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Abstract

This thesis investigates the feasibility of 3D object detection on the Avular Origin
One, an autonomous mobile robot intended for deployment in a waste-to-energy
facility. The objective is to assess whether LiDAR enables reliable truck detection
in dynamic industrial scenes and whether fusing LiDAR with a front-facing cam-
era improves detection performance. Development and evaluation were conducted
entirely in simulation using the Gazebo environment.

A modular data generation pipeline was developed to extract synthetic sensor data
and annotations from simulation and convert them into a custom dataset replicat-
ing the nuScenes format. Four detection models were evaluated: three LiDAR-only
and one LiDAR–camera fusion model. The models were tested across three evalu-
ation scenarios and nine training configurations, including transfer learning, early
fusion, and point cloud filtering.

Results show that LiDAR-only models achieve high detection accuracy, with
Centerpoint-Pointpillar offering the best trade-off between speed and detection
performance. Fusion using BEVFusion provided no detection improvement and
substantially reduced performance due to its computational cost. Transfer learn-
ing consistently improved detection outcomes, while early fusion and point cloud
filtering showed no clear benefit. These findings highlight LiDAR as the most
practical sensing modality for 3D object detection. However, further testing is
required to confirm real-time model performance on the physical robot.
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Chapter 1

Introduction

Autonomous mobile robots (AMRs) must be capable of perceiving and interpret-
ing their surroundings to operate safely and effectively in real-world environments.
One approach to this problem is real-time 3D object detection, which enables
robots to recognise and localise objects in dynamic scenes. This technology is well
established in autonomous driving research [26], [1], [21]. However, translating
these methods to smaller robots presents new challenges, including limited on-
board computational resources, restricted sensor coverage, and suboptimal sensor
placement.

In industrial environments, AMRs are increasingly used to monitor activity and
assist with local logistics [4]. These settings are often dynamic, with unpredictable
truck movements and frequent human presence. Ensuring safety and operational
reliability in such environments requires real-time object detection capabilities.
One example is the waste-to-energy (WtE) facility operated by Afval Energie
Bedrijf (AEB) in Amsterdam, trucks occasionally unload in incorrect zones, lead-
ing to inefficiencies that must be resolved manually. An autonomous robot, the
Avular Origin One, is being deployed to address this issue by monitoring truck
activity and assisting in rule enforcement.

Despite being equipped with several onboard sensors, the Avular Origin One cur-
rently supports only basic motion detection within its immediate field of view
(FOV). This is insufficient for deployment in dynamic industrial settings where
close interaction with vehicles and pedestrians is expected. The robot must in-
stead achieve real-time situational awareness, enabling it to detect trucks, distin-
guish them from pedestrians, and navigate safely through the facility.
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Given the available sensor modalities, this task can be approached using either
LiDAR data alone or a multimodal strategy that fuses LiDAR with a front-facing
camera. LiDAR provides precise spatial information even in poor lighting con-
ditions, while the camera contributes complementary visual context. Although
fusion can improve detection accuracy, it also introduces additional computational
demands that must be addressed within the limited hardware available [1].

Due to these hardware constraints, and because collecting real-world data in active
industrial environments is both dangerous and time consuming, all development
and testing are conducted entirely in simulation. Experiments are carried out us-
ing the Gazebo simulator, and synthetic sensor data is captured and converted
into a dataset that follows the nuScenes format [5], which is commonly used in
autonomous driving research [21].

The need to detect trucks reliably, operate within limited hardware constraints,
and develop entirely in simulation leads to the following research question: How
effective is LiDAR for real-time simulated 3D object detection on the Avular Origin
One, and how does fusion with a camera affect performance?

To answer this question, the first step is to design a pipeline for generating and
storing synthetic sensor data along with the corresponding object annotations.
This leads to the first sub-question: How can sensor and annotation data effec-
tively be extracted from the simulation environment?

Once the data pipeline is in place, the next stage involves selecting and imple-
menting a set of object detection models. These must include both LiDAR-based
models and models that combine LiDAR with input from a front-facing camera.
This raises the second sub-question: What state of the art object detection models
are available for LiDAR-only and LiDAR camera fusion setups?

Finally, the implemented models must be evaluated in terms of detection per-
formance, inference speed, and computational demands, which prompts the sub-
question: How does the use of mono or stereo camera data affect detection perfor-
mance and inference speed compared to LiDAR-only input?

To address the research questions, this thesis begins with a background chapter
introducing the robot and industrial context, followed by sections on 3D object
detection and fusion. A subsequent chapter describes the simulation design, data
generation, datasets, and model evaluation. Results are then presented and as-
sessed. The final chapter summarises the findings and outlines limitations.
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Chapter 2

Background

This chapter provides an overview of the core concepts and components relevant
to 3D object detection and sensor fusion. It begins by introducing the robot and
the industrial environment in which it is deployed, followed by an introduction
to object detection, a description of sensing modalities, data representations, and
commonly used datasets. Sensor fusion is then discussed, and the chapter con-
cludes with a review of relevant detection models.

2.1 Robot and environment
The Origin One, shown in Figure 2.1, is a research-oriented robotic platform devel-
oped by the Dutch company Avular. It is designed for autonomous navigation in
both indoor and outdoor environments and supports modular configuration with
various sensors and utilities, such as a LiDAR sensor or a robotic arm. The robot
was selected by the Maintenance Lab at the Amsterdam University of Applied
Sciences (HvA), which was asked by AEB to assist with the development of an
autonomous monitoring system at their facility.

Figure 2.1: The Origin One robot developed by Avular [2].
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The robot is intended for use at the Hoog Rendement Centrale (HRC), part of the
waste to energy facility operated by Afval Energie Bedrijf (AEB) in Amsterdam,
as shown in Appendix A. AEB is a municipal waste and energy company based
in the city. At the HRC, the robot supports a penalty system by autonomously
monitoring truck movements and recording information such as license plates.

2.2 Object detection
Object detection enables AMRs to perceive the environment by localising objects
in 3D space and assigning semantic labels [26]. In the context of 3D object detec-
tion, objects are represented as 3D bounding boxes, often referred to as ground
truth, defined by (x, y, z, w, l, h, ψ). These bounding boxes represent the size and
position of objects as oriented cuboids, each labelled with a predefined semantic
category, such as trucks or pedestrians. Here, (x, y, z) denotes the centre of the
bounding box in the global coordinate frame, (w, l, h) specifies its width, length,
and height respectively, and ψ indicates the yaw angle, which defines the orienta-
tion of the bounding box relative to the heading of the AMR [21].

In addition to localisation, the task involves semantic classification. This is formu-
lated as a multi-class prediction problem, where the model estimates a probability
distribution over predefined categories and selects the most probable class [26].

2.3 Data foundations

2.3.1 Sensor modalities

This section outlines the three sensor modalities commonly employed for object
detection with AMRs: LiDAR, RGB cameras, and depth cameras.

LiDAR

LiDAR (Light Detection and Ranging) sensors estimate distance by measuring
the time delay between the emission and reception of laser pulses. This time of
flight (ToF) principle allows them to generate accurate but sparse 3D point clouds,
even under varying lighting conditions, since they emit their own signal. However,
performance degrades with highly reflective surfaces and in extreme lighting envi-
ronments [27], [26], [25].
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When operating, a LiDAR generates a point cloud composed of scanned points,
each defined by a 3D coordinate (x, y, z) relative to the sensor position and ad-
ditional attributes R, such as intensity representing the strength of the returned
laser signal [27]. While LiDAR can capture geometry over long distances, its ef-
fectiveness is reduced at very short or long ranges. Unlike cameras, LiDAR does
not capture detailed texture information [1].

Camera

Cameras provide detailed colour and texture information but do not capture depth
directly, which limits effectiveness in 3D object detection, particularly under poor
lighting conditions [1]. When a scene is recorded, 3D structure is projected onto a
2D image plane using parameters defined by the camera model, resulting in the loss
of spatial depth. While single images lack depth, stereo cameras, combining two
or more cameras, help estimate it by capturing image pairs from slightly different
viewpoints, improving detection accuracy over monocular camera setups. However,
they require precise calibration and remain sensitive to lighting conditions and
adverse weather [26].

Depth camera

Depth cameras estimate distance using either stereoscopic vision or ToF sensing.
When paired with RGB imaging, they produce aligned colour and depth maps
(RGB-D), enabling spatial awareness [1]. The depth sensor used on the robot is
the Intel RealSense D435f1, a stereo-based RGB-D camera that estimates depth by
triangulating corresponding points between two infrared images. Although RGB-
D cameras provide spatial information, they are limited by factors such as reduced
depth resolution, sensor noise, and higher computational cost [25].

2.3.2 Data representations

After acquiring data from different modalities, it must be structured into repre-
sentations suitable for detection. This section focuses mostly on point cloud repre-
sentations, as image data is already organised in a regular grid and was addressed
earlier. Three representation types are examined: voxel-based, pillar-based, and
birds-eye view.

1https://www.intelrealsense.com/depth-camera-d435f/
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Voxel-based representation

Voxels are the 3D counterpart of 2D pixels, discretising space into uniformly
spaced, fixed-size units, as shown in Figure 2.2. Each voxel stores information
such as occupancy and point density. This downsampling reduces computational
load and enables the use of 2D convolutional neural networks for detection tasks
when further processed [21].

Figure 2.2: Illustration of a voxel grid. A single voxel is highlighted to show the
structure [24].

Pillar-based representation

In the pillar-based representation, the point cloud is discretised into vertical pillars
based on their horizontal (x, y) position. To enhance these pillars, each point is
enriched with features that describe its offset from the pillar centre and local mean
within the pillar. This representation enables efficient processing using standard
2D convolution operations and results in inference that is approximately 2-4 times
faster than voxel-based methods. However, this scheme introduces some loss of
spatial resolution [21], [12].

Figure 2.3: Pillar-based representation. LiDAR points are grouped into vertical
pillars on a 2D grid [11].
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Birds-eye view representation

Birds-eye view (BEV) is a top-down representation that projects 3D sensor data
onto the horizontal plane, as illustrated in Figure 2.4. For LiDAR data, this in-
volves discretising the point cloud using voxels or pillars and summarising features
along the vertical axis. For camera data, depth must first be estimated to convert
image pixels into 3D points, which are then projected onto the same ground plane
grid. While this representation reduces vertical resolution, it preserves horizontal
spatial structure and enables the use of efficient 2D convolutions for perception
tasks [13], [26].

Figure 2.4: Top down BEV representation of a vehicle. LiDAR and camera data
are projected onto a 2D plane [8].

2.3.3 Datasets

Several benchmark datasets have been developed for evaluating vehicle-based 3D
object detection models. KITTI was among the earliest, while the Waymo Open
Dataset provides greater scale and realism [10], [20], [1]. However, both lack a
standardised and publicly documented schema, which complicates the generation
of compatible custom datasets. The nuScenes dataset addresses this limitation by
providing a complete schema and an official development kit. Figure 2.5 illustrates
the metadata structure adopted throughout this thesis.

The nuScenes dataset is organised into scenes, each composed of samples recorded
at 2 Hz. A sample represents either a key-frame or a sweep. Key-frames include
ground truth annotations, whereas sweeps contain unlabelled intermediate frames.
Each sample is linked to multiple sensor recordings, including LiDAR, camera,
and radar data. Sensor recordings are stored as sample data entries, which con-
tain timestamps, file paths, and references to the corresponding calibrated sensor
parameters. Each sensor has a fixed pose relative to the ego vehicle, and its global
pose is recorded for every sample. Annotations provide 3D bounding boxes, se-
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mantic categories, and the number of LiDAR points contained within each box.
Additional metadata captures object category definitions, scene context, and vis-
ibility information. Data collection was conducted using a vehicle equipped with
six cameras, a LiDAR sensor, five radar units, and a GPS/IMU module [5].

Figure 2.5: Overview of the nuScenes data schema, showing table structure and
relationships [5].
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2.4 Sensor fusion strategies
Recent advances in 3D object detection show that combining multiple sensor
modalities, especially LiDAR and camera data, can improve both accuracy and ro-
bustness [21]. Although fusion strategies are categorised differently across studies,
this section considers three main types based on the stage at which fusion takes
place: early, middle, and late fusion.

2.4.1 Early fusion

Early fusion combines sensor data at the input stage, allowing the model to process
a unified representation. This can improve contextual understanding by preserving
raw correlations between modalities. However, the approach introduces rigidity,
since changes to the architecture of a fusion model often require a complete re-
work. It is also sensitive to misalignments and inconsistent data formats, which
complicate fusion model development [1].

2.4.2 Middle fusion

Middle fusion combines features after each modality is processed independently.
This enables the model to merge higher level representations and avoids some
issues associated with early fusion. Its effectiveness, however, depends on the
task, network architecture, and input characteristics [1], [26].

2.4.3 Late fusion

Late fusion merges the outputs of separate models for each modality. It avoids
alignment issues and allows each sensor to be processed independently. However,
because the fusion occurs only at the output stage, the model is limited in learning
correlations between different sensor types [1], [26].
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2.5 Detection models
This section introduces the 3D object detection models evaluated in this study:
Centerpoint-Pointpillar, TransFusion-LiDAR, and SECOND as LiDAR-only meth-
ods, and BEVFusion as the fusion method. These models were selected based on
reported performance in recent benchmarks and publications, as well as the avail-
ability of publicly available implementations [3], [13], [23], [28], [29]. Each relies
on a different data representation, including voxel grids, point pillars, and BEV.

2.5.1 Centerpoint-Pointpillar

Centerpoint with Pointpillars encoding transforms the point cloud into a 2D pseudo-
image using a pillar-based encoder. This is converted into a BEV feature map and
processed by a 2D convolutional model to extract spatial features. The model pre-
dicts a heatmap indicating the likelihood of object centres and, for each detected
centre, regresses object size, orientation, height, velocity, and centre offset. The
top-scoring candidates are then selected and decoded into final bounding boxes
[29].

2.5.2 TransFusion-LiDAR

TransFusion-LiDAR vowelises the input point cloud and extracts features using
sparse 3D convolutions in the BEV frame. A heatmap is then generated to estimate
the likelihood of object centres along with attributes such as size and orientation.
The top-ranked candidates from this heatmap are used to initialise object queries.
These queries are generated from the input data and include information about
the predicted object category. A transformer-based detection module then refines
these queries by allowing them to interact with the BEV features and with each
other. This process produces final bounding box predictions and class scores [3].

2.5.3 SECOND

SECOND voxelises the input point cloud into a sparse 3D grid and computes
geometric features for each non-empty voxel using a voxel feature encoding layer.
These features are processed using sparse 3D convolutions, after which the height
dimension is collapsed to obtain a 2D BEV representation. This is passed to a
convolutional detection head that predicts object classes and 3D bounding boxes,
including size, orientation, height, and position [28].
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2.5.4 BEVFusion

BEVFusion processes LiDAR and image inputs through separate encoders and
aligns them in a shared BEV frame to enable spatial fusion. LiDAR data is
voxelised and processed using sparse 3D convolution, followed by vertical pooling
to project the features onto the BEV frame. Camera images are encoded using
a convolutional network that also predicts dense depth distributions across the
image. To recover 3D spatial structure, image features are projected into 3D
space by assigning each pixel to multiple depth levels, weighted according to the
predicted depth distribution. These features are voxelised and pooled into the
same BEV grid as the LiDAR features. Middle fusion is realised by concatenating
the aligned features and applying 2D convolution over the combined representation
[13].

13



Chapter 3

Methodology

This chapter describes the data generation and perception pipeline developed for
the Avular Origin One robot. It covers the creation of a structured synthetic
dataset and the evaluation of object detection models using the OpenPCDet frame-
work. Although the task of mobile 3D object detection falls within the domain of
autonomous driving research, most publicly available datasets are based on sensor
configurations designed for cars. These configurations differ substantially from the
sensor layout used on the Avular Origin One. As a result, a custom dataset was
created that reflects operational context of the robot.

Due to limited access to the AEB WtE facility and the constraints of real-world
data collection, a simulation-based approach was adopted. A virtual environment
was developed to replicate the facility and generate sensor data under controlled
conditions. The resulting data, referred to as the AEB detection dataset, is pro-
cessed and structured according to the nuScenes format, enabling the use of exist-
ing 3D object detection models with minimal modification.

The full pipeline consists of several components, including simulation design, dataset
construction, and model evaluation. The chapter begins by describing the hard-
ware setup, covering both the robot and the desktop used for development and
inference. It then presents the simulation environment and the data generation
pipeline that converts the synthetic data into the nuScenes format.The training
and evaluation datasets are then introduced, followed by a description of the in-
ference framework accompanied by the metrics used for evaluation.
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3.1 Hardware
ThThe Avular Origin One operates on electric power and provides a battery life of
approximately five hours, which is sufficient to perform its daily tasks within the
WtE facility [7]. The robot moves using four fixed standard wheels, and steering
is achieved through differential drive by varying the relative wheel speeds. The
platform is compact, measuring 655 mm in length, 578 mm in width, and 330 mm
in height, including the antennas.

In terms of sensing, the robot is equipped with several components relevant to this
thesis, as illustrated in Figure ??. The first is a front-facing Intel RealSense D435f
RGB-D camera, which captures RGB images with a FOV of 69 by 42 degrees and
produces depth-based point clouds with an FOV of 86 by 58 degrees. The second
is an Ouster 3D LiDAR sensor, mounted near the front at the top of the platform.
It provides full 360 degree coverage and has a maximum range of approximately
45 metres.

Figure 3.1: The Avular Origin One, with the LiDAR sensor mounted at the front
top edge and the depth camera positioned centrally at the front [2].

In addition to the LiDAR and depth camera, the robot is also equipped with six
ultrasonic sensors positioned at the front and rear. However, due to inconsistent
behaviour observed during preliminary testing by the Maintenance Lab at the
HvA, these sensors were excluded and omitted from the data generation process.
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Onboard sensor processing and robotic control are handled by embedded hard-
ware, specifically the NVIDIA Jetson Orin NX. To support real-time inference of
object detection models, an additional NVIDIA Jetson Orin Nano is mounted on
top of the platform.

Finally, for simulation, data generation, and model inference, a desktop system
was used alongside the robot. The system is configured with Ubuntu 22.04, an
NVIDIA RTX 4070 Super GPU, a Ryzen 7 7800X3D processor, and 32 GB of
RAM.

3.2 Simulation and data generation pipeline

3.2.1 Simulation environment

Simulation tools

To mitigate the risks and constraints associated with real-world data collection, a
simulation-based approach was adopted for scene generation and sensor emulation.
This was implemented using Gazebo Fortress, an open source physics-based sim-
ulator maintained by Open Robotics1. Gazebo enables the simulation of robots,
environments, and sensor data. It is accurate and used in academic robotics re-
search [9]. Gazebo was selected for this thesis based on existing infrastructure
provided by the Avular Robotics team, who had already developed a compatible
model of the Origin One robot [22]. This model includes all sensors present on the
physical robot.

To communicate sensor data from Gazebo to the data generation pipeline, the
system was integrated with Robot Operating System 2 (ROS2) Humble, the mid-
dleware used to handle all data exchange within the robotic system [14]. ROS2
is a modular framework that structures different tasks into independent processes
called nodes. Each node is responsible for a specific function, such as handling
sensor input, and can be easily implemented using either Python or C++. Nodes
exchange data by publishing and subscribing to topics, which serve as the primary
communication interface within the ROS2 ecosystem.

To enable communication between ROS2 nodes and the Gazebo simulation, a
ROS2–Gazebo bridge was used. This bridge maps Gazebo topics to ROS2 topics,
allowing simulated sensor data to be transferred between the two software systems.
For example, as shown in Figure 3.2, the node on the left publishes LiDAR point

1See https://gazebosim.org/docs/fortress for more information.
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cloud data generated in Gazebo. This data is bridged to a ROS2 topic, which is
then subscribed to by the node on the right, responsible for storing the data in
the nuScenes format.

Figure 3.2: Example of two ROS2 nodes publishing and subscribing to a topic.

Each node is implemented within a ROS2 package, which contains the source code,
dependencies, and configuration files. These packages are organised within a ROS2
workspace, supporting modular development and ensuring the data generation
pipeline remains structured and extensible.

Environment design

The simulation environment was developed entirely in Gazebo as a simplified ver-
sion of the HRC dumping hall at the AEB facility, as shown in Appendix A. It
consists of grey walls and floors, with each waste chute enclosed by square walls
along the right side of the hall. Raised footpaths are also included to match the
real layout. The environment was simplified because most data is collected us-
ing LiDAR, where colour is not relevant. The RGB camera still observes enough
colour variation to distinguish objects from the background.

The simulation environment includes the Avular Origin One and up to five truck
models obtained from the official Gazebo model catalogue: a box truck and a
delivery truck [17], [18]. These are not garbage trucks, since no suitable model
was available, and creating one would have required excessive modelling time.
Despite this limitation, both are visually adequate for the truck detection task.
Each truck measures approximately 5 metres in length, 1.8 metres in width, and
2 metres in height. Although relatively small, testing showed that size did not
affect detection performance. Each scene also includes up to two human models,
one male and one female, selected from the same catalogue [16], [15]. All object
models used in the simulation are shown in Figure 3.3.
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Figure 3.3: Overview of all object models used in the simulation. From left to
right: delivery truck [18], box truck [17], male pedestrian [16], female pedestrian
[15], and the robot model at the centre [22].

In addition to the robot, one truck is capable of movement using ROS2 commands
published through Gazebo topic bridges, allowing evaluation of dynamic interac-
tions. The robot follows predefined routes for various scenarios, including chute
inspection and patrol along footpaths. Trucks and pedestrians are arranged to
reflect diverse spatial relationships, with all models manually positioned at real-
istic locations such as near waste chutes or along walking paths as depicted in
Figure 3.4.

Figure 3.4: Top view of the simulated HRC environment. The robot is positioned
in the middle left on a patrol route, with trucks and pedestrians placed at realistic
locations.
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3.2.2 Dataset generation

To enable the creation of the AEB detection dataset using the simulation environ-
ment, a dedicated data generation pipeline was developed. The pipeline integrates
with the Gazebo simulator via ROS2, captures sensor data and object annotations,
and stores all metadata in the nuScenes format, as described in Section 2.3.3. Its
implementation is divided into two ROS2 packages written in Python. The main
package handles data collection, processing, and metadata generation, while a
supporting package defines the custom message types used by the ROS2 topics
published by nodes in the main package.

The remainder of this section describes the architecture of the data generation
pipeline and the process used to generate a scene.

Architecture

The primary package contains seven ROS2 nodes responsible for acquiring, pro-
cessing, subscribing and publishing data from various sources, including LiDAR,
RGB-D cameras, and object poses. A central controller node, referred to as the
main node, manages the initialisation and termination of the pipeline. It executes
each node in a separate thread using the ROS2 multithreading module. This en-
sures that data from Gazebo is captured and published in parallel for consistent
data generation.

The dataset generation pipeline is composed of six dedicated ROS2 nodes, each
responsible for handling a specific type of data acquisition or transformation.
Together, these nodes enable structured collection of multimodal data from the
Gazebo simulation and support conversion into the nuScenes format.

Nodes

The LiDAR processor node subscribes to raw point cloud data generated by the
simulated LiDAR sensor within Gazebo and publishes a processed version to a
designated ROS2 topic. This node performs filtering to remove invalid data points
and constructs a message comprising the filtered points, along with associated
intensity values, timestamps, and index identifiers, attributes included to maintain
compatibility with the model framework. The processed message is published at
the maximum rate supported by the system.
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The depth points processor node receives point cloud data from the simulated
RGB-D camera and transforms it into the LiDAR sensor frame using a static
transform between the two sensors. This transformation ensures spatial alignment
of the depth data with the LiDAR frame. The point cloud is then downsampled to
reduce computational load, and invalid points are removed. The processed data,
including intensity, index information, and timestamp is published to a custom
ROS2 topic at the highest possible rate.

The camera image processor node handles RGB images captured by the front-
facing camera in the simulation. Each image is converted to JPEG format, com-
pressed, and packaged into a message that includes the image data, its dimensions,
timestamp, and encoding type. This message is then published to a custom ROS2
topic with minimal delay

The ego pose processor node subscribes to the robot pose topic provided by the
simulation, retrieving the 3D position in the global coordinate frame along with
orientation expressed as a quaternion, as required by the nuScenes format. The
position, defined relative to the centre of the robot, is transformed to the base
link frame, which serves as the reference for all other sensor offsets. A message
containing the finalized position, orientation, and timestamp is then published to
a ROS2 topic at the maximum supported frequency.

The object annotation processor node 3D positions and orientation quaternions
for both trucks and pedestrians from the simulation environment. Object sizes are
predefined as fixed rectangular bounding boxes and assigned to each correspond-
ing entity extracted from the simulation. The node adjusts the vertical position
of each bounding box to correspond with the object centre and annotates each
entity with attributes. This information, together with a timestamp, is compiled
into a message and published to a ROS2 topic at a fixed frequency of 20 Hz, due
to constraints with the Gazebo object poses topic, which could not be correctly
bridged to ROS2.

The final and most important node is the metadata writer node, which manages
the scene-level construction of the AEB detection dataset. It subscribes to all rel-
evant ROS2 topics produced by the processor nodes and converts the collected
data into the nuScenes dataset format. Once all messages from these topics are
received without error, the node processes a frame at a time. The LiDAR point
cloud, as well as a fused version combining LiDAR and depth point clouds, is saved
as binary files in their respective sample directories. Camera images are also saved
to the corresponding image directory.
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Each frame initiates the creation of structured metadata. To ensure consistency
across time, the node tracks corresponding object instances throughout the scene
and maintains temporal continuity by linking consecutive sample entries. As part
of this process, sensor calibration parameters are registered statically for each
sensor, and written in the nuScenes format. Scene-level details, including the
scene name, description, and total number of frames, are also recorded. All other
metadata files, as outlined in Section 2.3.3, are generated accordingly. To maintain
performance when samples are added, metadata is written to disk only after the full
scene has been processed. Additionally, the node supports automatic extension of
the dataset by reinitializing the main node, allowing new scenes to be incorporated
without manual file handling or post-processing.

Scene generation

The scene generation pipeline, outlined in Figure 3.5, is initiated from the ROS2
command line using the main node. The user specifies the scene type, number of
frames to record, and a short description. For example:

ros2 run nodes nodes_main --scene_type t --max_frames 100
--scene_desc "Example description."

The scene type flag sets the category as either training (t) or validation (v). Test
scenes are not supported because the nuScenes test split excludes annotations, but
testing can still be performed on validation scenes within a separate test dataset.

Once launched, the metadata writer node processes frames continuously, achieving
approximately eight frames per second (FPS) on a the desktop computer explained
in Section 3.1. In contrast, systems without a GPU often experience significant
bottlenecks. These limitations can delay message handling and lead to dropped
messages from the processor nodes, which in turn reduces the reliability and con-
sistency of the data generation pipeline.
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Figure 3.5: Overview of the data generation pipeline used to construct the AEB
detection dataset. The main node launches all processor nodes and the metadata
writer node. The processor nodes collect and publish sensor and pose data, while
the metadata writer node subscribes to their topics and converts the data into the
nuScenes format.
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3.3 Datasets

3.3.1 Training set

The AEB detection dataset was created using the data generation pipeline. Two
training dataset versions were generated: a standard version containing approxi-
mately 2,000 annotated samples across 20 scenes, and an extended version with
4,000 samples across 40 scenes. Each scene contains 100 samples. The structure
of both versions is provided in Appendix B.

Training set configurations

To evaluate model performance, four training set variants were defined by com-
bining two types of variation: point cloud filtering and the use of early fusion. In
the filtered variants, ground points were removed using a height threshold, and
points within a cuboidal region around the robot were excluded. The non-filtered
variants retain the complete raw point cloud. For early fusion, standard variants
contain only LiDAR data, while combined variants include a fused point cloud
composed of LiDAR and depth camera data. This early level fusion, as described
in Section 2.4, was used to assess whether incorporating front-facing depth points
improves detection. The four resulting variants are denoted nf :s, nf :c, f :s, and
f :c, where nf and f refer to non-filtered and filtered, and s and c refer to standard
and combined input types.

Each of the four data variants were used in two training strategies: custom-training
and transfer learning. In the custom-training strategy, models were initialised and
trained solely on the AEB detection dataset, which consisted of 2,000 annotated
samples distributed across sixteen training scenes and four validation scenes. Al-
though a larger version of the dataset containing 4,000 samples was available, it
was not used. Preliminary experiments indicated that the 2,000-sample version
already provided sufficient performance for comparative evaluation. Training with
the larger set was expected to increase computational time without offering clear
advantages, while also risking overfitting to the simulation environment.

In the transfer learning strategy, models pre-trained on the nuScenes dataset were
further trained on the AEB detection dataset. This approach allows the models to
retain general features learned from diverse urban driving scenarios while adapting
to the specific characteristics of the AEB facility environment. A third strategy,
used as a baseline, employs the pre-trained model without any fine-tuning. This
configuration does not rely on any of the four dataset variants and is applied with-
out modification.
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In total, this results in nine configurations per model: eight derived from the two
training strategies across the four dataset variants, and one representing the pre-
trained baseline. These configurations are denoted using a naming scheme such as
ctf :c for the custom-trained, filtered, and combined model or tlnf :s for the transfer-
learned, non-filtered, and standard model. The pre-trained baseline is referred to
as pt.

3.3.2 Test set

To evaluate the different training set configurations, three distinct test sets were
created, each designed on different operational context in which the robot is ex-
pected to operate. This division also enables targeted analysis of detection perfor-
mance at varying distances, which would be harder to isolate in a single, aggregated
test set. All test sets were generated using the same simulation environment as
the training set, but with new object placements, orientations, and different in-
stances of object models. They contain 300 samples each spanning 3 scenes, with
the aggregated set containing 900 samples. Three trucks were replaced with larger
variants, only one of which was seen during training, resulting in four delivery
trucks and one box truck. Pedestrians were replaced with smaller female models
not present in the training set.

Evaluation scenarios

The first test set, patrol, contains scenes in which the robot follows its standard
route alongside the footpaths within the facility. The main focus in this set is on
detecting trucks and pedestrians at longer distances. Trucks are typically parked
at waste chutes or positioned along designated drive paths. Pedestrians are placed
either beside parked trucks at the chutes or walking along the footpaths, resulting
in long-range and mid-range detection cases.

Figure 3.6: Example from the patrol test set.
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The second set, inspect, consists of scenes where the robot approaches or leaves a
chute location as part of an inspection task. Trucks are again positioned at the
chutes or driving in the facility, but object distances are generally shorter than
in the patrol set. Increased occlusion is introduced by trucks at farther chute
locations. Pedestrian placement follows the same logic as in the patrol scenes.

Figure 3.7: Example from the inspect test set.

The final set, danger, focuses on close-range interactions between the robot and
nearby objects. Trucks and pedestrians are positioned within close proximity, often
simulating near-collision scenarios where the robot passes or is passed by a truck
or person at minimal clearance.

Figure 3.8: Example from the danger test set.
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3.4 Inference framework
To support training on the AEB detection dataset and evaluation on the test sets
(patrol, inspect, and danger), OpenPCDet was adopted as the primary framework
[23]. Developed and maintained by the OpenMMLab community, OpenPCDet is
an open-source library built on PyTorch [19] and is focused on 3D object detection
using LiDAR data. It provides a modular and extensible framework for training
and evaluating a range of state-of-the-art models. While broader libraries such
as MMDetection3D [6] support a wider selection of models, OpenPCDet was pre-
ferred due to its simpler structure, ease of modification, and availability of relevant
pre-trained models.

To aid model development and evaluation, OpenPCDet includes a model zoo
with pre-trained weights for various architectures, alongside support for stan-
dard datasets such as KITTI, nuScenes, and Waymo. The framework operates
through configuration files that define both dataset and model specifications. To
enable compatibility with the AEB detection dataset, it was necessary to adapt
the OpenPCDet data loading pipeline, ensuring it could correctly interpret the
custom format and structure.

3.4.1 Dataset integration

OpenPCDet uses a structured pipeline to load dataset samples, generate training
inputs, and execute model training or evaluation. Prior to training, point cloud
segments that fall within annotated bounding boxes are extracted and stored as
individual files, which are subsequently consolidated into a single aggregated file.
Additional operations, such as class balancing, are also applied during this stage.
Once setup is complete, the training and testing scripts can be executed to train
the models or evaluate their performance.

However, this default procedure assumes compatibility with the official nuScenes
dataset. Since the custom AEB dataset differs in both class set and sensor config-
uration, the OpenPCDet pipeline required modification. The original data loader
was hardcoded for the standard nuScenes format and expected all eight object
classes, which was reduced to two classes: trucks and pedestrians. Similarly, while
nuScenes includes six cameras placed around their vehicle, the Avular Origin One
uses only a single front-facing camera. The data loader was therefore adapted to
support this reduced input and eliminate assumptions tied to the full nuScenes
sensor layout. All functionality related to sweeps was also disabled, as the AEB
dataset did not include them. Finally, the nuScenes dataset configuration file was
appended to correctly register the to ensure compatibility within the framework.
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3.4.2 Model configurations

The selected models from the OpenPCDet framework include BEVFusion for mid-
dle fusion, as well as TransFusion-LiDAR, Centerpoint-Pointpillar, and SECOND
for LiDAR-only detection. These models are described in more detail in Sec-
tion 2.5. To ensure compatibility with the AEB detection dataset, the configu-
ration files were adapted to support two object classes. Most hyperparameters
were left unchanged, as the models performed reliably with their default settings.
However, several implementation components and assumptions were tied to the
original nuScenes dataset and required modification prior to training.

To reduce memory usage and accelerate training, Automatic Mixed Precision
(AMP) was enabled for the models that support it, namely Centerpoint-Pointpillar
and SECOND. Batch size and the number of data loading workers were selected
to fit within the constraints of the training hardware. Finally, training was limited
to a maximum of ten epochs, with early stopping enabled to halt training once
validation loss no longer improved.

3.4.3 Evaluation metrics

To evaluate detection performance on the test sets, the nuScenes metrics are used.
These are computed using the official nuScenes devkit, which integrates directly
with the AEB detection dataset format. The evaluation focuses on the accuracy of
3D bounding box predictions for trucks and pedestrians. The primary metric is dis-
tance average precision (dAP), which is computed using a centre-distance matching
approach in the horizontal plane. Each predicted bounding box is matched to the
nearest ground truth box within a fixed centre-distance threshold, using a greedy
one-to-one matching strategy. Average precision is calculated at thresholds of 0.5,
1, 2, and 4 metres. The final dAP is the mean over these thresholds, computed
separately for each object class [5].

In addition to dAP, true positive (TP) metrics are used to quantify the quality
of matched predictions, where scores closer to zero indicate better performance.
These metrics are computed using a fixed matching threshold of 2 metres. The
first TP metric is the average translation error (ATE), which measures the 2D Eu-
clidean distance between the centres of predicted and ground truth boxes on the
horizontal plane, expressed in metres. The second TP metric is the average scale
error (ASE), defined as 1 − IoU (intersection over union), where IoU calculates
the amount of overlap between the predicted and ground truth boxes after aligning
their centres and orientations. This metric captures the mismatch in object scale.
The third is the average orientation error (AOE), which measures the smallest yaw
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angle difference between matched predictions and ground truth boxes, expressed
in radians.

Lastly, to assess the runtime performance of each model configuration, the average
inference time per sample in milliseconds (ms) is recorded during testing. This
value is then converted to FPS using the formula FPS = 1000/ms.
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Chapter 4

Results

This chapter presents the results of the object detection experiments across the pa-
trol, inspect, and danger scenarios, using the nine training configurations defined
in Section 3.3.1. Inference was conducted using the final checkpoint from each
model, with a batch size of one to simulate real-time conditions, and the resulting
predictions were visualised using the Open3D library.

Quantitative results are presented first, followed by a qualitative analysis high-
lighting correct detections and common failures.

4.1 Quantitative results
The quantitative results are structured in three parts. First, the detection per-
formance of each model is evaluated individually. Secondly, the performance
across different training set configurations is compared. Finally, the Centerpoint-
Pointpillar model is examined in more detail to assess its performance across the
three test scenarios.

4.1.1 Per-model comparison

Inference speeds differ between fusion and LiDAR-only models, with a disparity
in performance. Figure 4.1 shows Centerpoint-Pointpillar, a LiDAR-only model,
achieving the highest speed at about 84 FPS, while the fusion-based BEVFusion
records the lowest speed at around 22 FPS.

29



Figure 4.1: Model-wise comparison of inference speed averaged over all scenarios
and training set configurations.

Next, Figure 4.2 compares the best ATE scores for each model across the patrol,
inspect, and danger scenarios. The inspect scenario yields the lowest ATE values,
while the patrol scenario generally produces higher errors. BEVFusion achieves
the lowest ATE overall, whereas SECOND records the highest.

Figure 4.2: ATE comparison across patrol, inspect, and danger scenarios for each
model, averaged over training configurations.
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Detailed detection metrics for each model and configuration are provided in Ap-
pendix D. For truck objects, BEVFusion attains the lowest dAP of 0.979 among
the compared models (Table D.1). SECOND achieves dAP scores above 0.98 in
several configurations but exhibits consistently higher orientation errors, with AOE
values exceeding 1.8 radians (Table D.2). The Centerpoint-Pointpillar model also
achieves dAP values above 0.98, with ATE, ASE, and AOE scores comparable to
BEVFusion (Table D.4). The TransFusion-LiDAR model delivers detection per-
formance similar to Centerpoint-Pointpillar, with dAP scores reaching 0.981, and
achieves the best ATE, ASE, and AOE scores (Table D.3). While TP metrics
differ between models, their overall detection performance remains comparable.

For pedestrian detection, BEVFusion and TransFusion-LiDAR achieve the high-
est dAP scores, exceeding 0.94 in their best configurations. All models, however,
show worse TP metrics for pedestrians compared to trucks, particularly in orien-
tation accuracy, with AOE values typically exceeding 1.6 radians (Tables D.5 and
D.7). Centerpoint-Pointpillar records dAP values approximately 0.06 lower than
BEVFusion and TransFusion-LiDAR, but its TP metrics are similar (Table D.8).
SECOND performs similarly to TransFusion-LiDAR in terms of dAP but does not
improve on TP metrics (Table D.6).

4.1.2 Training set configuration performance

The following tables summarise average detection performance for all models,
grouped by training set configuration. In both the truck (Table 4.1) and pedestrian
(Table 4.2) results, transfer learning variants consistently rank highest across all
metrics, while custom-trained models yield lower dAP scores and poorer TP metric
values. Pre-trained models generally report zero dAP, making their TP metrics in-
applicable for comparison. An exception is the pre-trained Centerpoint-Pointpillar
variant, which does produce non-zero predictions but still underperforms, with a
dAP of approximately 0.5.

When comparing filtered to non-filtered and early fusion to standard variants,
detection performance differences are relatively minor. For trucks, non-filtered
variants generally achieve higher dAP and lower TP errors than their filtered
counterparts. Early fusion yields a slightly higher dAP than the standard variant
but results in worse TP metrics. A similar pattern appears in pedestrian detection,
where the non-filtered standard variant achieves the best TP metrics, with only
slightly lower dAP values.
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Table 4.1: Average detection metrics for truck objects across all models, grouped
by training set configuration and sorted by dAP.

Configuration dAP ATE ASE AOE

tlnf :c 0.981 0.081 0.046 0.502
tlnf :s 0.978 0.077 0.036 0.485
tlf :c 0.977 0.080 0.045 0.492
tlf :s 0.970 0.078 0.051 0.503
ctnf :s 0.970 0.096 0.096 0.557
ctnf :c 0.968 0.093 0.051 0.540
ctf :s 0.950 0.097 0.067 0.527
ctf :c 0.931 0.103 0.121 0.537
pt 0.000 1.075 0.961 0.926

Table 4.2: Average detection metrics for pedestrian objects across all models,
grouped by training set configuration and sorted by dAP.

Configuration dAP ATE ASE AOE

tlf :c 0.917 0.085 0.114 1.805
tlnf :s 0.910 0.081 0.112 1.692
tlnf :c 0.899 0.085 0.122 1.899
tlf :s 0.890 0.083 0.117 1.771
ctnf :s 0.860 0.098 0.155 1.884
ctf :s 0.838 0.105 0.119 1.860
ctnf :c 0.816 0.105 0.111 1.887
ctf :c 0.789 0.112 0.188 1.845
pt 0.000 1.000 1.000 1.000
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4.1.3 Centerpoint-Pointpillar scenario-based results

Centerpoint-Pointpillar was selected for closer analysis due to its superior average
FPS and competitive performance in truck classification, making it suited for ex-
amining scenario-specific differences.

In the patrol scenario, the highest dAP reaches 0.990 with the best configuration,
though TP metrics are comparatively weaker (Table 4.3). The medium-range
inspect scenario yields the best TP scores, indicating more accurate scale and
orientation estimates than in the other scenarios (Table 4.4). The danger scenario
records the lowest dAP, with a maximum of 0.974. Notably, one custom-trained
model achieves the third-highest dAP in this scenario but shows significantly higher
orientation error than all other top configurations (Table 4.5).

Table 4.3: Top 3 Centerpoint-Pointpillar training set configurations for truck de-
tection in the patrol scenario

Configuration dAP ATE ASE AOE

tlf :s 0.990 0.085 0.045 0.067
tlf :c 0.987 0.084 0.044 0.067
tlnf :c 0.987 0.083 0.049 0.044

Table 4.4: Top 3 Centerpoint-Pointpillar training set configurations for truck de-
tection in the inspect scenario.

Configuration dAP ATE ASE AOE

tlnf :c 0.986 0.069 0.038 0.025
tlf :c 0.978 0.070 0.050 0.043
tlf :s 0.978 0.059 0.062 0.029

Table 4.5: Top 3 Centerpoint-Pointpillar training set configurations for truck de-
tection in the danger scenario.

Configuration dAP ATE ASE AOE

tlnf :s 0.974 0.085 0.043 0.026
tlnf :c 0.973 0.096 0.046 0.047
ctnf :s 0.966 0.110 0.057 0.246
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4.2 Qualitative analysis
The following figures illustrate common detection patterns observed in the three
test scenarios. All visualisations are based on LiDAR point clouds, with predicted
and ground truth boxes overlaid. Ground truth boxes are shown in green, truck
predictions in blue, and pedestrian predictions in purple.

Two common failure cases related to object distance are shown in Figure 4.3. In
the patrol scene (a), a distant truck is missed entirely by the model. Although
it appears in the point cloud, the sparse representation at that range reduces its
detectability. This behaviour was consistent across all models. In contrast, the
danger scene (b) shows a failure at close range, where a nearby pedestrian is not
detected despite its legs being clearly visible in the point cloud.

(a) patrol test set (b) danger test set

Figure 4.3: Examples of distance-related detection failures. (a) shows a missed
detection of a distant truck, while (b) shows a missed detection of a nearby pedes-
trian. These issues occurred consistently across all models in similar conditions.
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Scenes with spatial clutter and occlusion often challenge detection reliability, as
illustrated in Figure 4.4. In (a), a dense and dynamic scene from the danger test
set produces several false positives around a truck and nearby pedestrians, with
multiple pedestrian bounding boxes predicted in regions where no pedestrians are
present. In contrast, (b) shows a correct detection in the inspect scenario, where a
partially occluded truck is still localised accurately. While mild occlusion does not
significantly affect performance, spatial clutter frequently leads to false positives.

(a) danger test set (b) inspect test set

Figure 4.4: Contrasting model behaviour in complex scenes. (a) shows a failure
case from the danger test set, where both a truck and multiple pedestrians are
incorrectly predicted. (b) shows a success case from the inspect test set, where a
partially occluded truck is correctly detected.
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Close-range interactions were included in the danger scenario to assess detection
performance under high-risk conditions. Figure 4.5 shows an example in which a
truck passes in close proximity to the robot and is detected in all three sequential
frames. This behaviour was observed consistently across all models.

Figure 4.5: Three sequential frames from the danger test set showing the robot
near a passing truck. The model correctly detects the truck in each frame despite
close proximity.
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Chapter 5

Evaluation

The results show clear differences in inference speed between fusion-based and
LiDAR-only models. BEVFusion records the lowest average FPS, indicating that
its computational demands make it unsuitable for deployment on the Avular Origin
One. This reduced performance is attributable to the additional overhead intro-
duced by its fusion architecture. In contrast, Centerpoint-Pointpillar achieves the
highest FPS among the evaluated models. While all models convert raw point
clouds into BEV representations, Centerpoint-Pointpillar applies a more efficient
pillar-based encoding scheme, as outlined in Section 2.5 and further discussed in
Section 2.3.2. This design choice yields a runtime advantage over voxel-based
methods such as SECOND, with a measured difference of approximately 6 FPS.
TransFusion-LiDAR is approximately half as fast as the other LiDAR-only mod-
els, likely due to the computational overhead introduced by its transformer-based
architecture.

Detection accuracy was evaluated using ATE across all scenarios. BEVFusion
and TransFusion-LiDAR consistently generate bounding boxes closest to ground
truth, performing reliably across different object distances. The patrol scenario
records a slightly higher ATE, by approximately 0.02 metres on all models, sug-
gesting a weak correlation between distance and localisation accuracy. In the dan-
ger scenario, performance declines across all models, with Centerpoint-Pointpillar
exhibiting the largest reduction in accuracy. The model demonstrates increased
difficulty when operating in conditions close to objects.

Class-wise performance exhibits limited variation in truck detection, with dAP,
ATE, and ASE scores remaining comparable across all models. An exception is
observed in SECOND, which shows a substantially higher AOE, indicating frequent
orientation errors. The mean angular error of 103° points to systematic confusion
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between front and rear orientation, likely caused by averaging between 0° and 180°.
In contrast, pedestrian detection yields consistently lower performance across all
metrics, particularly in AOE. This can be attributed to the smaller bounding box
dimensions, which reduce introduce ambiguity in estimated orientation. Despite
incorporating the front-facing camera, BEVFusion shows no measurable improve-
ment in detection performance for either class, likely due to the limited visibility
provided by the narrow FOV.

Nine different training strategies were compared. Transfer learning consistently
outperformed the other strategies across all metrics. This is likely due to broader
scene understanding encoded in the pre-trained weights, whereas the custom-
training strategy relied solely on the AEB detection dataset. During transfer learn-
ing, the pre-trained weights were adapted to the specific domain of the Origin One,
improving generalisation to the test data. In contrast, the baseline strategy re-
sulted in poor detection performance. It had been trained using a higher LiDAR
mounting position, which led to poor alignment with the test set point clouds and
resulted in inaccurate bounding box predictions. The custom-training strategy
performed slightly worse than transfer learning, suggesting that a larger dataset
would be required to achieve comparable generalisation.

Additional dataset variants involving early fusion and point cloud filtering had
limited impact on detection performance. Early fusion resulted in a slight in-
crease in dAP but also led to degraded TP metrics, while filtering reduced truck
detection accuracy. These effects were not sufficient to justify the added process-
ing steps. The limited contribution of the front-facing camera likely explains the
weak influence of early fusion. Since early fusion was applied only during data
pre-processing, it had no measurable impact on inference speed. Filtering likewise
produced no observable improvements in detection performance.

Examining Center-point-Pointpillar in more detail, the model performs best in the
long-range patrol scenario, where dAP is highest. However, its TP localisation
errors are higher than in the mid-range inspect scenario. This indicates that while
the model can detect distant objects, its localisation accuracy decreases at range.
Performance in the danger scenario is consistently lower across metrics such as
dAP and ATE, suggesting difficulty with close-range or high object density condi-
tions.

Qualitative observations confirm these limitations. Nearby pedestrians are fre-
quently missed, indicating insufficient training data for extreme close-range inter-
actions. Trucks and pedestrians located farther from the robot also tend to be
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missed, likely due to point sparsity at long range. These detection failures appear
linked to the distribution of training data and may be addressed through targeted
collection of under-represented cases. In contrast, occlusion does not consistently
degrade performance. Sparse but distinctive point patterns still enable success-
ful prediction. Cluttered scenes with high point density, however, can result in
unstable or incorrect detections. Figure 4.5 shows that close proximity to large
objects such as trucks does not inherently cause detection failure. The presence of
accurate predictions in such cases indicates that the models can still detect critical
near-miss situations relevant to safe navigation in complex environments.
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Chapter 6

Conclusion

This chapter revisits the main research questions and summarises the outcomes of
the evaluation. It also reflects on key limitations and identifies opportunities for
future work.

6.1 Summary and conclusion
This thesis explored the feasibility of real time 3D object detection on the Avular
Origin One using LiDAR, and assessed how detection performance changes when
fusing it with a front-facing camera, all within a simulation environment.

To enable this, a modular data generation pipeline was developed to extract syn-
thetic sensor data from Gazebo and convert it into the AEB detection dataset in
nuScenes format, ensuring compatibility with the OpenPCDet inference frame-
work. Three LiDAR-only models and one fusion model were tested: Centerpoint-
Pointpillar, SECOND, TransFusion-LiDAR, and BEVFusion. Each model was
evaluated under three scenarios using varied training set configurations.

Evaluation showed that LiDAR-only detection produced accurate results in the
simulated environment. Centerpoint-Pointpillar achieved the highest FPS with
competitive detection performance, making it the most practical option for real-
time use on AMRs. Fusion using the BEVFusion model did not lead to measurable
improvements, due to the limited contribution of the front-facing camera and its
restricted FOV. Moreover, it incurred significant computational cost due to its
complex architecture. Detection failures across all models were primarily caused
by insufficient close-range data and point sparsity at long distances, while occlusion
had limited impact. Nonetheless, detection remained reliable in several near-miss
cases despite increased scene complexity.
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Of the training strategies evaluated, transfer learning consistently improved detec-
tion performance across all models. In contrast, the pre-trained baseline strategy
underperformed due to mismatches in sensor placement, while the custom-training
strategy was constrained by reduced generalisation resulting from the smaller
dataset. Additional variants such as early fusion and point cloud filtering had
minimal effect. Early fusion did not affect inference speed but remained limited
by the narrow FOV of the front-facing camera, while filtering had no observable
impact on model output.

Ultimately, LiDAR proved to be a suitable sensing modality for 3D object detection
in the simulated environment, while camera–LiDAR fusion did not yield measur-
able improvements under the tested conditions. Among the evaluated models,
Centerpoint-Pointpillar trained using transfer learning offered the best trade-off
between detection accuracy and inference speed. It achieved the highest average
FPS and produced fewer true positive errors than voxel-based models. Fusion us-
ing the BEVFusion model incurred significantly lower inference speed due to its
architectural complexity, and early fusion had no measurable effect. These results
suggest that fusion approaches, in the tested configuration, are unsuitable for real
time deployment on the Avular Origin One.

6.2 Discussion
While LiDAR-based 3D detection proved feasible in the simulation environment,
several assumptions and simplifications limit the generalisability of the findings.
Most notably, the simulation does not accurately reflect the complexity of the HRC
environment. The sensor data is less noisy and more uniform, while environmental
variation is limited. Consequently, models trained on this data may not generalise
to the real-world domain, and detection performance is expected to degrade out-
side simulation, although the extent of this degradation remains unknown.

In addition, the simulated objects do not represent real garbage trucks. Their
geometry and scale may differ, which could affect the accuracy of bounding box
predictions when models are deployed in the HRC. The use of synthetic annota-
tions based on assumed ground truth poses also introduces limitations, as they
presume perfect object localisation, which is not attainable in a real deployment.
This reliance on known positions applies to both the robot and nearby objects.
While the simulation provides exact pose information, real deployments rely on
SLAM, which is less precise. This mismatch may introduce annotation errors that
reduce detection performance.
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Finally, the evaluation was conducted on desktop hardware, which offers substan-
tially more computational capacity than the Jetson Orin Nano used on the Avular
Origin One. As a result, the reported inference speeds may not be achievable
during real deployment. This discrepancy limits the ability to fully answer the
research question, which concerns the feasibility of real-time detection on plat-
forms with constrained resources. Although the evaluation identifies promising
model candidates, whether they can be deployed on the target hardware remains
unresolved.

6.3 Future work
To address the identified limitations, a step should involve evaluating how models
trained in simulation perform on the real robot. This would provide insight into
the degree of domain shift and help quantify how well the simulated training data
transfers to real-world conditions. Based on these findings, future work should
focus on collecting a real-world dataset in the HRC using the robot platform.
This would ensure that the training data captures realistic sensor noise, object
geometry, and scene complexity. In particular, including representative examples
of garbage trucks is needed for improving the accuracy of bounding box predictions.

Since annotations in simulation were generated automatically from known object
poses, creating a real-world dataset will require an annotation pipeline. This could
involve manual 3D labelling tools, semi-automated methods based on weak super-
vision, or tracking-based approaches using SLAM. If quality annotation proves too
challenging in the real environment, an alternative path would be to expand the
simulation environment to better reflect the details of the HRC, thereby producing
more representative synthetic data.

Another key challenge is localisation. In simulation, perfect pose information was
assumed, which is impossible in a real-world scenario. Alternative localisation
strategies such as SLAM or marker systems should be investigated to estimate the
position of the robot and the spatial alignment of nearby objects.
Finally, deploying models on embedded hardware will require significant optimi-
sation. Techniques such as TensorRT conversion, model pruning, and quantisa-
tion should be explored to reduce computational load while maintaining detection
performance. If inference speed can be improved to an acceptable level, fusion
approaches may become viable. In that case, future work could also explore ex-
panding the camera setup to increase the total FOV, potentially making fusion
more effective than in the current single-camera configuration.
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Appendix A

HRC blueprint
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Appendix B

Dataset directory tree

AEB_detection_dataset/
v1.0− trainval/

samples/

CAM_FRONT/

1748267371621418_camera.jpg

........

LIDAR_TOP/

1748267371621418_lidar.pcd.bin
........

COMBINED/

1748267371621418_combined.pcd.bin

........

v1.0− trainval/

attribute.json

sample_annotation.json
calibrated_sensor.json
sample_data.json
category.json

sample.json

ego_pose.json
scene.json

instance.json

sensor.json

log.json

visibility.json

map.json
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Appendix C

Source code

https://github.com/Nordin-26/3D-object-detection-bsc-thesis.gitGitHub repository data
generation pipeline.
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Appendix D

Performance by configuration

D.1 Truck detection performance

Table D.1: Detection metrics for Truck objects using BEVFusion, sorted by dAP

Configuration dAP ATE ASE AOE FPS

tlnf :c 0.979 0.069 0.068 0.027 22.46
tlnf :s 0.978 0.065 0.032 0.024 22.25
tlf :c 0.978 0.069 0.044 0.034 22.29
tlf :s 0.976 0.068 0.047 0.033 22.06
ctnf :c 0.974 0.078 0.066 0.060 22.31
ctnf :s 0.972 0.113 0.181 0.102 22.35
ctf :c 0.949 0.086 0.313 0.064 22.29
ctf :s 0.943 0.079 0.071 0.065 22.23
pt 0.000 1.075 0.961 0.926 22.13
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Table D.2: Detection metrics for Truck objects using SECOND, sorted by dAP

Configuration dAP ATE ASE AOE FPS

tlf :c 0.982 0.100 0.044 1.805 79.88
tlnf :c 0.982 0.106 0.039 1.821 79.16
tlf :s 0.980 0.092 0.041 1.833 79.35
tlnf :s 0.975 0.089 0.042 1.873 79.88
ctnf :s 0.967 0.103 0.021 1.904 78.87
ctnf :c 0.958 0.114 0.027 1.824 79.24
ctf :s 0.942 0.123 0.027 1.824 78.25
ctf :c 0.919 0.146 0.026 1.824 78.97
pt 0.000 1.000 1.000 1.000 78.66

Table D.3: Detection metrics for Truck objects using TransFusion-LiDAR, sorted
by dAP

Configuration dAP ATE ASE AOE FPS

tlnf :c 0.981 0.065 0.032 0.020 40.88
tlnf :s 0.979 0.070 0.029 0.017 40.16
tlf :c 0.978 0.068 0.042 0.030 40.76
ctnf :s 0.973 0.073 0.127 0.039 40.85
ctnf :c 0.965 0.079 0.050 0.043 40.86
tlf :s 0.963 0.069 0.057 0.024 40.55
ctf :s 0.954 0.080 0.116 0.042 40.32
ctf :c 0.931 0.081 0.070 0.044 40.44
pt 0.000 0.842 0.878 0.814 40.65
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Table D.4: Detection metrics for Truck objects using Centerpoint-Pointpillar,
sorted by dAP

Configuration dAP ATE ASE AOE FPS

tlnf :c 0.982 0.083 0.044 0.038 85.32
tlnf :s 0.979 0.082 0.039 0.025 84.84
ctnf :c 0.974 0.100 0.062 0.254 85.16
tlf :c 0.969 0.083 0.052 0.055 85.13
ctnf :s 0.967 0.096 0.055 0.182 84.89
ctf :s 0.960 0.106 0.055 0.178 84.86
tlf :s 0.960 0.083 0.058 0.061 84.51
ctf :c 0.926 0.101 0.073 0.214 82.41
pt 0.537 0.217 0.279 2.108 22.46

D.2 Pedestrian detection performance

Table D.5: Detection metrics for Pedestrian objects using BEVFusion, sorted by
dAP

Configuration dAP ATE ASE AOE FPS

tlnf :s 0.949 0.076 0.110 1.616 22.46
tlf :s 0.948 0.077 0.114 1.650 22.35
tlf :c 0.923 0.081 0.117 1.788 22.31
tlnf :c 0.920 0.083 0.150 1.911 22.29
ctnf :s 0.914 0.123 0.281 1.783 22.29
ctf :s 0.839 0.112 0.142 1.844 22.25
ctnf :c 0.826 0.101 0.124 2.074 22.23
ctf :c 0.814 0.117 0.433 1.812 22.13
pt 0.000 1.000 1.000 1.000 22.06
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Table D.6: Detection metrics for Pedestrian objects using SECOND, sorted by
dAP

Configuration dAP ATE ASE AOE FPS

tlf :s 0.925 0.085 0.097 1.750 79.88
tlf :c 0.918 0.090 0.110 1.880 79.56
tlnf :s 0.869 0.088 0.104 1.750 79.35
tlnf :c 0.866 0.087 0.107 1.877 79.16
ctf :s 0.848 0.105 0.099 1.932 78.87
ctnf :s 0.829 0.090 0.099 1.980 78.25
ctnf :c 0.757 0.124 0.100 1.840 79.24
ctf :c 0.684 0.123 0.096 1.882 78.97
pt 0.000 1.000 1.000 1.000 78.66

Table D.7: Detection metrics for Pedestrian objects using TransFusion-LiDAR,
sorted by dAP

Configuration dAP ATE ASE AOE FPS

tlf :c 0.942 0.085 0.105 1.841 40.88
tlnf :c 0.933 .081 0.116 1.995 40.16
tlnf :s 0.930 0.079 0.117 1.724 40.76
tlf :s 0.906 0.085 0.101 1.809 40.55
ctnf :s 0.901 0.089 0.128 1.781 40.85
ctf :s 0.896 0.104 0.135 1.835 40.32
ctnf :c 0.876 0.096 0.117 1.938 40.86
ctf :c 0.863 0.099 0.118 1.737 40.44
pt 0.000 1.000 1.000 1.000 1.000
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Table D.8: Detection metrics for Pedestrian objects using Centerpoint-Pointpillar,
sorted by dAP

Configuration dAP ATE ASE AOE FPS

tlnf :s 0.890 0.079 0.115 1.680 85.32
tlf :c 0.884 0.083 0.124 1.712 85.13
tlnf :c 0.875 0.090 0.115 1.714 84.89
ctnf :c 0.805 0.099 0.104 1.695 84.86
ctf :c 0.796 0.109 0.104 1.948 84.86
ctnf :s 0.796 0.090 0.112 1.991 84.51
tlf :s 0.780 0.085 0.145 1.728 84.56
ctf :s 0.769 0.099 0.103 1.827 82.41
pt 0.006 1.240 0.971 1.428 82.41
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