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Abstract

The RoboCup is a competition wherein teams all around the world develop au-
tonomous robots that play soccer. While playing this game may be easy for hu-
mans, it poses countless challenges for these robots. One such challenge is the
"Visual Referee Challenge’, which consists of understanding the referee. This the-
sis aims to resolve this challenge, creating a system which detects referee poses
accurately. Solving this challenge would be helpful to improve upon the capabili-
ties of robots in the RoboCup.

An additional level of difficulty comes in the form of the Standard Platform
League (SPL). In this league all teams are required to use Nao robots. These
robots do not poses advanced cameras or microphones, so a solution must work
on hardware similar to these specifications. Our approach combines whistle detec-
tion using features such as Fast Fourier Transform (FFT), with pose estimation
using BlazePose. Both of these sub-problems are subsequently trained on neural
networks in order to classify whistle sounds and referee poses. This method allows
for accurate results using low-end hardware.

Results showed that the whistle detection classifier attained great performance
in all configurations, giving around 96% accuracy on average. Pose estimation
gave more varied results, with the best model achieving 99.3% accuracy.
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Chapter 1

Introduction

1.1 Context and Topic

In the year 2050, a team of humanoid autonomous robots will be fielded against the
then current world champions in an official FIFA match (Kitano and Asaday, (1998)).
At least that is the goal of the RoboCup. Since 1997, teams around the globe have
competed against each other in various robot soccer leagues, all of which aim to
further the research in robotics and artificial intelligence (Ferrein and Steinbauer,
2016)). However, one of the problems that still needs to be solved is interpreting
the referee, also known as ‘the ‘visual referee challenge’ ﬂ This challenge consists
of accurately observing the referee and understanding their intent.

There are multiple avenues to approach this which have proven effective, one
big example of this is the Kinect sensor (Kohli and Shotton) 2013). While methods
like this would work with great accuracy, they would also go against the spirit of
the competition. The end goal is to accomplish the objectives without external
tracking objects, or complicated camera setups. Therefore, this research will fo-
cus on computationally inexpensive on-device pose estimation, using Blaze Pose
(Bazarevsky et al., [2020]).

Another way in which the referee will communicate with players is with their
whistle. Detection of this is also instrumental for the robots, as it will signal
when they need to pay attention to the referee, much like the wake-words of Al
assistants. There has been great development pertaining to this in the RoboCup,
Backer et al. (2014)) and |[Firtig et al.| (2017) for example, which primarily achieve
this by decomposing audio into audio-features.

Combining these two separate systems should lead to a system that will be
able to accurately derive rulings from referee’s when instructed to do so (by the
whistle).

Thttps://spl.robocup.org/wp-content /uploads/SPL-Rules-2022.pdf#page=>51
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1.2 Scope

Some of the earliest work on whistle detection in the RoboCup domain can be
found in Backer et al|(2014). They utilised many features, which all performed
well in whistle detection. Utilising features such as Fast Fourier Transform (FFT)
and Mel Frequency Cepstral Coefficients (MFCC’s) gave high accuracy results
of 98%, but no accuracy on live detection is mentioned. |Pauli (2016|) aimed to
improve on this, by implementing denoising, and focusing on the live detection
aspect.

Pose estimation in the RoboCup Standard Platform League (SPL) has less
previous work, given that this part of the challenge is new this year. There are
however quite some recent advancements in pose estimation which may prove
useful. Primarily Bazarevsky et al.| (2020)), which provides accurate pose estimation
using low end hardware.

1.3 Research Question

This thesis aims to provide E] an accurate solution to the Visual Referee Challenge
, whilst operating within the restrictions posed by the SPL. The accuracy of both
the whistle detection and pose estimation should work on hardware of similar or
lower specifications of Nao robots, ensuring that the research could be adapted in
said RoboCup league.

1.4 Structure

The structure in which this research will answer the research question is as fol-
lows: Chapter [2| will provide the foundation of previous work. It will describe
previous findings in said work and summarise these findings as to find a general
idea of the problem. In Chapter [3] will focus on the methods used in creating the
classifiers, such as the dataset creation, feature extraction and neural networks
used. Chapter 4] will discuss the results of the research in the previous chapter,
utilising a plethora of data visualisations and explanations. After which Chapter
will form a conclusion, discussing the results further. Ended by Chapter [6] which
will discuss potential avenues for further development and improvement within the
Visual Referee Challenge.

Zhttps://github.com/dvermaas/RefereeChallenge
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Chapter 2

Theory

This chapter will discuss the previous work done in the fields of both sound detec-
tion and pose estimation, within their respective paragraphs.

2.1 Audio Analysis

2.1.1 Audio Features

A great starting point for whistle detection is the field of Music Information Re-
trieval (MIR). It focuses on the extraction of audio features, as discussed in Futrelle
and Downie (2002). This is also helpful when attempting to detect sounds like
whistles. Backer et al| (2014) laid a lot of groundwork implementing whistle de-
tection for usage in the RoboCup, like Fast Fourier Transform and Mel Frequency
Cepstral Coefficients. On top of this numerous classifiers were used on these fea-
tures. They attained impressive accuracies of around 98% within their dataset.
The next two sections will explore these features in further detail.

2.1.2 Fast Fourier Transform

Fast Fourier Transform (FFT) is a faster way to calculate the discrete Fourier
transform. Sound is usually composed of lots of individual sources, each source
having their own frequency. FFT can be utilised to convert this sound back into
a spectogram, which shows the frequencies that all the original sources produced.
This method ideally picks up the frequency of the whistle, making FFT a valuable
source of information for classifying various audio.



Figure 2.1: Visualisation of FFT

In Fig [2.1| one can see an audio signal that changes frequency at timestep 5.
In the FFT at the right those two frequencies are distinguishable with two high
peaks at frequency 1 and 5, although also many higher and lower tones can be
seen. One can imagine that whistle detection would be elementary in this case, if
the whistle produced one of the two peaks.

2.1.3 Mel Frequency Cepstral Coefficients

While the values that the FFT algorithm produces are understandable to the ways
humans perceive sound, the same cannot be said about Mel Frequency Cepstral
Coefficients (MFCC’s). MFCC’s may not have a clear definition, but they work
well in many applications. MIR utilises MFCC to represent timbre for example,
and MFCC is also used for speech recognition. These properties also translate in
sound detection, as tested by Backer et al.| (2014)).

2.1.4 Current Solutions

There are various technical reports of note, which discuss their approaches to whis-
tle detection. [Hall et al.| (2015)) utilises FF'T in their solution. They also implement
a toggleable detector, in order to reduce their CPU usage. The Dutch Nao team
technical report of Wiggers et al.| (2020) only briefly discusses their current whistle
detection implementation. But it does go over the details about how their imple-
mentation functions. It mentions the usage of FFT, after which analysis is done
over the results. High peaks in certain frequencies would constitute whistle sounds.
These solutions add to the various other works using FF'T, suggesting that this
method should be able to be a good foundation for accurate whistle detection.

2.1.5 Live sound detection

As previously stated Backer et al.| (2014) achieved 98% accuracy in whistle de-
tection. While high, it did not mention accuracy in live detection. Pauli| (2016))
aimed to build upon this previous work by implementing live detection of whistles.



The approach closely resembled that of Backer et al.| (2014)), but added denoising
to the process. This is a sensible improvement, due to the fact that the RoboCup
championship is a noisy event, with noise from spectators and other soccer fields.
Another improvement Pauli (2016) makes is testing several different whistles. They
do not state dataset validation accuracy, but do mention their live accuracy re-
sults. Their tests reportedly achieved between 60% and 90% accuracy, depending
on the whistle used.

2.2 Pose estimation

2.2.1 Previous Approaches

While the challenge is new this year to the RoboCup SPL, pose estimation has
been a well researched topic. (Grest et al.| (2009) compares several of these methods
in 2D as well as 3D. Approaches like POSIT, which is a part of the open-cv library,
could provide a useful framework in solving the challenge. Another approach is
presented by Toshev and Szegedy| (2014)), they propose that deep neural networks
could provide a more accurate solution to the pose estimation problem.

2.2.2 Separating Colors

The challenge explicitly mentions that the referee must wear red gloves, plus a
white and black shirt. One way to play into these requirements is by utilising
methods mentioned in |[Nunez et al.| (2008). It describes algorithms that segment
based on colors, which allows them to differentiate between both teams and the
referee. Relying upon the color of shirts and gloves feels like a gimmick, which
likely will be removed in further iterations of the challenge. However, it may prove
useful if general pose-estimation cannot attain reasonable accuracy by itself.

2.2.3 BlazePose

BlazePose is a pose estimation model created by Google (Bazarevsky et al., [2020)).
It is a state of the art, lightweight estimator. This means that it can run on phones,
which should make it a great fit for the limited processing power of Nao robots.
BlazePose utilises a neural network to estimate poses, using heatmap, offset, and
regression methods to achieve their great results. The model can be expanded to
read the face or hands more in depth, meaning it could be expanded to detect
more complicated referee gestures in the future. Adopting this framework also
means that the need for red gloves should not be necessary. Making the model
more resilient to potential dress code changes in the official SPL rules.



Chapter 3

Method

This chapter contains the methods used to build both classifiers. It will go over
the dataset (creation), feature extraction, classifier models and the live detection
element.

3.1 Audio Analysis

3.1.1 Dataset Details

The initial plan was to record a brand new dataset. But it turned out that the
Nao SPL league already had an existing dataset [[]listed on their site. The dataset
consists of ten recordings, having a run-time of one hour and 22 minutes. Some of
the recordings are of full matches, while others are whistle detection tests. In total
there are 51 whistles in the dataset, having a duration of one second on average.
The dataset is very true to the likely competition environment of the visual referee
challenge, given that it has been recorded on location. The dataset is recorded
using the microphones of Nao robots and has a lot of background noise, which is
expected at the RoboCup.

3.1.2 Dataset Balancing

While the dataset contains a lot of useful information, it also is very skewed towards
non-whistle sounds. Balancing the dataset can be done in multiple ways. This
study proposes two strategies to resolve this issue, making it a variable to be tested
in the results. The data is represented by a list of frame indices that indicate where
the whistles happen in each audio file (see Fig . This is converted to a list of

!Dataset: https://sibylle.informatik.uni-bremen.de/public/datasets/
whistle-2017/.
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frame indices where the change in classes happens. This is enough information,
due to the fact that there are only two classes. At the end of the process all of the
labelled audio-fragments are ready to be turned into features.

Frame indices of true labels

/ £000-12000 / 15000-20000 /—b

4

Frame count numbers

/ 4000 / 8000 /3000/ 5000 /—I

4

Audio chunks with label

/ False / True /False/ True /—b

Figure 3.1: Visualisation of chunk gathering for the chunk processor

For each audio segment, a sample processor is executed. This processor con-
verts audio into 50 millisecond samples. The processor also determines how stag-
gered consecutive samples are. A value of 1/5 would mean samples would overlap
like shown in figure [3.2] and a value of 2 would mean that a single sample length
(50ms) would be left between consecutive samples. Both balancing approaches
process all of the true segments with an overlap value of 1/5, but take different
approaches to reduce false labels.



Figure 3.2: Visualisation of chunk processor staggering

The first balancing version iterates over all true segments. For each true seg-
ment, it calculates the number of frames within. It then grabs two segments of this
length just before and after the true segment as the negative samples. It processes
both of these additional segments using the exact same overlap value of the true
labels, which is 1/5. This approach is a simple but effective way to achieve a 2:1
true false ratio. The general idea behind this balancing is that it puts emphasis
on the borders between the negative and positive labels. So this method should in
theory allow the classifier to learn what defines the transition between labels.

Version two takes a different approach to balance the data. It utilises two
different window functions to achieve balance. This method uses the same 1/5
overlap for true values, while using 10 overlap for false values, meaning that after
each sample a nine sample (450ms) gap is left. This discrepancy balances the two
labels out, again resulting in a 2:1 label ratio. The philosophy behind this method
is to spread out the negative samples more evenly across the dataset. This makes
sure that the negative labels of the data are more diverse, theoretically resulting
in a more robust classifier.

3.1.3 Feature extraction

The first Feature extraction layer takes care of denoising. Denoising is a variable
that is being tested, and is therefore an optional step which takes place before
future processing happens. Noise-reduction is achieved by using the python library
called noisereduce (Sainburg et al., 2020).

After this step feature extraction is twofold. The first method is FFT. Each
sample from the chunk processor is fed into the FFT algorithm, from the librosa




library (McFee et al., 2015)). This produces a 2D array. Then the absolute values
are taken from this array, after which the mean is calculated. This returns a 1D
array that can be stored in a CSV file.

The second method used is MFCC. Each sample of the chunk processor gets
fed into the MFCC algorithm, also from the librosa library. Then the mean is
taken of this 2D array, reducing it to 1D and stored in CSV format.

3.1.4 Classifier

In all possible configurations the selected features are used as inputs in a neural
network using Keras (version 2.3.1), a TensorFlow wrapper. This model consists
of the input layer, one hidden layer containing 128 neurons, followed by a binary
output layer with a single neuron, which gives a value between 1 and 0. A value
of 0.5 or higher will classify as a whistle sound.

3.1.5 Live Detection

For live detection, pyaudio is used to read raw audio input. Input is read in
50ms buffers, which ensures that the live data is in the exact same format as the
training data. The further setup is much like the process outlined in (Pauli, [2016)).
It repeats all of the aforementioned steps, resulting in a true or false output at a
rate of 20Hz (see Fig|3.3).

/ True or False / True or False / True or False / —_—

Figure 3.3: Visualisation of live detection process

Just using the output at every 50ms is a bit random at times, because some



outliers do occur. In order to combat this, the results are pushed into a queue.
This makes sure that the last ten measurements are taken into account in the final
prediction. When eight out of the ten samples are true a positive classification is
made. Whistles take on 1000ms on average, so a 500ms buffer is within reason.

3.1.6 K-fold Validation

In order to evaluate the results, K-fold validation was used, five being chosen as
the K-value. This means that validation is done by training on 80% of the data,
and then validated for accuracy on the remaining 20%. These 20% validation
partitions get cycled around, meaning that each partition will get validated, by the
other 80%. This ensures that there is not a lucky or unlucky validation partition
selected, making sure that the results are not influenced unfairly.

Another validation method used are confusion matrices. These matrices allow
for more information on where the actual mistakes of the classifier are occurring.
For live whistle detection validation a "FOX 40 CLASSIC TM" whistle was used.
It is a whistle that is widely used in various sports, including the RoboCup. There
are however no regulations pertaining to whistles, so whistle choice is up to the
referee preference.

3.2 Pose Estimation

3.2.1 Dataset Details

Unlike whistle detection, pose estimation did not have any available datasets to
use. This is due to the fact that the challenge is new this year, so no previous work
has been published about the specific challenge. This meant that for this research
a dataset had to be created from the ground up.

(a) Kick-in {blue) Team (b) Kick-in {red) Team

Figure 3.4: Example of team-specific pose



The challenge gives six poses which need to be recognised. Five of these poses
are team specific, like figure for example. This increases the pose count to
eleven in total. In order to create the dataset, 64 photo’s were recorded for each
pose. Then these images were mirrored to create 64 additional pictures for each
pose, making the total 128 samples per pose. The images feature slight distance
and rotation variation in order to make the pose estimation more robust.

Figure 3.5: The 11th pose, which contains horizontal movement

The last pose, called full-time (see Fig , has movement associated with the
pose. This is not something that the detection model can ’see’, due to the fact it
looks at a single frame at a time. In order to make this pose work like the others,
samples were taken at various intervals of the animation. Therefore the classifier
should be able to detect the pose at any point in the arm movement. Appendix [A]
contains all poses for further reference.

3.2.2 Feature extraction

Feature extraction makes use of the BlazePose pose estimator. The algorithm
takes in an image, and returns a skeleton, comprised of 33 connected points called
landmarks as seen in Fig[3.6] These landmarks all have coordinates in 3D space.
This pose estimation process is done on each picture of each pose, after which the
coordinates and label are stored within a CSV file. This data by itself is enough to
train classifiers on, which will be called the default model. On top of this multiple
additional feature processors are tested, which will be discussed in the next section.
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Figure 3.6: Visualisation of the landmarks BlazePose provides

3.2.3 Feature enrichment

In order to improve upon the base features, three ways were devised to improve
accuracy. These methods were aimed at resolving multiple issues with the regu-
lar data. Both distance and different body-types could decrease accuracy. And
additionally, only the arms matter for the estimating pose. Crossed legs or head
movement should not be taken into account. The following methods aim to resolve
these issues.

Anchoring & Normalising

The raw coordinates can be improved by anchoring the origin of the coordinate
system to one of the landmarks, the left hip in this case. This ensures that the
location relative to the camera won’t matter, due to the fact that all coordinates
will move with this origin. Normalising the distances of all points in the coordi-
nate system would also improve accuracy, making the classifier able to cope with
different body sizes. This is achieved by dividing all landmark distances from the
hip, by the width of the hips.

Angles

The most straightforward way to improve the features is by looking at the angles
of the arms. By calculating lines between the elbow and wrist as well as elbow



and shoulder, It is possible to calculate the angle between the two lines. This is
done for the wrist elbow and shoulder for both arms, resulting in six values. This
does reduce the amount of data significantly. But these values should be the only
data needed to make predictions, while also eliminating the need for normalisation,
since the angles would work for different arm lengths/distances.

Vectors

Improving upon the angles idea, the vector model aims to define angles in three
directions. By calculating the lines as previously mentioned and then normalising
the vectors, the model should have access to angles in three dimensions. Two lines
have a lot of configurations in which the angles between them are the same, but
the vector model does not suffer from this.

ML toolkit

The ML toolkit P| is a Google solution which builds upon their BlazePose model
(Bazarevsky et al., 2020)). It encodes poses by calculating distances between land-
marks, and normalising them. You can see these distance encodings visualised as
green arrows in Fig[3.6] This model does not use a classifier like the others, instead
opting for a k-nearest neighbours approach.

The ML toolkit also uses Exponential Moving Average (EMA) smoothing (Grebenkov
and Serror, 2014)). This smoothing takes a short history of frames into account
and smooths out the data based on this. In EMA more recent results carry more
weight as opposed to earlier samples. In practice the smoothing helps to make clas-
sifications flow more into each other, instead of predicting wildly different classes
for each frame.

3.2.4 Classifier

In all possible configurations, the selected features are used as input in a neural
network using Keras (version 2.3.1), a TensorFlow wrapper. This model consists
of the input layer, one hidden layer containing 256 neurons, followed by a binary
output layer with eleven neurons, one for each pose. The most activated neuron
in this array will be the prediction of the model.

3.2.5 Live Detection

For live detection, open-cv (Bradski, 2000) is utilised to read raw camera input.
On each frame, the pose estimator is executed. This in turn gives the same 33

2ML toolkit article: https://google.github.io/mediapipe/solutions/pose.html
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landmark positions as the training data, which insures that the live data is in the
exact same format as the training data. This data then gets fed into the selected
post processor, after which they are used as classifier input. The classifier will then
return the most likely label together with a certainty percentage (see Fig|3.7)).

/ Frame / Frame / Frame /—l-

‘-I‘-I‘-I‘-
‘-I‘-I‘-I‘-
‘-I‘-I‘-I‘-

/ Pose Prediction / Pose Prediction / Pose Prediction / —

Figure 3.7: Visualisation of live detection process



Chapter 4

Results

4.1 Audio Analysis

4.1.1 K-fold Accuracy

Like mentioned in section [3.1.6] K-fold validation is utilised to test for accuracy
on the whole dataset. The results have been split into two tables (see Table [4.1]),
one for each balancer version. On the x-axis are the two algorithm choices, and
the y-axis is for the optional denoise layer (true means samples were denoised).

FFT | MFCC FFT MFCC

False | 99.3% | 99.4% False | 99.2% | 99.1%

True | 95.1% | 97.8% True | 93.0% | 95.8%
(a) Version 1 data (b) Version 2 data

Table 4.1: K-fold accuracy for all configurations

When denoising is disabled, differences between the two versions are small.
With denoising enabled differences of around 2% can be observed. The same
also goes for comparing FFT with MFCC. They attain very similar results when
denoising is disabled. When denoising is enabled MFCC does seem to slightly
outperform FFT.

Denoising does have a general negative impact on validation accuracy. This
implies that the denoising process causes some detail to be lost in the audio,
an observation which will be explored further in the following section. Internal
validation shows that all models achieve high results. While the difference between
the two versions may therefore seem insignificant, the same does not have to hold
true for live testing.

18



4.1.2 Dataset Decomposition

Principal Component Analysis (PCA) is a method that reduces the number of
dimensions of the feature data. This enables the 2d plotting of said data to better
understand how effective the features are at describing the labels. In figurdd.]]
both subfigures have a lot of overlap. This is not optimal, but not rare when
performing PCA decomposition on data with a great number of dimensions.

15 PCA decomposition W2_mfcc_False 15 PCA decomposition V2_mfcc_True

@ False o False
Tue Tue
10

104

0.5 1 0.5 1

Principal Component 2
Principal Component 2

-1.0 —0|.5 D.IO D_IS ]_IO 15 10 —OI.S D.IG D_IS ]_IO 15
Principal Component 1 Principal Component 1
(a) No denoising (b) Denoising

Figure 4.1: PCA decomposition difference when denoising is true/false

The signal without denoising (Fig displays a single dark cluster at the
centre, as opposed to the green samples which are more spread out. The signal with
denoising (Fig sees both clusters fully stacked on top of each other, making
it significantly harder to find a boundary between the true and false labels.

4.1.3 Epoch Analysis

Each configuration is trained for 200 epochs, after which the best model weights
are loaded. At each epoch the model is validated, to track how well the model is
learning. Figure 4.2|shows the progression of two models, both using version 2 and
FFT. Both models start with high accuracy, and show improvement over time.



Model accuracy V2_fft_False Model accuracy V2_fft_True

1000 —— 1000
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] 25 50 75 100 125 150 175 200 o 25 50 75 100 125 150 175 200
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(a) No denoising (b) Denoising

Figure 4.2: Accuracy per epoch when denoising is true/false

Subfigure Shows that train set accuracy quickly approaches 100%. The
validation data does not fully grow in the same trajectory, but also achieves a
high result. When looking at subfigure [£.2D] it is obvious that the trajectory will
not reach 100%. Validation accuracy also lags behind more compared to Fig[4.2al
The differences between train- and validation accuracy are close in both subfigures,
differing by less than 0.1%.

4.1.4 Confusion Matrices

It is often the case that one label is harder to predict than others. Confusion
matrices can help visualise these anomalies. Observing Fig true positives-
and negatives are both high and in a reasonable ratio. The false positives are
interesting. They are quite close to the false negatives in Fig[4.3a] diverging a lot
from the 2:1 ratio of false to true samples.

False iy False 195

Tue label
Tue label

Tue 64 Tue 422 4610
2000 2000
Fa Ilse T'\I.le Fa Ilse 'hl.le
Predicted label Predicted label
(a) V2, MFCC, no denoising (b) V2, MFCC, denoising

Figure 4.3: Confusion matrices



This same trend can be observed in Fig[4.4] Subfigure [.4a] also has a deviating
ratio of false positives compared to false negatives. Fig[4.4b] also distorts the 2:1
ratio, but in the opposite direction. One should keep in mind that the number
of false positives and negatives are small in all matrices, making the deviations
within reason.

False 40 False

Tue label
Tue label

Tue 56 4976 Tue 266 4766
2000 2000
Fa Ilie T'!I.le Fa Ilse 'hl.le
Predicted label Predicted label
(a) V1, MFCC, no denoising (b) V1, MFCC, denoising

Figure 4.4: Confusion matrices

4.1.5 Live Validation

Live validation suffers from the fact that the environment cannot be fully con-
trolled, unlike all of the previous validation. Real-time testing with the 'Fox 40
Whistle Classic’ has shown that all models perform to acceptable standards. All
models succeed in detecting all whistles, but with varying accuracy. For longer
whistles it can even reach ten positive classifications in a row, but it will almost
always attain 80% accuracy.

No background noise | Background noise
Version 1 | FFT | 100% 40.6%
Version 1 | MFCC | 100% 90.6%
Version 2 | FFT 96.8% 93.8%
Version 2 | MFCC | 84.4% 78.1%

Table 4.2: Live validation accuracy percentages (32 tests)

In table [£.2] results of the live detection test are displayed. The models were
tested with and without background noise, and each model was tested 32 times.
Each test consists of five seconds without whistle, then the whistle, followed by
another five seconds. The model must detect the whistle with 80% certainty or



higher, while not getting any false positives before or after the whistle in order to
score.

Without background noise, all models achieve great results, both version 1
models achieving a perfect score. The idea behind emphasising on the borders
between the true and false labels seems to be sound when not dealing with back-
ground noise. With background noise this advantage disappears, instead version
2 performs the best when combined with FFT. The accuracy hit with background
noise was mostly due to false positives. Version 1 FF'T model was most susceptible
to these mistakes, being very sensitive towards any noise.

4.2 Pose Estimation

4.2.1 K-fold Accuracy

Accuracy for pose estimation is measured in the same exact way as whistle de-
tection, using K-fold validation. Table shows that just using the landmarks,
without further processing, gives very high results. The Anchor & Normalise pro-
cess does increase accuracy slightly. Both the Angles and Vectors approaches fall
far behind. They both can only achieve a third of the performance of the other
two methods.

Default ‘ Anchor ‘ Angles ‘ Vectors ‘ ML Toolkit ‘ ML Toolkit + EMA
98.9% |99.3% | 332% |33.3% |96.6%* | 59.5%*

Table 4.3: K-fold accuracy (*ML Toolkit measured without k-fold)

The ML Toolkit approaches give good results. The non EMA approach at-
tains high accuracy. However, it is only validated on 20% test data once, due to
limitations in the implementation. EMA smoothing performs much worse, but
this is logical, since it smooths out movement between frames. This is useful in
consecutive frames, but for validating isolated frames it harms results.

4.2.2 Dataset Decomposition

Figure shows the principal component decomposition of the different models.
In subfigure[d.54] there are reasonable distances between the classes. This indicates
that the data of the anchor model contains a lot of information for the classifier.
A stark difference compared to subfigure [4.5b where all labels have great overlap.
These findings corroborate with the previous table, giving context to the poor
accuracy results of the vector model.
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Figure 4.5: PCA decomposition

4.2.3 Epoch Analysis

Each model is trained for 500 epochs, after which the best model weights are
loaded. Of note is that accuracy works very differently compared to the whistle
detection method (Fig. Due to the fact that eleven poses are being evaluated,
there are eleven outputs evaluated for accuracy. In order to get 100% accuracy for
a given sample, the model must return ten negative neurons and a single positive
one at the correct pose.
returns 91% accuracy.
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Figure 4.6: Accuracy per epoch

We can clearly see that this 91% is where the vector model strands in Fig |4.6b
No learning seems to be happening at all. Meanwhile in the anchor model learning
is observable (see Figl4.6al). Both train and validation accuracy rise quickly. The



default model plot is negligibly different from the anchor model and is therefore
excluded. The same is true for the angle model, which is very similar to the vector
model.

4.2.4 Confusion Matrices

In order to see which poses pose the largest challenge, confusion matrices prove
useful. The y-axis in figure 4.7 are missing. The leftmost pose in both subfigures is
the 'corner kick a’, after which it follows the same order as the x-axis. In subfig-
ures [£.7a] & [£.7d] all poses are predicted to near perfection. The ’pushing_ freekick’
poses seem to be the hardest, but only by small margins.
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Figure 4.7: Confusion matrices of the first four models

Subfigure & [4.7d are another story. It has much lower accuracy in most of
the poses. It seems that the model does have a clear understanding of direction.
When making errors, it often does pick the correct side (a or b). It also seems
to favour one direction heavily for each pose. 'goal a’ for example has 55 correct



picks, while 'goal b’ only has 5. ’kick in_a’ is also twice more accurate then
their mirrored counterpart.

4.2.5 Live Validation

Live validation suffers from the fact that the environment cannot be fully con-
trolled, unlike all of the previous validation. Real-time testing using a webcam
yielded poor results for both the angle and vector models. They would only pre-
dict ’kick _in_a’. The default and anchored models performed great. The default
model worked well on the ’a’ side, but performed worse on the other side. The an-
chor model improved on this a lot, only having difficulty with 'pushing freekick b’
(see Fig . The K-fold accuracy between the two models may be small, but in
live detection the difference is very noticeable.

Default | Anchor | Vector | ML Toolkit
kick in a 81.2% 100 % | 100 % | 100 %
kick in b 43.8% 100 % | 0.0% | 100 %
goal kick a 96.9% | 100 % | 0.0 % | 100 %
goal kick b 93.8% 93.8% 10.0% | 100 %
corner kick a | 100 % | 100 % | 0.0 % | 100 %
corner kick b | 6.3 % 100 % | 0.0 % | 100 %
goal a 96.9% 100% | 0.0% | 100 %
goal b 0.0 % 100% | 0.0% | 100 %
pushing a 90.6% |96.9% | 0.0% | 100 %
pushing b 53.1% 781% 10.0% | 100 %
full-time 81.2% 100 % | 0.0% | 100 %

Table 4.4: Live validation accuracy percentages (32 tests)

In table [4.4) one can observe accuracies of multiple models. It is clear that
the ML Toolkit solution outclasses all the competition, achieving a perfect score.
The anchor model also performed well, achieving over 90% accuracy in all but one
category.



Chapter 5

Conclusion

This thesis intended to combine whistle detection together with pose estimation.
The first topic had lots of previous work associated with it. The results in this
domain also show that all models closely match this previous work, achieving ac-
curacies of up to 99%, like Backer et al.| (2014). The fact that this accuracy is
achievable while using relatively simple neural network architecture is surprising.
The usage of a single hidden layer already gave excellent results. The robustness of
the non-denoised detection models is also unexpected. Denoising clearly reduces
the amount of useful information in the dataset, as illustrated by the PCA de-
composition and K-fold accuracy.But most of the non-denoised models are robust
enough to handle background noise.

Pose estimation gives unforeseen results as well. Filtering the data to only
use the arms, which are the only real elements that matter for this challenge,
proved to be a wrong approach. This data on its own simply was not enough to
achieve adequate pose estimation. Both the angle and vector approach failed to
exhibit any form of learning. The default model performed great, even though it
theoretically had the most unpolished data. This is likely due to the fact that
the dataset contains a lot of slight variance. Distance to the camera and angles
between limbs were not the same on each picture, and therefore the default model
could cope fairly well without having normalisation and adjusting for rotation.

The anchor & normalise model did not perform much better accuracy wise, but
did significantly better in real time experiments. But in real-time testing none of
the models came close to the ML Toolkit model. The distance based embedding
proved to be a sound strategy. The main advantage it has is that it can utilise
distances from seemingly irrelevant landmarks (like the ankles) to landmarks in
both arms, giving multiple measurements for each important point in both arms.
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Distances are also unaffected by rotations, providing even more advantages.

Results in both of the aforementioned fields have shown that "The Visual Ref-
eree Challenge’ is achievable using low-end hardware. The best models achieved
over 95% accuracy in their respective task, and succeeded in translating this per-
formance to live environments. Fulfilling all the requirements of the challenge.



Chapter 6

Discussion

While achieving great results, this research is limited primarily by data. Getting
more full match audio recorded, and acquiring more pose samples would improve
accuracy of both systems. Primarily for pose estimation 128 samples per pose is
scarce. More variety in subjects would also improve the classifier, forcing it to
adjust to different body types and proportions.

Another improvement could be achieved by utilising the full data of the audio
features. Currently the 2D-arrays are converted into 1D-arrays by taking the
means. Feeding the 2D-arrays directly into the neural networks could improve
accuracy further. Adding more layers did not seem necessary using 1D-arrays, but
this new data could lend itself to more complicated multi-layered neural networks.

Implementation of this model, or improvements thereof, into the Nao robots
would be splendid. While limitations of these bots have been taken into account, it
cannot be said for sure if they would perform as well when implemented fully into
them. It would show how strained the CPU gets when running these live classifiers,
and how well the software works when implemented into existing codebases.
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Appendix A

All Pose Estimation Poses

T

(a) Kick-in {blue) Team (b) Kick-in {red} Team

Kick-in {color} Team. One-handed signal. One arm, extended horizontally in the
direction of the half of the field corresponding to the team that receives the Kick-in Free Kick.
That is, right arm extended for the “Blue team”, and lefi arm exitended for the “Red team™. The
non-signal hand is flat and motionless by the side of the body.

Figure A.1: Kick-in pose
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(a) Goal Kick {blue} Team (b) Goal Kick {red} Team

Goal Kick {color) Team. One-handed signal. One arm, extended 45-degree up in the
direction of the end of the field where the goal kick will occur. That is, right arm extended for the
“Blue team”, and left arm extended for the “Red team”. The non-signal hand is flat and motionless
by the side of the body.

Figure A.2: Goal Kick pose

{a) Corner Kick {blue} Team (b} Comer Kick (red) Team (on the
{on the half of the red team) half of the blue team)

Corner Kick {color) Team. One-handed signal. One arm, extended 45-degree down
in the direction of the team executing the corner kick. That is, right arm extended for the “Blue
team” executing the corner kick on the “Red team’s™ side, and left arm extended for the “Red team™
executing the comer kick on the “Blue team’s™ side. The non-signal hand is flat and motionless by
the side of the body.

Figure A.3: Corner Kick pose



LR

(a) Goal (bluc) Team (b) Goal {red) Team

soal {color}) Team. Two-handed signal. One arm, extended pointing at the center circle.
Other arm, extended horizontally in the direction of the hall of the ficld corresponding (o the leam
that scored the goal. That is, nght arm extended for the “Blue team™, and left arm extended for the
“Red team™.

Figure A.4: Goal pose

(a) Pushing Free-kick (blue) Team (b) Pushing Free-kick {red} Team

because a red robol has pushed., becawse a blue robol has pushed.

Pushing Free-kick (color) Team. Two-handed signal. One arm, vertical with bent
elbow and palm facing in the direction of the extended arm. Other arm, extended horizontally in the
direction of the hall of the licld corresponding (o the leam that is executing the Free-kick. That is,
left arm extended for the “Red team”, and right arm extended for the “Blue team™.

Figure A.5: Pushing Free-kick pose



Full-Time. Dynamic two-handed signal. Both arms slowly move symmetrically inward
and outwards on a horizontal plane, bending at the elbows. Note, for the purpose of this challenge,
the whistle associaled with this signal should be a single blow, unlike in normal SPL games.

Figure A.6: Full-Time pose
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