
test

test

NAO RoboCup:
Classification of Sound Localization

Jasper van Eck
6228194

Bachelor thesis
Credits: 18 EC

Bachelor Opleiding Kunstmatige Intelligentie

University of Amsterdam
Faculty of Science
Science Park 904

1098 XH Amsterdam

Supervisor
Dr. Arnoud Visser

Faculty of Science
University of Amsterdam

Science Park 904
1098 XH Amsterdam

June 28th, 2019

iii

Acknowledgements

I would like to express my appreciation and gratitude to my supervisor, Dr.
Arnoud Visser. I would like to thank him for his excellent feedback and for
taking the time out of his busy schedule for weekly meetings.

I would also like to thank my fellow students supervised by Dr. Visser,
for the support, new insights, and moral support.

Lastly, I would like to thank my proofreaders for giving supporting feed-
back and providing encouragement.

iv

Abstract

The Directional Whistle Challenge study is a study aimed at solv-
ing an important task, the localization of a whistling sound inside
or outside a standard RoboCup field. Solving this task would allow
for a faster kick-off during a game. This study uses data gathered
in an Unreal Engine 4 simulation. Three NAO robots are used to
hear the sound and determine the time delay between hearing. The
time delays, together with the location of the NAOs is used for the
classification of the sound signal. This study aims to clarify how the
amount of noise influences the accuracy with which the sound signal
is classified.

v

Contents

1 Introduction 1

2 Related Research 2

3 Research Method 5
3.1 Data Collection . 5

3.1.1 The Unreal Simulation 6
3.1.2 Location Data . 8
3.1.3 Sound Delays . 9

3.2 Algorithm . 9
3.3 Classification . 13

4 Results 15
4.1 Classifier Comparison . 15
4.2 Noise Comparison . 16

5 Error Sources 20

6 Discussion 21

7 Conclusion 22

A Code: Location Estimation and Classification 26

vi

1 Introduction

For many years, the RoboCup challenge has been running, allowing for an
accessible and fun way for researchers and students to step into the field of
robotics and its peripheral software fields [9]. For example, previous chal-
lenges have included the recognition of a whistling sound by an NAO robot
[1]. This study is based on one of those challenges [3].

To be more specific, this study has the aim of designing an algorithm
that allows for the classification of a whistle sounds location, whether it
originates from inside or outside the playing field. With the use of this
algorithm, this study seeks to pinpoint the amount of noise that can be
added to the measured data before the classifier can no longer reliably predict
classifications. This study also wants to show the accuracy, precision, recall
and other scores of the classification models for each amount of noise that is
added to the data.

This classification of whether a sound comes from inside or outside the
field is important for two reasons. Firstly, during a RoboCup tournament,
there may be multiple fields in the same space, relatively close to each other.
This may cause the NAO robots to pick up whistle signals from other fields
and act on those signals, which is not desirable. Therefore, a distinction
must be made between whistle signals originating from inside or outside of
the playing field. Secondly, it is possible that whistle or whistle-like signals
originate from the audience viewing the matches. Similarly, acting on those
signals is unwanted behavior.

However, as there has not been done something similar for the NAO
robots as of yet, it is the intention of this study to allow for further expansion
of the robot’s capabilities in future challenges and studies.

To complete the study as laid out by the RoboCup Challenge, several top-
ics are necessary to address. First, more research must be done into how the
localization of sound is achieved mathematically, biologically and mechan-
ically [12], so that this can be replicated with an algorithm. Secondly, an
investigation into the current software of the NAO robots is required, so that
a new algorithm will work properly with the existing code. Another example
of existing software to be studied includes communication protocols, as the
challenge allows for up to five robots being used. The third and final area
of research examines coordinate systems and the conversion of coordinates
between them. This is because the robots will be able to determine loca-
tions and directions based on their relative position, rather than their global

1

position, requiring the need to investigate coordinate system conversions.
This study has the objective of constructing an algorithm, which is able

to determine the location from the source of a whistling sound, with the aim
of determining whether the source originates from inside the playing field or
originates from outside it. More specifically, the study aims to clarify the
accuracy with which the algorithm can determine the angle and distance of
the sound source and its reliability of classifying whether a sound originates
from inside or outside the playing field. The next sections of this thesis will
describe the methods and results of this study.

2 Related Research

Localization of a sound source electronically has been a topic of study for
over 80 years. Starting with radar, moving onto passive sonar and, currently,
studies and companies are moving into the VR domain to create dynamic 3D
audio1 [14, 8]. This study builds on the principles discovered in those studies.
More specifically, this study applies the mathematically derived function for
determining the location of a sound with two microphones [12]. Eq. 1 shows
the derived function. The variable AB′ is the distance the sound wave has
traveled in the computed time difference between the two microphones. This
distance is equal to the time delay multiplied by the speed of sound. The
xB is the distance from point (0, 0) to microphone B along the x-axis. Since
the origin of the coordinate system is exactly halfway between the two mi-
crophones, the value of xB is half the distance between the two microphones.
The x- and y-values are the values along which the function is defined, for
a given value of x, there are two corresponding y values. Determining three
functions between three microphone pairs allows for calculating the intersec-
tion between those three functions. These functions are Eq. 1, with different
values for xB and AB′. For certain values of x the function is not defined; Eq.
2 shows for which values of x the function is not defined. The intersection of
those three functions models the sound source location.

y = ±
√
AB′2

4
− x2B + x2(

4 ∗ x2B
AB′2

− 1) (1)

1https://spectrum.ieee.org/consumer-electronics/audiovideo/

vr-for-your-ears-dynamic-3d-audio-is-coming-soon

2

x ≥

√
−AB

′2(AB′2 − 4X2
B)

4(4X2
B − AB′2)

(2)

A previous study showed that it is possible to recognize a whistling sound
with high precision and accuracy [1]. It used three different preprocessing
methods, and it tested four different classifiers. However, due to the high
precision and accuracy of the models generated by the classifiers, it could
not reliably determine the best performing option. This present thesis is a
continuation, in that both studies can be used for the classification of whistle
sounds. Not only recognizing the sounds itself but also determine the location
of the sound. Both classifications are used with the intent of allowing the
robot to correctly alter its behavior based on stimuli present on and around
the playing field. This study focuses on location classification.

Figure 1: The locations of the NAO robot microphones on the head.

The NAO robot is the main subject of this study. The robot’s four
microphones will be used to listen for the whistle2. Two microphones are at
the top front of the head, and two are on the middle of the back. Fig. 1 shows
the locations of the microphones on the head of the NAO robot. Even though

2http://doc.aldebaran.com/2-1/family/robots/microphone_robot.html

3

the NAO robot has 4 microphones, they are on different heights. This forces
the use of only two pairs of microphones, the two back microphones, and
the two front ones or the use of multiple NAOs, for the function mentioned
above.

Determining the actual location of the robot is an important aspect of
this study. For determining the actual location we need the ground-truth
data [11]. This data can be obtained with the use of cameras mounted above
and around the playing field, allowing for a complete view of the field3. With
this camera setup, the ground-truth location on the field of the NAO can be
determined. Fig. 2 shows a top-down representation of the playing field.

The location can also be determined with simulation. Using the Unreal
Engine 4.13.3 4 it is possible to simulate the NAO playing field and the NAOs
themselves5. With this simulation, it is possible to retrieve the locations
and the orientation of the robots in the simulated environment [10]. This
data of locations and orientations is ground-truth data. The location and
orientation are not the only possible data attainable through simulation. It
is also possible to render scenes with NAO robots in random or predetermined
positions. These scenes can be used for training object, opponents or balls,
for example, classifiers [6]. In this study the focus is on sound.

There are many different classifiers and machine learning algorithms that
can classify whether the source of a sound is located inside the playing field
or outside of it. In this study three classifiers are used, logistic regression,
K-Nearest Neighbor and AdaBoost [7, 4, 5]. Each of the three classifiers is
quite distinct in how they operate, this diversity in abilities should cover the
range of possible data structures generated for this study. Logistic regression
is a regular supervised learning algorithm, and only able to handle polyno-
mial datasets. K-Nearest Neighbor is a supervised learning algorithm that
can operate on non-polynomial datasets. AdaBoost is a supervised machine
learning algorithm that combines multiple weak-learner algorithms so that
they can increase their overall learning scores.

The next section of this thesis will demonstrate the methods executed to
achieve the classification. It also describes how the data for this study was
obtained, and how it will be used.

3https://optitrack.com/products/flex-13/
4https://www.unrealengine.com/en-US/what-is-unreal-engine-4
5https://github.com/TimmHess/UERoboCup

4

Figure 2: Top-down representation of the playing field.

3 Research Method

This section describes all the methods, and the details of implementation,
that were used for this study. The first, subsections will describe how the
data was collected. Further subsections will describe the algorithm used for
this study and how it is used. The last subsection discusses the classification
of the location from the sound source. The main focus of this study is on
the data collection and the classification of the acquired data.

3.1 Data Collection

This subsection discusses the data collection done for this study. It will show
how the data was created. Later sections will describe how the data is used.
To collect the data for this study, a simulation was created with the use of
Unreal Engine 4.13.36. All data generated by the simulation, the NAO robot
locations, the sound source location, and the time delays, are written to text
files.

6https://www.unrealengine.com/en-US/what-is-unreal-engine-4

5

3.1.1 The Unreal Simulation

The created simulation7 in the Unreal Engine, is based on a previously made
simulation8 [6]. The alterations made for this study pertain mainly to the
underlying blueprint, which defines the dynamics of the simulation environ-
ment, shown partially in Fig. 3, of the simulation, and small alterations to
the level. The version of UE4 that is used for this simulation is 4.13.39. The
Unreal Engine also has the ability to use plugins. For this simulation two
plugins are used, Materials provided by Allegorithmic10 and the substance
plugin that is available on the Unreal marketplace.

Figure 3: Screenshot of partial Blueprint

Fig. 2 shown the top down view of the simulation, Fig. 4 shows the
set up of the simulation and Fig. 5 shows the view of the camera when
the simulation is executed. The three robots with the black jerseys are the
agents that hear the sound. The single robot without a jersey is the origin
of the sound source. The section Sound Delays describes the actual method

7https://github.com/JasperVanEck/AfstudeerProject2019
8https://github.com/TimmHess/UERoboCup
9https://www.unrealengine.com/en-US/what-is-unreal-engine-4

10https://share.allegorithmic.com/

6

of determining the sound delays from the sound source to the NAO agents.
The last NAO robot, the one with the camera behind its head and floating in
the air, is the cameraman. The cameraman shows the field when running the
simulation, allowing us to keep track of the simulation whilst it is running. It
does not perform any other tasks and remains static during the simulation.

Figure 4: Screenshot of simulation level

The level blueprint contains the logic of the simulation. When the simu-
lation is started, it runs the level blueprint each game tick that occurs. The
level blueprint contains a state machine. Each game tick the state is deter-
mined based on starting variables or on variables assigned in the previous
state. There are four states the simulation can run, the start or set up state,
the actual simulation state, a dummy state, and the shutdown state. The
setup state ensures that all the lighting in the simulation is working properly,
and it also sets up the camera view, so that one may see what is occurring
during the simulation. The simulation state takes all the simulation actions
required, such as the placement of the hearing NAOs and the sound source
location. A mask counter keeping track of the number of game ticks, that
after a predetermined amount, the shutdown state of the simulation will be
executed, after which the simulation will shut down. The dummy state exists
to ensure a smooth transition between states. Without the dummy state, it
occasionally happened that the simulation state was not executed properly,

7

for example, the NAO hearing agents did not get placed correctly. The shut
down state ensures that the data is correctly recorded, and the simulation
shuts down correctly.

Figure 5: The view of the camera when running the simulation.

3.1.2 Location Data

The location data is the data containing the locations of the NAO robots.
The robots remain static during each game tick. They are only moved during
the set up of a new measuring event. This data is recorded directly by the
simulation. The gathered data is ground-truth data. The exact location of
the NAO is known and recorded, making the location data the ground-truth.
Furthermore, the data is recorded in Unreal Engine units, one unit is equal
to one centimeter, making the recorded data in centimeters.

8

3.1.3 Sound Delays

The sound delay is calculated from dividing the distance between the sound
source and each robot by the speed of sound. Just as the robots placed,
the sound source location is static as well. The elapsed time between the
sound source and each robot is then used to calculate the time delay between
the robots themselves. After this calculation, an error margin is added to
represent real-life conditions. This error is a Gaussian distribution based on
the mean and standard deviation of the time delays. To determine how much
noise can be present on the time delays before the accuracy of the classifier
drops below an acceptable level, different amounts of Gaussian noise are
added to the time delays. These amounts range from no noise, meaning
the original data, to five times the standard deviation of the time delays.
This time delay with the error is used to estimate the sound source location.
The next subsection describes the algorithm used for the estimation of the
location.

3.2 Algorithm

This subsection describes the processing of the data generated in the simula-
tion to prepare it for classification. To proceed with the classification certain
data is required. The required data comprises of the NAO listening agent
locations, and the estimated location of the sound source location. The com-
ing paragraphs will describe the actions performed on the gathered data, so
that it may be used for classification. The algorithm can be viewed in more
detail in appendix A.

The first step for the estimation of the sound source location is to deter-
mine the function along which the sound source is located. See Eq. 1 in a
previous section. xB is equal to half the distance between the two NAOs,
and AB′ = C ∗ τ , where C is the speed of sound at 343m/s and τ is the
time delay between the NAOs. With these values and a chosen x value, a
corresponding y value is generated.

The second step is creating a line that can be intersected with another line.
This is accomplished by using two x values to generate their corresponding
y values. The minimum value for x is dependent on the distance between
the NAOs and the time delay of the soundwave [12]. This is because the
Eq. 1 is not defined for certain values of x. The values of x for which the
function is not defined is expressed at Eq. 2. The negatives of the y values

9

Figure 6: Shows the direction of the vector through the NAO robots in local
space.

are also saved since we cannot resolve the direction yet with just two NAOs.
With coordinate pairs determined for each NAO pair, the next step can be
performed. [

XR

YR

]
=

[
cos θ − sin θ
sin θ sin θ

] [
XL

YL

]
(3)

The third step is the conversion of the coordinate pairs from their local
coordinate system to the real space coordinate system in which the NAO
locations are represented. This is accomplished with a rotation and then a
translation of the coordinate pairs. See Eq. 3 and 4 for the rotation and
translation functions, where XL and YL are the coordinates in local space,
XR and YR are the coordinates in real space, MRx and MRx are the the mid
point coordinates in real space between the NAO robots and that is equal
to the coordinate 0, 0 in local space. The angle of the rotation is the angle
between the x axis of the real space coordinate system and the vector between
the two NAOs, it is represented by θ in Eq. 3. The direction of the vector is
chosen by calculating which NAO is closest to the sound source, based on the

10

time it takes the soundwave to travel from the sound source to the NAO, see
Fig. 6. The direction of the vector is from the furthest NAO to the closest
NAO. With the transformed coordinates of the original coordinate pairs, the
next step can be taken. [

XR

YR

]
=

[
MRx

MRy

]
+

[
XL

YL

]
(4)

The fourth step is the creation of a line representation and the intersec-
tion of those lines. The Eq. 1 becomes a straight line by approximation after
a certain value of x [12]. Due to this, we can create the representation of a
straight line based on the coordinates obtained in the previous paragraph.
Line representations are created for the positive y values, and for the nega-
tive y values. These line representations can then be intersected, but not all
line intersections estimate the sound source location. The lines are all inter-
sected with each other, except for themselves and their negative or positive
counterpart. The next step describes the actions taken to ensure the three
correct line intersections are used.

The fifth step is determining which three intersections to use for the
average. Each intersection is a potential location of the sound source. The
average of the intersections gives the best approximation of the sound source
location. In the previous step, all the lines were intersected with each other.
However, not all intersections represent the sound source location closely, as
can be seen in Fig. 7, where the light blue area shows the correct area for
intersection. This is due to either a negative or positive y value coordinate
pair that does not have the sound source location on its line, which may have
been intersected with another coordinate pair. Deciding which intersections
are relevant for the average is achieved by applying heuristics. The heuristics
applied is the limits of the area in which the sound source could be randomly
placed during the simulation. The sound source location was bound by a
minimum of -1200cm, and a maximum of 1200cm for both the x and y axis.
This means that any intersection coordinate greater than twelve meters or
smaller than minus twelve meters of either the x or y axis can be discarded
for the average, as the data has been converted to meters from centimeters.
The leftover intersections can then be averaged, giving an estimated sound
source location. It is not possible yet to determine the three exact lines to
intersect; this is further discussed in the Discussion section.

The final step of the data preparation, before the classification, is the
addition of a bias, as x0, and the normalization of the data. Normalization is

11

Figure 7: A simplified representation of the uncertainty of intersecting the
lines.

not strictly necessary to perform on this data set, as the NAO location data
and the estimated sound source location data are both in the same range.
However, normalization is still performed to ensure that the model created
during the classification stage, can still classify data with a sound source
location that is placed much further away than the current sound source
locations are, thereby increasing the robustness of the generated model.

12

3.3 Classification

This subsection describes the chosen classifier, the used parameters of that
classifier, and the explanation for choosing that specific classifier. Three clas-
sifiers have been tested to determine which classifier gives the best results.
The three classifiers are Multiple Logistic Regression [7], AdaBoost [5] and
K-nearest neighbor(KNN) [4]. For each classifier different parameters were
tested, so that the most desired results could be determined. The best pa-
rameters were used to compare the three classifiers to determine the most
effective one. The resulting scores of the comparison are recorded in the
tables located in the Results section.

Each classifier has to be initialized with parameters to form a starting
model. These initializations are each started with a different call. The classes
the classifiers have to classify are class 0, these are the locations inside the
field, and class 1, those are the locations outside the field. The following
paragraphs will explain the parameters of each call.

For the call of the Logistic Regression model11, five parameters are re-
quired, see listing 1. The parameter class weight, which is set to ′balanced′,
prevents bias from occurring when the dataset is imbalanced in its classes.
The second parameter is solver. The solver refers to the algorithm used in
the optimization problem. The third parameter is multi class and is set to
′multinomial′. This parameter allows for the loss to be minimized across the
entire probability distribution. The fourth parameter is penalty, with the
value of ′l2′. This parameter allows for a regularization penalty to be ap-
plied. The final parameter of this call is fit intercept, set to False. Setting
this parameter to True would add a bias column to the data. As a bias has
already been added to the data, this is not required. To determine the best
parameters, all different solvers were tested.

Listing 1: Logistic Regression call.
modelSK = Log i s t i cReg r e s s i on (c l a s s we i gh t =’balanced ’ ,

s o l v e r =’ l b f g s ’ ,
mu l t i c l a s s =’multinomial ’ ,
pena l ty=’ l2 ’ ,
f i t i n t e r c e p t=False)

There are two parameters required for the call of KNN12, see listing 2. The
first parameters is n neighbors. This parameter determines the amount of its

11https://scikit-learn.org/stable/modules/generated/sklearn.linear model.LogisticRegression.html
12https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html

13

closest neighbors that are compared against to determine the classification.
The second parameter is weights, with a value of ′distance′. This parameter
allows the model to use the inverse of the distance between data points as
weights, making other points that are nearer have greater influence than
points further away. To determine the best parameters, multiple values of
n neighbors are tested.

Listing 2: KNN call
modelSK = KNe ighbo r sC la s s i f i e r (n ne ighbors=N,

weights=’ d i s tance ’)

There is one parameters required for the call of AdaBoost13, as shown by
listing 3. The parameter required is n estimators. This parameter deter-
mines the maximum amount of estimators after which boosting is terminated.
If an optimal solution is achieved before all the estimators have been used,
the algorithm will terminate. To determine the best parameters, multiple
numbers of estimators are tested.

Listing 3: AdaBoost call
modelSK = AdaBoos tC la s s i f i e r (n e s t imato r s=N)

Another aspect to discuss for the testing of the classifiers is the split of
training and test data. The training data is a set of 250 entries, randomly
shuffled. The test data is a set of 100 entries, that are randomly shuffled as
well. The use of more data entries caused the classifiers to overfit, class 0
was no longer being predicted.

In Table 1 the results of the three best parameter sets are compared. The
choice for the best parameter sets is examined in the subsection Classifier
Comparison, of section Results. The best choice based on the previously set
criteria is between KNN and AdaBoost. The accuracy of Logistic Regression
is too low to compete with the other two. The accuracy score of AdaBoost is
higher than the accuracy of KNN, however, the F1-score of class 0 is higher
than the F1-score of AdaBoost for class 0. Due to relatively low average
accuracy, it is deemed that the higher F1-score weights heavier. The more
correct class 0 classifications are possible to achieve, the better the NAO
robot will be able to operate during a match. Therefore the choice made for
which classifier to use is KNN. How the best parameters were determined
for each classifier is shown in the results section, more specifically subsection
Classifier Comparison.

13https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html

14

Classifiers Acc. Prec. 0 Recall 0 F1 0 Prec. 1 Recall 1 F1 1 MSE
LogReg 0.440 0.28 0.41 0.33 0.60 0.45 0.52 0.560

AdaBoost 0.620 0.40 0.17 0.24 0.66 0.86 0.75 0.380
KNN 0.559 0.42 0.40 0.41 0.64 0.65 0.65 0.441

Table 1: The results with Accuracy, Precision, Recall, F1-scores, Mean
Square Error and the amount of test entries for class 0 and 1, for LogReg,
AdaBoost and KNN.

4 Results

This section describes the results from the parameter comparisons chosen
classifier, and the results from noise increase comparison. For the classifier
comparison, there will be a brief explanation of how the decision to choose
the parameters and each classifier was achieved. For the noise increase com-
parison, there will be an explanation of the results achieved.

4.1 Classifier Comparison

The classifier choices were based on three scores the accuracy, the F1-score
for class 0 and the F1-score for class 1 a distant third. Since the average
accuracy is rather low, being below 0.6, the accuracy score weights a lot
heavier, than if the scores were at least 0.8. As for every small increase in
accuracy, the F1-score tends to rise as well, this can be seen in any of the
result tables. The F1-score for class 0 is chosen as a second predictor, as it
combines the scores of the precision and recall, thereby not requiring the use
of those separately. It is also the class we want to predict most accurately,
since the sounds classified as inside the playing field, are the ones that must
be acted upon. The F1-score for class 1 is used mainly as a tie-breaker when
the accuracy and F1-scores for class 0 are equal.

The best parameter based on the accuracy and F1-score for Logistic Re-
gression is a choice between lbfgs and newton − cg solvers, both have the
same scores of accuracy and F1. Due to having the same score, the choice
was made to continue with lbfgs as the solver to compete against the other
2 classifiers. The results can be viewed at Table 2. The best parameter for
KNN, is the use of n neighbors = 2. Whilst not having the highest accu-
racy, it does have the highest F1-score. It has almost double the F1-score,
compared to other high accuracy parameters. The results can be viewed at

15

Solvers Acc. Prec. 0 Recall 0 F1 0 Prec. 1 Recall 1 F1 1 MSE
lbfgs 0.440 0.28 0.41 0.33 0.60 0.45 0.52 0.560
sag 0.420 0.20 0.24 0.22 0.57 0.52 0.54 0.580
saga 0.420 0.29 0.37 0.33 0.54 0.45 0.49 0.580

newton-cg 0.440 0.27 0.42 0.33 0.61 0.45 0.52 0.560
liblinear 0.400 0.27 0.39 0.32 0.54 0.41 0.46 0.600

Table 2: The results of LogReg, with different solvers, with Accuracy, Pre-
cision, Recall, F1-scores, Mean Square Error and the amount of test entries
for class 0 and 1.

Table 3. The best parameter for AdaBoost is where n estimators = 16.
It again does not have the highest accuracy, but it does have a observable
higher F1-score for class 0. The F1-score is almost five times as high. The
results can be viewed at Table 4. The results from these three parameter sets
will compete against each other. The results of this comparison have been
shown in the subsection Classification of the section Research Method.

4.2 Noise Comparison

This subsection will describe the results obtained from the different amounts
of noise applied to the data. These results are intended to show how the
accuracy changes when the amount of noise, that is added to the time delays
between microphones, is increased by multiples of the standard deviation.

The Tables 5 and 6 show the results for class 0 and class 1 respectively.
Each table has the precision, recall, F1-score and number of classifications
for each respective classification. The tables also contain the accuracy and
mean-squared error, both of those are the same for each level of noise in both
tables. Fig. 8 has all the values from both tables represented, except for the
number of classifications.

In Fig. 8 it is shown that there is no observable decline when the amount
of added noise is increased. The only decrease that can be seen in the figure
is the decrease of including noise at all. For the increasing amounts of noise,
there is no visible decrease, as would be expected. An increase in noise makes
data more unreliable, ensuring the model is less representative of the real
world experience, which in turn would cause a drop in accurately classifying
test data. Why this decrease is not present in the results of this study,
could be due to the fact the current classification is quite poor. The average

16

K Acc. Prec. 0 Recall 0 F1 0 Prec. 1 Recall 1 F1 1 MSE
2 0.559 0.42 0.40 0.41 0.64 0.65 0.65 0.441
3 0.540 0.31 0.28 0.30 0.64 0.68 0.66 0.460
4 0.547 0.39 0.32 0.35 0.62 0.69 0.65 0.453
5 0.552 0.34 0.29 0.31 0.65 0.69 0.67 0.448
6 0.555 0.39 0.29 0.33 0.62 0.72 0.67 0.445
7 0.556 0.38 0.28 0.33 0.63 0.72 0.67 0.444
8 0.540 0.36 0.27 0.31 0.61 0.71 0.65 0.460
9 0.581 0.41 0.26 0.32 0.64 0.77 0.70 0.419
10 0.580 0.38 0.24 0.30 0.64 0.77 0.70 0.420
11 0.576 0.32 0.20 0.25 0.65 0.77 0.70 0.424
12 0.567 0.36 0.19 0.25 0.62 0.80 0.70 0.433
13 0.562 0.38 0.21 0.27 0.61 0.79 0.69 0.438
14 0.567 0.41 0.23 0.29 0.61 0.78 0.69 0.433
15 0.575 0.33 0.16 0.21 0.63 0.71 0.81 0.425
16 0.595 0.40 0.21 0.28 0.64 0.82 0.72 0.405
17 0.589 0.35 0.16 0.22 0.64 0.83 0.72 0.411
18 0.591 0.36 0.18 0.24 0.64 0.82 0.72 0.409
19 0.585 0.37 0.20 0.25 0.64 0.81 0.71 0.415
20 0.559 0.34 0.17 0.22 0.61 0.80 0.69 0.441

Table 3: The results of KNN, with different Ks, with Accuracy, Precision,
Recall, F1-scores, Mean Square Error and the amount of test entries for class
0 and 1.

accuracy of the three competing classifiers is only 0.54, which is marginally
better than flipping a coin. Further discourse on this subject is available in
the section Discussion.

17

n Acc. Prec. 0 Recall 0 F1 0 Prec. 1 Recall 1 F1 1 MSE
1 0.650 0.50 0.03 0.05 0.65 0.98 0.79 0.350
2 0.600 0.22 0.06 0.09 0.64 0.89 0.74 0.400
3 0.600 0.22 0.06 0.09 0.64 0.89 0.74 0.400
4 0.610 0.25 0.06 0.09 0.64 0.91 0.75 0.390
5 0.610 0.25 0.06 0.09 0.64 0.91 0.75 0.390
6 0.610 0.25 0.06 0.09 0.64 0.91 0.75 0.390
7 0.610 0.25 0.06 0.09 0.64 0.91 0.75 0.390
8 0.610 0.25 0.06 0.09 0.64 0.91 0.75 0.390
9 0.610 0.25 0.06 0.09 0.64 0.91 0.75 0.390
10 0.610 0.25 0.06 0.09 0.64 0.91 0.75 0.390
11 0.610 0.25 0.06 0.09 0.64 0.91 0.75 0.390
12 0.580 0.27 0.11 0.16 0.64 0.83 0.72 0.420
13 0.610 0.25 0.06 0.09 0.64 0.91 0.75 0.390
14 0.590 0.31 0.14 0.20 0.64 0.83 0.72 0.410
15 0.610 0.33 0.11 0.17 0.65 0.88 0.75 0.390
16 0.620 0.40 0.17 0.24 0.66 0.86 0.75 0.380
17 0.590 0.29 0.11 0.16 0.64 0.85 0.73 0.410
18 0.620 0.40 0.17 0.24 0.66 0.86 0.75 0.380
19 0.620 0.40 0.17 0.24 0.66 0.86 0.75 0.380
20 0.590 0.25 0.09 0.13 0.64 0.87 0.73 0.410

Table 4: The results of KNN, with different n estimators, with Accuracy, Pre-
cision, Recall, F1-scores, Mean Square Error and the amount of test entries
for class 0 and 1.

Accuracy Precision Recall F1-score MSE N
No noise 0.59 0.35 0.49 0.41 0.31 35

1x Stdr. dev. 0.50 0.33 0.43 0.38 0.50 35
2x Stdr. dev. 0.54 0.37 0.43 0.39 0.46 35
3x Stdr. dev. 0.48 0.33 0.46 0.38 0.52 35
4x Stdr. dev. 0.55 0.38 0.46 0.42 0.45 35
5x Stdr. dev. 0.51 0.35 0.49 0.41 0.49 35

Table 5: The results with Accuracy, Precision, Recall, F1-scores, Mean
Square Error and the amount of test entries for class 0.

18

Accuracy Precision Recall F1-score MSE N
No noise 0.59 0.68 0.71 0.69 0.31 65

1x Stdr. dev. 0.50 0.64 0.54 0.58 0.50 65
2x Stdr. dev. 0.54 0.66 0.60 0.63 0.46 65
3x Stdr. dev. 0.48 0.63 0.49 0.55 0.52 65
4x Stdr. dev. 0.55 0.67 0.60 0.63 0.45 65
5x Stdr. dev. 0.51 0.65 0.52 0.58 0.49 65

Table 6: The results with Accuracy, Precision, Recall, F1-scores, Mean
Square Error and the amount of test entries for class 1.

Figure 8: Comparison of all the scores in a bar chart.

19

5 Error Sources

This section will describe errors that have and may have occurred in the data
set, influencing the accuracy of the generated model. They will also describe
hardware limitations, some of which may introduce errors into the dataset.
Other topics are errors that have been avoided due to the use of a simulation
rather than real-world experiments.

One of the potential errors that could occur in a real world set up, is the
difference in height between the front and back microphones of the NAO. The
microphones on the back are placed lower than the microphones on the front.
When using multiple NAOs to determine the sound location, this problem
will not occur, due to the fact that when measuring sound in general on a
NAO, it uses a combination of the two front microphones. Furthermore, this
problem will have to be taken into account when estimating the sound source
location before using the classifier. When only using the time delays between
microphones the model created by the classifier should represent the height
difference.

Another error that would occur when using a real world set up, is system
time errors. Since the NAOs have to use the internal system time to measure
the time delay, a certain amount of noise will occur within the data. Syn-
chronizing the internal system times between the robots would already have
eliminated a discrepancy in time measurement. However, the usage of sys-
tem time will remain problematic. This is because it is unclear what code is
exactly running on the CPU of the robot. Meaning it might be possible that
the robot is running code from the OS during the hearing as well, creating a
delay in the time measurement. This delay is noise in the data. This noise
may range from microseconds to milliseconds, making it difficult to measure
small time delays [2].

The last two errors are partially related, and actually enhance each other.
The first is the sample rate of the microphones on the NAO. And the second is
the distance between the microphones on the head of the NAO. The sample
rates of the microphones on the NAO are 48k Hz. This means that for
every sample taken, the sound has traveled at least seven millimeters, as

1
48000

∗ 343 = 0.00714583. Meaning there would be at least an error margin
of seven millimeters. For larger distances, over several meters, such an error
is not significant enough to cause worry. Over smaller distances, it will be
more of a cause to worry.

The distance between the microphones on the NAO is small, it is just

20

over six centimeters14. This means that the seven millimeters mentioned
previously turns out to be significant. This combination of problems was in
this study not a complication, due to the use of three NAOs separately on
the field. For future studies and use, it could potentially form a problem. A
change in the NAOs themselves would be required to completely overcome
the problem. An increase in the sample rate would lessen the error mar-
gin, allowing for smaller distances between microphones to be used. And a
larger distance between the microphones on the head of the NAO would also
decrease the impact of this problem. By, for example, placing them at the
outer edge of the head of the NAO. However, it would not be as significant
as increasing the sample rate, due to the fact that the NAO is of a limited
size. Increasing the size of the NAO, or its head is not a reasonable solution
to this problem.

6 Discussion

After completing this study, there are several topics that need to be discussed.
These topics relate to discussions about choices made in this study. The
following paragraphs will detail these topics.

One of the main topics, if not the biggest, topic to discuss in this study
is the choice of using a simulation to gather the required data over the use
of conventional real-world data gathering. There are three reasons for this
choice. The first reason is that it will allow future studies to use and build
on the current simulation, allowing for more intensive research into the topic
of this study. Secondly, a simulation allows for the possibility to gather more
data relatively quickly. Real-world data acquisition requires the set up of
the experiment every time the experiment is performed. Also, a real-world
experiment might, and most likely will, require manual actions to be per-
formed. Those manual actions require time and effort to complete. This
makes it easier to gather more data, faster with simulation and for classi-
fication, and for machine learning in general, more data is better. Thirdly,
hardware constraints could have made gathering accurate data difficult. A
simulation does not have those restraints. In further paragraphs, a more
detailed overview of hardware constraints will be given. As a final reason,
the replication of the study is eased immensely as well. The creation of new

14http://doc.aldebaran.com/2-1/family/robots/microphone_robot.html

21

data comes down to a click of the button with a simulation, rather than a
complete set up of an experiment.

A second topic for discussion is the use of version 4.13.315, rather than
the, at the moment of writing, newest version of the Unreal Engine, 4.22.2.
A sample of features that have been added since 4.13.3 are NVidia PhysX
improvements, for better physics modeling, improved asset animation and
audio improvements16. As mentioned in the previous paragraph, the choice
for a simulation was partially so that others may continue to build upon it.
This study has done the same. It has built upon the simulation of another
study [6]. This previous simulation was built using version 4.13.3, and this
study continued the use of that simulation. It might be wise and useful to
upgrade the simulation to a newer version when a future study continues to
work with it. Support for the current version will most likely stop at a point
in time, making it difficult to continue developing it. Also newer, and future
versions might gain features that are desirable to include in the simulation.

7 Conclusion

This study has used the time delay between NAO robots of the arrival of
the soundwave, and the ground-truth location of the NAOs to estimate the
location of the sound source. The location of this sound source has been
classified as either inside or outside the playing field of the NAO robots, with
an accuracy of 0.559%. The objective of this study was to show how much
noise needed to be applied to the time delay between microphones, for the
accuracy to observably decrease.

The results show there is no observable decrease in accuracy when the
amount of noise is increased on the time delays between microphones. The
only noticeable drop in accuracy is from the no noise model to the one stan-
dard deviation noise model, but the no noise model is not representative of
real-world conditions. Different classifiers might improve the accuracy, and
the F1-scores to a lesser degree, of the resulting classifications.

There are several topics that can be discussed for future works based
on this study. Those topics range from several elements that may improve
on this study, allowing the current approach to improve, and elements that
expand on the approach of this study.

15https://www.unrealengine.com/en-US/what-is-unreal-engine-4
16https://docs.unrealengine.com/en-US/Support/Builds/index.html

22

One of the additional elements that may improve this study, is the use of
different machine learning algorithms. In this study, only multiple logistic re-
gression, KNN and AdaBoost are used. Different algorithms may potentially
improve the results obtained in this study. Other algorithms may model the
data better than, allowing for a better fit of the generated data. Especially
when the sound source location is no longer going to be estimated, and the
direct time delays between microphones will be used as features.

Another element that could expand on this study is the use of 3D space.
This study only uses 2D space. The NAO hearing agents and the sound
source location are all on the same plane, remaining on the same height.
Having the sound source location be on different heights would more accu-
rately represent real-world conditions. In a real-world situation, the sound
source location will almost never be on the same plane as the microphones
of the NAOs. A referee would have to waddle around on his or her knees to
be on the same height, which is not practical. Also, whistling sounds may
originate from the viewing audience, who are also not likely to be at the
same height as the microphones of the NAOs. Another aspect of using 3D
space is that not all of the NAOs microphones are at the same height. The
microphones on the back of the NAOs head are placed lower than the ones
on the front. See Fig. 1 for info on the NAO microphone locations.

A third element that could improve this study is the use of a better heuris-
tic for determining which intersections to use in the average location. In the
current algorithm, the only heuristic applied are the limits of the area in
which the sound source location could be randomly placed. It is a good first
step, but it is not a perfect predictor. An additional heuristic may be getting
the average of the leftover intersections after applying the limits heuristic
and using this average to determine the distances to the intersections. After
having obtained the distances, the largest distances can be discarded, whilst
ensuring at least 3 intersections remain for the estimated average. A better
estimate of the sound source location will improve the accuracy of the classi-
fication. Better heuristics, such as the example mentioned, will improve the
estimate made by the algorithm.

References

[1] Niels W Backer, Arnoud Visser, et al. Learning to recognize horn
and whistle sounds for humanoid robots. In Proceedings of the

23

26th Belgian-Netherlands Conference on Artificial Intelligence (BNAIC
2014).(November 2014), 2014.

[2] Randal E Bryant, O’Hallaron David Richard, and O’Hallaron
David Richard. Computer systems: a programmer’s perspective, volume
281. Prentice Hall Upper Saddle River, 2003.

[3] RoboCup Technical Committee et al. Robocup standard platform
league (nao) technical challenges, 2019. https: // spl. robocup. org/
wp-content/ uploads/ downloads/ Challenges2019. pdf , 2019.

[4] Thomas M Cover, Peter E Hart, et al. Nearest neighbor pattern classi-
fication. IEEE transactions on information theory, 13(1):21–27, 1967.

[5] Yoav Freund, Robert Schapire, and Naoki Abe. A short introduction to
boosting. Journal-Japanese Society For Artificial Intelligence, 14(771-
780):1612, 1999.

[6] Timm Hess, Martin Mundt, Tobias Weis, and Visvanathan Ramesh.
Large-scale stochastic scene generation and semantic annotation for deep
convolutional neural network training in the robocup spl. In Robot World
Cup, pages 33–44. Springer, 2017.

[7] David W Hosmer Jr, Stanley Lemeshow, and Rodney X Sturdivant.
Applied logistic regression, volume 398. John Wiley & Sons, 2013.

[8] FV Hunt. The past twenty years in underwater acoustics: Introduc-
tory retrospection. The Journal of the Acoustical Society of America,
51(3B):992–993, 1972.

[9] Hiroaki Kitano, Minoru Asada, Yasuo Kuniyoshi, Itsuki Noda, and Ei-
ichi Osawa. Robocup: The robot world cup initiative. In Proceedings
of the First International Conference on Autonomous Agents, AGENTS
’97, pages 340–347, New York, NY, USA, 1997. ACM.

[10] Sébastien Negrijn. Exploiting symmetries to relocalise in robocup soccer.
Master’s thesis, Universiteit van Amsterdam, 2017.

[11] Tim Niemüller, Alexander Ferrein, Gerhard Eckel, David Pirro, Patrick
Podbregar, Tobias Kellner, Christof Rath, and Gerald Steinbauer. Pro-
viding ground-truth data for the nao robot platform. In Robot Soccer
World Cup, pages 133–144. Springer, 2010.

24

[12] Carlos Fernández Scola and Maria Dolores Bolaños Ortega. Direction
of arrival estimation: A two microphones approach. Master’s thesis,
Blekinge Tekniska Högskola, 2010.

[13] Skipper Seabold and Josef Perktold. Statsmodels: Econometric and
statistical modeling with python. In 9th Python in Science Conference,
2010.

[14] Merrill I Skolnik. Introduction to radar. Radar handbook, 2:21, 1962.

25

A Code: Location Estimation and Classification

−∗− coding : u t f−8 −∗−
”””
Created on Sun Apr 28 13:54 :57 2019

@author : Jasper van Eck
”””

import sys
import numpy as np
import math
import random
import getData
from s k l e a rn . ensemble import AdaBoos tC la s s i f i e r
from s k l e a rn . ne ighbors import KNe ighbo r sC la s s i f i e r
from s k l e a rn . l i n ea r mode l import Log i s t i cReg r e s s i on
from s k l e a rn import pr ep ro c e s s i ng
from s k l e a rn . met r i c s import c l a s s i f i c a t i o n r e p o r t
from s k l e a rn . met r i c s import mean squared error
from s k l e a rn . met r i c s import accu racy s co r e
from s k l e a rn . met r i c s import con fu s i on mat r ix
import s ta t smode l s . ap i as sm

#Constants
SPEEDOFSOUND = 343#m/s

#For 2 NAOs coords , g i v e the d i s t ance in m([X,Y] , [X,Y])
def naoDistance (nao1 , nao2) :

return math . sq r t ((nao1 [0]+ nao2 [0])∗∗2+(nao1 [1]+ nao2 [1]) ∗ ∗ 2)

#For a g iven delay , d i s t ance between mics and a g iven X coordinate , re turns the Y coord inate
def l o ca t i onFunct i on (X, delay , micDistance) :

ABaccent = SPEEDOFSOUND ∗ delay
Xb = micDistance / 2
return math . sq r t ((((ABaccent ∗∗2)/4)−(Xb∗∗2)) + (X∗∗2 ∗ (((4∗ (Xb∗∗2))/Xb∗∗2) − 1)))

#Determine the minimum v i a b l e X coord to use in the loca t ionFunct ion
def minXCoord (delay , micDistance) :

ABaccent = SPEEDOFSOUND ∗ delay
Xb = micDistance / 2
return math . sq r t (−1∗((ABaccent∗∗2 ∗ (ABaccent∗∗2 − 4 ∗ Xb∗∗2))/ (4∗ (4 ∗ Xb∗∗2 − ABaccent ∗∗2))))+5

#func t ion to s h i f t coord ina te s from NAO coords to world/ f i e l d coords
def c o o rd i n a t eSh i f t (XYnao , XYtarget) :

new = []
new . append (XYnao [0] + XYtarget [0])
new . append (XYnao [1] + XYtarget [1])
return new

#Line i n t e r s e c t i o n coordinates , f o r l i n e a r only , sourced from stackOver f low ([[] , []] , [[] , []])
#h t t p s :// s t a c kove r f l ow . com/ que s t i on s /20677795/how−do−i−compute−the−i n t e r s e c t i on−point−of−two−l i n e s−in−python
def l i n e (p1 , p2) :

A = (p1 [1] − p2 [1])
B = (p2 [0] − p1 [0])
C = (p1 [0] ∗ p2 [1] − p2 [0] ∗ p1 [1])

26

return A, B, −C

def i n t e r s e c t i o n (L1 , L2) :
D = L1 [0] ∗ L2 [1] − L1 [1] ∗ L2 [0]
Dx = L1 [2] ∗ L2 [1] − L1 [1] ∗ L2 [2]
Dy = L1 [0] ∗ L2 [2] − L1 [2] ∗ L2 [0]
i f D != 0 :

x = Dx / D
y = Dy / D
return [x , y]

else :
return False

#ca l c u l a t e the ang le o f the sound source [X,Y]
def angleSoundSource (l o c a t i o n) :

return 90 − np . arctan ((l o c a t i o n [1]) / (l o c a t i o n [0]))

#Calcu la t e the d i s t ance s between the NAOs
def micDistances (naoLocat ions) :

d i s t an c e s = [0 , 0 , 0]
d i s t an c e s [0] = naoDistance (naoLocat ions [0 : 2] , naoLocat ions [2 : 4])
d i s t an c e s [1] = naoDistance (naoLocat ions [0 : 2] , naoLocat ions [4 :])
d i s t an c e s [2] = naoDistance (naoLocat ions [2 : 4] , naoLocat ions [4 :])
return d i s t an c e s

#Determine the mid po in t s o f the mics
def midPoints (naoLocat ions) :

midPoints = []
midPoints . append ([(naoLocat ions [0] + naoLocat ions [2]) / 2 , (naoLocat ions [1] + naoLocat ions [3]) / 2])
midPoints . append ([(naoLocat ions [0] + naoLocat ions [4]) / 2 , (naoLocat ions [1] + naoLocat ions [5]) / 2])
midPoints . append ([(naoLocat ions [2] + naoLocat ions [4]) / 2 , (naoLocat ions [3] + naoLocat ions [5]) / 2])
return midPoints

#Delays between Mics ra ther than source and a mic
def delayMics (de lays) :

delayMic = []
delayMic . append (abs (de lays [0]− de lays [1]))
delayMic . append (abs (de lays [0]− de lays [2]))
delayMic . append (abs (de lays [1]− de lays [2]))
return delayMic

#Average the coord ina te s
def averageCoords (coordsArray) :

x t o t a l = 0
y t o t a l = 0
n = len (coordsArray)
for i in range (n) :

x t o t a l += coordsArray [i] [0]
y t o t a l += coordsArray [i] [1]

x avgr = x t o t a l / n
y avgr = y t o t a l / n
return [x avgr , y avgr]

#Determine which mic o f pa i r i n g s i s c l o s e s t s
def c l o s e s t sM i c (de lays) :

c l o s e s t s = [0 , 0 , 0]
i f de lays [0] > de lays [1] :

27

c l o s e s t s [0] = 1
else :

c l o s e s t s [0] = 2

i f de lays [0] > de lays [2] :
c l o s e s t s [1] = 1

else :
c l o s e s t s [1] = 2

i f de lays [1] > de lays [2] :
c l o s e s t s [2] = 1

else :
c l o s e s t s [2] = 2

return c l o s e s t s

#crea te the nao combo 12 , 13 , 23
def naoCombo(naoLocations , n) :

naoCombo = []
i f n == 0 :

naoCombo = [[naoLocat ions [0] , naoLocat ions [1]] , [naoLocat ions [2] , naoLocat ions [3]]]
e l i f n == 1 :

naoCombo = [[naoLocat ions [0] , naoLocat ions [1]] , [naoLocat ions [4] , naoLocat ions [5]]]
else :

naoCombo = [[naoLocat ions [2] , naoLocat ions [3]] , [naoLocat ions [4] , naoLocat ions [5]]]
return naoCombo

#Sourced from : h t t p s :// s t a c kove r f l ow . com/ que s t i on s /2827393/ angles−between−two−n−dimensional−vec tors−in−python
def un i t v e c t o r (vec to r) :

””” Returns the un i t vec to r o f the vec to r . ”””
return vec to r / np . l i n a l g . norm(vec to r)

#Sourced from : h t t p s :// s t a c kove r f l ow . com/ que s t i on s /2827393/ angles−between−two−n−dimensional−vec tors−in−python
def angle between (v1 , v2) :

””” Returns the ang le in radians between vec t o r s ’ v1 ’ and ’ v2 ’ : :

>>> ang le be tween ((1 , 0 , 0) , (0 , 1 , 0))
1.5707963267948966
>>> ang le be tween ((1 , 0 , 0) , (1 , 0 , 0))
0.0
>>> ang le be tween ((1 , 0 , 0) , (−1, 0 , 0))
3.141592653589793

”””
v1 u = un i t v e c t o r (v1)
v2 u = un i t v e c t o r (v2)
return math . rad ians (np . a r c co s (np . c l i p (np . dot (v1 u , v2 u) , −1.0 , 1 . 0)))

#Rotate a vec tor by ce r t a in degrees coun te rc l ockw i se
def ro ta teVecto r (vector , theta) :

c , s = np . cos (theta) , np . s i n (theta)
rotationM = np . array (((c ,− s) , (s , c)))
#pr in t (rotationM)
ro ta ted = rotationM @ vector
#pr in t (ro ta t ed)
return ro ta ted

#t r an s l a t e & ro t a t e from l o c a l to r ea lwor l d coords

28

def l oca lToReal (l o c a l , naoCombo , midPoint , c l o s e s t s) :
r e a l = []
angleVec1 = []
i f c l o s e s t s == 1 :

angleVec1 = [naoCombo [0] [0] −naoCombo [1] [0] , naoCombo [0] [1] −naoCombo [1] [1]]
else :

angleVec1 = [naoCombo [1] [0] −naoCombo [0] [0] , naoCombo [1] [1] −naoCombo [0] [1]]

#pr in t (angleVec1)
theta = angle between (angleVec1 , [1 , 0])
tmp = rotateVector (l o c a l , theta)
#pr in t (tmp)
r e a l = coo rd i n a t eSh i f t (tmp , midPoint)
#pr in t (r e a l)
return r e a l

#Create noise to be app l i ed to time de lay s and add i t .
def addGaussianNoise (t imeDelays) :

no i s e = []
for i in range (len (t imeDelays [0])) :

no i s e . append (np . random . normal (np .mean(timeDelays [: , [i]]) , np . std (t imeDelays [: , [i]]) , len (t imeDelays [: , [i]])))
return t imeDelays + np . array (no i s e) .T

#Create noise to be app l i ed to time de lay s with mu l t i p l i e r .
def gauss ianNoi se (timeDelays , mult) :

no i s e = []
for i in range (len (t imeDelays [0])) :

no i s e . append (np . random . normal (np .mean(timeDelays [: , [i]]) , np . std (t imeDelays [: , [i]]) ∗mult , len (t imeDelays [: , [i]])))

#noise = [[i ∗mult f o r i in r] f o r r in noise]
return np . array (no i s e) .T

#Create model us ing s k l ea rn
def trainModel (X, Y) :

modelSK = AdaBoos tC la s s i f i e r (n e s t imato r s =100 , random state=0)
#modelSK = KNeighbor sC las s i f i e r (n ne ighbors=20, we igh t s=’ d i s t ance ’)
#modelSK = Log i s t i cRegre s s i on (c l a s s w e i g h t = ’ ba lanced ’)
modelSK . f i t (X, Y)

return modelSK

#Create model us ing SM
def trainModelSM (X, Y) :

X = sm . add constant (X)
#modelSM = sm.OLS(Y, X) . f i t ()
modelSM = sm . Logit (Y, X) . f i t ()

return modelSM

#Main Function ; c a l l s a l l o ther func t i ons & s t u f f
def main (argv) :

#Retr ieve Data & Seperate i t in usab l e arrays
data = getData . getData (25000)
random . s h u f f l e (data)
de lays = np . array (getData . getTimeDelays (data))
c l a s s i f i c a t i o n = getData . g e t C l a s s i f i c a t i o n s (data)

29

#soundSourceLoc = getData . getSoundSourceLocations (data)
#pr in t (soundSourceLoc)
naoLocat ions = getData . getRobotLocat ions (data)

t imeDelays = []
for i in range (len (de lays)) :

t imeDelays . append (delayMics (de lays [i]))

mu l t i p l i e r = 0
timeDelays2 = timeDelays + gauss ianNo i se (np . array (t imeDelays) , mu l t i p l i e r)

predictedSoundSource = []
#Determine func t i ons o f p o s s i b l e l o c a t i on s
for i in range (len (naoLocat ions)) :

d i s t an c e s = micDistances (naoLocat ions [i])
midPoint = midPoints (naoLocat ions [i])
#delayMic = delayMics (de l ay s [i])
delayMic = timeDelays2 [i]
c l o s e s t s = c l o s e s t sM i c (de lays [i])
yPlus1 = []
yPlus2 = []
yMin1 = []
yMin2 = []
for j in range (len (d i s t an c e s)) :

naoCombos = naoCombo(naoLocat ions [i] , j)
X coord = minXCoord (delayMic [j] , d i s t an c e s [j])
X2 coord = X coord + 20
s h i f t 1 = [X coord]
coord1 = loca t i onFunct i on (X coord , delayMic [j] , d i s t an c e s [j])
s h i f t 1 . append (coord1)
yPlus1 . append (np . array (loca lToReal (s h i f t 1 , naoCombos , midPoint [j] , c l o s e s t s [j])))

s h i f t 2 = [X2 coord]
coord2 = loca t i onFunct i on (X2 coord , delayMic [j] , d i s t an c e s [j])
s h i f t 2 . append (coord2)
yPlus2 . append (np . array (loca lToReal (s h i f t 2 , naoCombos , midPoint [j] , c l o s e s t s [j])))

#Negat ive Part
s h i f t 3 = [X coord]
s h i f t 3 . append(−coord1)
yMin1 . append (np . array (loca lToReal (s h i f t 3 , naoCombos , midPoint [j] , c l o s e s t s [j])))

s h i f t 4 = [X2 coord]
s h i f t 4 . append(−coord2)
yMin2 . append (np . array (loca lToReal (s h i f t 4 , naoCombos , midPoint [j] , c l o s e s t s [j])))

#Arrayi fy the coord ina te s o f p o s s i b l e sound source l o c a t i on s
i n t e r s e c t i o n s = []
yPlus1 = np . array (yPlus1)
yPlus2 = np . array (yPlus2)
yMin1 = np . array (yMin1)
yMin2 = np . array (yMin2)

#Create the l i n e s to use f o r i n t e r s e c t i o n
l i n e s = []

30

for j in range (len (yPlus1)) :
l i n e s . append (l i n e (yPlus1 [j] , yPlus2 [j]))
l i n e s . append (l i n e (yMin1 [j] , yMin2 [j]))

#In t e r s e c t a l l the l i n e s , excep t f o r i t s e l f and the minus ver s ion
for j in range (len (l i n e s)) :

l = 0
i f j%2 == 0 :

l = j+2
else :

l = j+1
for k in range (l , len (l i n e s) , 1) :

i n t e r s e c t i o n s . append (i n t e r s e c t i o n (l i n e s [j] , l i n e s [k]))

goodInt s ec t = []
for j in range (len (i n t e r s e c t i o n s)) :

i f (i n t e r s e c t i o n s [j] [0] < 12 and i n t e r s e c t i o n s [j] [0] > −12) and (i n t e r s e c t i o n s [j] [1] < 12 and i n t e r s e c t i o n s [j] [1] > −12):
goodInt s ec t . append (i n t e r s e c t i o n s [j])

#pr in t (good In t s ec t)
#pr in t (”−−−−”)
#Average the i n t e r s e c t i o n Pos i t i ons
predictedSoundSource . append (averageCoords (goodInt s ec t))

#pr in t (predictedSoundSource)

#Append time de l ay s to l o c a t i on s to form complete matrix o f data
#t ra in = np . append (naoLocations , timeDelays2 , a x i s=1)
t r a i n = np . append (naoLocations , predictedSoundSource , ax i s=1)
#tra in = np . append (naoLocations , soundSourceLoc , ax i s=1)
#t ra in = predictedSoundSource

#Sp l i t data in t e s t and t r a i n i n g s e t s .
tes tLength = 1000
p r e t e s t = t r a i n [− tes tLength :]
p r e t r a i n = t r a i n [: len (t r a i n)− tes tLength]
c l a s sTe s t = c l a s s i f i c a t i o n [− tes tLength :]
c l a s sTra in = c l a s s i f i c a t i o n [: len (c l a s s i f i c a t i o n)− tes tLength]

#Normalize t e s t & t r a i n in g data
norm tra in = prep ro c e s s i ng . normal ize (p r e t r a i n)
norm test = pr ep ro c e s s i ng . normal ize (p r e t e s t)

#Use ca l c u l a t e d sound source l o c a t i on & own l o ca t i on fo r mu l t i p l e l i n e a r r e g r e s s i on
model = trainModel (norm train , c l a s sTra in)
#modelSM = trainModelSM(norm train , c l a s s i f i c a t i o n)

#Do pred i c t i on on t e s t data & pr in t repor t
c l a s sPred = model . p r ed i c t (norm test)
#classPredProb = model . p r ed i c t p roba (norm test)

#Print the Resu l t s
print (model . c l a s s . name)
print (”The no i s e mu l t i p l i e r : ” + str (mu l t i p l i e r))
print (”The accuracy : ” + str (a c cu racy s co r e (c l a s sTes t , c l a s sPred)))
print (c l a s s i f i c a t i o n r e p o r t (c l a s sTes t , c las sPred , target names=[’ I n s i d e ’ , ’Out o f bounds ’]))
print (”The Mean Squared Error : ” + str (mean squared error (c l a s sTes t , c l a s sPred)))

31

print (”Cofus ion Matrix : ”)
print (” (tn , fp , fn , tp) ”)
print (con fu s i on mat r ix (c l a s sTes t , c l a s sPred) . r av e l ())

i f name == ” main ” :
main (sys . argv)

32

