
Using the Extended Information
Filter for Localization of

Humanoid Robots on a Soccer
Field

Tobias Garritsen
University of Amsterdam
Faculty of Science
BSc Artificial Intelligence



Using the Extended Information
Filter for Localization of

Humanoid Robots on a Soccer
Field

Tobias Garritsen
10779582

Bachelor thesis
Credits: 18 EC

Bachelor Opleiding Kunstmatige Intelligentie

University of Amsterdam
Faculty of Science
Science Park 904

1098 XH Amsterdam

Supervisor
Prof. dr. A. Visser

Informatics Institute
Faculty of Science

University of Amsterdam
Science Park 904

1098 XH Amsterdam

1



June 29th, 2018

Contents

1 Introduction 4

2 Theory 5
2.1 Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Gaussian filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Kalman filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Information Filter . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5 Extended Kalman/Information Filter . . . . . . . . . . . . . . . . 8

3 Related Work 9

4 Proposed Method 10
4.1 Accuracy and Computational Complexity . . . . . . . . . . . . . 10
4.2 Soccer pitch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.3 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.4.1 Landmark Recognition . . . . . . . . . . . . . . . . . . . . 11
4.4.2 Extended Information and Kalman Filter . . . . . . . . . 14
4.4.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Results 15
5.1 Accuracy Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2 Computational Complexity Results . . . . . . . . . . . . . . . . . 15

6 Discussion and Conclusion 21

7 Future Research 21

8 Acknowledgements 21

Appendices 24

A Hardware/Software 24
A.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
A.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

B Comparison of localization algorithms 24

2



Abstract

On of the contests of the RoboCup is Nao robot soccer. For Nao
robots to play soccer, they need to be able to localize themselves on the
field. The extended information filter (EIF) is an algorithm that is not
yet researched on this problem, as opposed its dual, the extended Kalman
filter (EKF). The EIF is computational less complex than the EKF in
the second part, but vice versa in first part of the algorithm. Both filters
require a robust landmark detector to work efficiently. There have been
many studies regarding robot localization and the use of variations of the
EKF in Nao robot soccer, but not yet of the EIF. In this thesis it is found
that the EKF requires less computation time that the EIF, but the EIF
has a better accuracy. The EKF and the EIF used the same data, were
tested on the same computer, and have a similar form of implementation,
thus the only factors that played a role in their comparison, where the
filters themselves.
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Figure 1: A Nao robot that is used for the SPL

1 Introduction

Robot soccer is a prominent part of the RoboCup1, which is an annual interna-
tional robotics competition. The RoboCup Standard Platform League (SPL)2

is the soccer competition in which Nao robots3 (figure 1) are used. The high-
est goal of the RoboCup is to create humanoid robots that are able to defeat
real professional soccer players. For this goal to be achieved, multiple problems
must be solved by the soccer robots. One of the most significant problems is
robot localization [Dellaert et al., 1999], which is the problem of determining
the position of a robot within a certain known environment. The robot has
a priori knowledge of the surroundings and by retrieving additional knowledge
about them, it should determine its location. The known environment should be
well recognizable and thus a number of landmarks should be used, in addition
to them being stationary and having recognizable features. The soccer robots
have to operate on a (small) soccer pitch, where the landmarks can be the goals,
the lines and artificially added landmarks.

In this research, there will be artificially added landmarks, namely colorful and
recognizable cones. For the robot to determine its location based on these
landmarks, multiple algorithms have been researched. However the information
filter, has not yet been studied and thus it will be tested on the localization
problem and discussed in this paper.

In main focus of this thesis is researching if the use of the extended informa-
tion filter for robot localization in the SPL is an interesting alternative to the
extended Kalman filter. There will firstly be an overview of the basic idea of
the Kalman and information filter, and some of their extensions and afterwards
there will be an overview of related work. In the second part, a method will be
proposed for solving the localization problem with the information filter after
which the implementation will be discussed. Following the implementation, the

1http://www.robocup.org/
2http://www.spl.robocup.org/
3https://www.softbankrobotics.com/emea/en/robots/nao
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testing and test results will be discussed and a comparison between the Kalman
filter and the information filter will be compared with each other. Finally a
conclusion will be given and there will be a discussion of possible future work.

2 Theory

The basic theory about localization and the two Gaussian filters and their
extended versions is explained in the book Probabilistic Robotics by Thrun
[Thrun et al., 2005] of which a summary has been given below.

2.1 Localization

Localization is determining a robots pose on the field, whereas the pose consists
of its actual position in Cartesian coordinates (x and y) as well as the orien-
tation θ of the robot. The x and y coordinates of the pose will further on be
called the location. Other possible variables considering the pose of the robot
are not used in this thesis research.

There are multiple dimensions in localization, with two dimensions being im-
portant within this thesis. The first dimensions regards the local view of the
robot, in which the robot knows its initial pose and it should be able to keep
track of it. To determine the pose of the robot after it moves, the motion noise
should be taken into account. This is a local problem, as the uncertainty about
its pose is local and thus the estimated pose can only be close to the robots
original position. The robot should also operate in a static environment, in
which the robot is the only entity that is changing its position, with all other
objects remaining in the same pose. This creates an easier environment for the
robot to test the information filter with little noise from other sources, outside
of the robot itself.

For the robot to localize itself on the soccer pitch, it should be capable of
two things, besides walking around. It should be able control its actions in such
a way, that it should know exactly (although noise is possible) what distance
and at what angle the robot moved. The moved distance is written as v and the
angle will be written as w, with both values together being the control vector
u.

u =

[
v
w

]
Another important aspect of robot localization is for the robot to have the ability
to detect its surroundings. With this detection, certain landmarks can be found,
to create the measurement vector z. This will consist of the estimated range of
the robot towards the landmark, the bearing of the landmark from robot and
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the unique sign of the landmark.

z =

rø
s


The method to this landmark detection will be discussed in the 4.4.1 later on.

2.2 Gaussian filters

This thesis will focus on robot localization through the extended information
filter, which is the dual of the extended Kalman filter. These are both Gaussian
filters, which are recursive state estimators. They represent their estimated
state by the multivariate normal distribution.

p(x) = det(2πΣ)−
1
2 exp{−1

2
(x− µ)T Σ−1(x− µ)}

2.3 Kalman filter

The Kalman filter (KF) is used for the localization problem, as it can estimates
its current state with uncertain measurements. These estimations are created
at time t, in which it uses two values to represent its state. The first value is the
mean µt, which is the pose of the robot and the second value is the covariance
Σt.

µ =

xy
θ


Σ =

Σ1,1 Σ1,2 Σ1,3

Σ2,1 Σ2,2 Σ2,3

Σ3,1 Σ3,2 Σ3,3


It is predicted with the values of the previous estimation at time t − 1, which
is represented by the previous mean µt−1 and covariance Σt−1. The previous
estimations is updated with the help of the control ut and measurement zt, to
find the new predicted estimate µ̄t and Σ̄t. In algorithm 1 the KF is shown.
In the lines 2 and 3, the estimation step is performed in which the new µ and
Σ are estimated, based on the u. In the lines 4, 5 and 6, the correction step
is performed. In this step, zt is used to correct the previous estimate. The
KF has a computational complexity of O(k2.4), where k is the dimension of the
measurement vector zt, for every iteration. The complexity of the algorithm
occurs as a result of line 4 of the algorithm, in which large matrix computations
are performed.
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Algorithm 1 Kalman Filter [Thrun et al., 2005]

1: function Kalman filter((µt−1,Σt−1, ut, zt))
2: µ̄t = Atµt−1 +Btut
3: Σ̄t = AtΣt−1A

T
t +Rt

4: Kt = Σ̄tC
T
t (CtΣ̄tC

T
t +Qt)

−1

5: µt = µ̄t +Kt(zt − Ctµ̄t)
6: Σt = (I −KtCt)Σ̄t

7: return µt,Σt

8: end function

2.4 Information Filter

The Information filter (IF) is a variation of the KF, mostly seen as the dual
of it, because the KF represents Gaussians in their moments parameterization
(µ, Σ), as opposed to the IF which represents Gaussians in their canonical
parameterization. The canonical parameterization consists of the information
matrix Ω and the information vector ξ. Both Ω and ξ can be obtained from µ
and Σ.

Ω = Σ−1

ξ = Σ−1µ

The IF takes, besides Ω and ξ, two other input values, which are the same as
the KF, being zt and ut. The output estimation is given in the information
form, thus the information matrix and the information vector. In Algorithm 2,
the IF is shown, where it can be seen to be very similar to the traditional KF.
In the same way as the KF, the IF uses two steps, firstly the estimation step
(line 2-3) where ut is taken into account and secondly the correction step (line
4-5), where zt is used.

The change of the moments parameterization to the canonical parameteriza-
tion results in different complexities for the estimation step en correction step.
The estimation step is costlier in the IF than in the KF, but the correction step
is cheaper in the IF than in the KF. The complexities of both steps for both
filters are shown in table 1.

Algorithm 2 Information Filter [Thrun et al., 2005]

1: function Information filter((ξt−1,Ωt−1, ut, zt))
2: Ω̄t = (AtΩ

−1
t−1A

T
t +Rt)

−1

3: ξ̄t = Ω̄t(AtΩ
−1
t−1ξt−1 +Btut)

4: Ωt = CT
t Q

−1
t Ct + Ω̄t

5: ξt = CT
t Q

−1
t zt + ξ̄t

6: return ξt,Ωt

7: end function
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Table 1: Complexity of Kalman filter and information filter

Estimation step Correction step
Kalman filter O(n2) O(n2.4)
Information filter O(n2.4) O(n2)

2.5 Extended Kalman/Information Filter

One of the notable conditions of both the KF and the IF is that they can only
be used for estimating in linear Gaussian systems. A system is linear Gaussian
if both the state transition probability (p(xt|ut, xt−1)) is a linear function in its
arguments with added Gaussian noise as well as the measurement probability
p(zt|xt). A third property that must hold is for the initial state (µ0 and Σ0 or
ξ and Ω) to be normally distributed. However in robotics the state transitions
measurements are rarely linear.

The extended Kalman filter (EKF) and the extended information filter (EIF)
are variations of the KF and IF respectively, that are not bound to linear func-
tions. The EKF uses a Gaussian approximation of the estimation for which the
state transition probability and the measurement probabilities are calculated
with the nonlinear functions g and h. The non linear functions g and h are
approximated with the corresponding tangent line, to g and h respectively, at
the mean. The algorithm 3 represents the EKF with the prediction step in the
lines 2-3 and the correction step in the lines 4-6. The EIF is shown in algorithm
4 and the prediction step is given by the lines 2-4 and the correction step by
lines 5-7. The main difference is the replacement of the linear parameters At,
Bt and Ct from algorithm 1 and 2 with the functions g and h and their Jaco-
bians Gt and Ht. The EIF requires an extra step as opposed to the EKF, as
it requires the µt−1 for the function g and h. The information matrix Ωt and
the information vector ξt are used to convert back to the µt and use it for the
algorithm.

Algorithm 3 Extended Kalman Filter [Thrun et al., 2005]

1: function Extended Kalman filter((µt−1,Σt−1, ut, zt))
2: µ̄t = g(ut, µt−1)
3: Σ̄t = GtΣt−1G

T
t +Rt

4: Kt = Σ̄tH
T
t (HtΣ̄tH

T
t +Qt)

−1

5: µt = µ̄t +Kt(zt − h(µ̄t))
6: Σt = (I −KtHt)Σ̄t

7: return µt,Σt

8: end function
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Algorithm 4 Extended Information Filter [Thrun et al., 2005]

1: function Information filter((ξt−1,Ωt−1, ut, zt))
2: µt−1 = Ω−1

t−1ξt−1

3: Ω̄t = (GtΩ
−1
t−1G

T
t +Rt)

−1

4: ξ̄t = Ω̄tg(ut, µt−1)
5: µ̄t = g(ut, µt−1)
6: Ωt = Ω̄t +HT

t Q
−1
t Ht

7: ξt = ξ̄t +HT
t Q

−1
t [zt − h(µ̄t) +Htµ̄t]

8: return ξt,Ωt

9: end function

3 Related Work

There are many different algorithms for localization as well as variations of these
algorithms. The most important researches for this project have been about ei-
ther the EKF, the EIF and comparisons of multiple localization algorithms.

The EKF is able to estimate precise local pose, but it fails to find the global pose
[Kose et al., 2006], which is the reason of its inability to recover from failures.
However for robot soccer, this is less important, as the robot is unlikely to be
transported to another location, and with the addition of the validation gate
[Kristensen and Jensfelt, 2003], in can cope even better with finding its local
position. The validation gate checks if the results of the estimation step and
the correction step are in line with each other. If they are vastly different, the
z is expected to be corrupted and the correction step is skipped.

In the paper of Thrun [Thrun et al., 2004], the EIF is used to solve the problem
of simultaneous localization and mapping (SLAM). It consists of simultaneously
creating a map of the environment and localizing the robot within this map.
However for this problem, the computational complexity of the EIF is not low
enough. As quoted in the paper, ”the standard EIF approach requires time
quadratic in the number of features in the map, for each incremental update”.
According to Thrun, by creating a sparse version of the EIF, the computational
complexity can be reduced, making the EIF faster.

In the paper of Walter [Walter et al., 2007], an extension of the SEIF is dis-
cussed, as proposed by Thrun [Thrun et al., 2004]. The ability of the informa-
tion filters to use sparse data for less complexity can be extended to the the
exactly sparse extended information filter (ESEIF), which is more consistent
locally than the SEIF. By marginalizing the robots poses and relocalizing the
robot periodically in the map, the number of features can be reduced. This cre-
ates a filter that performs nearly identical to the EKF with less computational
complexity. This allows for many ways that the EIF can be improved for more
accurate results as well as a more efficient processing time.
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The paper of Frese [Frese, 2005] provides mathematical proof of the following:
”in the SLAM information matrix P’ off-diagonal entries corresponding to two
landmarks decay exponentially with the distance travelled between observation
of first and second landmark”. This proves the effectiveness of the SEIF, in
which space is saved and less computation time is needed.

One of the alternatives to the Gaussian filters, is based on particle filters, which
is Monte Carlo Localization (MCL) [Dellaert et al., 1999]. This method is ro-
bust, good at recovering from failures and it can be adjusted to use less com-
putational power. The algorithm roughly works in three steps. The first step is
processing the odometry, which is the data of the performed motion control of
the robot. The next steps are processing the visual sensor input and re-sampling
the probabilities of all possible location.

Multiple localization algorithms have been compared to each other in the pa-
pers of Gutmann et al. [Gutmann and Fox, 2002] [Gutmann et al., 1998] and
Visser et al. [Visser et al., 2011]. The algorihtms from these articles have been
compared to each other in terms of their accuracy, robustness, time to recover
from failures and computation time (table 5 in appendix B). The table shows
that the Gaussian filter (EKF) performs best in terms of computation speed,
whereas the particle filters (Mix-MCL, A-MCL) perform best in accuracy and
robustness.

4 Proposed Method

4.1 Accuracy and Computational Complexity

There are two aspects that are vital for the information filter to be an effec-
tive Gaussian-based localization algorithm, thus both should be researched and
compared with the Kalman filter. The first one is the accuracy, which shows
how accurate the estimation of the robots location is, compared to the actual
state. The estimated location will be compared to the actual location and the
Euclidean distance between them will be calculated. This will be the first part
of the accuracy test, purely based on location. Besides the accuracy, the robot
should also be able to use the algorithm within reasonable time, thus both filters
will be compared in their computation time.

4.2 Soccer pitch

In the report by Gudi et al. [Gudi et al., 2013], numerous localization problems
for the SPL are discussed, based on the visual vulnerabilities of the robot. The
main problem is the recognition of the features, like the lines and the goals, as
these can be partially covered, resulting in a more difficult feature extraction,
which would reduce the robustness of the localization algorithm. A better use of
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recognition would be the recognition of artificial added landmarks. The soccer
pitch on which the robot must localize itself is green with white lines and white
goals at both sides, and at the corners and sidelines six landmarks are added,
as shown in figure 2. The six landmarks are uniquely recognizable due to their
distinctive color combinations (figure 3). They are necessary for the robot to
determine its location, as the measurement vector will be created according to
whichever landmark has been detected (potentially multiple). For the detection
to be as robust as possible, a white screen is placed behind the landmarks,
so they will be easier to detect. The landmarks will be the same beacons as
proposed in a similar thesis project from 2011 [van der Molen and Visser, 2011]
and from the Gutmann dataset [Gutmann and Fox, 2002].

4.3 Dataset

During this project, a dataset4 is created by walking nearly a circle shape with
a Nao robot. From this dataset, there are 16 data points created. The interval
of these steps are predefined, having the robot walk 0.20 meter and changing
its orientation with 20 degrees simultaneously in between all data points. A
ground truth of the aforementioned path will be created with the OptiTrack.
This system detects the the robot with six motion capture cameras surrounding
the pitch system. A reflecting object is placed on the robot, to track it with the
OptiTrack system. The control vector u consists of the predifined steps, being
0.20 meters and 20 degrees each time. Lastly, as part of the dataset, the robot
saves a picture with resolution of 1280x960 at every data point. As the robot is
stationary when it is taking a picture, the OptiTrack will detect it to be static
in one location during a longer period of time, thus it can be extracted that this
is the precise moment in which the robot is detecting a landmark, and these
values are later on used for the algorithm, instead of the entire dataset. Thus
the ground truth, images and movements are used to test the EIF and the EKF
in both accuracy and complexity and compare them with each other.

4.4 Implementation

4.4.1 Landmark Recognition

At each measuring point of the Nao, a picture is taken to detect the perceived
landmarks. As the landmarks appear as square images when detected, they
can be found by finding all squares in the image with the help of OpenCV.
All found squares will then be compared to the possible landmarks and it will
be determined if they are indeed a certain landmark, or just a random found
square. Following the detection of the landmarks, the right measurement values
must be extracted, which are the bearing and the range between the Nao and
the landmark. The range or distance (D) can be found by using the formula
shown below.

D =
W · F
P

4https://github.com/tobiasxg/Thesis
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Figure 2: The soccer pitch used during the research. The landmarks are shown
in the corresponding colors to the real landmarks.

W stands for the actual width of the object in cm, P is the pixel width of the
object in the image and the F is the focal length, which is a fixed value that
can be found by the following formula.

F =
P ·D
W

This formula has the exact same values as the previous one, and must be used
to find the focal length of the object for the first time. By using the actual
width, using the OptiTrack to determine the distance between the object and
the Nao when taking the picture and measuring the pixel width of the object in
the image, the focal length can be found and used for calculating the distance
in different situations. For finding the bearing, a simpler calculation can be
performed. By dividing the pixel width of the image by the vision angle of the
Nao (60.97 degrees)5 the angle per pixel is found. By multiplying the centre
pixel of the object in the image by the angle per pixel, the bearing is found.
The measurement vector is then constructed from the range, the bearing and
the unique landmark sign for all detected landmarks and concatenated to the
following matrix with the number of landmarks as n.r1 r2 ... rn

φ1 φ2 ... φn
s1 s2 ... sn


In figure 4, the pseudocode is shown for the landmark detection and creating
the measurement vectors of the corresponding landmarks.

5http://doc.aldebaran.com/2-1/family/robots/videorobot.html
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Figure 3: The beacons used as landmarks
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1: for square in detected squares do
2: if square is landmark then
3: Calculate Range and Bearing
4: Create measurement vector
5: end if
6: Concatenate all found landmark measurement vectors
7: end for

Figure 4: Pseudocode Landmark detector and measurement

4.4.2 Extended Information and Kalman Filter

For the EIF as well as the EKF, the landmark detector is used for creating
the measurement vector(s). As previously stated, the control vector is derived
from the fixed path the robot has walked during the research, being 0.20 metres
with an angle change of 20 degrees. The overall algorithms have been shown
previously in 2.5, being algorithm 3 and 4.

The validation gate is implemented for the EKF as well as implementing a simi-
lar approach in the EIF. The validation gate compares the estimate derived from
the estimation step and from the correction step and compares these estimates.
The difference between the two estimates is compared with the threshold of the
validation gate, and if the estimates difference is higher than the threshold, the
correction step is ignored. This validation gate can reduce the measurement
noise that could occur due to mistakes made during measuring the surrounding
landmarks.

4.4.3 Optimization

There are numerous parameters that can be changed in order to optimize the
algorithm. These parameters are the noise covariance matrix M , which consists
of four values α that can can be optimized, and the covariance Q of additional
measurement noise, consisting of three uncertainty values σ corresponding to
the range, bearing and sign of the measurement vector. These parameters have
been optimized by converging to the optimal values, which leads to the best
results. The convergence graphs are shown in in figure 5 for α and in figure 6
for σ. After the optimization process, the optimal parameters are set as follows
for the Kalman filter:

M =

[
α1v

2
t + α2w

2
t 0

0 α3v
2
t + α4w

2
t

]
=

[
−0.9 · v2

t + 0.5 · w2
t 0

0 −1.8 · v2
t + 0.7 · w2

t

]

Q =

σ2
r 0 0

0 σ2
ø 0

0 0 σ2
s

 =

14.2 0 0
0 1.0 0
0 0 1.0
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The optimal parameters for the information filter are different and they are
shown below:

M =

[
α1v

2
t + α2w

2
t 0

0 α3v
2
t + α4w

2
t

]
=

[
9.5 · v2

t +−2.0 · w2
t 0

0 −1.2 · v2
t + 0.3 · w2

t

]

Q =

σ2
r 0 0

0 σ2
ø 0

0 0 σ2
s

 =

0.4 0 0
0 0.3 0
0 0 1.0



It is crucial that these parameters are optimized correctly, as they can severely
change the outcome of the algorithm, as seen in figures 5 and 6. The parameters
are set at their optimum, however it is possible that only a local optimum has
been found, and that there would still be a different global optimum.

The final parameter that can be optimized is the value for the validation gate.
However the optimalization converges it to a relatively high threshold, resulting
in no effect during the optimal performances.

5 Results

The results of the algorithm lay in two parts, the accuracy and the computation
time. Below a comparison will be given based on both these results.

5.1 Accuracy Results

The EIF performs slightly better when optimized than the EKF. The estimated
locations of both algorithms are shown in figure 7. The estimations (red) of
the EKF are worse at the beginning, while the EIF estimates worse a few steps
later. The total Euclidean distance as well as the average Euclidean distance of
both algorithms are shown in table 2. The EIF estimates the average location
0.04511 meter closer than the EKF.

As can be seen in figure 7, there are many outliers, especially in the begin-
ning. By removing the outliers from the total Euclidean distance, the average
Euclidean distance goes down. In figure 8, a graph is shown with two lines are
shown that show the average Euclidean distance with on the x-axis the number
of best distances taken. It shows that the EIF is constantly performing better,
regardless of outliers, but eventually being surpassed by the EKF.

5.2 Computational Complexity Results

The computation time is the other aspect on which the algorithms are compared.
The EIF is slower in the the estimation step, but faster in the correction step,
when compared to the EKF. In table 3, the average computation time is shown

15



(a) EKF α1 (b) EIF α1

(c) EKF α2 (d) EIF α2

(e) EKF α3 (f) EIF α3

(g) EKF α4 (h) EIF α4

Figure 5: Convergence graphs of optimizing for the values of αi. The value for
αi is shown on the x-axis with i being a value from 1 to 4. On the y-axis the
Euclidean distance of the ground truth and the estimation is shown.

16



(a) EKF σr (b) EIF σr

(c) EKF σø (d) EIF σø

(e) EKF σs (f) EIF σs

Figure 6: Convergence graphs of optimizing for the values of σr, σø and σs.
The value for σi is shown on the x-axis. On the y-axis the euclidean distance of
the ground truth and the estimation is shown. The convergence for the EKF is
shown in the graphs on the left and for the EIF on the right.

Table 2: Euclidean distance and average Euclidean distance of the EKF and
the EIF

Euclidean distance Average Euclidean distance
EKF 2.316408 0.144776
EIF 1.594656 0.099666
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(a) EKF

(b) EIF

Figure 7: Robots initial position (green), the filter estimations (red) and the
ground truth (blue) of EKF and EIF. In (a) the estimations of the EKF are
shown and in (b) of the EIF. The orientation is shown by the dotted lines.
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Figure 8: The EKF and EIF show the average Euclidean distance when only
taking the best estimates. On the x-axis the number of best estimates is shown,
with 16 being all the estimates.

Table 3: Computation time (seconds) of algorithm and the steps within the
algorithm.

EKF EIF Ratio EKF:EIF
Estimation step 0.000902 0.001367 0.66
Correction step 0.000822 0.000728 1.13
Complete Algorithm 0.001416 0.001822 0.78

for the two steps, the algorithm all together and the ratio of how the EIF and
EKF compare to each other. The correction step of the EKF takes 1.13 times
the time needed for the same step in the EIF, thus the EIF being slightly faster.
However in the other step, the estimation step, the EKF only takes 0.66 times
the time when compared to the EIF. The overall algorithm is thus slower with
the EIF. If the robot would perceive more landmarks, the correction step would
be more often performed (once per landmark), thus it would result in a change
of overall computation time. In figure 9, a graph is shown with two hypothetical
lines, corresponding to multiple perceived landmarks. It seems that if more than
5 landmarks are detected, the EIF requires less computation time than the EKF.
In table 4 the corresponding values are shown.
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Figure 9: In this graph, two hypothetical lines are drawn, when more landmarks
would be detected, with on the y-axis the computation time. The black dotted
line shows where EKF and the EIF have an (almost) equal computation time

Table 4: Computation time of steps of algorithm and hypothetical time for more
landmarks

EKF EIF Ratio EKF:EIF
1 detected landmark 0.001724 0.002095 0.82
2 detected landmarks 0.002546 0.002823 0.90
3 detected landmarks 0.003368 0.003552 0.95
4 detected landmarks 0.004190 0.004280 0.98
5 detected landmarks 0.005012 0.005008 1.00
6 detected landmarks 0.005834 0.005736 1.02
7 detected landmarks 0.006656 0.006464 1.03
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6 Discussion and Conclusion

The EKF and EIF are both effective in their task of localizing the Nao robot
on a soccer pitch, but the EIF is slightly better, by estimating on an average
0.04511 closer to the actual position than the EKF.

Removing the outliers shows that the EKF has a more outliers, but also more
location predicted nearly correct. EIF seems to estimate the locations overall
better and thus being more accurate with the outliers.

The computation time for the EKF is slightly faster than the EIF, thus the
EKF has less computational complexity. The use of the EIF could be an al-
ternative, but it would cost slightly more computation time. However, as the
correction step is performed for every observed landmark, in a situation with
multiple detected landmarks, the EIF could be more efficient. Thus when the
number of landmarks in the field would be higher, and more than 5 landmarks
would be observed during the localization, the EIF would be the better in both
accuracy and computation time.

7 Future Research

For future research, numerous parts can be examined further, as well as different
methods that can be used.

As the EIF performs relatively faster than the EKF when more landmarks
are perceived, thus by using more landmarks or different detectable features,
the EIF would likely be much faster than the EKF. It would be interesting to
compare EIF to other localization algorithms when a high number of detectable
features are used as measurement data

The accuracy results could be examined in a different way, as it is currently
done with the Euclidean distance, but using statistical analysis might give dif-
ferent results. The dataset can be increased in size as well, as it is very sensitive
to noise and coincidences.

Lastly, a similar version of the validation gate has been implemented for the
EIF, however it has not been researched how it effected the EIF optimally. An
extension of the EIF with an effective validation gate could result in a better
EIF.
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Appendices

A Hardware/Software

A.1 Hardware

• Aldebaran Robot Nao 5.0

• OptiTrack

– Flex 13

A.2 Software

• Python 2.7.14

• Python libraries:

– NumPy 1.14.0

– OpenCV 3.4.1

– PIL 5.0.0

– Matplotlib 2.1.2

• Choregraphe 2.1.4

• Motive 1.7.5.0

B Comparison of localization algorithms

In the table below, numerous localization algorithms have been compared to
each other in their strong and weak points.
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