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Abstract
This thesis addresses the problem of generating realistic images from simulated environ-
ments within the Standard Platform League of the RoboCup. Automatic generation of
realistic images would be beneficial in the process of developing machine learning algo-
rithms. This is because when training those algorithms, large datasets are needed with
annotations. In the case of automatic generation, this could be provided from the ground
truth of the simulation model. For the Standard Platform League these developments are
needed to increase the performance of the ball and/or opponent detection. The approach
taken in this thesis, enables researchers to enhance the realism of an existing simulator
simply by collecting images from the real world. Then use those images as training exam-
ple to enhance simulated views. In order to organize such a process, a translation function
between simulated images and real images needs to be explored and discovered. Such a
function can be learned by generative adversarial networks.

In order to develop a workable approach, the objective function has to be clearly specified.
Otherwise the translated images are not as diverse or accurate as real images. Various
architectures such as CycleGan and MUNIT have been applied in previous work to create
such transformations. Both architectures are adjusted in this thesis to the needs within
the Standard Platform League. After tuning the loss functions and modifying the archi-
tectures, better results are obtained compared to the base implementations. Our approach
significantly reduces the perceptual distance between a real image and a simulated image.
Additionally, the impact of this approach is demonstrated by fact that a machine learning
algorithm, such as an image-instance segmenter, performs notably better when trained on
the translated images compared to being trained on the purely simulated ones.

This work was presented at the Virtual Humanoid RoboCup Open Workshops event on
the 27th of June 20201.

1https://humanoid.robocup.org/virtual-rohow-2020/program/
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1 Introduction
Simulation has been an important component in the development of artificial agents which
act in the real world. According to Zlajpah [1] the ability of simulated environments to
predict events faster than real-time without contracting damages makes the simulated en-
vironment faster and cheaper compared to real world testing. For this reason, Zlajpah
claims simulations have been extensively used throughout last decades. In the field of
Artificial Intelligence, simulations can be used to train a neural network while some hand-
picked real situations can be used to fine-tune and/or evaluate the network. In the context
of image-instance segmentation, simulations are desirable because the cost of a large man-
ually annotated dataset could be significant: manual annotation of real images takes much
longer than automatic annotation of synthetic ones. Furthermore, the automatic annota-
tions are always accurate, unlike humans who occasionally misclassify or misannotate.
Yet the simulation has to overcome a reality gap, specifically a loss in performance of ap-
plications developed in the simulation when they are applied in the real world. This thesis
aims to reduce this reality gap with a method based on Generative Adversarial Networks,
as explained in Section 3.

In recent years the use of simulation for computer vision has gained the interest of the sci-
entific community in the Standard Platform League (SPL)2. This is a competition within
the yearly RoboCup event3. Here, teams from different universities program the same
type of robot, currently the Nao robot4, to play several competitive football games au-
tonomously.

Figure 1: Screenshot from 2018 Final of the RoboCup Standard Platform League.

2https://spl.robocup.org/
3https://www.robocup.org/
4https://www.softbankrobotics.com/emea/en/nao
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This interest within the SPL community for the use of simulation for computer vision
is due to advances in methods; such as the developments in Convolutional Neural Nets
(CNNs). In addition advances in hardware with the introduction of the Nao V6 increased
that interest too. Last year a CNN named JET-Net was released, it performs bounding-
box object detection on a image of 80x60 [2]. When combined with the JIT-compiler; a
neural network compiler specifically made for the Nao V6, this CNN can be run within
1.995 milliseconds on the Nao V6 [3]. This development has solidified the applicability
of object detection with neural networks in the football competition, where each frame
is generally processed within 16.67 milliseconds. Notably the authors of the CNN paper
used a Generative Adversarial Network (GAN) to augment simulated images to be useful
for training the object detector in estimating distances to detected objects. The authors
applied both simulated and real images as input and translated the input to an imaginary
space where the origin domain couldn’t be detected. This method however, was not used
to train the object detector from scratch. A dataset of real images was used to train the
object detector while the imaginary space was only used to let the robot identify features
useful for distance estimation.

Another team has developed a realistic stochastic scene-render in Unreal Engine 4 [4].
They provide ample evidence that the rendered images generalize well to the real world by
running a detection benchmark trained with only the simulated data on real data. This ap-
plication however, is not an simulation and can only render realistic looking static scenes.
Thus current approaches either rely on static scene rendering or try to find a image space
between real and simulated space. Thus a complete translation from simulation to real has
not been attempted in this field. Within this thesis a method is proposed to make such a
translation.

1.1 Image-to-Image Translation
Within the GAN community, Image-to-Image translation is a topic within the GAN com-
munity centered around translating an image into another domain with a restriction [5].
For example a restriction to change the underlying information of the image can be en-
forced. This will make the GAN translate the image to a different style. For instance, this
happens within networks capable of photo to painting translations, which take a photo and
stylize it to fit a painters profile [6]. The translation can also be semantic, for example
translating a cat to a dog but with the same fur color and pose [7]. The problem posed
in this thesis is somewhere in between these two kinds of translation tasks. Robots in the
real world experience different lightning conditions than in the simulation, making a style
translation necessary. Additionally detected objects such as other robots, goalposts and
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balls should only change slightly and should not be transformed into other kinds of ob-
jects. However, the background, is semantically different between simulation images and
real images as there are different objects represented. Furthermore, the grass of the field is
arguably semantic, as grass can differ in height and types of blades.

1.2 Paired and Unpaired Training
Besides a difference in what an architecture can translate, the method of training can make
another difference. An architecture can be trained either paired or unpaired. The paired
training provides the exact translations the neural net should make. Training in paired
form is easier as there is no ambiguity about what the output should be. There are nu-
merous applications for this including sketch to handbag, topography to aerial picture and
segmentation to image demonstrated by pix2pix [8]. Yet, paired data is not always readily
available or easy to obtain. In the case of a simulation, it requires simulated images to
align perfectly with the real images. Since robots are in motion during an actual game and
the simulation isn’t perfect, this alignment process is unfeasible with currently available
simulations. These simulations are discussed in section 2.1. Hence, in this thesis unpaired
training is used. Unlike paired training, unpaired training involves a significant challenge:
somehow the neural net needs to find out the relation between different domains without
being explicitly shown how they map on to each other.

1.3 Problem Definition
One of the benefits of using GANs to enhance simulation images is to enable researchers
to use simulations with low detail renderers to develop competitive computer vision algo-
rithms from simulation with a minimal reality gap. Additionally any current simulation
can be extended by this approach after collecting unpaired image datasets. Therefore the
research question is: "How far can the gap between simulation and real images be bridged
through the use of GANs in the context of Robocup SPL?". The aim for this thesis is to
identify the challenges to overcome the reality gap with GANs and provide benchmarks for
future work. For this goal a dataset is procured consisting of images obtained at RoboCup
games taken from the Nao-v6 robots. Additionally a simulator is chosen and augmented
in order to obtain simulation images. Thereafter, a number of GANs are trained and eval-
uated. The evaluation is done by three metrics; the Fréchet Inception Distance (FID); the
performance of a state-of-the-art instance segmenter Mask-RCNN, when the translated
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images are fed into this segmenter; and the performance of a state-of-the-art panoptic seg-
menter, when translated images are fed in this segmenter.
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2 Theory
To understand the different aspects of the architectures proposed in this thesis, some con-
cepts have to be explored. Firstly the simulator needs to be explained as the images gath-
ered from this simulator will have an effect on every application using those images there-
after. Secondly two key components of the proposed architectures are explained. These
components are the generative adversarial network architecture and the variational autoen-
coder. Afterwards the two proposed architectures CycleGan and MUNIT are explained in
more detail. Additionally they are contrasted to each other. Finally the different evalu-
ation methods are explained in detail. The Fréchet Inception Distance used to calculate
distances between two datasets, the MASK-RCNN instance segmenter used to evaluate the
machine learning potential of instance segmentation and the panoptic segmenter which is
able to make full use of the annotations.

2.1 SPL RoboCup Simulations
Related to the SPL RoboCup are a number simulations made and maintained by either
competing teams or researchers without a team. To the knowledge of the author simula-
tors are available from the Berlin United SPL-Spark5, the Nao-devils SimRobot version6,
the HULKS SimRobot version7, the B-Human SimRobot version8 and the ROS Gazebo
plugin9. The simulator chosen, for reasons outlined in section 3.1, is the HULKS version
of SimRobot. This simulator was originally developed by the B-Human team [9] and later
adopted by the HULKs. The HULKs added motion blurring to the simulation as well
as connecting it to their own robot behavior modules. The simulator aims to be a realistic
simulator where every sensor has a realistic input. The rendering is done with the OpenGL
library and only contains assets for the goalnet, ball, robot and grass. Other objects seen
in the simulation are simple 3D shapes. The simulation has a rigid body physics engine
where objects can collide with other objects in a realistic way. Due to these features real-
istic robot behavior is possible to simulate in this simulator.

This simulator is mainly used to test and develop new algorithms used in the SPL league.
This particular version has only been used by the HULKs as a debug tool, but similar
versions have been used in training object detectors [2].

5https://github.com/BerlinUnited/SimSpark-SPL
6https://github.com/NaoDevils/CodeRelease
7https://github.com/HULKs/HULKsCodeRelease
8https://github.com/bhuman/BHumanCodeRelease
9https://github.com/ros-naoqi/nao_virtual
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2.2 Generation Adversarial Networks (GANs)
The first Generative Adversarial Network was an architecture with two neural networks,
a generator which tries to construct an image from randomized noise and a discriminator
which tries to determine whether an image is authentic or generated [10]. The discrimina-
tor activation can be used as a learned loss function for the generator. This results in a loss
function of maxG minD(Ex[log(D(x))] + Ez[log(1−D(G(z)))]).

1. G is the generator.

2. G(z) is the generated output given latent vector z.

3. D is the discriminator.

4. D(x) is the prediction of the discriminator whether an image is real or not.

5. maxG and minD means that the generator tries to minimize this, and the discrimi-
nator tries to maximize this function.

6. Ex is the expectation of real data sampling with x.

7. Ez is the expectation of latent data sampling with z.

8. Ex[log(D(x))] is the expectation of the discriminator correctly identifying real im-
ages.

9. Ez[log(1 − D(G(z)))] is the expectation of the discriminator correctly identifying
the generated images as fake.

For the discriminator D the ideal case is to identify every real image as real and every gen-
erated image as fake, resulting in a score of two. For the generator G it is ideal to confuse
the discriminator to such a degree that it misclassifies all samples z, though realistically
the score will not be lower than real/fake ratio, since the discriminator can guess always
real or always fake based on this ratio.

2.3 Variational Auto Encoders (VAEs)
Recent work has used VAEs in combination with Variational Auto Encoders [11]. Like-
wise, the image translation architectures used in this thesis use VAEs to encode and decode
to latent spaces. A variational autoencoder is an extension of the autoencoder. This au-
toencoder is a neural network which aims to represent input data in a latent space. This
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Figure 2: The GAN architecture [10], the brown arrows indicate the generator backpropa-
gation and the yellow arrows indicate the discriminator backpropagation.

latent space usually has a lower number of dimensions than the input [12]. An autoencoder
exists out of an encoder and a decoder; encoders transform the input to the latent variables
and the decoder transforms the latent variables to a reconstruction of the input. The er-
ror is the difference between an input image and the reconstructed image, usually defined
as ||A − A′||2 where A is the input and A′ the reconstruction. This makes autoencoders
self-supervised, as the input is also the desired output. These autoencoders are effective
at compression and denoising. Generating samples however, presents an issue: the latent
space isn’t necessarily regular, and assuring regularity is not trivial [13]. A non-regular
latent space is difficult to sample from as the mean of all objects within a class may not be
of that same class. Variational Auto Encoders (VAEs) assure that an attempt is made by the
autoencoder to have a regularized latent space [13]. This is achieved by defining the latent
space in distribution parameters, usually normal distributions with a mean and variance.
From this space, meaningful samples can be generated by sampling from neighborhoods
of encoded images. This generation method can be enhanced by using a discriminator and
treating the decoder as an generator.

2.4 CycleGan
The CycleGan [14] architecture exists out of two VAEs, noted as encoder-decoder pairs
in figure 3, and two discriminators. In this architecture three different loss functions are
optimized. Firstly the adversarial loss is defined the same as in section 2.2, with the
VAE defined as the generator. Secondly there is the cycle consistency loss, which is the
distance between a reconstructed image after being translated twice. In formal terms this
is GA(GB(A)) where GA and GB are generators for domain A and B respectively. Thirdly
there is the identity loss, which is the difference between the input and output of a generator
given a image in the same domain as its output domain. Formally this can be written
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down as GA(A) ≈ A. All formulas have the reverse version where domain A and B are
switched.

Figure 3: The CycleGan architecture [15]

2.5 Unsupervised Image-to-Image Translation (UNIT)
Similar to CycleGan, the UNIT [15] architecture exists out of two VAEs. In this archi-
tecture however, they share a latent space as well as share weights of some layers. The
layers which share weights are the last few layers of the encoders and the first few layers of
the decoders, how many may change depending on the task. The UNIT applies the same
discriminator loss and same reconstruction loss as CycleGan. However the UNIT does not
have a identity loss like CycleGan.

Figure 4: The UNIT architecture [14]
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2.6 Multimodal Unsupervised Image-to-Image Translation (MUNIT)
MUNIT [16] is an extension of UNIT where domain specific style code is added. The idea
of the authors is that with this extension semantic information and style information are
disentangled. The underlying assumption is that a domain transfer can be formulated in the
transfer of semantic information and an augmentation according to domain specific style
related information. According to this statement, any information in the shared latent space
should be semantic. Likewise, any information in the style space should only capture the
style of the image. Because the style code is domain specific, it can be sampled unlimited
times per translated image. This makes more diverse and multi-modal translation possible.

Figure 5: The MUNIT architecture [16]

2.7 Fréchet Inception Distance (FID)
FID is a perceptual distance measure, which can be used to evaluate the quality of a gener-
ated dataset. This measure is inspired by the Inception Score (IS) which is a score which
increases with when meaningful features are present [17]. The authors of the IS define
meaningful as low entropy in the label distribution. They also define diversity as high
entropy in the chance of a label distribution given any random noise vector processed by
the generator. The label distribution is generated by Inception Net [18]: an image clas-
sifier trained on the ILSVRC-2012 dataset [19]. Most importantly, this score correlates
with human perception of image quality [17]. Thus this method can evaluate a translated
dataset without the need of the original one. The authors of the FID however, noted several
unintuitive results coming from this measure and therefore proposed a new measure [20].
The FID take the internal code of Inception Net and calculates the probability of that inter-

9



nal code. This probability is approximated by a multivariate Gaussian distribution. This
distribution is calculated for two datasets, the translated one and the original one. Finally
the Fréchet distance is used to calculate the distance between the two distributions.

d2((m,C), (mw, Cw)) = ||m−mw||2 + Tr(C + Cw − 2(CCw)
1/2)

1. m and mw are the means of feature vectors of the real and translated datasets respec-
tively.

2. C and Cw are the covariance matrices of the feature vectors.

3. ||m−mw||2 is the mean distance between the two datasets.

4. Tr(C + Cw − 2(CCw)
1/2) is the difference in covariance.

This measure can be used to estimate the distance between two datasets based on features
used by Inception Net. This is unlike pixel based methods which can have numerous
unintuitive results. For example, slight movement of objects can have significant impact
on pixelwise distances while perceptually the difference is inconspicuous.

2.8 Mask-RCNN
Mask-RCNN is instance segmenter: a CNN trained to detect bounding boxes and segmen-
tations of objects [21]. This architecture is build out of four main components, a feature
extractor, a bounding box proposer, a bounding box classifier and a bounding box seg-
menter. The feature extractor can be any CNN, but usually architectures like VGG [22] or
ResNet [23] are used, in the case of Mask-RCNN it is ResNet. ResNet is extended to a
Feature Pyramid Network (FPN) which produces feature maps on different scales. Layers
on top of the pyramid contain high level features, layers at the bottom contain low-level
features. This is the backbone of Mask-RCNN. This FPN is then used to propose Regions
of Interests (ROIs) by the Region Proposal Network (RPN). Afterwards these ROIs are
classified and aligned onto the feature maps. The ROI proposal and classifications are part
of the faster-RCNN network [24]. The authors of Mask-RCNN extended this architecture
such that the ROI alignment with the feature layers is accurate enough for segmentation.
The mask and bounding box prediction are the head of the Mask-RCNN network.

This network has been implemented in the detectron2 [25] repository of Facebook re-
search. This repository hosts a number architectures capable of object detection, segmen-
tation and pose estimation. It is also benchmarked as one of the faster frameworks10.

10https://detectron2.readthedocs.io/notes/benchmarks.html
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When evaluating the MASK-RCNN the main measure used is the Average Precision (AP)
of both bounding boxes and segmentations. The AP is the area under the recall-precision
curve found when plotting precision against recall. For both bounding boxes and segmen-
tations the Intersection over Union (IoU) cutoff is an important factor. The IoU is the area
of the intersection of two shapes divided by the union of both shapes. Generally a fixed
IoU is chosen as the cutoff point for accurate detections. For the COCO annotation used
in this thesis however, ten IoU cutoff points are used. They range from 0.5 till 0.95 with
a step size of 0.05. For each step the AP is calculated with that step as a cutoff point, for
each class these ten APs averaged to form a class AP.

2.9 Panoptic
The task of panoptic segmentation is the combination of previously mentioned instance
segmentation and semantic segmentation. Where as instance segmentation identifies dif-
ferent instances of the same class, semantic segmentation does not. For classes such as
"background" such semantic segmentation is a better fit than instance segmentation as
there is only one background in any image. These semantic classes are commonly re-
ferred to as "stuff" whereas instance classes are commonly called "things". For panoptic
segmentation, the previously mentioned FPN (Section 2.8) is extended with a semantic
segmentation output layer which works in parallel with the instance segmenter [26]. This
network is implemented in the Detectron2 framework similar to the Mask-RCNN instance
segmenter [26].
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3 Method
Now that the theoretical foundations are established, the precise methods used in this
thesis can be explained in detail. For this thesis a dataset had to be gathered existing of
simulation images and real images. Additionally to encourage reproducibility, code and
data is released. Furthermore the exact training methods with their hyperparameters are
disclosed for both the GANs and the segmenters. Finally the calculation of the FIDs are
explained.

3.1 Dataset
For the purpose of this thesis, some adjustments have been made to the simulation11. A
skydome texture was added to provide complex features which an unsupervised GAN
can match with the complex background real robots observe. The previously single color
background provided problems in two-fold. Firstly the mismatch between the simulated
background and the real background makes the GAN rely on the perspective bias to guess
where the background begins. Secondly, robot features represented in the latent space
double as background features. This causes robots to turn into pillars or blurs when trans-
lating from simulated to real.

Another change was made to the native semantic segmentation camera, which produces
segmentations of objects the robot can see. This module being rewritten to give each
individual component an unique ID, resulting in over 700 different components. This en-
ables more control compared to the 26 colors the default module works with. Finally the
necessary code was inserted to save images from the camera feed and link them to their
annotations.

The semantic segmentation was converted to two formats: instance segmentation and
panoptic segmentation. Instance segmentation contains polygons for every object in the
image, objects may overlap if necessary. Panoptic segmentation contains an image where
each class or instance has a different id. In this type of annotations, no overlap is possible.

3.1.1 Accessibility

The simulated dataset is published together with all translation models and the panoptic
annotations [27]. Furthermore the code used in this thesis is available at https://

11https://github.com/HiddeLekanne/HULKsCodeRelease
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Figure 6: CycleGan early experiments. Due to the lack of features, a difference in per-
spective (camera angle) is contributing significantly to the translation errors

github.com/HiddeLekanne/Robocup-SPL-Simulated2Real.

3.2 GAN Training
The different architectures are all trained with the same data, 9040 pictures of synthetic
data and a random subsample of 10.000 of the real data. The validation set is 10% of the
total amount of data in both datasets. All translation examples shown in this thesis are from
the evaluation sets. Training time for each architecture was 50 epochs of full dataset with
batch size 2. This amounted to 200.000 iterations which is comparable with the original
iteration numbers of CycleGan [14] and MUNIT [16]. The GPU used was a Geforce RTX
2018 Ti running on CUDA version 10.1 and Torch version 1.4. For both architectures the
Pytorch implementations were used12. The image size was 320x240 which is a downscale
of a factor of two from 640x480. Parameters not addressed in this section remained the
same as in the original implementations.

12https://github.com/eriklindernoren/PyTorch-GAN
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3.2.1 Adjusted Loss

For both architectures an adjustment for the loss function has been implemented. For
CycleGan the cycle consistency loss has been amplified to five times the normal rate.
Additionally, the loss was only applied to the simulation-real-simulation case, not the
real-simulation-real case. The amplification without this modification causes in-field dis-
tortions, like referees walking on the field, to be represented as special cases of robots.
This made some robots in simulation turn into black blurs when the GAN tries to translate
them. The MUNIT architecture got the same adjustment.

3.3 Instance Segmenter
The instance segmenter is trained on 8136 images. These are the same images used for
training the GANs. The instance segmenter is trained five times; four times on translated
simulation images by four different GAN configurations and once on the original sim-
ulation images. It is evaluated twice per dataset; once on a size 904 evaluation dataset
originating from the simulation and once on a size 500 dataset of manually annotated real
images. Similarly to the training sets, the evaluation sets are part of the evaluation sets used
for the GANs. The framework used is the Detectron2 [25] as described in section 2.8. The
specific architecture chosen was the Mask-RCNN with a FPN backbone and ResNet with
51 layers. According to the authors of Mask-RCNN the FPN is to be the best method
to structure the feature layers from ResNet [21]. For the size of the backbone, the large
ResNet backbone of 101 layers overfits slightly more compared to the 51 layers ResNet
for the datasets used in this thesis, see appendix A. The shorthand for this configuration
is mask_rcnn_R_50_FPN_1x. A segmenter is trained in the Detectron2 framework [25],
it is trained for 80.000 iterations. The instance segmenter is tasked to predict the fields,
goalframe, goalnets, robots, balls, lines and backgrounds. However only balls and robots
are evaluated in the manually labelled datasets. To evaluate the instance segmenter both
the bounding box and the segmentations are used.

3.4 Panoptic Segmenter
The panoptic segmenter is trained the same way as the Mask-RCNN with some notable
differences. The same backbone was used except that it was extended with semantic seg-
mentation as described in section 2.9. A different training-validation split on the same
dataset was used. This different split was due to the different kind of annotation needed
for this task making the previously dataset incompatible. Furthermore the categories goal-
frames, goalnets, robots and balls were designated as instance segmentations (’things’)
while background, field and lines were designated as semantic segmentations (’stuff’).
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3.5 FID
The Fréchet Inception Distance (FID) is calculated on the training sets and the validation
sets as presented in Table 1 and 2 of Section ??. Not all possible combinations of datasets
are calculated, only combinations with an simulation or real domain and a translated do-
main are calculated. The distances to the simulated images are calculated for measuring
feature retention. At the same time it measures style difference. The distances to the real
images are about feature approximation, which is the reality gap defined by the FID. For
the CycleGan architecture, only one image is generated per simulation image as CycleGan
doesn’t have diversity in its output even with random noise [16]. The MUNIT architec-
ture is configured to generate five images per simulation image with random uniform style
parameters.
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4 Results
For the results. Firstly a qualitative evaluation of the different GANs is done. This gives
an intuitive way to see the results of the different architectures. Secondly the FIDs be-
tween translated domains and simulated or real domains are compared for more robust
evaluation. Thirdly both instance and panoptic segmentation architectures trained on the
different translated datasets are evaluated on the real dataset in order to investigate the
remaining reality gap. Finally some qualitative evaluation is done on the panoptic seg-
mentation results to further identify some effects different GAN architectures can have.

4.1 Samples
The samples shown here are a randomized sample from the validation set for qualitative
evaluation of the different GAN approaches described in Section 3.2.
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Figure 7: Random sample translated by different generators, from left to right:
Original image, CycleGan, CycleGan-adjusted, MUNIT and MINUT adjusted loss.

17



The first sample (Figures 7) consists of different translations made by the different GAN
architectures. The different Generation Adversarial Networks broadly produce the same
results. The color composition of the real images is reproduced very well in the translation
process. Additionally the background of the images look representative of the real dataset
to such a degree that a segmenter could learn to recognize it as such. Furthermore field fea-
tures are mostly accurately represented. Some exceptions to this are in dark images cases
where some line segments seem to blur black. These can be found in Figure 7 column 2,
3 and 5 of row 4. Futhermore the MUNIT light images have the problem that lines and
balls sometimes blend with the field. This can be found in Figure 7 column 5 row 2 and
5. Note however, that the MUNIT architecture is difficult to compare since the style code
is different between the two versions. The same style effect can be expressed by differ-
ent style parameters when different versions of the same architecture are used, thus a one
on one comparison is impossible. For CycleGan such a comparison is possible in Figure 8.

Figure 8: CycleGan normal at the top, adjusted loss at the bottom. Objects are more clearly
defined in the adjusted loss results.

The second sample (Figure 8) showcases the difference of the adjusted loss makes on the
CycleGan architecture. The top row showcases generally less clear images and sometimes
disappearing features such as the ball in the first image or robot legs in the second image.
The question remains if this adjusted loss has the same effect in a multimodal approach.

In the multimodal approach (Figure 9), comparison is difficult, as the same style parame-
ters have different effects in different network instances. Therefore it is difficult to qualita-
tively evaluate the difference. It may be noted that in general more robot specific features
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Figure 9: MUNIT normal at the top, adjusted loss at the bottom.

are visible in the far away robots when looking at the adjusted loss generated images. Ex-
amples of this are column 2, 5 and 6. An exception to this is column 3 has a particularly
powerful style augmentation, where everything changed to field.
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4.2 Fréchet Inception Distance (FID)
The FID score as described in Section 2.7 measures the distance between two datasets.
Therefore it is a useful metric to see how close the translated images are to the target
dataset, and how different they are from the original dataset.

Table 1: FID of train dataset and translation GAN combinations (lower is better).
Simulation Real

CycleGan 207.270 52.773
CycleGan-adjusted 176.545 38.085

MUNIT 212.587 38.982
MUNIT-adjusted 202.637 28.096

The FID scores seem to follow a trend where CycleGan has the highest distance to the
real dataset and MUNIT-adjusted the lowest. Interesting result is that the adjusted loss
not only lowers the distance to the simulation dataset but also to the real dataset. But this
result might not be generalizable to the whole dataset. Therefore the validation sets are
also compared.

Table 2: FID scores of validation dataset and translation GAN combinations (lower is
better).

Simulation Real

CycleGan 233.825 75.017
CycleGan-adjusted 203.249 61.012

MUNIT 234.606 49.497
MUNIT-adjusted 224.423 39.271

For the validation sets the same trend shows as seen with the training sets. This provides
evidence that the this trend holds true for the whole dataset too. Also note the absolute
difference in the results between the train and validation datasets; this is due the statistical
smoothing effect of increasing sample sizes, lowering absolute scores for smaller datasets.

4.3 Instance Segmentation Results
The FID scores do not evaluate the results a machine learning algorithm might have when
trained on the translated set. To evaluate this a segmenter was trained on the four different
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translated datasets and the original one. Both the bounding box and the segmentations
were evaluated on Average Precision as described in Section 2.8. The reality gap is de-
fined as the difference between the best performing simulated validation APs and the best
real validation APs. The reality gaps of both bounding boxes and instance segmentation
are averaged for the summarized reality gap.

Table 3: Bounding Box AP on translated data set (higher is better).
lines robots goalframe goalnet field ball background

Pure Simulation 73.613 83.434 87.585 86.707 96.216 78.754 93.675
CycleGan 69.330 77.351 83.326 81.659 96.588 69.965 92.647

CycleGan-adjusted 71.165 79.587 84.474 84.124 96.177 72.626 93.241
MUNIT 63.616 69.561 76.675 75.303 95.538 51.413 90.075

MUNIT-adjusted 65.472 72.382 79.545 76.755 95.835 61.883 90.774

The bounding box APs in Table 3 show the highest results for instance segmenters trained
on purely simulation, evaluated on pure simulation. The easier categories seem to be the
field and background, but this is also due to their relative size on the images. Whereas balls
occupy relatively small bounding boxes, small bounding box errors result in larger AP loss
compared to the same absolute errors occurring with field and background categories. To
evaluate the reality gap on a deeper level, where individual pixels matter, segmentation
APs are used.

Table 4: Instance segmentation AP on translated data set (higher is better).
lines robots goalframe goalnet field ball background

Pure Simulation 4.603 72.623 50.758 81.292 92.158 80.130 92.364
CycleGan 4.76 64.572 41.892 73.729 92.424 70.392 90.300

CycleGan-adjusted 4.88 67.298 44.736 76.739 92.539 72.374 90.936
MUNIT 3.803 54.248 29.565 63.974 90.921 49.814 86.036

MUNIT-adjusted 4.201 58.058 33.557 66.484 91.227 61.317 87.351

The segmentation APs in Table 4 are generally lower, as the task is more difficult com-
pared to predicting bounding boxes. Notably the lines have terrible segmentations com-
pared to their relatively good bounding box APs. Segmentation seems especially hard for
this category. Furthermore there is a downward trends in both the bounding boxes and the
segmentation APs where multimodal worsens the APs and adjusted loss betters the APs.
This holds true for the robots, goalframe, goalnet, ball and background categories. These
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scores give a mixed evaluation of the difficulty of the dataset and the accuracy of the an-
notations after translation. To evaluate the reality gap, additional evaluation needed on an
manually annotated real dataset.

Table 5: Bounding Box AP on real data set (higher is better).
robots ball

Pure Simulation 0 0
CycleGan 62.322 44.689

CycleGan-adjusted 63.075 39.479
MUNIT 67.020 48.522

MUNIT-adjusted 67.946 47.251

The reality gap has been evaluated for the two categories that were manually annotated:
the robots and ball as seen in Table 5 and 6. When evaluating on the real dataset which
is described in Section 3.1, the naive approach of training a segmenter in simulation with-
out translating proves disastrous. The segmenter classifies everything as background, this
issue could be solved by removing the background category, but that kind of accidental
generalizability runs contrary to the aims of this thesis. The APs in Table 5 are notably
better when trained on the multimodal approaches, differing an average of 4%. The gap
between these scores and the best case shown in Table 3 is 15% and 30% for robots and
balls respectively. This indicates a significant reality gap which is discussed in Section 5.2.

Table 6: Instance segmentation AP on real data set (higher is better).
robots ball

Pure Simulation 0 0
CycleGan 47.479 49.497

CycleGan-adjusted 49.232 42.327
MUNIT 55.926 50.835

MUNIT-adjusted 56.705 50.910

For the segmentation APs in Table 6 much of the same holds true as the bounding box
APs. The reality gap is slightly worse with 16% for robots and almost 31%
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4.4 Panoptic Segmentation
The panoptic segmentation is the most complete way to frame the problem of segmen-
tation where instance segmentation and semantic segmentation are combined. For this
evaluation only the instance segmentations are used to identify the reality gap. This allows
for easy comparison to the instance segmenter of the previous section. The full results
are listed in Appendix B. The results of the panoptic segmenter are similar to the results
obtained from the instance segmenter with a few notable exceptions. Dissimilarities can
be explained by the use of a different train evaluation split as described in Section 3.4.
There is only one Real dataset.

Table 7: Bounding Box AP on translated data set (higher is better).
robot goalframe goalnet ball

Pure Simulation 82.422 87.098 88.393 75.917
CycleGan 76.421 82.340 81.521 68.883

CycleGan-adjusted 78.404 83.696 83.983 69.983
MUNIT 67.294 75.049 74.127 48.619

MUNIT-adjusted 70.961 76.294 74.589 58.648

For the bounding boxes in Table 7 the best scores are slightly lower for the categories
robot, ball and goalframe compared to the instance segmenter in Table 3. Additionally the
panoptic approach displays roughly the same AP scores for other architectures.

Table 8: Instance segmentation AP on translated data set (higher is better).
robot goalframe goalnet ball

Pure Simulation 73.368 41.292 82.269 81.845
CycleGan 63.752 34.464 73.279 68.470

CycleGan-adjusted 65.656 36.492 76.429 71.295
MUNIT 50.551 24.168 61.659 47.626

MUNIT-adjusted 54.945 26.941 64.667 59.525

The segmentation APs in Table 8 are equally similar to the segmentation APs from the
instance segmenter in Table 4. The scores are slightly lower which can be explained by
the use of a different evaluation set.
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Table 9: Bounding Box AP on real data set (higher is better).
robots ball

Pure Simulation 0 0
CycleGan 63.373 45.063

CycleGan-adjusted 62.010 38.440
MUNIT 66.052 45.943

MUNIT-adjusted 65.623 43.253

The bounding box APs on the real dataset of the panoptic in Table 9 are slightly worse
compared to the APs of the instance segmenter 5. The results for the panoptic segmenter
trained on the pure simulator are equally bad caused by the same problem of classifying
everything as background. The reality gap is 15% and 30% for robots and balls respec-
tively.

Table 10: Instance segmentation AP on real data set (higher is better).
robots ball

Pure Simulation 0 0
CycleGan 51.681 56.037

CycleGan-adjusted 49.885 50.039
MUNIT 54.401 51.895

MUNIT-adjusted 55.522 52.602

The panoptic evaluation produces similar results as the instance segmentation in Table
10 with a notable exception. The CycleGan performs significantly better on both robot
and ball segmentations compared to the MASK-RCNN CycleGan results in Table 6. This
suggests the panoptic approach has slightly different requirements in order to be perform
well. The reality gap is 19% and 25% for robots and balls respectively.

24



4.5 Segmentation Samples
Some pictures are taken out of the real evaluation set in order to highlight some differences
in the panoptic segmenters trained on different translation approaches. In these pictures
the semantic (’stuff’) classes are annotated with a singular color while instance (’thing’)
classes have a different color per instance, both semantic and instance types are described
in Section 3.4.

Figure 10: Results of panoptic segmentation on real images trained on pure simulation,
CycleGan, CycleGan adjusted, MUNIT and MUNIT adjusted respectively.

In Figure 10 the effects of different GAN architectures are visible. For the first row all
except CycleGan-Adjusted segment the two robots correctly. The CycleGan appears to
generalize poorly with respect to robot segmentation in some cases, explaining its rel-
atively worse APs on the real dataset compared to all other methods. The second row
showcases segmentation of a piece of field as a ball, this occasional imagining of objects
is the result of the style augmentation happening in with standard MUNIT architecture.
The MUNIT-adjusted does not have the same problem. Finally notice that even though
lines are now correctly treated as stuff the class is not correctly predicted. The lines in the
picture are annotated "negatively"; meaning there is no annotation at all where the lines
annotation should be.
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5 Discussion

5.1 Adjusted loss effect
The idea behind the adjusted loss is to ground the generated images more in the simulated
domain and by proxy force the generator to focus more on semantic differences. In theory
this would improve the performance of any object detector as wrong segmentations are
minimized. Wrong segmentations meaning segmentations which are correct in simula-
tion, but having their features removed or obfuscated after domain translation through a
GAN. This would mean a segmenter learns to detect the wrong features. In practice the
segmenter used for evaluation is not significantly confused by those wrong segmentations.

Instead, the added diversity of the multi-modal approach of MUNIT has a much greater
positive effect on the results. It could be the case that the adjusted loss reduces diversity
for the ball appearances.The CycleGan-adjusted having the worst overall AP scores, could
be the result of a compounding lack of diversity in both the architecture and the adjusted
loss function.

5.2 Reality Gap Metrics
The reality gap measured by the FID conflicts slightly with the gap measured by the in-
stance segmenter. The FIDs show that the MUNIT-adjusted architecture produces the best
dataset in order to close the reality gap. The instance segmenter AP scores, seem unaf-
fected by the adjusted loss function, even though the FIDs predict an even better score.
This difference in metrics can be explained by numerous factors, firstly the underlying
neural net used for the FIDs could simply not process certain features important to ball
and robot detection. Inversely it could also be the case that certain features in the back-
ground are important to the FID metric but not for detection. This would mean that the
difference between the ILSVRC-2012 dataset [19] and the dataset used in this thesis skews
this metric. Secondly the segmenter may be unable to make use of the better features as the
result of a ill-posed problem definition. Using an instance segmenter for both things and
stuff is a naive formulation. This may affect the average precision scores for the balls and
goals which are manually labelled. The panoptic segmenter however, produces similar or
slightly worse results as the instance segmenter. This reaffirms that the problem definition
is not ill-posed for the evaluation used in this thesis.

The Panoptic segmenter raises another issue, namely that the ball segmentations are the
best when trained on CycleGan. This would mean that the panoptic problem has different
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requirements than the instance segmentation problem. A likely explanation would be that
the segmentation of the field influences the detection of the ball such that the ball area is
overestimated less in the panoptic case.

5.3 Real Evaluation
Because of . This leaves only qualitative evaluation to estimate the gap for the other
classes. As can be seen in Section 4.5, the gap appears to be similar for all classes except
lines. The lines perform badly even when designated as semantic segmentations (’stuff’).

Compared an alternative method of generating synthetic data, such as the stochastic scene-
render [4] the APs reported in this thesis are significantly lower. The AP reported in that
paper is 94.40% for the instance bounding box task. These results are achieved with a
specifically build architecture, which was both smaller and trained specifically for the task
on numerous configurations. In that same paper additional model size show a reduction
in performance when trying to detect instances on the field. This trend could also explain
why the large size of the MASK-RCNN model affects the performance negatively for the
task posed in this thesis.
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6 Conclusion
This thesis aimed to identify the challenges and possibilities of image-to-image translation
between simulation images and real images for the SPL. As stated in the introduction no
other literature has addressed the reality gap caused by image translation GANs within
context. The gap was identified as 28 FID for the best performing architecture: MUNIT-
adjusted. However, additional evaluation with instance segmenters produced results which
indicated that this estimate was optimistic. With the evaluation of the instance segmenter
the reality gap was estimated at 15.5% AP loss for robots and 30.5% AP loss for balls
with MUNIT-adjusted still being the best architecture. After evaluating the panoptic seg-
menter this gap calculated to be a very similar loss of 17.5% and 27.5%. In the panoptic
evaluation, the MUNIT-adjusted was not the best architecture. However, MUNIT based
architectures still produced the best results on average. Therefore it can be concluded that
the MUNIT architecture provides better datasets than the CycleGan architecture. This is
mainly because of its style augmentation, which may cause erroneous annotations, but
provides the diversity needed for better results.

7 Future Work
Although many questions about enhancing simulated images were covered, some ques-
tions will be left unanswered. First of all, only one simulation was used to generate syn-
thetic data. The generalizability of the architectures used in this thesis to other simulations,
although likely, still needs to be demonstrated. Furthermore, the most general case of mul-
tiple simulations to multiple kinds of camera settings of robots also needs to be explored.
Finally the results of in this thesis highlight the potential of the unsupervised translation
with state of the art detectors, but this promise also needs to be tested on detection algo-
rithms used on real robots.
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A Mask-RCNN large nets
On the particular dataset used in this paper, changing the size of the MASK-RCNN net
performs the same or worse. The APs for the best performing MASK-RCNN with ResNet
size 101 according to the paper[21] trained with the cycleGan with adjusted loss performs
as follows:

Segmentation AP
Data lines robots goalframe goalnet field ball background

Converted 5.098 67.913 45.429 78.595 92.800 71.234 91.061
Real - 47.578 - - - 42.633 -

Bounding Boxes AP
Converted 68.672 77.94 82.741 83.030 96.200 70.570 92.210

Real - 59.667 - - - 40.203 -
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B Panoptic Evaluation
The panoptic method has a specific method of evaluation. This method of evaluating is
difficult to compare with evaluation methods used for the instance segmenter. Addition-
ally this method cannot be used to evaluate the real dataset as it requires full semantic
segmentations. Therefore these results are not discussed further.

Pure Simulation Panoptic Evaluation Results:
| | PQ | SQ | RQ | #categories |
|:------:|:------:|:------:|:------:|:-------------:|
| All | 82.266 | 91.577 | 89.973 | 7 |
| Things | 81.135 | 86.423 | 93.795 | 4 |
| Stuff | 83.773 | 98.449 | 84.877 | 3

CycleGan Panoptic Evaluation Results:
| | PQ | SQ | RQ | #categories |
|:------:|:------:|:------:|:------:|:-------------:|
| All | 77.978 | 88.707 | 87.683 | 7 |
| Things | 75.024 | 83.365 | 89.877 | 4 |
| Stuff | 81.917 | 95.829 | 84.758 | 3 |

CycleGan Adjusted Panoptic Evaluation Results:
| | PQ | SQ | RQ | #categories |
|:------:|:------:|:------:|:------:|:-------------:|
| All | 79.557 | 89.615 | 88.689 | 7 |
| Things | 77.205 | 84.198 | 91.548 | 4 |
| Stuff | 82.692 | 96.839 | 84.878 | 3

Munit Panoptic Evaluation Results:
| | PQ | SQ | RQ | #categories |
|:------:|:------:|:------:|:------:|:-------------:|
| All | 70.379 | 84.607 | 82.287 | 7 |
| Things | 64.288 | 79.161 | 81.001 | 4 |
| Stuff | 78.500 | 91.868 | 84.002 | 3 |

Munit adjusted Panoptic Evaluation Results:
| | PQ | SQ | RQ | #categories |
|:------:|:------:|:------:|:------:|:-------------:|
| All | 73.621 | 86.276 | 84.765 | 7 |
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| Things | 68.979 | 80.769 | 85.179 | 4 |
| Stuff | 79.811 | 93.619 | 84.214 | 3 |
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