
Cheating by Segmentation

Thomas A. van Orden

Layout: typeset by the author using LATEX.
Cover illustration: CARLA

Cheating by Segmentation

Thomas A. van Orden
12192880

Bachelor thesis
Credits: 18 EC

Bachelor Kunstmatige Intelligentie

University of Amsterdam
Faculty of Science
Science Park 904

1098 XH Amsterdam

Supervisor
dr. A. Visser

Informatics Institute
Faculty of Science

University of Amsterdam
Science Park 904

1098 XH Amsterdam

June 25, 2021

Abstract
Urban driving is a tough problem to solve, especially when training would be done
in the real world. A solution would be to learn to drive in a realistic simulation
using a student-teacher approach. If the learned student model is then transferred
to the real world and performs weak, the simulation-real-world gap is too large and
training should be done with simulation data that better represents the real-world
data. In this thesis, we propose a variation on the work from “Learning by Cheat-
ing” to use semantic segmentation data instead of bird’s-eye view data. The former
closer resembles the perspective of drivers in real-world situations, narrowing the
simulation-real-world gap. The semantic segmentation data should be sufficient
enough to be able to learn a nearly perfect driving policy regarding lane following,
obstacle avoidance, traffic lights and navigation. End-to-end conditional imitation
learning is shown to be prone to distribution mismatches. Therefore, learning how
to recover from a slight deviation is difficult from a perfect expert. We have shown
that the “Learning by Cheating” approach with semantic segmentation data in-
stead of bird’s-eye views results in a robust agent that is able to solve most of the
navigation challenges without dense traffic. Providing the supervised privileged
agent with a semantic segmentation consisting of 13 classes is sufficient to learn
the driving policy. The resulting policy is then robust enough to act as a teacher
for a student agent. Our agent is validated on the original CARLA, CoRL2017,
and NoCrash benchmark. It successfully solves the Empty task of the CoRL2017
benchmark. On the other tasks and the more difficult NoCrash benchmark, our
agent yields competitive results to Chen, Zhou, et al. In addition, we improve
the generalization performance to new environments in terms of the number of
collisions by a factor 2.

Contents

1 Introduction 1
1.1 Aim . 3

2 Theoretical Foundation 4
2.1 Decomposed learning . 4
2.2 End-to-end learning . 5

2.2.1 Multi-head . 6
2.3 Student-teacher setup . 7
2.4 Semantic segmentation . 7
2.5 DAgger . 8

3 Related work 10
3.1 Conditional imitation learning . 10
3.2 Conditional affordance learning . 11
3.3 Improved conditional imitation learning 12
3.4 Reinforcement learning . 12
3.5 World on rails . 13

4 Approach 14
4.1 Learning by Cheating . 14

4.1.1 Teacher training . 14
4.1.2 Student training . 16
4.1.3 Validation . 16

4.2 Cheating by Segmentation . 17
4.2.1 Data . 17
4.2.2 Training . 17

5 Experimental setup 21
5.1 CARLA . 21
5.2 Dataset . 22
5.3 Training . 24

II

5.4 Benchmarks . 24
5.4.1 CoRL2017 . 24
5.4.2 NoCrash . 25

6 Results 26
6.1 CBS Teacher . 26
6.2 CBS Student . 29

6.2.1 CoRL2017 . 29
6.2.2 NoCrash . 31

7 Discussion 33
7.1 Empty versus dense scenarios . 33
7.2 Knowledge transfer . 33
7.3 DAgger . 34
7.4 Future work . 34

8 Conclusion 36

A Benchmark results 41

III

Chapter 1

Introduction

In the Netherlands, 21,400 people have been severely injured due to a traffic ac-
cident in 2019 (SWOV, 2020). Moreover, in the same year, 661 people did not
survive such accidents (CBS, n.d.). Improving the driving competencies of road
users could reduce the number of these injuries and fatal accidents. However, road
users might not always be willing to take additional driving lessons. When vehi-
cles would exhibit driving behaviour such that they drive better than humans can,
safety will improve too. Autonomous vehicles (AV) are vehicles that are able to
drive autonomously to some extent. The capabilities can be measured in terms of
the driving level at the scale of Levels of driving automation as defined by the Soci-
ety of Automotive Engineers (SAE) (SAE International, 2018). However, building
AV systems is a difficult problem to solve since it entails a multidisciplinary prob-
lem consisting of tasks such as perception, planning, and vehicle control.

Interest in autonomous vehicles is almost 100 years old and impressive progress
has been made (Kröger, 2016). Already in 1925, Houdina Radio Control demon-
strated a remote-controlled car cruising down Broadway: the "American Wonder"
(Time Magazine, 1925). A second truck followed the car to send out radio signals
to the remote-controlled vehicle which caused small electric motors to control it.
However, the experiment failed when the operators lost connection and the vehicle
crashed. Norman Bel Geddes provided a glimpse into the future at the New York
World’s Fair with his Futurama exhibit, sponsored by General Motors, in 1939
(Ferlis, 2007). His exhibit showcased vehicles following the road based on electro-
magnetic fields that were generated by embedded circuits in the lanes. A "traffic
control tower" would be at the heart of the autonomous vehicle network to direct
all vehicles. This idea was later in the 1950s demonstrated by RCA Labs to work
in a controlled laboratory environment with a miniature vehicle (Wetmore, 2003).
Only 4 years later in 1957, they showed a full-size car guided by magnetic fields on

1

a 400-foot public highway (RCA, 1958). In 1960, Stanford University was the first
to demonstrate a vehicle able to navigate without outside help, such as radio sig-
nals or magnetic fields, in a highly controlled environment (Earnest, 2021). They
used cameras and computers to perceive the world around the vehicle and plan its
path. This can be seen as a turning point in history from guidance-based systems
to autonomous-based systems — laying the foundation of computer vision (CV)
in autonomous driving. During the next two decades, resources improved and sys-
tems were developed that used CV, LiDAR, and robotic control (Dickmanns et al.,
1994). Despite the impressive progress these decades brought, the new century,
2000, gave the research a real boost.

One key advancement on this timeline was when the Defense Advanced Re-
search Projects Agency (DARPA) of the United States Defense Department set
out its first Grand Driving Challenge in 2004 (Dudley, 2015). Teams could partic-
ipate in the challenge by developing an autonomous car able to drive a 150-mile
track in the Mojave Desert. Despite no team finishing the first challenge, the total
three Grand Driving Challenges may have served as catalysts for the development
of AVs. In 2009, Google started a new self-driving-car project, which caused ma-
jor automotive manufacturers’ interest in AVs too, in the years following (Harris,
2014). Six years later, Tesla Motors updated their Model S software over the air
to enable hands-free highway and freeway control for their owners (Kessler, 2015).
However, due to regulations, owners still had to keep their hands on the steering
wheel and pay attention at all times. Besides Tesla, other automotive manufactur-
ers started to introduce autonomous features, such as autonomous lane keeping,
to their vehicles as well. Despite the continuous improvement of autonomous sys-
tems, the first fatal accident with an autonomous vehicle, a Tesla Model S, was
reported in 2016 (Yadron and Tynan, 2016).

As the above overview of AV history shows, autonomous systems need to be
trained and tested and will therefore not always drive safely from the start. Hence,
training those in the real world could cause dangerous traffic situations — as with
the "American Wonder". Current technologies such as simulations make it possible
to use a safe environment to train and test. Furthermore, simulations enable fast
and parallel experiments with possible benchmarks to objectively compare different
systems.

2

1.1 Aim
Chen, Zhou, et al. (2019) have shown with “Learning by Cheating” that a student-
teacher approach to autonomous-driving problems can be successful. By leveraging
the benefits of first training a teacher with privileged information to then transfer
this knowledge to a student, they were able to achieve high scores on relevant
benchmarks, CoRL2017 (Dosovitskiy et al., 2017) and NoCrash (Codevilla, San-
tana, et al., 2019). However, their approach is difficult to deploy in the real world,
since it heavily relies on bird’s-eye view data, subsequently referred to as birdview.
Ground truth birdviews in real-world environments are not widely available and
classical image-to-birdview transformations such as Inverse Perspective Mapping
(IPM) (Mallot et al., 1991) are inaccurate since IMP assumes the world to be flat.
Moreover, even more recent deep-learning-based approaches (Reiher, Lampe, and
Eckstein, 2020) also lack accuracy due to occlusions in the original image leading
to missing information in the birdview.

Therefore, this thesis tries to use ground truth segmentation data — from a
driver’s perspective — instead of birdviews, since current publicly available algo-
rithms are able to accurately create segmentation images from real-world RGB
input (Weber et al., 2021). The new approach will be validated on the two bench-
marks. This leads to the following research question: How is the performance of
Chen, Zhou, et al.’s method affected when a ground-truth segmentation view is used
instead of a birdview? The aim of this thesis is to examine the effect of the seg-
mentation data on the trained models, at every step, and provide insight into the
problems of changing the data its perspective and type. Moreover, by validating
every step of the method in the aforementioned benchmarks, the sub-questions:
What is the effect of the new data on the teacher’s performance?, and To what
extent can the new teacher transfer its knowledge to the student?, will be answered
as well.

3

Chapter 2

Theoretical Foundation

Throughout this thesis, multiple concepts will be exploited and some prior knowl-
edge acts as the basis of more complex applications. This chapter introduces and
explains these concepts, and provides the prior knowledge to better understand
this thesis’ approach. First, the two main neural network approaches that are com-
monly used to solve an autonomous-driving problem, end-to-end learning (Bojarski
et al., 2016) and decomposed learning (Dosovitskiy et al., 2017), are introduced.
Second, this thesis’ input of the neural network, semantic segmentation data, is
explained. Third, a more complex parallel network configuration, known as multi-
head, which is used as the output of the network is described. Finally, the final
step of the training method called data aggregation (DAgger) (Ross, Gordon, and
Bagnell, 2011) is introduced.

2.1 Decomposed learning
Decomposed learning splits a complex task into different sub-problems and is also
known as a modular pipeline (Dosovitskiy et al., 2017). In this way, every sub-
problem can be solved and trained in a specific manner. Therefore, the approach
can be optimized for every step. The output of the first sub-module can serve
as input to the next module, which could then serve as input to the following,
and so on. This approach has the advantage that the performance can be in-
spected at the module level. Especially if the performance is less than expected,
the cause could be one sub-module to insufficiently solve its task instead of the
whole network failing. However, a disadvantage is that for every module a training
strategy should be implemented. Moreover, the training time could be higher if
the sub-modules use extensive networks to solve their problem. Figure 2.1 shows
an example from Serban, Poll, and J. Visser (2018) of multiple modules to solve
an autonomous driving task. “A Standard Driven Software Architecture for Fully

4

Figure 2.1: Decomposed learning to predict actuator values from sensor data.
Figure and approach from “A Standard Driven Software Architecture for Fully
Autonomous Vehicles” (Serban, Poll, and J. Visser, 2018).

Autonomous Vehicles” (Serban, Poll, and J. Visser, 2018) proposes an architec-
ture that takes sensor data as input and uses different intermediate modules such
as Sensor Fusion and Planning to generate actuator values for Steering, Brake,
Throttle, and Transmission. This architecture shows the possible complexity of a
decomposed-learning approach.

2.2 End-to-end learning
In contrast to decomposed learning, end-to-end learning is a technique to train
neural networks in a direct supervised input-output fashion. The problem is de-
fined as solving the function that best matches the input to the network to its
desired output. It is used in particular in the context of (deep) neural networks
since current networks contain millions of parameters that need to be trained.
All available and relevant input is given to a network to be then supervised with

5

Figure 2.2: Multi-head approach example.

ground truth output. The strength of end-to-end learning is that the network
learns all required skills in one go to solve the problem. However, this is also the
downside of the technique, because if the network fails to solve the task sufficiently,
it is hard to determine if it can solve some steps or if it fails in total. Knowing if
and which steps the network can solve and which it cannot enables further research
in the latter direction. In the context of autonomous driving, sensor information,
for example, a camera or LiDAR stream, can be used as input to the network.
For the output, a steering angle can be used as the ground truth label to let the
network predict where the vehicle should steer towards.

2.2.1 Multi-head

Certain tasks require multiple predictions to get to the final prediction. Local-
ization of an object in an image is such a task. This task consists of two steps:
detecting and classifying the object, and localizing where the object is in the im-
age. For example, consider an image with a car, the network needs to detect that
there is a car (detection and classification) and tell where — which pixels — the
car is (localization). These type of tasks can be approached with multi-head neural
networks, first introduced by (Sermanet et al., 2014). The backbone can be seen
as the heart of the network; it performs all convolutions and pooling and thereby
learns features from the input. These features can then be fed to multiple blocks
of layers, typically fully connected layers, which each draw their own conclusion
based on the features. In the context of the car image, a backbone CNN learns
image features and feeds these into a head for detection and a separate head for
localization. The former head learns a mapping from features to classes such as
buildings and cars. On the other hand, the latter head learns a mapping from
image features to bounding box coordinates. These multi-head approaches are an
efficient way to re-use the image features for multiple tasks. Figure 2.2 shows an
example of a multi-head approach.

6

2.3 Student-teacher setup
A student-teacher setup combines end-to-end imitation learning with decomposed
learning. This means that a problem is split into two sub-problems, which could
be identical, and are both to be solved by the student and teacher, respectively.
In general, this method is referred to as knowledge distillation (Hinton, Vinyals,
and Dean, 2015) and is a form of model compression (Buciluundefined, Caruana,
and Niculescu-Mizil, 2006). Knowledge distillation aims to achieve similar perfor-
mance with a smaller student network in comparison to a larger teacher network.
This is done by first training the teacher network to solve the task and then train
the smaller student network to learn this exact behaviour as well. Not only the
teacher’s loss is used to supervise the student, but also the outputs at every level
of the teacher’s network. Data is passed through the teacher network to get all
intermediate states. These outputs in combination with the final teacher output
are used to back-propagate the student network which has seen the exact same
input.

Knowledge distillation can also be taken a step further by giving the student
a different input than the teacher, but remaining the same desired output. This
lets the student solve a slightly different task than the teacher since the input
changed. This approach has been proposed by Chen, Zhou, et al. (2019) in the
context of autonomous driving. Section Section 4.1 describes their approach in
more detail. Chen, Zhou, et al. mention that this approach has the benefit of
splitting the driving task into learning to see and learning to act, which results in
better performance.

2.4 Semantic segmentation
RGB cameras are commonly known and generate 3-channel — Red, Green, Blue
— images. Each pixel is represented by 3 values that range from 0 to 255, for
standard 24-bit color, one for each channel. An 364 × 180 image thus yields
364× 180 = 65, 520 pixels. This gives the image space of this image (2553)65,520 =
(16, 581, 375)65,520 possibilities.

Semantic segmentation can be seen as a processing step that groups pixel val-
ues into several discrete classes. In other words, certain pixel values — colours
— in an RGB image are assigned a single value — class. For example, an im-
age of trees is not represented by a variety of green values, as RGB would do,
but all pixels that belong to the tree have the same value. If this is done for
multiple classes, each class can be assigned its own channel in an image. With

7

N segmentation classes, the image would have N channels — RGB has three —
where each channel is a binary mask for that specific class. This brings the image
space of a similar-sized image to: 2384×160×N = 265,520N possibilities. Notice that
with a binary mask there are 2 possible pixel values. So, as long as N < 23,
see Equation 2.1, semantic segmentation yields a smaller image space. A smaller
input image space means in general faster training and semantic image data have
been proven to boost urban-driving performance for a convolutional neural net-
work (CNN) (Zhou, Krähenbühl, and Koltun, 2019).

265,520N < (16, 581, 375)65,520

log2(2
65,520N) < log2((16, 581, 375)

65,520)

65, 520N < log2((16, 581, 375)
65,520)

N <
log2((16, 581, 375)

65,520)

65, 520

N < log2(16, 581, 375)

N < 23.983...

(2.1)

In the context of this thesis, 13 semantic segmentation classes are used. The
classes are defined by CARLA, the simulator as described in Section 5.1: None,
Buildings, Fences, Other, Pedestrians, Poles, RoadLines, Roads, Sidewalks, Vege-
tation, Vehicles, Walls, and TrafficSigns. An example of a CARLA segmentation
image is shown in Figure 4.1b. From this thesis’ point of view, the segmentation
classes Roads, Vehicles, Pedestrians, and TrafficSigns are of most importance. The
first class represents the valid prediction space and the latter represent objects to
possibly stop for.

2.5 DAgger
As proposed by Ross, Gordon, and Bagnell (2011), DAgger is an iterative algo-
rithm to improve the performance of, in particular, sequential prediction prob-
lems. These are problems where the solution to the current question depends on
the solution to the previous question, so the predictions are not independent and
identically distributed (i.i.d.). The intuition behind DAgger is that a learned pol-
icy, in the context of this thesis; an agent, is used to create a dataset where this
dataset is annotated with expert labels. This agent is then trained on this dataset
and rolled out again to create a new dataset. This new dataset is combined with
the original dataset and is subsequently used to train the agent with the new ac-
cumulated dataset. This iterative process is dependent on the predictions of the

8

agent, e.q. the next dataset is dependent on the current agent. In this way, the
sequential element of the problem is captured by the algorithm. Out of all learned
policies, the policy that performs best under validation circumstances is used. The
downside of DAgger is that it could be a slow process since the agent is used online
— that is, rolled out in the environment — to create a new dataset. However, in
the context of autonomous driving and this thesis, Chen, Zhou, et al. (2019) have
shown that using DAgger significantly improves the performance of their agent.

The explained concepts such as end-to-end learning with a multi-head config-
uration and a student-teacher approach will be used extensively in the following
chapters. The next chapter provides the scientific context of this thesis which is
closely related to these subjects.

9

Chapter 3

Related work

To put this thesis in context, this chapter describes related studies regarding au-
tonomous driving. In particular, related work on variations of end-to-end ap-
proaches will be discussed, since this thesis is based on end-to-end learning too.
Moreover, to provide a wide context, a reinforcement learning (RL) approach will
be described too.

3.1 Conditional imitation learning
Codevilla, Müller, et al. (2018) proposed the extension of plain end-to-end learning
by an additional high-level command to predict actuator values (CIL). They com-
pare two different network architectures: a classic single-head end-to-end network
which has an image, vehicle measurements and the additional command as input;
and a branched architecture with multiple heads. In the latter configuration, the
input only consists of an image and vehicle measurements while the high-level
command serves as a switch for the multiple heads. Each head is specialized in a
certain task: turning left, turning right, following the road. To incorporate enough
variation in the dataset, they used a three-camera setup with one forward-facing
camera and two cameras facing a bit to the side. Figure 3.1 shows a three-camera
setup example. However, they found that this does not result in sufficiently robust
driving. Therefore, noise is injected during the dataset generation which results in
the agent steering a bit off the road. The branched architecture proves to be best
with 88% and 64% success rates in CARLA’s Town 01 and Town 02, respectively.
However, the authors do not mention if any traffic was added to the environment
during training or testing.

10

Figure 3.1: Example of three-camera setup behind a car’s windshield (top) and an
example-view of the three camera’s from left, middle to right camera (bottom).

3.2 Conditional affordance learning
The conditional aspect of Codevilla, Müller, et al. (2018) is also incorporated by
Sauer, Savinov, and Geiger (2018)’s approach (CAL). They use a low-dimensional
intermediate representation, affordances, instead of directly learning actuator val-
ues. A video stream, which is a sequence of monocular RGB images taken from a
forward-facing camera, serves as input to the network. The high-level directional
command is used to switch between specialized branches, as proposed by Codev-
illa, Müller, et al. (2018). A set of multiple affordances is defined which should
cover all necessary information to safely drive from a starting point to an end goal.
For example, hazard stop, distance to leading vehicle, and distance to centerline
are used. The network predicts values for each of the affordances which thereafter
are used as input to a low-level PID controller to control the vehicle in CARLA. In
other words, the network predicts values for a set of criteria which are then fed to a
controller to transform them into actuator values. On the CoRL2017 benchmark,
this approach outperforms CIL on all tasks in the most difficult generalization con-
ditions: a new town with new weather. However, their agent collides, on average,
with a static object every 310 meters.

11

3.3 Improved conditional imitation learning
Codevilla, Santana, et al. (2019) aim to identify the limitations of behaviour
cloning approaches. They propose an improvement upon CIL and propose a new
driving benchmark, NoCrash. See Subsection 5.4.2 for more details on this bench-
mark. In contrast to CIL, the authors use a deeper ResNet-34 (He et al., 2015)
network, add a separate speed prediction branch, use instead of Mean Square Error
(MSE) the L1 as loss, and pre-train on ImageNet (Deng et al., 2009). This method,
subsequently referred to as CILRS, outperforms CAL on almost all tasks. In addi-
tion, CILRS almost solves the Empty task on the introduced NoCrash benchmark.
Despite this, the approach drastically degrades in the presence of more dense traf-
fic, indicating that using larger networks is not sufficient to solve the dense traffic
scenarios.

3.4 Reinforcement learning
In contrast to the aforementioned end-to-end imitation approaches, Toromanoff,
Wirbel, and Moutarde (2020) propose the use of RL for urban driving. Specific RL
details are not discussed here, since this is out of the scope of this thesis. The au-
thors propose a network consisting of a conditional architecture with a ResNet-18
(He et al., 2015) backbone, used as an encoder, in combination with Rainbow-IQN
(Toromanoff, Wirbel, and Moutarde, 2019) RL training. The encoder is trained
in a supervised fashion by predicting implicit affordances, a similar intuition as
proposed by Sauer, Savinov, and Geiger (2018). A semantic segmentation rep-
resentation and the distance to a traffic light are included as affordances. After
training the encoder, the affordance decoders are removed — hence the naming
implicit affordance, and the output — the implicit affordances — of the encoder is
fed to the RL learning architecture. The reward function is based on the desired
speed, desired position, and the desired rotation of the agent. CARLA’s built-in
waypoints are used to calculate the difference between the RL agent’s position
and rotation and the optimal position and rotation (the CARLA waypoint). Like
Sauer, Savinov, and Geiger (2018)’s approach, the input to the network is a se-
quence of 4 RGB images and the past vehicle speed — that is the speed of the
vehicle from the previous step. This RL approach achieves high scores on the
CoRL2017 benchmark, by solving almost all tasks in train and test weather. On
the NoCrash benchmark, Toromanoff, Wirbel, and Moutarde (2020)’s approach
yields similar results to the student-teacher approach of Chen, Zhou, et al. (2019)
(LBC), as described in more detail in Section 4.1. However, in train weather, LBC
significantly outperforms the RL-agent in the train and test town.

12

3.5 World on rails
In a more recent work, Chen, Koltun, and Krähenbühl (2021) propose a model-
based approach which includes a world-model, RL action-value functions and
knowledge distillation. The core of this approach is the world model which is
able to simulate the agent’s actions without actually executing the action. The
important assumption is made that the agent’s actions do not directly affect the
world, hence the name “Learning to drive from a world on rails”. The proposed
method consists of multiple steps from which specific details are out of the scope of
this thesis. First, the world model is trained on pre-recorded real-world trajectories
which include sensor data, driving states and the agent’s actions. Second, action
values are computed for each possible action and for each frame in the dataset of
trajectories. Finally, the action values are used to distillate the knowledge to a
visual agent. This visual agent only has a monocular RGB image, its speed, and
a high-level navigation command as input. By leveraging the world model, the vi-
sual agent can explore the consequences of its predicted actions, without actually
executing them. The visual student has in addition to the task to predict the ac-
tuator values steer, brake, and throttle, the task to predict a segmentation image.
This segmentation image is used as auxiliary loss and proves to significantly im-
prove the performance of the agent. The authors mention that this improvement
is, in particular, visible in generalization to new environments. The approach is
validated in CARLA on the NoCrash benchmark and outperforms all prior works.

Despite all aforementioned approaches, including the current state-of-the-art
by Chen, Koltun, and Krähenbühl (2021), the NoCrash benchmark is still not
completely solved. The following chapter introduces our approach which is closely
related to end-to-end conditional imitation learning and multi-head architectures.

13

Chapter 4

Approach

This section gives an overview of the method used in this research. The approach
taken is closely inspired by the work from “Learning by Cheating” by Chen, Zhou,
et al. (2019) to be able to best inspect the effect of replacing the source of the
cheat data — from bird’s-eye view to segmented data. Their method is therefore
first described, followed by the significant changes we made.

4.1 Learning by Cheating
Chen, Zhou, et al. (2019) propose a method that tries to train a sensorimotor
agent which predicts a steering, throttle and brake value given a monocular RGB
image, the vehicle’s speed, and a high-level navigation command, which guides the
agent towards the goal, as input. They use the CARLA simulator (Dosovitskiy
et al., 2017), as explained in more detail in Section 5.1, as the research environ-
ment. To solve the problem, their approach consists of two steps: first, training
a privileged agent (teacher), and then training the sensorimotor agent (student)
with supervision from the teacher. This approach is a form of knowledge distilla-
tion, as described in Section 2.3. Their approach is validated on two benchmarks:
CoRL2017 (Dosovitskiy et al., 2017) and NoCrash (Codevilla, Santana, et al.,
2019). The next subsections describe each step of their approach in more detail.

4.1.1 Teacher training

The teacher has access to extensive simulation information. This information
includes a ground-truth map from a bird’s-eye view perspective, subsequently re-
ferred to as birdview. The birdview, as shown in Figure 4.1a, is a segmentation
image that includes binary masks for lanes, traffic lights and their state, vehicles

14

(a) Birdview (b) Semantic segmentation

(c) RGB

Figure 4.1: Overview of an example frame of the dataset.

and pedestrians in the vicinity of the agent. The teacher therefore only has to
learn to act in the world, and not to see. Three channels of the birdview represent
the traffic lights: one channel for green lights, one for yellow lights, and one for red
lights. In addition to the birdview, the teachers’ speed and a high-level navigation
command such as Follow, Left, Right, and Straight are provided too.

A CNN is used to train the teacher by conditional imitation learning (CIL)
(Codevilla, Müller, et al., 2018). The network consists of four heads, a multi-head
configuration as explained in Subsection 2.2.1 and shown in Figure 4.2, which
each correspond to one of the possible navigation commands — the four conditions.
Each head outputs for each predicted waypoint a heatmap. The heatmaps are then
converted to waypoints in the agent’s reference frame. The ground-truth labels are
based on the agent’s future positions and are transformed back as waypoints into
the agent’s current reference frame. An Adam optimizer (Kingma and Ba, 2017)
aims to minimize the L1 distance between the network’s predictions and these
ground-truth waypoints. Data augmentation in the form of rotating and shifting
are applied to the birdviews during training to let the agent learn to recover in
case it for example faces a sidewalk.

15

Figure 4.2: Multi-head configuration used in this study. Image altered from Codev-
illa, Müller, et al. (2018).

4.1.2 Student training

The student has to learn to mimic the behaviour of the teacher. However, the
student does not have access to the privileged information the teacher has, but
only to the vehicle’s speed, a navigation command, and a monocular RGB image
from a forward-facing 90◦ field of view (fov) RGB camera. Therefore, the student
has to learn to see and act in the world. A similar, to the teacher, network with
a CNN structure is used for the student which predicts waypoints in its image
reference frame. To align the teacher’s and student’s reference frames, the teacher
waypoints are transformed to the image reference frame too.

Training the student is done in two stages. First, the same trajectories used
to train the teacher are used, but now with the supervision of the teacher on all
branches in parallel. This means that the student learns what it should do if it
is turning right and should suddenly turn left. Second, the student is rolled out
in the environment and trained via DAgger, as explained in Section 2.5, which
uses the teacher as an oracle. During both stages, the L1 distance between the
student’s prediction and the teacher’s predictions is minimized. Multiple data
augmentations such as pixel dropout and colour perturbations are applied to the
student’s RGB input.

4.1.3 Validation

To validate the student, its waypoints are converted to a steer, throttle and brake
value by two, lateral and longitudinal, low-level proportional integral derivative
(PID) controllers. The longitudinal controller aims to calculate the throttle and
brake value to match the target velocity of the waypoints. The target velocity is
calculated based on the L2 distance between all predicted waypoints. If the current

16

speed is larger than the target speed, the student brakes. The lateral controller
predicts the steering angle to steer towards the student’s prediction. This is done
by fitting an arc through the predicted waypoints and steering towards a point
on this arc. Both PID controllers contain parameters that determine the steering
and acceleration behaviour. Chen, Zhou, et al. (2019) tune these parameters on a
small subset of trajectories.

4.2 Cheating by Segmentation
As mentioned before, we propose changing the source of the cheat from birdview
data to semantic segmentation data. This section, therefore, explains the conse-
quences of this change to Chen, Zhou, et al. (2019)’s method.

4.2.1 Data

In contrast to “Learning by Cheating”, we use a ground-truth semantic segmen-
tation image from a forward-facing camera with 120◦ fov. The 13 segmentation
classes, as explained in Section 2.4, are provided by CARLA. This data is pre-
processed by converting all classes to a per-channel binary mask, resulting in a
segmentation image with 13 channels. Figure 4.1b shows an example of a segmen-
tation image. In contrast to Chen, Zhou, et al. (2019), we just use one channel for
the traffic lights. This channel is only active if the traffic light in the vicinity of
the agent is red. Otherwise, the traffic-light channel is empty — all zeros.

4.2.2 Training

Since we use different data, our training procedure has some significant changes.
The changes to both steps of the training method will therefore be explained in
more detail below.

Teacher

Our teacher has no access to a birdview, but to a segmentation image which is pre-
processed as described in the previous subsection. The teacher predicts waypoints
in the reference frame of the segmentation image. Therefore, this reference frame
is already aligned with the student’s RGB reference frame. Despite the perfectly
aligned frames, the ground-truth labels are calculated differently. In principle, the
intuition stays the same: future locations of the agent serve as the label for the
current frame. However, some future locations may be out of sight for the cur-
rent agent, due to the perspective change of the segmentation data. This is for

17

example the case in tight turns: the complete corner may not be visible from the
driver’s perspective if it is at the start of the corner. A top-down view, such as
the birdview, does oversee the complete corner, so a point further down the corner
is always visible in the current view. In the case of our segmentation data, some
future locations may fall outside the image reference frame after re-projection.
Therefore, we propose a new ground-truth labelling algorithm as shown in Algo-
rithm 1.

With this new algorithm, the algorithm assures that there are always 5 ground-
truth labels per frame. In addition, the new algorithm takes into consideration
that red traffic lights — and other immediate breaking situations — should always
yield a full stop label. In the case of “Learning by Cheating”, this does not always
hold. For example, if the agent is in front of a red traffic light, but the light will
turn green in the next frame such that the agent will move in the next frame as
well. Chen, Zhou, et al. (2019)’s algorithm would yield labels representing a mov-
ing agent in this situation, despite the red light. Our new algorithm does yield
waypoints that represent a full stop due to the red light.

Moreover, the rotating and shifting augmentations as applied by Chen, Zhou,
et al. (2019) do not yield the same desired result on our segmentation data. This
is again due to the changed perspective, since a rotation (around the image centre)
of the data does not let the agent face a sidewalk, but represents a skewed world.
Therefore, noise is used for the agent that creates the dataset, as explained in
Section 5.2. This has the desired effect of trajectory perturbations and lets the
agent learn to recover from such situations.

Student

Besides changes to the teacher training method, the student training procedure
has changed too. The student’s RGB image has changed from a 90◦ fov to 120◦

fov image. This is an important change, since the fov of the teacher and student
should align. If these are not aligned, point correspondence from the teacher image
to the student image is difficult, since some points that are visible in the 120◦ fov
frame are not visible in the narrower 90◦ fov frame.

[
x
y

]
model

=
1

2

[
x
y

]
image

− 1 (4.1)

With the perfectly aligned teacher and student frames, which both have the
same perspective, the L1 distance between the teacher’s and student’s predictions

18

Algorithm 1 Waypoint algorithm
1: function getWaypoints(frame, gap=5, n_step=5, buffer=40)
2: tl← getTrafficLightState(frame)
3:
4: if tl = red then
5: goto projectVehicle
6:
7: waypoints← {}
8: for i in range(frame, n_step + 1 + buffer × gap, gap) do
9: x, y, z ← getVehicleLocation(i)

10: ximage, yimage, zimage ← worldToImage(
[
x y z

]
)

11: if ximage, yimage, zimage in image frame then
12: waypoints← waypoints+ {ximage, yimage, zimage}
13:
14: if len(waypoints < 2) then
15: if gap = 5 then
16: return getWaypoints(frame, gap=1)
17: else
18: goto projectVehicle
19:
20: if len(2 ≤ waypoints < 5) then
21: goto interpolateWaypoints(waypoints)
22:
23: return waypoints

24:
25: function projectVehicle(vehicle_location, vehicle_orientation)
26: forward_vector ← getForwardUnitVec(vehicle_orientation)
27: vehicle_location← vehicle_location+ 4× forward_vector
28: return worldToImage(vehicle_location)
29:
30: function interpolateWaypoints(waypoints, degree=2)
31:
32: if len(waypoints == 2) then
33: degree← 1

34:
35: waypoints← {}
36: while len(waypoints < 5) do
37: waypoints← waypoints + interpolatePolyFit(degree, waypoints)
38:
39: return waypoints

19

are measured in model output space. This space is in the interval [−1, 1] and is
related to the image space. The image space can be converted to the model output
space as shown in Equation 4.1.

This chapter has described our approach which changes birdviews from Chen,
Zhou, et al. (2019)’s method to semantic segmentation data and proposes an im-
proved waypoint algorithm. To be able to test the approach, we conduct a variety
of experiments. Chapter 5 describes the experimental setup of these experiments,
and Chapter 6 provides the results.

20

Chapter 5

Experimental setup

The method described in the previous chapter has some specific implementation
details. This chapter will describe these details, mention used software, and ex-
plains the validation benchmarks.

5.1 CARLA
In this research CARLA version 0.9.6 is used as simulator (Dosovitskiy et al.,
2017). CARLA is an advanced and extremely realistic simulation software that
includes other traffic, photo-realistic visualizations, different environments, and
great flexibility. In addition, navigation planners are provided to direct an agent
from one point to a certain goal. This planner provides the agent with high-level
navigation commands which can guide the agent to a goal. CARLA’s great flex-
ibility is reflected by the number of parameters to tune the weather, the number
and type of traffic agents, and the wide range of sensors, such as an RGB camera
and a segmentation camera, available with each their own configurations.

Out of the current 8 available towns in CARLA, this research uses two towns,
Town 01 and Town 02, to comply with the method and benchmarks of Chen,
Zhou, et al. (2019). Our previous work has used other towns Town 3, Town 6 and
Town 10HD (Van Orden and A. Visser, 2021). The layout of the towns used in
this study is shown in Figure 5.1. Town 01 is a basic town which includes traffic
lights, T-junctions and long straight roads. Town 02 is a smaller version of Town
01. This results in relatively more junctions or turns in Town 02 than in Town 01.
In other words, the density of difficult traffic situations such as junctions is higher
in Town 02 than in Town 01.

21

(a) Town 01 (b) Town 02

Figure 5.1: Layout of both CARLA towns used in this study.

As Chen, Zhou, et al. (2019) have mentioned, CARLA underwent significant
changes to its rendering engine. Therefore, results on older versions of CARLA
are not directly comparable. Moreover, Chen, Zhou, et al. (2019) state that the
pedestrian simulation in CARLA 0.9.6 lacks real-world representation since they
do not cross roads. Therefore, the proposed adjustments to the CARLA API
Client1 by Chen, Zhou, et al. (2019) — such that pedestrians do cross the road —
are used in this study too. An example of a pedestrian crossing the road is shown
in Figure 5.2.

5.2 Dataset
The dataset is created by using an agent, subsequently also referred to as ego-
vehicle and implemented by Chen, Zhou, et al. (2019), that follows a set of pre-
defined routes in Town 01. This agent autonomously drives from waypoint to
waypoint by controlling the vehicle with two PID controllers. Instead of always
following the waypoints, noise ∼ U(−0.20, 0.20) is used as the steering command
of the agent for every 10 in 110 frames. This noise lets the agent steer a bit too
far to the left or right. Consequently, the agent could then face a sidewalk on the
side of the road and learns to correct. The dataset is collected in Town 01 under
train weather conditions only, as defined by the benchmarks in Section 5.4. This
set is split into a training and validation set, resulting in 80% train frames and

1https://github.com/dotchen/LearningByCheating

22

Figure 5.2: The pedestrian modification by Chen, Zhou, et al. (2019) to CARLA
results in pedestrians crossing the road.

20% validation frames. The resulting training set consists of 167k frames out of
142 driven routes (episodes), and the validation set consists of 39k frames out of
33 episodes. The simulator is set to 10 fps with synchronous mode enabled, to
ensure no frames are missing.

The ego-vehicle has two cameras mounted on top of its roof: an RGB and
a semantic segmentation camera. Both cameras have a 120◦ fov and are placed
in the exact same location and in the same orientation. The RGB camera has
an 384 × 160 resolution, while the semantic segmentation camera’s resolution is
192 × 80. The segmentation image can be smaller, since the image space is sig-
nificantly smaller too, in comparison to the RGB image space, as explained in
Section 2.4.

At every step, the following data are saved as a frame: an RGB image; a se-
mantic segmentation image; ego-vehicle world position and rotation; camera world
position and rotation; ego-vehicle speed; high-level navigation command; and traf-
fic light state. Positions and rotations are given in simulation-world coordinates
as x, y, z and pitch, yaw, roll, respectively. The navigation command is provided
by CARLA and reflects the predefined routes. The commands are based on the
map layout and follow traffic rules such as possible turns to take from a certain lane.

Figure 4.1 shows an example frame containing the original birdview (4.1a) —
used as cheat by Chen, Zhou, et al. (2019), a semantic segmentation image (4.1b)
— our proposed new cheat, and the corresponding RGB image (4.1c).

23

5.3 Training
The teacher uses a ResNet-18 backbone and is trained with a batch size of 64 and
decreasing learning rate starting from 1e−3. To prevent overfitting, pixel dropout,
motion blur and an affine transformation are used as augmentations. The aug-
mentations are applied to the segmentation image as well as to the label waypoints.

The student has due to its larger input image space, the RGB image as ex-
plained in Section 2.4, a larger backbone. The ResNet-34 (He et al., 2015) back-
bone is pre-trained on ImageNet (Deng et al., 2009). The first training step of
the student is done with a batch size of 96 and a fixed learning rate of 1e−4. The
second step, DAgger, is configured to do six iterations where each iteration creates
4000 frames. Per iteration, the student model is trained for 20 epochs with batch
size 120 and a fixed learning rate of 1e−4 too.

5.4 Benchmarks
The same benchmarks as Chen, Zhou, et al. (2019) are used to validate our agents:
CoRL2017 (Dosovitskiy et al., 2017) and NoCrash (Codevilla, Santana, et al.,
2019). Both benchmarks consist of training and testing conditions with additional
constraints. The training weathers apply to both benchmarks and are ClearNoon,
WetNoon, HardRainNoon, and ClearSunset. Town 01 is used as training town
and Town 02 for testing in both benchmarks. Benchmark-specific subjects are
explained in the next subsections.

5.4.1 CoRL2017

CoRL2017 is the original CARLA benchmark and was introduced with “CARLA:
An Open Urban Driving Simulator” (Dosovitskiy et al., 2017). The benchmark
consists of four tasks with increasing difficulty: Straight, One turn, Navigation, and
Navigation dynamic. Each task has 25 predefined routes with a start position and
end goal. Navigation’s routes contain multiple turns and Navigation dynamic adds
traffic — vehicles and pedestrians — to the environment. A trial is considered a
success if the agent reaches the goal within a time limit, which is calculated based
on the distance to the goal and a target speed of 5 km/h. Violating a red light
or colliding does not terminate a trial, but could result in a time-out — failure.
WetCloudyNoon and SoftRainSunset are used as test weather.

24

5.4.2 NoCrash

More challenging scenarios are provided by the NoCrash benchmark, introduced
as a more complex benchmark than CoRL2017 by Codevilla, Santana, et al. (2019)
in Exploring the Limitations of Behavior Cloning for Autonomous Driving. It tests
the agent’s ability in dynamic traffic situation with traffic lights and other traffic.
Three tasks — Empty, Regular, and Dense — with each 25 predefined episodes
make up the benchmark. The tasks increase in the number of dynamic agents such
as pedestrians and vehicles, where Empty has no dynamic agents. In contrast to
CoRL2017, an episode is considered a failure if the agent collides with a force
higher than some threshold. Traffic lights may be violated, but the percentage of
traffic lights ran is reported. To succeed in an episode, the agent should reach the
end goal within a time limit and not collide. Test weathers are WetSunset and
SoftRainSunset.

Due to CARLA’s non-determinism, each task of the NoCrash benchmark is run
multiple times, which is in accordance with Chen, Zhou, et al. (2019)’s validation.
Moreover, in both benchmarks, all tasks under train weather conditions are run
100 times maximum, and 50 times maximum under test weather. We used seed 0
for the CoRL2017 benchmark and seeds 0, 1, 2 for the NoCrash benchmark, which
is in accordance with Chen, Zhou, et al. (2019). The target speed of the agent is
in both benchmarks clipped at 5 km/h. The next chapter reports the results of all
experiments.

25

Chapter 6

Results

The results are split into two parts: the privileged teacher agent (CBS Teacher)
and the RGB-student agent (CBS Student). In this way, the performance of purely
the teacher, and the student-teacher approach to transfer the teacher’s knowledge
to the student can be inspected. Furthermore, the results of both agents are com-
pared to Chen, Zhou, et al. (2019)’s, subsequently referred to as LBC. Appendix
Table A.1 compares our results to competitive other approaches that used older
versions of CARLA, to put our work in a wider context.

6.1 CBS Teacher
Table 6.1 shows the performance of the CBS Teacher on the CoRl2017 benchmark,
compared to the LBC Teacher. We achieve nearly as perfect results as the LBC
Teacher, by solving 7 out of the 16 tasks and success rates above 95% for almost
all remaining tasks. To test the agent in more difficult scenarios, the agent is
also validated on the NoCrash benchmark and compared to LBC and CARLA’s
autopilot (AT), as shown in Table 6.2.

From the success rates in Table 6.2 it is clear that on all tasks the AT outper-
forms, or scores equal to, LBC Teacher and our CBS Teacher. The AT is rule-based
and contains the expertise of experts on the most common traffic situations, so
this out-performance is to be expected. However, even for the AT, increasing the
number of traffic agents — vehicles and pedestrians — leads to a drastic decrease
in performance. Moreover, AT’s performance decreases by up to 30% when gener-
alizing to the test town in Dense traffic. This shows that the test town is indeed
a difficult town to solve, which is reflected by the LBC Teacher’s decrease of 44%
too.

26

Table 6.1: Success rates (higher is better, best scores are marked bold) of our
CBS Teacher compared to the LBC Teacher on CoRL2017 benchmark in train
and test town. LBC numbers are taken from their GitHub1, but not all numbers
are reported.

Train town Test town
Task Weather LBC CBS LBC CBS

Teacher Teacher Teacher Teacher
Straight

train

− 100 100 97
One turn − 100 100 97
Navigation 100 100 99 98
Navigation dynamic 100 99 100 100
Straight

test

− 100 100 98
One turn − 96 100 96
Navigation 100 100 100 90
Navigation dynamic 100 98 100 100

A possible explanation of this decrease is the relatively higher number of complex
situations, such as junctions, in the test town, Town 02, in comparison to the
train town, Town 01, as described in Section 5.1. However, we are, like the other
approaches, able to solve the empty town under the most difficult generalization
conditions: test town with test weather. In comparison to the LBC Teacher, our
CBS Teacher seems to suffer more from additional traffic.

Table 6.2: Success rates (mean and standard deviation over three runs) of our
CBS Teacher on NoCrash benchmark in train town and test town compared to
the LBC Teacher. Higher is better, best scores are marked bold. AT: CARLA’s
built-in autopilot, numbers taken from (Chen, Zhou, et al., 2019).

Train town Test town
Task Weather AT LBC CBS AT LBC CBS

Teacher Teacher Teacher Teacher
Empty

train
100± 0 100± 1 90.7± 1.5 100± 0 100± 0 99.3± 0.6

Regular 99± 1 96± 3 81.3± 6.5 99± 1 95± 1 53.3± 3.1
Dense 86± 3 80± 5 37.7± 2.1 60± 3 46± 8 9.3± 4.0
Empty

test
100± 0 100± 0 96± 2.0 100± 0 100 ± 0 100± 0.0

Regular 99± 1 97± 3 77.3± 4.2 99± 1 93± 2 58.7± 8.1
Dense 83± 6 81± 6 36.7± 3.1 59± 6 45± 10 6.0± 0.0

27

To substantiate this, a collision analysis is conducted. Figure 6.1 reports the
number of collisions per 10 driven kilometres, grouped by traffic intensity, for the
CoRL2017 and NoCrash benchmark. CoRL2017 only has one task with traf-
fic, Navigation dynamic, which is comparable to the Regular task from NoCrash.
Therefore, no number is reported for CoRL2017 in Dense traffic intensity. The
analysis shows a clear positive relationship between the traffic intensity and the
relative number of collisions, with nearly zero collisions in empty towns. This holds
for both benchmarks, which therefore indicates that our teacher drives similarly
during both benchmarks, but since a collision in NoCrash fails the task, it scores
lower on NoCrash. Hence, the NoCrash benchmark proves to be more difficult
than the CoRL2017 benchmark.

Figure 6.1: Number of collision of CBS Teacher per 10 driven kilometers over all
NoCrash and CoRL2017 trajectories, grouped by traffic intensity.

Yet, the generalization performance of our approach in terms of weather is ex-
cellent. In almost all tasks we achieve higher performance under test weather than
under train weather, in both the train and test town. However, generalization in
terms of different towns remains difficult, especially in scenarios with increased
traffic such as Dense.

28

6.2 CBS Student
The CBS Student has been trained in two steps, as explained in Equation 4.2.2.
Without DAgger training, the student agent will be referred to as CBS Student,
and after 6 iterations of DAgger as CBS StudentF. The following section, there-
fore, validates the agent after each step. Validation is done on the CoRL2017 and
NoCrash benchmark.

6.2.1 CoRL2017

Table 6.3 compares the CBS Student to Chen, Zhou, et al. (2019)’s student agent
without DAgger (LBC Student) on the CoRL2017 benchmark. In this context, our
agent yields competitive results in comparison to the LBC Student. Generalization
capabilities are similar to our CBS Teacher, with especially good performance in
weather generalization. However, the gap between the CBS Teacher and the CBS
Student is larger than the gap between LBC Teacher and LBC Student.

Table 6.3: Success rates (higher is better, best scores are marked bold) on
CoRL2017 benchmark in train and test town. LBC StudentF numbers are taken
from their GitHub1.

Train town Test town
Task Weather LBC LBC CBS CBS LBC LBC CBS CBS

Student StudentF Student StudentF Student StudentF Student StudentF

Straight

train

100 100 97 100 100 100 100 100
One turn 96 100 57 78 95 100 62 66
Navigation 94 100 48 80 94 98 52 57
Nav. dynamic 95 100 49 76 88 99 53 55
Straight

test

100 100 100 98 100 100 100 100
One turn 100 96 60 64 98 100 64 40
Navigation 98 100 48 68 98 100 34 28
Nav. dynamic 92 96 52 64 90 100 34 24

To close this gap, DAgger is applied and the resulting CBS StudentF is vali-
dated on the same CoRL2017 benchmark as well, as shown in Table 6.3 too. To
provide a fair comparison, Chen, Zhou, et al. (2019)’s student agent with DAgger is
reported as LBC StudentF. CBS StudentF significantly outperforms CBS Student
on all tasks, except for the test town with test weather conditions. Even on the
most difficult task in terms of traffic, Navigation dynamic, CBS StudentF shows

29

an improvement of up to 27 percentage points over CBS Student. Notice that our
CBS StudentF does not outperform LBC StudentF. This reflects the behaviour
of our CBS Teacher compared to the LBC Teacher, where the latter Teacher can
make use of the bird’s-eye view perspective which provides more depth information
than the CBS Teacher’s segmentation data perspective.

Ablation study: DAgger

Since DAgger did not increase performance in all scenarios, we conduct an ablation
study, to inspect the effect of the number of DAgger iterations on the performance.
The study is shown in Figure 6.2 and reports the success rate on CoRL2017 ’s Nav-
igation dynamic task under test weather in Town 01 (Train) and 02 (Test) after
multiple iterations. In this way, it isolates the generalization performance due to
DAgger. The study shows that DAgger increases the success rate by up to 35
percentage points in train conditions. There seems to be a positive relationship
between the number of iterations and the success rate in the train conditions.
However, this does not hold for the test conditions. In the test scenario, DAgger
seems to converge to a plateau that is lower (24%) than before DAgger (34%).
Hence, DAgger might be sensitive to overfitting which could explain the diverging
lines in Figure 6.2.

Figure 6.2: Ablation study of the effect of the number of DAgger iterations on the
success rate. Validated on the Navigation dynamic task of CoRL2017 benchmark
in Train: Town 01 with test weather, and Test: Town 02 with test weather.

30

6.2.2 NoCrash

Despite the ablation study indicating DAgger to overfit, the CBS StudentF is
validated on the NoCrash benchmark, to provide a fair comparison to the LBC
StudentF, as shown in Table 6.4. The claim that the NoCrash benchmark is more
difficult than the CoRL2017 benchmark is additionally supported by the, on aver-
age, lower performance of both CBS StudentF and LBC StudentF on NoCrash in
comparison to CoRL2017. The poor generalization performance of CBS StudentF
to new towns is substantiated by the scores in the test town tasks of NoCrash too.
However, besides generalization performance, CBS StudentF also struggles more
in train conditions here, than it did on CoRl2017. This might be explained by the
number of collisions that result in a failure on NoCrash.

Table 6.4: Success rates (mean and standard deviation over three runs) of student
agents on NoCrash benchmark in train town and test town. Higher is better, best
scores are marked bold.

Train town Test town
Task Weather LBC StudentF CBS StudentF LBC StudentF CBS StudentF

Empty
train

97± 1 58.7± 0.6 100± 0 28.3± 0.6
Regular 93± 1 40.7± 8.5 94± 3 11.3± 2.3
Dense 71± 5 10± 1.0 51± 3 0.7± 0.6
Empty

test
87± 4 28.0± 3.5 70± 0 8.0± 0

Regular 87± 3 12.7± 2.3 62± 2 5.3± 1.2
Dense 63± 1 2.0± 0.0 39± 8 0.7± 1.2

To give more insight into this number, an infraction analysis is performed on
the NoCrash trajectories. Figure 6.3 shows the relative number of traffic light
violations and collision per 10 driven kilometres. Notice that Chen, Zhou, et al.
(2019)’s reports infractions for the CARLA 0.9.5 environment, so the number of
infractions might differ in version 0.9.6. Our reported infraction numbers are cal-
culated by taking the average over all three tasks in the specific town and under
the train and test weather. The analysis provides three main insights.

First, the number of collisions for CBS StudentF is significantly higher than
CBS Teacher’s (Figure A.1a), which shows that the student does collide even more
than our CBS Teacher. This reflects that the teacher’s knowledge is not completely
transferred to the student. Second, the LBC StudentF’s collisions are increased
by more than a factor 4 when generalizing to the new town. Our CBS StudentF’s
collisions are higher in general but are only increased by a factor of 2 in the new
town. Third, CBS StudentF’s traffic light violations are of the same magnitude

31

as its number of collisions, which substantiates the student’s low capabilities for
all immediate braking actions — stopping for a red traffic light, vehicle, pedes-
trian, or other close objects. In addition, our number of violations increases when
generalizing to new weather or a new town. This indicates that generalization
remains difficult and that DAgger might play an important role in generalizing
performance, as also shown by the ablation study. In particular, the parameter
configuration of DAgger might affect this performance.

This chapter has provided the results of our experiments where the CBS Teacher
performs excellently on the CoRL2017 benchmark and is competitive to LBC
Teacher on the NoCrash benchmark. In particular, the CBS Teacher has difficul-
ties with dense traffic scenarios. Moreover, the CBS Student achieves competitive
scores on both benchmarks too, but a gap between CBS Teacher and CBS Student
remains. An ablation study on DAgger suggests the possibility of overfitting the
CBS StudentF. The infraction analysis substantiates this, while we still improve
relative generalization to new environments in terms of collisions by a factor of 2
in comparison to LBC StudentF. The next chapter will interpret and discuss the
results.

(a) Number of collisions per 10 km. (b) Number of traffic light violations per
10 km.

Figure 6.3: Infraction analysis on NoCrash trajectories. T1: Town 01 with train
weather. T1F: Town 01 with new (test) weather. T2: Town 02 with train weather.
T2F: Town 02 with new (test) weather.

32

Chapter 7

Discussion

The results from the previous chapter show a couple of key findings. This section
gives an interpretation of these findings, reports their limitations and provides rec-
ommendations for future work. The findings are reported in order, based on their
importance in terms of impact on performance.

7.1 Empty versus dense scenarios
The student-teacher approach in combination with DAgger and the semantic-
segmentation teacher has proven to yield successful scores in basic scenarios such
as empty towns. Increasing the traffic or number of turns in the environment lets
the agent’s performance decrease. We show that this decrease can be explained by
the larger number of collisions. Since Chen, Zhou, et al. (2019) use a birdview with
360◦ view, it provides more information of its surroundings to the vehicle. The
semantic-segmentation data only provides a forward-looking 120◦ view. Hence,
this could explain the difference in the number of collisions.

7.2 Knowledge transfer
The student’s performance seems sensitive to the teacher’s domain. This means
that the teacher’s training domain should cover as many situations as possible
that the student might face too. For example, if no noise would be injected
into the agent creating the dataset, the dataset would only consist of perfectly
driven routes. This could cause the teacher to not learn how to recover from
facing a sidewalk. Hence, the student’s ability to do this could result to be low
too. In particular, the generalization performance in terms of town of our CBS

33

Teacher substantiates this, in combination with the relatively low performance of
CBS Teacher in dense traffic. This performance is indeed reflected by the CBS
StudentF’ abilities which generalize poorly too and scores low in dense traffic as
well. However, this only holds for the NoCrash benchmark, since our CBS Teacher
almost solves all tasks in the CoRl2017 benchmark, but CBS StudentF does not.
Therefore, there also seems to still be a large gap between student and teacher
regarding knowledge transfer.

7.3 DAgger
DAgger has shown to narrow this gap and improve performance significantly. In
particular, DAgger increases performance in the conditions it was applied to. This
means that DAgger applied during training, so under training weather and in the
training town, mainly boosts the performance in both benchmarks in this same
training town with training weather. Therefore, DAgger seems to not be able to
greatly widen the student’s domain. In contrast to our results, Chen, Zhou, et al.
(2019)’s results show that DAgger also improves performance in terms of town
generalization. This might be due to the configuration of the DAgger parameters,
with in particular the ratio of the number of training epochs per iteration and
number of iterations. We used 20 epochs with in total 6 iterations. Chen, Zhou,
et al. (2019) do not mention their DAgger configuration.

7.4 Future work
DAgger possibly overfitting the student on training conditions in combination with
low teacher’s capabilities in dense traffic could explain our hypothesis of an often
colliding agent. Therefore, future work could research in the direction of the priv-
ileged teacher agent to improve this teacher’s capabilities and prevent DAgger to
overfit the student.

However, we expect the semantic-segmentation data not to cause the decrease
in performance of the teacher, since the information available in Chen, Zhou, et al.
(2019)’s birdview and our segmentation image is nearly identical. Despite this, the
perspective change might result in more short-term behaviour, which could cause
lower performance, instead of long-term behaviour. With short-term behaviour,
reacting to the world in front of the vehicle is meant, such as steering a bit to the
left because a vehicle is approaching. Long-term behaviour means anticipating on

34

the part of the road that is still quite far away from the vehicle. The birdview’s
perspective might favour long-term behaviour of the model since objects further
away do not appear smaller on the birdview. This is in contrast to the more nat-
ural segmentation’s perspective which visualizes object further away smaller, as
human eyes do too.

Hence, future research could add depth maps to the teacher’s input, since Zhou,
Krähenbühl, and Koltun (2019) have shown depth maps to yield the second-best
improvement to urban-driving, next to segmentation images. In addition, the
gap between student and teacher might be further closed by applying a teacher-
assistant as proposed by Mirzadeh et al. (2019). The authors state that if the gap
between student and teacher is too large, the student’s performance breaks down.
Therefore, an intermediate network (teacher-assistant) is proposed to fill the gap
between the student and teacher. Moreover, as our results have shown, DAgger
tends to decrease generalization to new towns which is in contrast to the finding of
Chen, Zhou, et al. (2019). Implementing improvements upon DAgger, as proposed
by Prakash et al. (2020), might improve generalization. Furthermore, tuning the
parameters of DAgger might also improve generalization performance.

35

Chapter 8

Conclusion

This thesis has proposed Cheating by Segmentation: a student-teacher approach
with semantic segmentation data to learn autonomous driving behaviour. The
essence of this approach is the use of more realistic data to train a teacher which
transfers its knowledge to a student. With this approach, the thesis aimed to
answer the following research question: How is the performance of Chen, Zhou,
et al.’s method affected when a ground-truth segmentation view is used instead of
a birdview? In addition, by validating the teacher and student separately, this
study aimed to answer the sub-questions: What is the effect of the new data on
the teacher’s performance?, and To what extent can the new teacher transfer its
knowledge to the student?, as well.

In conclusion, this thesis has shown that Chen, Zhou, et al. (2019) method’s
birdview can be replaced by a more realistic semantic segmentation image from a
driver’s perspective. With this more realistic data, our teacher is able to solve the
Empty task on the NoCrash benchmark and scores 95% success rates or higher
on almost all tasks of CoRl2017. Additionally, this thesis has demonstrated that
the teacher’s ability to transfer its knowledge to the student in combination with
DAgger is proven to be moderate, but competitive to Chen, Zhou, et al. (2019)’s
capabilities. Therefore, a student can learn its driving behaviour, for in particular
train conditions, from a good teacher. The effect on the performance when chang-
ing Chen, Zhou, et al. (2019)’s method to use semantic segmentation data is a
decrease in performance in dense traffic, but similar performance in empty scenar-
ios. In dense traffic, the teacher insufficiently learns actions that require immediate
braking, which subsequently has its effect on the learned behaviour of the student
as well. One of the suggestions in future work is to provide the teacher with depth
information, which could improve its immediate breaking behaviour. With this
thesis, the first steps are set towards training autonomous driving student-teacher
approaches with more realistic data.

36

Bibliography

[1] Mariusz Bojarski et al. End to End Learning for Self-Driving Cars. 2016.
arXiv: 1604.07316 [cs.CV].

[2] Cristian Buciluundefined, Rich Caruana, and Alexandru Niculescu-Mizil.
“Model Compression”. In: Proceedings of the 12th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining. KDD ’06.
Philadelphia, PA, USA: Association for Computing Machinery, 2006, pp. 535–
541. isbn: 1595933395. doi: 10.1145/1150402.1150464. url: https://
doi.org/10.1145/1150402.1150464.

[3] CBS. Hoeveel mensen komen om in het verkeer? https://www.cbs.nl/nl-
nl/visualisaties/verkeer- en- vervoer/verkeer/hoeveel- mensen-
komen-om-in-het-verkeer-. n.d.

[4] Dian Chen, Vladlen Koltun, and Philipp Krähenbühl. “Learning to drive
from a world on rails”. In: arXiv preprint. 2021.

[5] Dian Chen, Brady Zhou, et al. “Learning by Cheating”. In: CoRR abs/1912.12294
(2019). arXiv: 1912.12294. url: http://arxiv.org/abs/1912.12294.

[6] Felipe Codevilla, Matthias Müller, et al. End-to-end Driving via Conditional
Imitation Learning. 2018. arXiv: 1710.02410 [cs.RO].

[7] Felipe Codevilla, Eder Santana, et al. Exploring the Limitations of Behavior
Cloning for Autonomous Driving. 2019. arXiv: 1904.08980 [cs.CV].

[8] Jia Deng et al. “Imagenet: A large-scale hierarchical image database”. In:
2009 IEEE conference on computer vision and pattern recognition. Ieee. 2009,
pp. 248–255.

[9] Ernst Dieter Dickmanns et al. “The seeing passenger car’VaMoRs-P’”. In:
Proceedings of the Intelligent Vehicles’ 94 Symposium. IEEE. 1994, pp. 68–
73.

[10] Alexey Dosovitskiy et al. “CARLA: An Open Urban Driving Simulator”. In:
Proceedings of the 1st Annual Conference on Robot Learning. 2017, pp. 1–16.

37

https://arxiv.org/abs/1604.07316
https://doi.org/10.1145/1150402.1150464
https://doi.org/10.1145/1150402.1150464
https://doi.org/10.1145/1150402.1150464
https://www.cbs.nl/nl-nl/visualisaties/verkeer-en-vervoer/verkeer/hoeveel-mensen-komen-om-in-het-verkeer-
https://www.cbs.nl/nl-nl/visualisaties/verkeer-en-vervoer/verkeer/hoeveel-mensen-komen-om-in-het-verkeer-
https://www.cbs.nl/nl-nl/visualisaties/verkeer-en-vervoer/verkeer/hoeveel-mensen-komen-om-in-het-verkeer-
https://arxiv.org/abs/1912.12294
http://arxiv.org/abs/1912.12294
https://arxiv.org/abs/1710.02410
https://arxiv.org/abs/1904.08980

[11] David Dudley. The Driverless Car is (Almost) Here. 2015. url: https://
www.aarp.org/home-family/personal-technology/info-2014/google-
self-driving-car.html.

[12] Les Earnest. Stanford Cart. 2021. url: https : / / web . stanford . edu /
~learnest/sail/oldcart.htmlf.

[13] Robert A. Ferlis. The Dream of an Automated Highway. 2007. url: https:
//www.fhwa.dot.gov/publications/publicroads/07july/07.cfm.

[14] Mark Harris. How Google’s Autonomous Car Passed the First U.S. State Self-
Driving Test. 2014. url: https://spectrum.ieee.org/transportation/
advanced-cars/how-googles-autonomous-car-passed-the-first-us-
state-selfdriving-test.

[15] Kaiming He et al. Deep Residual Learning for Image Recognition. 2015.
arXiv: 1512.03385 [cs.CV].

[16] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the Knowledge in
a Neural Network. 2015. arXiv: 1503.02531 [stat.ML].

[17] Aaron M. Kessler. Elon Musk Says Self-Driving Tesla Cars Will Be in the
U.S. by Summer. 2015. url: https://www.nytimes.com/2015/03/20/
business / elon - musk - says - self - driving - tesla - cars - will - be -
in-the-us-by-summer.html?hpw&rref=automobiles&action=click&
pgtype=Homepage&module=well-region®ion=bottom-well&WT.nav=
bottom-well&_r=0.

[18] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Opti-
mization. 2017. arXiv: 1412.6980 [cs.LG].

[19] Fabian Kröger. “Automated Driving in Its Social, Historical and Cultural
Contexts”. In: Autonomous Driving: Technical, Legal and Social Aspects. Ed.
by Markus Maurer et al. Berlin, Heidelberg: Springer Berlin Heidelberg,
2016, pp. 41–68. isbn: 978-3-662-48847-8. doi: 10.1007/978-3-662-48847-
8_3. url: https://doi.org/10.1007/978-3-662-48847-8_3.

[20] Hanspeter Mallot et al. “Inverse Perspective Mapping Simplifies Optical Flow
Computation and Obstacle Detection”. In: Biological cybernetics 64 (Feb.
1991), pp. 177–85. doi: 10.1007/BF00201978.

[21] Seyed-Iman Mirzadeh et al. Improved Knowledge Distillation via Teacher
Assistant. 2019. arXiv: 1902.03393 [cs.LG].

[22] Thomas van Orden and Arnoud Visser. “End-to-end Imitation Learning for
Autonomous Vehicle Steering on a Single Camera Stream”. In: Proceedings of
16th international conference on Intelligent Autonomous System. IAS. 2021,
pp. 224–235.

38

https://www.aarp.org/home-family/personal-technology/info-2014/google-self-driving-car.html
https://www.aarp.org/home-family/personal-technology/info-2014/google-self-driving-car.html
https://www.aarp.org/home-family/personal-technology/info-2014/google-self-driving-car.html
https://web.stanford.edu/~learnest/sail/oldcart.htmlf
https://web.stanford.edu/~learnest/sail/oldcart.htmlf
https://www.fhwa.dot.gov/publications/publicroads/07july/07.cfm
https://www.fhwa.dot.gov/publications/publicroads/07july/07.cfm
https://spectrum.ieee.org/transportation/advanced-cars/how-googles-autonomous-car-passed-the-first-us-state-selfdriving-test
https://spectrum.ieee.org/transportation/advanced-cars/how-googles-autonomous-car-passed-the-first-us-state-selfdriving-test
https://spectrum.ieee.org/transportation/advanced-cars/how-googles-autonomous-car-passed-the-first-us-state-selfdriving-test
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1503.02531
https://www.nytimes.com/2015/03/20/business/elon-musk-says-self-driving-tesla-cars-will-be-in-the-us-by-summer.html?hpw&rref=automobiles&action=click&pgtype=Homepage&module=well-region®ion=bottom-well&WT.nav=bottom-well&_r=0
https://www.nytimes.com/2015/03/20/business/elon-musk-says-self-driving-tesla-cars-will-be-in-the-us-by-summer.html?hpw&rref=automobiles&action=click&pgtype=Homepage&module=well-region®ion=bottom-well&WT.nav=bottom-well&_r=0
https://www.nytimes.com/2015/03/20/business/elon-musk-says-self-driving-tesla-cars-will-be-in-the-us-by-summer.html?hpw&rref=automobiles&action=click&pgtype=Homepage&module=well-region®ion=bottom-well&WT.nav=bottom-well&_r=0
https://www.nytimes.com/2015/03/20/business/elon-musk-says-self-driving-tesla-cars-will-be-in-the-us-by-summer.html?hpw&rref=automobiles&action=click&pgtype=Homepage&module=well-region®ion=bottom-well&WT.nav=bottom-well&_r=0
https://www.nytimes.com/2015/03/20/business/elon-musk-says-self-driving-tesla-cars-will-be-in-the-us-by-summer.html?hpw&rref=automobiles&action=click&pgtype=Homepage&module=well-region®ion=bottom-well&WT.nav=bottom-well&_r=0
https://arxiv.org/abs/1412.6980
https://doi.org/10.1007/978-3-662-48847-8_3
https://doi.org/10.1007/978-3-662-48847-8_3
https://doi.org/10.1007/978-3-662-48847-8_3
https://doi.org/10.1007/BF00201978
https://arxiv.org/abs/1902.03393

[23] Aditya Prakash et al. “Exploring Data Aggregation in Policy Learning for
Vision-Based Urban Autonomous Driving”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). June
2020.

[24] RCA. Electronic Age. 1958. url: https://worldradiohistory.com/Archive-
Radio-Age/Electronic-Age-1958-Winter.pdf.

[25] Lennart Reiher, Bastian Lampe, and Lutz Eckstein. “A Sim2Real Deep
Learning Approach for the Transformation of Images from Multiple Vehicle-
Mounted Cameras to a Semantically Segmented Image in Bird’s Eye View”.
In: 2020 IEEE 23rd International Conference on Intelligent Transportation
Systems (ITSC). 2020, pp. 1–7. doi: 10.1109/ITSC45102.2020.9294462.

[26] Stephane Ross, Geoffrey J. Gordon, and J. Andrew Bagnell. A Reduction of
Imitation Learning and Structured Prediction to No-Regret Online Learning.
2011. arXiv: 1011.0686 [cs.LG].

[27] SAE International. Taxonomy and definitions for terms related to driving
automation systems for on-road motor vehicles. SAE Standard J3016, Report
No. J3016-201806. Published online. 2018. doi: 10.4271/J3016_201806.

[28] Axel Sauer, Nikolay Savinov, and Andreas Geiger. Conditional Affordance
Learning for Driving in Urban Environments. 2018. arXiv: 1806 . 06498
[cs.RO].

[29] A. Serban, E. Poll, and J. Visser. “A Standard Driven Software Architecture
for Fully Autonomous Vehicles”. In: 2018 IEEE International Conference on
Software Architecture Companion (ICSA-C). Los Alamitos, CA, USA: IEEE
Computer Society, May 2018, pp. 120–127. doi: 10.1109/ICSA-C.2018.
00040. url: https://doi.ieeecomputersociety.org/10.1109/ICSA-
C.2018.00040.

[30] Pierre Sermanet et al. OverFeat: Integrated Recognition, Localization and
Detection using Convolutional Networks. 2014. arXiv: 1312.6229 [cs.CV].

[31] SWOV. Ernstig verkeersgewonden in Nederland, SWOV-factsheet. https://
www.swov.nl/feiten-cijfers/factsheet/ernstig-verkeersgewonden-
nederland. 2020.

[32] Time Magazine. Science: Radio Auto. 1925. url: http://content.time.
com/time/subscriber/article/0,33009,720720,00.html.

[33] Marin Toromanoff, Emilie Wirbel, and Fabien Moutarde. End-to-End Model-
Free Reinforcement Learning for Urban Driving using Implicit Affordances.
2020. arXiv: 1911.10868 [cs.LG].

39

https://worldradiohistory.com/Archive-Radio-Age/Electronic-Age-1958-Winter.pdf
https://worldradiohistory.com/Archive-Radio-Age/Electronic-Age-1958-Winter.pdf
https://doi.org/10.1109/ITSC45102.2020.9294462
https://arxiv.org/abs/1011.0686
https://doi.org/10.4271/J3016_201806
https://doi.org/10.4271/J3016_201806
https://arxiv.org/abs/1806.06498
https://arxiv.org/abs/1806.06498
https://doi.org/10.1109/ICSA-C.2018.00040
https://doi.org/10.1109/ICSA-C.2018.00040
https://doi.ieeecomputersociety.org/10.1109/ICSA-C.2018.00040
https://doi.ieeecomputersociety.org/10.1109/ICSA-C.2018.00040
https://arxiv.org/abs/1312.6229
https://www.swov.nl/feiten-cijfers/factsheet/ernstig-verkeersgewonden-nederland
https://www.swov.nl/feiten-cijfers/factsheet/ernstig-verkeersgewonden-nederland
https://www.swov.nl/feiten-cijfers/factsheet/ernstig-verkeersgewonden-nederland
http://content.time.com/time/subscriber/article/0,33009,720720,00.html
http://content.time.com/time/subscriber/article/0,33009,720720,00.html
https://arxiv.org/abs/1911.10868

[34] Marin Toromanoff, Emilie Wirbel, and Fabien Moutarde. Is Deep Reinforce-
ment Learning Really Superhuman on Atari? Leveling the playing field. 2019.
arXiv: 1908.04683 [cs.AI].

[35] Mark Weber et al. DeepLab2: A TensorFlow Library for Deep Labeling. 2021.
arXiv: 2106.09748 [cs.CV].

[36] Jameson Wetmore. “Driving the dream. The history and motivations behind
60 years of automated highway systems in America”. In: Automotive History
Review 7 (2003), pp. 4–19.

[37] Danny Yadron and Dan Tynan. Tesla driver dies in first fatal crash while us-
ing autopilot mode. 2016. url: https://www.theguardian.com/technology/
2016/jun/30/tesla-autopilot-death-self-driving-car-elon-musk.

[38] Brady Zhou, Philipp Krähenbühl, and Vladlen Koltun. “Does computer vi-
sion matter for action?” In: Science Robotics 4.30 (May 2019), eaaw6661.
issn: 2470-9476. doi: 10.1126/scirobotics.aaw6661. url: http://dx.
doi.org/10.1126/scirobotics.aaw6661.

40

https://arxiv.org/abs/1908.04683
https://arxiv.org/abs/2106.09748
https://www.theguardian.com/technology/2016/jun/30/tesla-autopilot-death-self-driving-car-elon-musk
https://www.theguardian.com/technology/2016/jun/30/tesla-autopilot-death-self-driving-car-elon-musk
https://doi.org/10.1126/scirobotics.aaw6661
http://dx.doi.org/10.1126/scirobotics.aaw6661
http://dx.doi.org/10.1126/scirobotics.aaw6661

Appendix A

Benchmark results

This Appendix provides additional results and analysis. Table A.1 shows our re-
sults in the context of other related studies. Notice that the other related studies
have used older versions of CARLA. Therefore, their results are not directly compa-
rable to ours, since we use CARLA version 0.9.6 and CARLA changed significantly
with version 0.9.6 in comparison to older versions.

Table A.1: Success rates (higher is better, best scores are marked bold) on
CoRL2017 benchmark in train and test town. Our CBS StudentF is compared to
Codevilla, Müller, et al. (2018) (CIL); Sauer, Savinov, and Geiger (2018) (CAL);
and Codevilla, Santana, et al. (2019) (CILRS).

Train town Test town
Task Weather CIL CAL CILRS CBS CIL CAL CILRS CBS

StudentF StudentF

Straight

train

98 100 96 100 97 93 96 100
One turn 89 97 92 78 59 82 84 66
Navigation 86 92 95 80 40 70 69 57
Nav. dynamic 83 83 92 76 38 64 66 55
Straight

test

98 100 96 98 80 94 96 100
One turn 90 96 96 64 48 72 92 40
Navigation 84 90 96 68 44 68 92 28
Nav. dynamic 82 82 96 64 42 64 90 24

The success rates in Table A.1show us that we outperform or score equal to all
other approaches on 3 of the 4 Straight tasks. In more complex scenarios, our CBS
StudentF yields competitive scores, but different CARLA versions may affect this
performance.

41

To provide more insight into the CBS Teacher’s driving behaviour, an infraction
analysis is conducted on the NoCrash benchmark trajectories. This is shown in
Figure A.1. Notice that the comparison is made with the LBC StudentF, since
only this data was available. Nevertheless, our CBS Teacher shows similar results
as LBC StudentF in terms of the number of collisions and traffic light violations.
Generalization in terms of towns proves to be difficult for both agents, with an
increase by a factor 3 and 6 for the number of collisions for CBS Teacher and LBC
StudentF, respectively. In contrast, CBS Teacher’s traffic light violations decrease
when generalizing to a new town. Generalization to new weather conditions is
excellent for our CBS Teacher with similar collisions and violations in train weather
and test weather.

(a) Number of collisions per 10 km. (b) Number of traffic light violations per
10 km.

Figure A.1: Infraction analysis of our CBS Teacher on NoCrash trajectories com-
pared to LBC StudentF. T1: Town 01 with train weather. T1F: Town 01 with
new (test) weather. T2: Town 02 with train weather. T2F: Town 02 with new
(test) weather.

42

	Introduction
	Aim

	Theoretical Foundation
	Decomposed learning
	End-to-end learning
	Multi-head

	Student-teacher setup
	Semantic segmentation
	DAgger

	Related work
	Conditional imitation learning
	Conditional affordance learning
	Improved conditional imitation learning
	Reinforcement learning
	World on rails

	Approach
	Learning by Cheating
	Teacher training
	Student training
	Validation

	Cheating by Segmentation
	Data
	Training

	Experimental setup
	CARLA
	Dataset
	Training
	Benchmarks
	CoRL2017
	NoCrash

	Results
	CBS Teacher
	CBS Student
	CoRL2017
	NoCrash

	Discussion
	Empty versus dense scenarios
	Knowledge transfer
	DAgger
	Future work

	Conclusion
	Benchmark results

