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Abstract

As demonstrated in recent years, Convolutional Neural Networks (CNNs) are pow-
erful tools for image recognition tasks. A major contributing factor to this is their
translation invariance. This property allows them to recognize objects – or rather
the defining features of objects – regardless of their location in the image. How-
ever, whereas objects may appear anywhere in an image, their orientation should
not change. This is because CNNs are not inherently rotation invariant. For most
types of imagery, this has no significant implication, as most objects naturally
have similar orientations for the majority of the time. However, with images taken
from a satellite, objects can take on any orientation due to the satellite’s sensors
being able to take on any orientation. This can pose problems when dealing with
raw satellite imagery. Another drawback of traditional CNNs is that they are not
illumination invariant. Therefore, training a CNN under varying types of lighting
requires additional training data, as it needs to learn the features for every type
of illumination separately. To deal with these problems, this thesis proposes a
combination of two methods for improving the building damage assessment per-
formance of a CNN with small datasets of high-resolution satellite imagery. The
first proposed method is to incorporate rotational equivariance into the CNN us-
ing Group equivariant Convolutional Neural Networks (G-CNNs). Secondly, a
method for incorporating illumination invariance is proposed. The findings in this
research demonstrate that a G-CNNs can provide a considerable increase in per-
formance with smaller datasets when compared to a regular CNN. However, the
implementation of illumination invariance does not yield a similar convincing uplift
in performance.
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1 Introduction
Every year natural disasters are responsible for many thousands of deaths through-
out the world. Some of these deaths are a direct result of the disasters themselves,
but another great portion are due to the aftermath they leave behind. When such
a disaster strikes, quick and accurate situational information is viral for an effec-
tive response. However, before emergency aid can be provided to the affected area,
the location and the severity of damage should be known. And with traditional
boots-on-the-ground damage assessment methods being difficult, dangerous and
slow, this has resulted in ineffective use of emergency aid, consequently leading to
many unnecessary lives lost. Due to these limitations, efforts have been made to
enable the assessment of damage through alternative methods. One such method
is the assessment of building damage from satellite imagery. As satellite imagery
is taken on a regular basis, changes in the earth’s landscape can be derived from
them. This, combined with recent developments in AI – in particular with regards
to Convolutional Neural Networks (CNNs) – has enabled the possibility of au-
tomating the process of building damage assessment from satellite imagery. This
would eliminate the risks involved with traditional damage assessment methods,
in addition to providing a significant speed up to the entire process.

However, although these methods show great potential, one major limitation
comes to light: There is a lack of large, high-resolution annotated datasets of
satellite imagery. Moreover, if there is such a dataset available, often this is only
for specific locations. Furthermore, although models have been trained on such
datasets, which performed reasonably well, there is a lot of variety in the footprint
concerning the materials used and the overall look of buildings throughout different
regions in the world. Therefore, a model trained in one region may perform poorly
in others, as it does not generalize well. As a result, these models are not deployed
in regions other than those that were in the initial dataset.

With this limitation in mind, a combination of two methods is proposed to
improve the performance of a CNN on small datasets: incorporating illumination
invariance and rotational equivariance into the CNN. Integrating these properties
into the CNN is expected to improve the quality and robustness of detected features
in images, therefore improving the CNN’s generalizing capability. Improving the
CNN’s performance for small datasets would reduce the amount of work that
has to be put into creating huge annotated datasets. Rather, a small amount
of training data could provide the CNN with enough data to achieve sufficient
results. Therefore, – coming back to the limitation of building damage assessment

3



CNNs not generalizing well to previously unseen regions/building footprints – more
effort could be put into expanding the dataset to other regions. This would open
up the deployment of building damage assessment from satellite imagery to more
regions. In an effort of realizing this, the research question thus becomes: Can
we improve a CNN’s building damage assessment performance on small datasets
of high-resolution satellite imagery by incorporating illumination invariance and
rotational equivariance?

Related work Several implementations for attaining illumination invariance
have been proposed throughout the years. Methods such as utilizing depth infor-
mation have demonstrated robustness against shadows, different weather condi-
tions and changes in illumination [1] [2]. Additionally, different color spaces [3] [4]
[5] have been proposed. Other works include camera specific illumination invariant
spaces [6] [7]. However, achieving illumination invariance in satellite imagery has
not been that thoroughly researched.

Regarding rotation robustness of CNNs, a considerable amount of literature is
available about invariant representations. One of the most well known examples
is SIFT [8], a local descriptor capable of extracting scale- and rotation-invariant
features. Unfortunately, as it is a local descriptor, it fails to represent whole
objects in classification tasks. Another widely used method to achieve rotational
invariance in remote sensing image classification is the HOG [9]. The HOG can
be seen as something of an extension to SIFT, the main difference being that it
is computed over localized portions of an image. While the HOG can improve
performance in some cases, it falls apart in more complex scenes. Double-Net [10]
has demonstrated a rotation-invariant feature detection in satellite imagery. This
was achieved by incorporating multiple channels with shared weights into the CNN,
where each channel refers to a specific rotational direction. However, convergence
speeds were slow.

Whereas in some cases invariance may be desired, equivariance is often more
useful as the ability to determine the feature’s spatial configuration is retained.
Therefore, numerous other works have addresses the issue of learning equivariant
representations. E.g. equivariant descriptors [11], equivariant Bolzmann machines
[12], equivariant filtering [13] and equivariant deep symmetry networks [14].



2 Theoretical foundation
2.1 Illumination invariant imagery

In [15], a method for exploiting spectral properties of a camera’s sensor to infer
physical quantities about a scene as proposed. I.e. images are processed to be
illumination invariant. This method is aimed at reducing the effects of changes in
illumination and the influence of shadows that are cast as a result of directional
lighting. In outdoor environments, variables such as lighting can significantly alter
the appearance of a scene, in turn complicating image recognition tasks. This is
because conventional CNNs are not inherently illumination invariant. Therefore,
resolving issues regarding change in illumination could be highly beneficial for the
performance of a CNN.

As established by multiple experiments [16] [17], the visible spectrum of natural
lighting closely follows the Planckian locus. As such, following [18], the illumina-
tion spectrum can be estimated as a Planckian source:

log(Ri) = log(GI) + log(2hc2λ−5
i Si)−

hc

kBTλi
(2.1)

where h is Planck’s constant, c is the speed of light, kB is the Boltzmann constant
and T is the correlated color temperature (CCT) of the black-body source. Then,
if the peak spectral responses at three different wavelengths λi (e.g. red, green and
blue) are known, [15] proposes that equation 2.1 can be reduced to:

I = log(R2)− α · log(R1)− (1− α) · log(R3) (2.2)

where I is a 1D color space and R1, R2 and R3 correspond to the ordered peak
spectral sensitivities λ1 < λ2 < λ3. The 1D color space I will be invariant to the
CCT if α satisfies equation 2.3 [15]. Thus, achieving illumination invariance.

1

λ2
=

α

λ1
+

(1− α)
λ3

(2.3)
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2.2 Group equivariant Convolutional Neural Net-
works

In a paper by Taco S. Cohen et al [19], the notion of Group equivariant Convo-
lutional Neural Networks (G-CNN) is introduced. Its improvement as opposed to
a regular CNN is the inclusion of an additional layer: the G-convolution layer.
The main purpose of this layer is to reduce sample complexity by exploiting sym-
metries. Moreover, the G-convolution layer shares its weights to a much higher
degree than a normal convolution layer. With that, its expressive capacity is in-
creased without an increase in the amount of parameters. To get a more in depth
understanding of how exactly this works, the fundamentals of the G-convolution
layer are explained below.

2.2.1 Symmetry groups

As mentioned, the G-convolution layer exploits symmetries. A symmetry of an
object is defined as a transformations that, if applied, leaves the object invariant.
To evoke a more intuitive understanding of what this means we will have a look
at an example of a symmetry: the flip transformation. Let us take an image R2.
If we apply the flip transformation we get:

− R2 = {(−x,−y)|(x, y) ∈ R2} = R2 (2.4)

As can be seen from the equation above, the flip transformation leaves the image
R2 invariant. Thus, the flip transformation is a symmetry of the image R2. Addi-
tionally, following from the fact that all symmetry transformations leave the object
invariant, a combination of symmetry transformations results in another symmetry
transformation. Using that same reasoning, it is not hard to see that the inverse of
a symmetry also is a symmetry. A set of such symmetry transformations is known
as a symmetry group.

2.2.2 The group p4(m)

Regarding symmetry groups, two that are used for the G-CNN are the group p4,
and group p4m. The group p4 contains the set of all combinations of translations
and rotations of 90 degrees around any center of rotation in an image. This group
can be expressed in terms of three parameters: r, t1 and t2, which in matrix form
is denoted as:

g(r, t1, t2) =

cos(rπ/2) −sin(rπ/2) t1
sin(rπ/2 cos(rπ/2 t2

0 0 1

 (2.5)



where 0 ≤ r <4 and (t1, t2) ∈ R2. Applying this symmetric transformation to
any point ~x ∈ R2 is then done by multiplying matrix (2.5) to the homogeneous
coordinate vector of that point ~x:

g(r, t1, t2)~x =

cos(rπ/2) −sin(rπ/2) t1
sin(rπ/2 cos(rπ/2 t2

0 0 1

xy
1

 (2.6)

The group p4m is an extension of the group p4, with the addition of mirror reflec-
tions: mirrors axes both perpendicular and parallel to the main axis. The matrix
representation of this group can be written as:

g(m, r, t1, t2) =

(−1)mcos(rπ/2) −(−1)m − sin(rπ/2) t1
sin(rπ/2 cos(rπ/2 t2

0 0 1

 (2.7)

where m ∈ {0,1}, 0 ≤ r < 4 and (t1, t2) ∈ R2. Applying this symmetric transfor-
mation to any point ~x ∈ R2 naturally goes the same as for (2.6), by multiplying
(2.7) with the homogeneous coordinate vector of that point ~x:

g(m, r, t1, t2)~x =

(−1)mcos(rπ/2) −(−1)m − sin(rπ/2) t1
sin(rπ/2 cos(rπ/2 t2

0 0 1

xy
1

 (2.8)

2.2.3 Exploiting symmetries to achieve group equivariance

The result of applying filters to an input image in a CNN is captured by feature
maps. As an example, Figure 2.1 (left) shows a group p4 feature map. The four
patches are associated with the four 90 degree rotations that are incorporated in
the group p4. Then, if we apply a rotation of 90 degrees (r = 1) on this feature
map, each patch follows the direction of its red arrow and is rotated 90 degrees.
The resulting feature map after this transformation can be seen in Figure 2.1
(right). This is the exact transformation a feature map in a G-CNN with a group
p4 layer would go through if the input image would be rotated in the same 90
degree rotation.



Figure 2.1: A group p4 feature map for a fourfold rotations r. Courtesy [19]

Elaborating on this, the group p4m feature map also includes mirror reflections.
This feature map is illustrated in Figure 2.2 (left), where the 8 different patches
represent the four 90 degree rotations r and their respective mirror reflections m.
If we were to apply the same 90 degree rotation to the p4m feature map, each
patch would again follow its red arrow and be rotated 90 degrees. The result of
this transformation is shown in Figure 2.2 (right).

Figure 2.2: A group p4m feature map for a fourfold rotations r and their mirror
reflections m. Courtesy [19]

The implications of using these symmetry groups become evident in Figure 2.3.
Here, two images are fed into a two layer G-CNN [20] that uses the group p4. One
is the original image, the other is its rotated duplicate. The Z2 → p4 convolution
is performed by correlating the input image with a fourfold of 90 degree rotated
instances of the kernel. Then, the result is correlated with the p4-kernel, which is
again rotated fourfold. Lastly, average pooling over all orientations in the feature
map is performed, resulting in the output. When comparing both outputs in
the figure, the pooled output of the rotated input image is the exact 90 degree
rotated duplicate of the original image’s pooled output. Therefore, this network is



demonstrated to be equivariant to all 90 degree rotations. One may verify that this
is the case for all transformations belonging to the group p4. Were we to extend
this network to a p4m network, it would also be equivariant to all transformations
belonging to that group.

Figure 2.3: Demonstrates the rotation equivariant property of a G-CNN for p4.
Courtesy [20]



3 The xBD dataset
The dataset used for training the network in this project was the xBD dataset
[21]. At the moment of writing, this was the largest dataset with high-resolution
annotated satellite imagery. Additionally, it was specifically designed for advancing
building damage assessment methods, with the aim of improving post-disaster
humanitarian assistance and disaster recovery. This made the xBD dataset very
well suited for this project. It provided both pre- and post-disaster (RGB) satellite
imagery from six different disaster types: earthquakes, tsunami’s, floods, volcanic
eruptions, wildfire and wind. The target resolution for all imagery in the dataset
was 0.8m.

3.1 Full dataset

The full xBD dataset contained satellite imagery of nineteen separate disaster
events. It should be noted that the amount of annotated buildings available from
each disaster event was not equally distributed. Figure 3.1 shows the distribution
of annotated buildings, specified in polygons, from each disaster event.

Figure 3.1: The number of annotated polygons in the xBD dataset per disaster
event.
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As mentioned, the xBD dataset provided both pre- and post-disaster satellite
imagery. The reason for this being that it enabled the detection of change between
the two images, which would be the result of the disaster that struck. An example
pair of such pre- and post-disaster imagery can be seen in Figure 3.2a versus 3.2b.
Annotation of the imagery in the xBD dataset was provided in the form of a JSON
file for each individual image. These JSON files contained the outlines (polygons)
of each building in the image, along with its corresponding damage classification
label. A visualization of these building damage labels can be seen in in Figure
3.2c.

(a) Pre-disaster (b) Post-disaster (c) Building damage labels

Figure 3.2: A pair of pre- and post-disaster images with corresponding post-
disaster building damage labels (green: no damage, red: destroyed).

However, whereas Figure 3.2c only shows two distinct damage classification labels,
there are a total of four different damage classification labels throughout the whole
dataset: ’no damage’, ’minor damage’, ’major damage’ and ’destroyed’.



3.2 Dataset subselection

The aim of this project was to improve a CNN’s performance on small datasets.
Therefore, as the xBD was a relatively large dataset, the first step was to reduce
the size of the dataset. This was done by making a subselection of the full xBD
dataset. For this subselection, the idea was to pick a single disaster type to fo-
cus on. Specifically, the chosen disaster was hurricane Michael: a very powerful
tropical cyclone that struck the contiguous United States in 2018 (the exact states
contained in this dataset were not specified by xBD [21]). Making this subselec-
tion reduced the size of the dataset to 45372 building polygons, which is about
one tenth of the full dataset. The reason for not choosing the disaster with the
smallest amount of annotated polygons will become clear in Section 5, where the
performance of our network was measured for different training sizes. While ex-
ploring all imagery belonging to the hurricane Michael disaster, it became evident
that some buildings were given the label: ’unclassified’. After removing these oc-
currences, the distribution of damage classification labels was as shown in Figure
3.3.

Figure 3.3: The distribution of damage classification labels for the hurricane
Michael disaster.



4 Methodology
4.1 Extracting buildings from satellite imagery

The objective of our G-CNN was to correctly assess building damage from satel-
lite imagery. This image classification problem had to be performed on a per
building basis. However, each image in the xBD dataset spanned an area of over
800m2. Therefore, the individual buildings first had to be extracted from these
images. As mentioned in Section 3.1, all imagery in the xBD dataset came with
a corresponding JSON file, which contained the polygons of all buildings in those
images. These polygons were used to determine the location of buildings in each
image. However, a simple cutout of each building polygon was not desired. I.e.
the G-CNN proposed in Section 4.4 would only accept square images of a fixed
dimension. Therefore, due to variations in the scale of buildings, building cutouts
had to be resized to meet these requirements. The requirement of images needing
to be square was satisfied by making a square cutout of each building around its
polygon. A margin of 20 pixels was used for this cutout. This margin’s purpose
was to provide some additional situational context to each image. An example of
this process’s output can be seen in Figure 4.1. The second requirement: images
needing to be of a fixed dimension, is discussed in Section 4.4.

Figure 4.1: Extracted building images from satellite imagery
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4.2 Calculating the illumination invariant color space

With all images of buildings obtained, the illumination invariant color space had
to be calculated. As described in Section 2.1, the illumination invariant color space
could be computed if the peak spectral responses of an image’s camera were known.
Fortunately, for every image in the xBD dataset, the name of the satellite that
captured the image was provided. All images were taken by either the GeoEye-
1 or the WorldView-2 satellite. Their respective peak spectral responses to the
red, green and blue band could be found in [22]. With this knowledge, the peak
responses could be substituted into Equation 2.3. Solving for α yielded a value of
0.54 for both satellite’s sensors. With α known, the illumination invariant color
space could be computed (Equation 2.2) for all building images. After calculation,
the 1D illumination invariant color space was added as a fourth channel to each
original RGB image. Several example outputs of the illumination invariant color
space can be seen in Figure 4.2 (bottom row).

Figure 4.2: The illumination invariant color space (bottom) calculated for the
images in Figure 4.1 (top).



4.3 Data augmentation

After obtaining all images of buildings and their illumination invariant color space,
a split was made between the training, validation and test set. For this split, a
ratio of 0.64, 0.16, 0.2 respectively was used. Then, data augmentation was per-
formed on the training set to artificially enlarge it and to create more diversity.
The image manipulations used for data augmentation were random zooms, adding
Gaussian noise, adding Gaussian blur, introducing color manipulations (brightness,
contrast, saturation, hue) and applying random affine transformations, where the
image could be rotated up to 360 degrees and sheared up to 30 degrees. Apart from
enlarging the dataset and creating more diversity, a driving factor behind perform-
ing data augmentation was to rectify the severe class imbalances (see Figure 3.3).
Therefore, data augmentation was performed to a degree that was proportional to
the size of each class. I.e. as the class ’no damage’ contained the most images,
only one augmentation was performed on each image belonging to this class. Fur-
thermore, each image in the ’minor damage’ class received seven augmentations,
images in the class ’major damage’ 19 and images in the class ’destroyed’ 25. The
class distribution after performing these augmentations can be seen in Figure 4.3.
The validation and test set received no data augmentation (see Appendix A).

Figure 4.3: The distribution of training samples for each of the four damage types
after data augmentation.



4.4 Implementing rotational equivariance

With the necessary preprocessing steps and data augmentations performed, rota-
tional equivariance could be implemented. In Section 2.2, the principle of G-CNNs
was introduced. The main difference with traditional CNNs being their usage of
G-convolution layers, which exploit symmetries to achieve group-equivariance. In-
corporation of the group p4 or group p4m G-convolution layers into a CNN was
demonstrated to render it equivariant to all transformations belonging to their re-
spective group. As the rotation transformation – which rotates by multiples of 90
degrees – belonged to both groups, the aim was to incorporate the G-convolution
layers into our own G-CNN to achieve rotational equivariance.

A DenseNet [23] architecture, based on the one proposed by B.S. Veeling et
al [20], was used for our G-CNN. Differing from B.S. Veeling et al, fewer dense
blocks were used – as the images we worked with were of a lower resolution – in
addition to an alternative activation function, i.e. the Softmax activation function.
The particular reason for using the DenseNet architecture was due to its combi-
nation with the p4 and p4m G-convolution layers being previously demonstrated
to outperform traditional CNNs on binary classification tasks [20].

G-CNN architecture

Figure 4.4: The equivariant DenseNet architecture for p4. Courtesy [20].

Figure 4.4 illustrates the equivariant DenseNet architecture for p4 (Figure 2.1).
The p4m (Figure 2.2) version requires a straightforward extension, but was not
displayed for the purpose of readability. As shown, the number of input chan-
nels reads three. However, when including the illumination invariant color space,
naturally this number increases to four. As illustrated in Figure 4.4, the architec-
ture alternates between Dense Blocks and Transition Blocks. The Dense Block’s



layers use the stacked previous layers as their input and the Transition Blocks
consist of a 1×1 convolutional layer and a 2×2 strided Average Pool. To achieve
group-equivariance in the whole model, the convolution layers are replaced with G-
convolution layers [19]. Then, as proposed by Taco S. Cohen et al [19], to achieve
group-equivariance in the batch normalization layers, moments are combined per
group feature map as opposed to per spatial feature map. Lastly, the output
layer is preceded by a group-pooling layer with a subsequent Softmax activation
function.

It should be noted that the actual architecture used for testing utilized the
extended p4m version rather than the one depicted in Figure 4.4. Furthermore,
as the input of the model demands a fixed input size of 40×40 pixels, all images
were resized to these dimensions using a Lanczos filter [24] prior to being fed into
the model.



5 Results
In this section, four different configurations of CNN models were compared: the
traditional CNN, the illumination invariant CNN, the G-CNN and illumination
invariant G-CNN. Figure 4.4 illustrates the G-CNN’s architecture. Furthermore,
the architecture that constituted the traditional CNN was based on the DenseNet
architecture, similar to that of the G-CNN. However, with the difference of lacking
G-convolution layers (Section 2.2). Instead, it used regular convolution layers.
Therefore, the traditional CNN was not equivariant to the group p4m (Figure
2.2), whereas the G-CNN was. Lastly, each of these two models was regarded to
be illumination invariant if the illumination invariant color space (see Section 2.1)
was provided as an additional fourth input channel to the model.

5.1 Model predictions

To demonstrate the differences between the four models, several post-disaster dam-
age assessment predictions for images from the test set were reviewed. For all
models, the exact same training, validation and test set was used, measuring a
size of 4800, 1200 and 1500 respectively. This was done to ensure a level playing
field for all models. Any variations in outcome could therefore be attributed to
differences between the models themselves.

5.1.1 CNN vs illumination invariant CNN

Here, a conventional CNN was compared to a CNN with the included illumination
invariant color space. Figure 5.1 shows four sample images from the test set.
These four images were given as an input to their respective models, after which a
damage assessment prediction was made. The output of these predictions is shown
in Table 5.1 and Table 5.2.
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(a) (b) (c) (d)

Figure 5.1: Four sample images from the test set (top row) with their respective
illumination invariant color space (bottom row).

Naturally, the illumination invariant color space images in the bottom row of
Figure 5.1 were not provided as an input to the conventional CNN, as it is not
illumination invariant.

Table 5.1: CNN building damage assessment predictions for the images in Figure
5.1. Illustrates the probability of each image belonging to a certain class where the
class with the highest probability is chosen as prediction (Underlined = correct
classification, green = correctly classified, red = falsely classified).

No-damage Minor-damage Major-damage Destroyed
(a) 0.04 0.40 0.41 0.15
(b) 0.02 0.09 0.38 0.51
(c) 0.18 0.39 0.40 0.03
(d) 0.25 0.23 0.15 0.37

As shown in Table 5.1, three out of the four predictions made by the conventional
CNN were false. The samples in Fig. 5.1a and 5.1c were classified as majorly
damaged instead of minorly damaged, while Fig. 5.1b was classified as destroyed
instead of majorly damaged. Only Fig. 5.1d was correctly classified in the category
destroyed. However, whereas the predictions for the samples 5.1a and 5.1c were
false, the correct classifications only differed 1 pp.



Table 5.2: Illumination invariant CNN building damage predictions for the images
in Figure 5.1. Illustrates the probability of each image belonging to a certain class
where the class with the highest probability is chosen as prediction (Underlined =
correct classification, green = correctly classified, red = falsely classified).

No-damage Minor-damage Major-damage Destroyed
(a) 0.03 0.48 0.42 0.07
(b) 0.01 0.18 0.46 0.34
(c) 0.13 0.52 0.35 0.00
(d) 0.19 0.16 0.15 0.50

Then, shifting the attention to Table 5.2, a more successful predictive capacity
was demonstrated by the illumination invariant CNN. For these particular images,
it classified them all correctly. Furthermore, the probabilities of these predictions
appeared to be of an overall higher degree when compared to Table 5.1.

5.1.2 CNN vs G-CNN

Subsequent to the illumination invariant CNN, the G-CNN was compared to a
conventional CNN. For this comparison, one image from the test set were chosen,
which was then duplicated three times. These duplicate images were then rotated
by multiples of 90 degrees. Figure 5.2 shows these images, along with their respec-
tive orientation compared to the original image. Both models then made building
damage assessment predictions for each image, the output of which is shown in
Table 5.3. and Table 5.4.

(a) Original (b) Rotated 90◦ (c) Rotated 180◦ (d) Rotated 270◦

Figure 5.2: A sample image from the test set, oriented in four different multiples
of 90 degree rotations.



As the G-CNN was equivariant to rotations that are multiples of 90 degrees, the
prognosis was that the G-CNN would output more stable/equal predictions for
each image. This, while the predictions of the CNN were expected to be more
inconsistent.

Table 5.3: CNN building damage assessment predictions for the images in Figure
5.2. Illustrates the probability of each image belonging to a certain class where the
class with the highest probability is chosen as prediction (Underlined = correct
classification, green = correctly classified, red = falsely classified).

No-damage Minor-damage Major-damage Destroyed
(a) 0.33 0.23 0.24 0.20
(b) 0.50 0.19 0.16 0.15
(c) 0.43 0.23 0.15 0.19
(d) 0.19 0.24 0.33 0.24

Demonstrated by Table 5.3, the conventional CNN assessed the building damage
correctly for three out of the four images. Only Fig. 5.2d was falsely classified as
majorly damaged instead of not damaged. As expected, the CNN’s output was
not consistent under rotation of the input image as prediction probabilities varied
widely.

Table 5.4: G-CNN building damage assessment predictions for the images in Figure
5.2. Illustrates the probability of each image belonging to a certain class where the
class with the highest probability is chosen as prediction (Underlined = correct
classification, green = correctly classified, red = falsely classified).

No-damage Minor-damage Major-damage Destroyed
(a) 0.62 0.25 0.11 0.02
(b) 0.62 0.25 0.11 0.02
(c) 0.62 0.25 0.11 0.02
(d) 0.62 0.25 0.11 0.02

Results for the G-CNN, shown in Table 5.3, were as suspected. As the G-CNN
was equivariant to rotations of 90 degrees, its prediction probabilities remained
consistent for all images. In case of classifying the images in Figure 5.2, this
resulted in all four building damage assessment predictions being correct.



5.2 Model performance

To determine whether our implementation of the illumination invariant G-CNN
yielded any improvements over existing methods, its performance was compared
to the three other model configurations (see Section 5). For this comparison,
all models were trained on varying amounts of training data, after which their
performance was measured for every one of these training sizes. To make the
comparison as fair as possible, the training, validation and test set were equal for
all models and their given training size. Additionally, the training, validation and
test set all remained to have equal observations for each class.

5.2.1 Accuracy

Since equal observations were used for each class, the accuracy of each model
on the test set could provide an acceptable measure of performance. Figure 5.3
illustrates these accuracies, given different amounts of training sizes.

Figure 5.3: All model’s accuracy scores, given different training sizes.



As shown in Figure 5.3, when it comes to accuracy, both implementations of the
G-CNN consistently outperformed those of the CNN. This was true for all training
sizes. Furthermore, for training sizes of 4,800 and 12,000 images, the inclusion of
the illumination invariant color space to the CNN provided close to a 7 and 2.5
pp increase in accuracy respectively compared to a conventional CNN. However,
the opposite seemed to be true for the G-CNN, where the lack of an illumination
invariant color space improved accuracy for all training sizes up to 24,000. For
training sizes from 36,000 and upwards, the differences between models seemed to
diminish, with all models achieving accuracies more similar to one another.

5.2.2 F1-score

Whereas accuracy provides a valid measure of performance for balanced datasets,
its concept is flawed for unbalanced ones. I.e. statistical bias towards classes
with a more significant amount of occurrences will skew results. To resolve this,
another widely used performance measure is the F1-score, which does not exhibit
this drawback. Therefore, in order to enable comparisons with models assessed by
the F1-score, this was also measured. These results can be seen in Figure 5.4.

Figure 5.4: All model’s F1-scores, given different training sizes.



As class imbalances in the training, validation and test set were resolved in our
case, the F1-scores illustrated in Figure 5.4 follow a similar pattern to that of
the accuracy’s in Figure 5.3: The two G-CNN configurations achieve a higher F1-
scores for all training sizes when compared to the conventional CNN. However,
the inclusion of the illumination invariant color space does not seem to increase
performance in an equally consistent manner.



6 Discussion & Future work
The results show that the p4m convolution layers in the G-CNN can be used to
improve a CNN’s performance, trained on a smaller dataset. Their incorporation
into the model consistently enhances performance, with noticeable improvements
for larger training sizes as well.

The addition of the illumination invariant color space to the CNN however did
not convincingly improve results. To explain these results, a few of its limitations
are discussed. As can be seen in Figure 4.2 and 5.1, some of the illumination
invariant color space images exhibit some black spots. Essentially, these black
spots are a loss of detail. They are the result of Equation 2.2 exceeding the value
of 255, which is the threshold value for any 8 bit image. Some images exhibit these
black spots to a more significant degree than ones shown in Figure 4.2 and 5.1. It
should be noted that these spots rarely seemed to affect the buildings themselves.
Presumably this is because the color values that cause Equation 2.2 to exceed the
limit of an 8 bit image are not that often found in buildings. However, any loss
of detail is undesired and should be attempted to get fixed. Attempts to resolve
the issue by scaling the image were made. However, often this would significantly
darken the overall picture, ultimately ruining the illumination invariant aspect of
the image. Therefore, with no definitive remedy as of yet, implementing a solution
will be left for future work.

In addition to resolving the issues associated with the illumination invariant
color space, future work could be focused on improving a CNN’s performance by
incorporating more advanced data augmentation methods. Some obvious data
augmentation methods that were left unused in this project were flip transforma-
tions and translations. However, other less explicit data augmentations methods
such as Generative Adversarial Networks (GANs) could be used as well. Other
improvements could consist of tweaks to the G-CNN architecture. Additionally,
more recent works such as that of Berkay Kicanaoglu et al [25] have implemented
Gauge equivariant Convolutional Networks, which may improve performance even
more. Thus, there is still room for further improvement. The intent is that the
current work laid a foundation upon which can be build.
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7 Conclusion
It has been proven that using p4m G-convolution layers, instead of regular con-
volution layers, in a CNN can improve its performance when trained on small
datasets. By exploiting symmetries, the G-CNN learns features that are equiv-
ariant to transformations such as translations, rotations and flips. Hereby, the
G-CNN requires less training data, ultimately improving the model’s predictive
capability. The inclusion of the proposed illumination invariant color space did not
demonstrate a similar convincing uplift in performance. Its incorporation showed
minor improvements when paired with a conventional CNN, yet minor deteriora-
tion in performance when paired with the the G-CNN. Therefore, we can conclude
that using the p4m G-convolution layers in a CNN can improve its classification
performance for small datasets. Moreover, the benefits a G-CNN can offer over a
conventional CNN are not merely limited to satellite imagery. Its use case can also
be extended to other image detection or image classification applications where a
network’s robustness against rotations and flips is essential (e.g. tumor detection
in medical scans, marine organism detection, texture classification, etc.).

26



Bibliography
[1] Denis F. Wolf Patrick Y. Shinzato, Diego Gomes. Road estimation with sparse

3d points from stereo data. https://ieeexplore.ieee.org/document/
6957936, 2014.

[2] Niko Sunderhauf Sareh Shirazi Edward Pepperell Ben Upcroft Chunhua
Shen Guosheng Lin Fayao Liu Cesar Cadena Ian Reid Michael Mil-
ford, Stephanie Lowry. Sequence searching with deep-learnt depth for
condition- and viewpoint invariant route-based place recognition. https:
//www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/
W11/papers/Milford_Sequence_Searching_With_2015_CVPR_paper.pdf.

[3] L. Magdalena M.A. Sotelo, F.J. Rodriguez. Virtuous: vision-based road
transportation for unmanned operation on urban-like scenarios. https:
//ieeexplore.ieee.org/document/1303538, 2004.

[4] Jianwei Zhang Calin Rotaru, Thorsten Graf. Color image segmentation in hsi
space for automotive applications. https://link.springer.com/article/
10.1007/s11554-008-0078-9, 2008.

[5] Sung-Eui Yoon Taeyoung Kim, Yu-Wing Tai. Pca based compu-
tation of illumination-invariant space for road detection. https://
ieeexplore-ieee-org.proxy.uba.uva.nl:2443/document/7926659, 2017.

[6] Antonio M. Ĺopez José M Álvarez Alvarez. Illuminant-invariant model-based
road segmentation. https://ieeexplore.ieee.org/document/4621283,
2010.

[7] R. Baldrich J.M. Alvarez, A. Lopez. Road detection based on illuminant
invariance. https://ieeexplore.ieee.org/document/5594640, 2008.

[8] D.G. Lowe. Object recognition from local scale-invariant features. https:
//arxiv.org/abs/1902.08802, 2019.

[9] B. Triggs N. Dalal. Histograms of oriented gradients for human detection.
https://ieeexplore.ieee.org/document/1467360, 2005.

27

https://ieeexplore.ieee.org/document/6957936
https://ieeexplore.ieee.org/document/6957936
https://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W11/papers/Milford_Sequence_Searching_With_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W11/papers/Milford_Sequence_Searching_With_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W11/papers/Milford_Sequence_Searching_With_2015_CVPR_paper.pdf
https://ieeexplore.ieee.org/document/1303538
https://ieeexplore.ieee.org/document/1303538
https://link.springer.com/article/10.1007/s11554-008-0078-9
https://link.springer.com/article/10.1007/s11554-008-0078-9
https://ieeexplore-ieee-org.proxy.uba.uva.nl:2443/document/7926659
https://ieeexplore-ieee-org.proxy.uba.uva.nl:2443/document/7926659
https://ieeexplore.ieee.org/document/4621283
https://ieeexplore.ieee.org/document/5594640
https://arxiv.org/abs/1902.08802
https://arxiv.org/abs/1902.08802
https://ieeexplore.ieee.org/document/1467360


[10] Shaohui Mei Shun Zhang Yifan Zhang Zhi Zhang, Ruoqiao Jiang. Rotation-
invariant feature learning for object detection in vhr optical remote sensing
images by double-net. https://ieeexplore.ieee.org/stamp/stamp.jsp?
tp=&arnumber=8936929, 2019.

[11] Stefan Roth Uwe Schmidt. Learning rotation-aware features: From in-
variant priors to equivariant descriptors. https://ieeexplore.ieee.org/
document/6247909, 2012.

[12] Jyri J. KivinenChristopher K. I. Williams. Transformation equivari-
ant boltzmann machines. https://link.springer.com/chapter/10.1007/
978-3-642-21735-7_1, 2011.

[13] Skibbe. , 2013.

[14] Gens & Domingos. , 2014.

[15] Colin McManus Ben Upcrof Winston Churchill Paul Newman Will Maddern,
Alexander D. Stewart. Illumination invariant imaging: Applications in robust
vision-based localisation, mapping and classification for autonomous vehicles.
http://www.robots.ox.ac.uk/~mobile/Papers/2014ICRA_maddern.pdf.

[16] D. Hodgkiss S.T. Henderson. The spectral energy distribution of day-
light. https://iopscience.iop.org/article/10.1088/0508-3443/15/8/
310, 1964.

[17] Javier Romero Javier Hernández-Andrés and Jr Juan L. Nieves, Ray-
mond L. Lee. Color and spectral analysis of daylight in southern
europe. https://www.researchgate.net/publication/11945067_Color_
and_spectral_analysis_of_daylight_in_southern_Europe, 2001.

[18] Steve Collins Sivalogeswaran Ratnasingam. Study of the photodetector char-
acteristics of a camera for color constancy in natural scenes. https://www.
osapublishing.org/josaa/abstract.cfm?uri=josaa-27-2-286, 2009.

[19] Taco S. Cohen and Max Welling. Group equivariant convolutional networks.
https://arxiv.org/pdf/1602.07576.pdf, 2016.

[20] Bastiaan S Veeling, Jasper Linmans, Jim Winkens, Taco Cohen, and Max
Welling. Rotation equivariant (cnns) for digital pathology. https://arxiv.
org/abs/1806.03962.pdf, 2018.

[21] Ritwik Gupta et al. xbd: A dataset for assessing building damage from
satellite imagery. https://arxiv.org/pdf/1911.09296.pdf, 2019.

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8936929
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8936929
https://ieeexplore.ieee.org/document/6247909
https://ieeexplore.ieee.org/document/6247909
https://link.springer.com/chapter/10.1007/978-3-642-21735-7_1
https://link.springer.com/chapter/10.1007/978-3-642-21735-7_1
http://www.robots.ox.ac.uk/~mobile/Papers/2014ICRA_maddern.pdf
https://iopscience.iop.org/article/10.1088/0508-3443/15/8/310
https://iopscience.iop.org/article/10.1088/0508-3443/15/8/310
https://www.researchgate.net/publication/11945067_Color_and_spectral_analysis_of_daylight_in_southern_Europe
https://www.researchgate.net/publication/11945067_Color_and_spectral_analysis_of_daylight_in_southern_Europe
https://www.osapublishing.org/josaa/abstract.cfm?uri=josaa-27-2-286
https://www.osapublishing.org/josaa/abstract.cfm?uri=josaa-27-2-286
https://arxiv.org/pdf/1602.07576.pdf
https://arxiv.org/abs/1806.03962.pdf
https://arxiv.org/abs/1806.03962.pdf
https://arxiv.org/pdf/1911.09296.pdf


[22] Worldview-3. https://dg-cms-uploads-production.s3.amazonaws.com/
uploads/document/file/105/DigitalGlobe_Spectral_Response_1.pdf.

[23] Laurens van der Maaten Kilian Q. Weinberger Gao Huang, Zhuang Liu.
Densely connected convolutional networks. https://arxiv.org/abs/1608.
06993, 2016.

[24] Claude E. Duchon. Lanczos filtering in one and two dimensions. https:
//www.researchgate.net/publication/252898828_Lanczos_Filtering_
in_One_and_Two_Dimensions/link/00b4953c699969aae5000000/
download, 1979.

[25] Berkay Kicanaoglu MaxWelling Taco S. Cohen, Maurice Weiler. Gauge equiv-
ariant convolutional networks and the icosahedral cnn. https://arxiv.org/
pdf/1902.04615.pdf, 2019.

[26] B. S. Veeling. Group equivariant convolutional neural networks for keras:
keras gcnn. https://github.com/basveeling/keras-gcnn, 2018.

https://dg-cms-uploads-production.s3.amazonaws.com/uploads/document/file/105/DigitalGlobe_Spectral_Response_1.pdf
https://dg-cms-uploads-production.s3.amazonaws.com/uploads/document/file/105/DigitalGlobe_Spectral_Response_1.pdf
https://arxiv.org/abs/1608.06993
https://arxiv.org/abs/1608.06993
https://www.researchgate.net/publication/252898828_Lanczos_Filtering_in_One_and_Two_Dimensions/link/00b4953c699969aae5000000/download
https://www.researchgate.net/publication/252898828_Lanczos_Filtering_in_One_and_Two_Dimensions/link/00b4953c699969aae5000000/download
https://www.researchgate.net/publication/252898828_Lanczos_Filtering_in_One_and_Two_Dimensions/link/00b4953c699969aae5000000/download
https://www.researchgate.net/publication/252898828_Lanczos_Filtering_in_One_and_Two_Dimensions/link/00b4953c699969aae5000000/download
https://arxiv.org/pdf/1902.04615.pdf
https://arxiv.org/pdf/1902.04615.pdf
https://github.com/basveeling/keras-gcnn


Appendices
A Preprocessing pipeline for validation and test set

Figure 7.1: The preprocessing pipeline for extracting buildings from satellite im-
agery without data augmentation. This process was used for all building images
that made up the validation and test set.

B Software used

• Miniconda

• Python 3.6.10

• Keras 2.1.6

• Keras-gcnn 1.0 [26]

• Tensorflow 1.10

• Tensorflow-gpu 1.10
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