map legibility, which would make merging visual
SLAM and Structure from Motion obsolete. Research can be done into how to possibly
apply this to the dataset.

For this thesis only the results of route 3 were computed. Route 1 and 2 are driven
with higher speeds and have less corners. Their results are assumed to be similar to the
results of part 2 of route 3. This because part 2 is also relatively straight, but it could
be interesting to analyse if this is correct.

Sadly the opportunity of loop closure could not be tested in this thesis due to com-
putation limits. With more computing power the influence of loop closure on the route
could be studied, possibly resulting in more accuracy.
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images/

A Ground Truth

Figure 42: Complete ground truth of route. Some parts of the route are displayed in red
for clarity reasons.

The following five images display the ground truth of the five parts of the route. The
last positions of the previous part are displayed in red to visualise how the individual



parts fit in the route.

(a) Ground truth of part 1. (b) Ground truth of part 2.

(c) Ground truth of part 3. (d) Ground truth of part 4.



B Visual SLAM Using Point Clouds

B.0.1 Part 1

(e) Map and route of part 1 according to visual SLAM. The
route can be seen as a gray line.

(f) Map and route of part 1 ac-
cording to ground truth.

Figure 43: Map and route of part 1 according to visual SLAM (e) and ground truth (f).



Figure 44: Left side view of part 1, the route can be seen floating above the scene.

Figure 45: Right side view of part 1, the route can be seen floating above the scene.

Figure 46: Frontal view of part 1, the route can be seen floating above the scene.



B.0.2 part 2

(a) Map and route of part 2 according to visual
SLAM. The route can be seen as a gray line.

(b) Map and route of part 2 according to ground
truth.

Figure 47: Map en route of part 2 according to visual SLAM (a) and ground truth (b).

Figure 48: Left side view of part 2, the route can be seen floating above the scene.



Figure 49: Right side view of part 2, the route can be seen floating above the scene.

Figure 50: Frontal view of part 2, the route can be seen floating above the scene.



B.0.3 Part 3

(a) Map and route of part 3 according to visual
SLAM. The route can be seen as a gray line.

(b) Map and route of part 3 according to ground
truth.

Figure 51: Map and route of part 3 according to both visual SLAM and ground truth

Figure 52: Left side view of part 3, the route can be seen floating above the scene.



Figure 53: Right side view of part 3, the route can be seen floating above the scene.

Figure 54: Frontal view of part 3, the route can be seen floating above the scene.



B.0.4 part 4

(a) Map and route of part 4 according to visual
SLAM. The route can be seen as a gray line.

(b) Map and route of part 4 according to
ground truth.

Figure 55: Map and route of part 4 according to both visual SLAM and ground truth

Figure 56: Left side view of part 4, the route can be seen floating above the scene.



Figure 57: Right side view of part 4, the route can be seen floating above the scene.

Figure 58: Frontal view of part 4, the route can be seen floating above the scene.



B.0.5 part 5

(a) Map and route of part 5 according to visual
SLAM. The route can be seen as a gray line.

(b) Map and route of part 5 according
to ground truth.

Figure 59: Map and route of part 5 according to both visual SLAM and ground truth

Figure 60: Left side view of part 5, the route can be seen floating above the scene.

Figure 61: Right side view of part 5, the route can be seen floating above the scene.



Figure 62: Frontal view of part 5, the route can be seen floating above the scene.



C Structure from Motion

(a) Part 1. (b) Part 2. (c) Part 3.

(d) Part 4. (e) Part 5. (f) Part 6.

(g) Part 7. (h) Part 8. (i) Part 9.

(j) Part 10.

Figure 63: Structure from Motion map and route of each part.



D Combined method

(a) Map and route of part 1 according to combined method. The
route can be seen as a white dotted line.

(b) The ground truth route of part 1
is displayed in red.

Figure 64: Map and route of part 1 according to the combined method (a) and ground
truth (b).



(a) (b)

Figure 65: Left(a) and right(b) side view of part 1.



D.1 Part 2

(a) Map and route of part 2 according to combined method. The
route can be seen as a white dotted line.

(b) The ground truth route of part 2
is displayed in red.

Figure 66: Map and route of part 2 according to the combined method (a) and ground
truth (b).



(a) (b)

Figure 67: Left(a) and right(b) side view of part 2.



D.2 Part 3

(a) Map and route of part 3 according to combined method. The
route can be seen as a white dotted line.

(b) The ground truth route of part 3
is displayed in red.

Figure 68: Map and route of part 3 according to the combined method (a) and ground
truth (b).



(a) (b)

Figure 69: Left(a) and right(b) side view of part 3.



D.3 Part 4

(a) Map and route of part 4 according to combined method. The
route can be seen as a white dotted line.

(b) The ground truth route of part 4
is displayed in red.

Figure 70: Map and route of part 4 according to the combined method (a) and ground
truth (b).



(a) (b)

Figure 71: Left(a) and right(b) side view of part 4.



D.4 Part 5

(a) Map and route of part 5 according to combined method. The
route can be seen as a white dotted line.

(b) The ground truth route of part 5
is displayed in red.

Figure 72: Map and route of part 5 according to the combined method (a) and ground
truth (b).



(a) (b)

Figure 73: Left(a) and right(b) side view of part 5.



D.5 Part 6

(a) Map and route of part 6 according to combined method. The
route can be seen as a white dotted line.

(b) The ground truth route of part 6
is displayed in red.

Figure 74: Map and route of part 6 according to the combined method (a) and ground
truth (b).

(a) (b)

Figure 75: Left(a) and right(b) side view of part 6.



D.6 Part 7

(a) Map and route of part 7 according to combined method. The
route can be seen as a white dotted line.

(b) The ground truth route of part 7
is displayed in red.

Figure 76: Map and route of part 7 according to the combined method (a) and ground
truth (b).



(a) (b)

Figure 77: Left(a) and right(b) side view of part 7.



D.7 Part 8

(a) Map and route of part 8 according to combined method. The
route can be seen as a white dotted line.

(b) The ground truth route of part 8
is displayed in red.

Figure 78: Map and route of part 8 according to the combined method (a) and ground
truth (b).

(a) (b)

Figure 79: Left(a) and right(b) side view of part 8.



D.8 Part 9

(a) Map and route of part 9 according to combined method. The
route can be seen as a white dotted line.

(b) The ground truth route of part 9
is displayed in red.

Figure 80: Map and route of part 9 according to the combined method (a) and ground
truth (b).



(a) (b)

Figure 81: Left(a) and right(b) side view of part 9.



D.9 Part 10

(a) Map and route of part 10 according to combined method.
The route can be seen as a white dotted line.

(b) The ground truth route of part 10 is
displayed in red.

Figure 82: Map and route of part 10 according to the combined method (a) and ground
truth (b).



(a) (b)

Figure 83: Left(a) and right(b) side view of part 10.


