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Abstract
In the RoboCup Standard Platform League, fully autonomous humanoid robotic soccer
players compete against each other. During a match, it is critical that the robot is ca-
pable of perceiving and comprehending its surroundings. This study is focused on the
opponent detection by the robots. An opponent detector based on Multi-block Local Bi-
nary Patterns has been proven effective by a recent study from the University of Miami.
However, many improvements to speed and accuracy are still achievable. Therefor, this
study expanded on this by implementing six Multi-scale Color Local Binary Patterns:
RGB-, nRGB, Transformed-, Opponent-, nOpponent- and Hue-LBP. All these LBPᖣs are
trained by using functions from the OpenCV library. This study concludes that the Multi-
scale Color LBPᖣs outperform the Multi-block LBP based on the argument that their mean
average percentage is higher.
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1
Introduction

In 1997 the first ever Robot Soccer World Cup was held 1. It was the first step towards
reaching a goal set by the the RoboCup Federation: the development of fully autonomous
humanoid robotic soccer players that could beat the champion of the World Cup following
the official FIFA rules. The RoboCup Federation’s prediction was that this goal would be
reached around the middle of the 21st century 2. The RoboCup is a way of promoting AI
and robotics, so it provides a common task for evaluation of various theories, algorithms,
and agent architectures [8].

The competition motivates researchers to reach for breakthroughs in the wide range
of technologies surrounding the RoboCup. These breakthroughs might not have a signif-
icant social impact, directly. However, they may still be considered substantial accom-
plishments within the field of AI and robotics. On that account, the RoboCup can be
considered a landmark project. The direct social impact of a landmark project is slim,
but to reach the goal set by the project, certain technical breakthroughs have to be ac-
complished, which could have a more noticeable social impact. The end goal set by the
RoboCup federation might still be distant, but reaching smaller subgoals in the process
will undoubtedly produce technologies that influence a broad range of industries [7].

RoboCup has multiple leagues in which competitions are held. This study will focus
merely on the Standard Platform League (SPL). This league focuses on the development
of the robots. The hardware remains the same for all teams ball2. Each year new goals
1http://www.cs.utexas.edu/ pstone/Papers/99aij/node29.html
2http://spl.robocup.org/wp-content/uploads/downloads/Rules2019.pdf
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2 1. Introduction

are set within the competition and in this way advances the progression of the software
developed by the programmers. An example would be the color of the soccer ball that
the game is played with. The bright orange ball, which is relatively easy to detect when
played on a green surface, has been replaced by a black-and-white ball2.

During a match, it is critical that the robot is capable of perceiving and comprehending
its surroundings. Objects that are typically present in a player’s environment include:
the ball, teammates, opponents, the goals and field lines. In previous years, the RoboCup
competition used color coding. For example, the ball was colored orange, and the goal-
posts yellow and blue. This way, algorithms employing visual inputs could examine these
inputs, concentrating on colors to identify what was observed by the robot. However, re-
cently the color coding has been removed from the competition. Currently, among other
modifications, the ball is colored black and white in a dotted pattern and the goalposts
have been painted white 2.

This elimination of color coding has made it difficult for the robots to locate their oppo-
nents and so a new challenge has emerged. A new strategy shall have to be introduced in
which the robots can locate their opponents without the color coding used in the previous
years. An opponent detector based on Multi-block Local Binary Patterns has been proven
effective by a recent study from the University of Miami [3]. However, many improvements
to speed and accuracy are still achievable. Many implementations of multiscale local bi-
nary patterns exist, and so the goal of this study is to attain a variant strategy from the
specific one used in aforementioned study, though this strategy must still be within the
domain of Multivariant Local Binary Patterns.

Multi-scale color LBP seems promising for reasons which will become clear in the
upcoming sections of this thesis. The strategy that was used in the study from Miami is
Multi-block LBP . Therefore, the goal of this study is to answer the following question:
Does the performance shown by the NAO robots within the RoboCup Standard Platform
League increase when using Multi-scale color LBP relative to that of using multi-block
LBP?

Does the performance shown by the NAO robots within the RoboCup Standard Platform
League increase when using Multi-scale Color Local Binary Patterns relative to that of

using Multi-Block Local Binary Patterns?
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Theoretical Framework

2.1. Jerseys to be Detected
This first section sets out on clarifying what the classifier is supposed to detect. In the
RoboCup SPL, NAO robots play a match of soccer against each other. The players wear
colored jerseys as team markers (see figure 2.1)). These jerseys are what the classifier is
trained on detecting. The following rules have been set for the design of the jerseys:

• Jerseys should be tanktop style

• Jerseys must have a primary color
which covers at least 70% of the jer-
sey

• Once the match has started the jersey
must be worn for the rest of the game

• The jersey number must be printed on
the front and the back of the jersey.
The size should be big enough so that
it is easily recognizable for humans

• All players of a team must wear iden-
tical jerseys except for the number

• Jerseys should not contain distracters
like big pictures of the soccer-ball
printed on them

• Jersey material must be non-
reflecting, non-shiny, and non-
textured

• Every team should have two jersey de-
signs, which are notably different from
each other

Further information on the RoboCup SPL and the NAO robots can be found in Appendix
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4 2. Theoretical Framework

A.

Figure 2.1: NAO robot jersey.

2.2. Haar-like Features
‘Haar-like features have scalar values that represent differences in average intensities be-
tween two rectangular regions. They capture the intensity gradient at different locations,
spatial frequencies, and directions by changing the position, size, shape, and arrange-
ment of rectangular regions exhaustively according to the base resolution of the detector.’
[9]. Three categories of features are edge, line, and center-surround features (see figure
2.2). Edge features look for where in the image does the intensity of the pixels shift from
high intensity to low intensity. Line features are features where the pixel-intensity shift
from low to high and then to low again. Or of course the other way around from high to
low and then to high again.

Even after greyscale conversion of an image, it hardly occurs that an image contains
areas where the pixel intensity differences are as extreme as the features displayed in
figure 2.2. It does not have to be. When an area within an image is selected to be analyzed
for a specific feature, all the pixel-value of what is expected to be the high intensity (white)
part are summed together and averaged. The same is done for the high intensity (black)
part. The high-intensity average is subtracted from the low-intensity average. The closer



2.3. Local Binary Patterns 5

this gets to one, the more likely it is a Haar-feature has been found. Because ideal haar
features will usually not be found, a threshold is set. If the subtraction of the averages
is greater or equal than this threshold, the feature has been found within the image[4].

Figure 2.2: Haar-like Features.

2.3. Local Binary Patterns
Local Binary Patterns is a strategy that has been proven to be effective for opponent
detection by the NAO-robots in the RoboCup Standard Platform League (SPL) [3]. In this
section of the theoretical framework, the theory around LBP is explained.

Original Local Binary Patterns
The original LBP strategy was introduced by Ojala in 1996 [11]. It was first used for tex-
ture recognition, and now it is being used as one of the main strategies in face recognition
[1].

It looks at each pixel and takes its surrounding neighbors. One could represent this
as a 3 x 3 matrix of pixel values with the pixel that is being evaluated in the middle of
this matrix. (see figure 2.3a). This central pixel-value is used as a threshold which
all the surrounding pixel values will be compared to [11]. When the pixel value of the
neighbor that is being compared to the threshold is lower than the threshold, the pixel is
represented with a ‘0’. If the pixel value is higher or equal than the threshold, the pixel
is represented with a ‘1’ (See equation 2.1).

𝑓(𝑥) = {1, if x ≥ 0;
0, if x < 0,

(2.1)
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Because there are eight neighbors, we will get a string of 8 elements from the set {0, 1}.
It does not matter in which order one alines the ones and the zeros as long as it is done
in the same order each time. The string can also be represented as a matrix, as seen in
figure 2.3 [6].

Figure 2.3: LBP-code calculation.

This binary string is converted into a decimal number, which can be done in differ-
ent ways. One is shown in figure 2.3c. Where another 3 x 3 matrix containing 8-bit
numbers is multiplied with the matrix existing out of the binary numbers. The center
values of both matrixes can be ignored, so these are set to zero before multiplication. The
multiplication results in another 3 x 3 matrix, of which all the values are summed. This
leads to a decimal number, which is called the LBP-code (see figure 2.3) [6]. Another
way would be by using equation 2.2 [3]. Which returns the same decimal number as the
first strategy just explained. This way each set of pixels can be characterized by one out
of 2ዂ potential LBP-codes [6]

LBP-code =
፧ዅኻ

∑
፧ኺ

= 𝑓(𝑓፧ − 𝑓)2፧ (2.2)

Where: 𝑛 is the number of neighbors
𝑓፧ is the n’th neighbor pixel value
𝑓 is the value of the center pixel
2፧ is the 8-bit number the binary number has to multiply with

The useful thing about LBP is that it is illumination invariant. When you change the
lighting on the scene, all pixel-values might go up or down, but the relative difference
between the pixels will remain the same irrespective of illumination variation [13]. This
will apply, assuming that the change of illumination is constant over the complete set
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of pixels that is evaluated. For example, if lighting only changed about a few but not all
pixels we are evaluating, some pixel-values would change while others would not. Conse-
quently, the relative difference between the pixels will change. This would have a different
binary pattern as a result.

2.4. Multi-scale Local Binary Patterns
The extended LBP is very similar to the original LBP except for the way it selects its
neighbors. First, a radius and number of neighbors are set. Then the neighbors are
evenly selected in an angle on a circle of the radius centered around the center pixel (see
figure 2.4) [12]. When different scalings are combined in one LBP, we can speak of a
multi-scale LBP.

Figure 2.4: Extended LBP neighbors distribution.

If the coordinates of the central pixel are (0, 0) the coordinates of the neighbors would
be (x, y) with its values for variables extracted from equations 2.3 and 2.4.

𝑥 = −𝑟 ⋅ 𝑠𝑖𝑛(2𝜋𝑛𝑝 ) (2.3)

𝑦 = 𝑟 ⋅ 𝑐𝑜𝑠(2𝜋𝑛𝑝 ) (2.4)

Where: 𝑟 Is the radius
𝑛 The n’th neighbor being evaluated at the moment
𝑝 The total number of neighbors
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2.5. Multi Block Local Binary Patterns
The idea of Multi-Block Local Binary Patterns (MB-LBP) is to compare average pixel-
values from pixel blocks instead of comparing pixel-values as in the basic LBP [13]. In
Haar-like Features, rectangles are compared to each other. With MB-LBP the blocks of
pixels, represented by their pixel-values average, that are being compared, are similar to
the rectangles. With MB-LBP the center rectangle is compared to its neighboring other
rectangles. It returns a binary code just as the basic LBP does (see equations 2.5 & 2.6
and figure 2.5)[16].

MP-LBP =
፧ዅኻ

∑
፧ኺ

= 𝑠(𝑔፧ − 𝑔)2፧ (2.5)

𝑠(𝑥) = {1, if x ≥ 0;
0, if x < 0,

(2.6)

Where: 𝑛 is the number of neighbors
𝑔፧ is the n’th neighbor rectangle average pixel-value
𝑔 is the center rectangle average pixel value
2፧ is the 8-bit number the binary number has to multiply with

Figure 2.5: MB-LBP.

Figure 2.6 shows that MB-LBP features are more distinctive than Haar-like features
and original LBP features. Furthermore, the complete set of MB-LBP features is much
smaller than that of the Haar-like features. The ratio between the amount of MB-LBP
and Haar-like features are approximately 1:20 [16].
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Figure 2.6: A randomly chosen subset of the MB-LBP features.

2.6. Color and LBP
LBPᖣs have been proven to be successful in the fields of texture classification [? ] and
face recognition [2]. However, it has not been as widely used in Visual Object Classes
recognition. One of the reasons for this might be that almost all LBP variations operate
in grayscale while color is of significant importance for the task of object-categorization
within images. Most LBPᖣs tend to work in grayscale, adding color information could
make recognition task more complicated. Namely, changes in the illumination make the
production of a Color LBP-classifier more challenging [17]. Therefore some adjustments
will have to be made to get an effective color LBP. This section will start out going over
the potential illumination changes after which the Multi-scale color LBPᖣs used in this
study are defined and illustrated.

2.6.1. Illumination Changes
Changes in illumination can be represented with the von Kries Model [15]. It is given by
the following model:

f = 𝒟፮,f፮ (2.7)

Where:
f the image transformed
f፮ the image taken under an unknown light source
u an unknown light source
c the canonical illuminant
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𝒟፮, a diagonal matrix mapping colors taken under u to their corresponding colors under
c

Equation (2.7) can also be represented as the following [14]:

(
𝑅
𝐺
𝐵
) = (

𝑎 0 0
0 𝑏 0
0 0 𝑐

)(
𝑅፮
𝐺፮
𝐵፮
) (2.8)

However, shifts in the color values as a result of increased diffuse light is not covered
in this model [14]. For this reason the model is extended to the diagonal-offset model
represented with equation (2.9) [5].

(
𝑅
𝐺
𝐵
) = (

𝑎 0 0
0 𝑏 0
0 0 𝑐

)(
𝑅፮
𝐺፮
𝐵፮
) + (

𝑜ኻ
𝑜ኼ
𝑜ኽ
) (2.9)

Using the above mentioned two models the following five kinds of illumination changes
can be expressed [14]:

light intensity change occurs when the image values change by a constant factors
in all channels (i.e. a = b = c). It includes shadows and illumination geometry changes.

(
𝑅
𝐺
𝐵
) = (

𝑎 0 0
0 𝑎 0
0 0 𝑎

)(
𝑅፮
𝐺፮
𝐵፮
) (2.10)

light intensity shift occurs when the image intensity values have an equal shift over
all color channels (o1 = o2 = o3) & (a = b = c = 1).

(
𝑅
𝐺
𝐵
) = (

𝑅፮
𝐺፮
𝐵፮
) + (

𝑜ኻ
𝑜ኻ
𝑜ኻ
) (2.11)

light intensity change and shift is a combination of the models mentioned above.
it occurs when both the image intensity values shift equally over all color channels and
when the image values change by a constant factor in all channels.

(
𝑅
𝐺
𝐵
) = (

𝑎 0 0
0 𝑎 0
0 0 𝑎

)(
𝑅፮
𝐺፮
𝐵፮
) + (

𝑜ኻ
𝑜ኻ
𝑜ኻ
) (2.12)
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light color change is represented in equation (2.8). It occurs when image values scale
independently (i.e. allowing a ≠b ≠c).

light color change and shift is represented in equation (2.9). It occurs when image
values scale independently (i.e. allowing 𝑎 ≠ 𝑏 ≠ 𝑐) and it models arbitrary offsets (𝑜ኻ ≠
𝑜ኼ ≠ 𝑜ኽ).

2.6.2. Multi-scale Color LBP
In Multi-scale Color Local Binary Patterns for Visual Object Classes Recognition [17] six
Multi-scale Color LBPᖣs are introduced that add color information to the original LBP op-
erator by dealing with the just above-mentioned illumination changes. These Multi-scale
Color LBPᖣs are:

RGB-LBP: This operator is obtained by computing LBP over the red, green, and blue
channels of a particular image independently. After which the results are combined.

nRGB-LBP: This operator is obtained by computing LBP over the normalized red,
green, and blue channels of a particular image independently. After which the results
are combined. The blue channel is redundant because the sum of the three channels will
be equal to one. The nRGB-LBP is represented in equation (2.13).

(
𝑟
𝑔
𝑏
) = (

𝑅/(𝑅 + 𝐺 + 𝐵)
𝐺/(𝑅 + 𝐺 + 𝐵)
𝐵/(𝑅 + 𝐺 + 𝐵)

) (2.13)

The normalization results in the red and green channels being scale-invariant, which
makes this operator invariant to light intensity changes (2.10).

Transformed color LBP: This operator is obtained by computing LBP over color chan-
nels from the transformed color space of a particular image independently.

(
𝑅ᖣ
𝐺ᖣ
𝐵ᖣ
) = (

(𝑅 − 𝜇ፑ)/𝜎ፑ
(𝐺 − 𝜇ፆ)/𝜎ፆ
(𝐵 − 𝜇ፁ)/𝜎ፁ

) (2.14)

Where:
𝜇 the mean of the corresponding channel
𝜎 the standard deviation of the corresponding channel

The subtraction and normalization make the operator scale- and shift-invariant, which
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means it is invariant to light intensity change and shift (2.12). Furthermore, because al
the channels are computed independently the operator is invariant to light color change
and shift (2.9).

Opponent-LBP: This operator is obtained by computing LBP over all three channels
of the opponent color space independently.

(
𝑂ኻ
𝑂ኼ
𝑂ᖣኽ
) = (

(𝑅 − 𝐺)/√2
(𝑅 + 𝐺 − 2𝐵)/√6
(𝑅 + 𝐺 + 𝐵)/√3

) (2.15)

The substraction makes the 𝑂ኻ and 𝑂ኼ channels invariant to light intensity shift (2.11).

nOpponent-LBP: This operator is obtained by computing LBP over two channels of
the normalized opponent color space independently.

(𝑂
ᖣ
ኻ
𝑂ᖣኼ
) = (

𝑂ኻ
𝑂ኽ𝑂ኼ
𝑂ኽ

) = ⎛⎜

⎝

(𝑅 − 𝐺)/√2
(𝑅 + 𝐺 + 𝐵)/√3
(𝑅 + 𝐺 − 2𝐵)/√6
(𝑅 + 𝐺 + 𝐵)/√3

⎞
⎟

⎠

(2.16)

The normalization makes the 𝑂ᖣኻ and 𝑂ᖣኼ channels both shift- and scale-invariant (2.12).

Hue-LBP: This operator is obtained by computing LBP for the Hue channel of the HSV
color space.

𝐻𝑢𝑒 = 𝑎𝑟𝑐𝑡𝑎𝑛(𝑂ኻ𝑂ኼ
) = 𝑎𝑟𝑐𝑡𝑎𝑛( √3(𝑅 − 𝐺)𝑅 + 𝐺 − 2𝐵) (2.17)

The subtraction and division make the operator scale- and shift-invariant, therefore it is
invariant to light intensity change and shift (2.12).

This paper [17] concluded that not only did all the Multi-scale Color LBPᖣs outperform
the original LBP (section 2.3) but also the Multi-scale LBP (section 2.4). The best three
Multi-scale Color LBPᖣs where the Hue-, nopponent- and opponent-LBP.



3
Method

The goal of this study is to compare the accuracy of the Multi-scale Color LBP�s to each
other and to that of the Multi-Block LBP, which is used as a baseline. Ideally, the mea-
surements and processing of the results are mimicked as much as possible as is done in
the Miami study. The only factor that should differ is the type of LBP that is used. Only
then can be concluded that whatever the outcome may be, it is depended on the type of
LBP that has been used and not some other factor which has been overlooked. In this
paragraph, every step that has been taken will be illustrated.

3.1. Data
To be able to recognize opponents, a classifier has to be trained. To do so, a dataset
is required. To mimic the circumstances in the Miami study [3] as much as possible,
the same dataset is used. It was obtained via U. Visser who was willing to share the
directory containing the datasets. The dataset includes four positive datasets, namely
the red, blue, yellow, and black datasets. Each of these positive datasets containing
approximately fifty images. All of these images are cropped to the targeted object, which
would be the jerseys that the NAO robots are wearing. This is what the LBP should be
able to detect within a picture(see figure 3.1). The negative dataset consists of 2000
images containing anything but the jerseys that are supposed to be detected (see figure
3.2). Both the positive and the negative images are taken from the upper camera from
the NAO robot. They will have to be taken in the following various scenarios:

13



14 3. Method

• Different lightings

• Distance range

• Different ball positions and back-
grounds

• Still or moving robots

• Still or moving observer robot

• Different carpets

Figure 3.1: Red jersey data.

Figure 3.2: Negative data.

3.2. opencv_createsamples
For each positive dataset fifty images will not be enough. Therefore opencv_createsamples
from the OpenCV library is used to generate more positive images until every positive
dataset contains a thousand images. opencv_createsamples takes the positive images
and then randomly rotates them, changes the intensity, and places them on a back-
ground image. These background images are obtained from the negative image-dataset.
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The range of randomness is given by the user with command line arguments of the
opencv_createsamples application. An example of a opencv_createsamples command
used in this study is:

$perl_createsamples.pl positives.txt negatives.txt samples 3000 ”opencv
createsamples -bgcolor 0 -bgthresh 0 -maxxangle 1.1 -maxyangle 1.1 -
maxzangle 0.5 -maxidev 40 -w 10 -h 20”

• positives.txt: contains directories to
positive images

• negatives.txt: contains directories to
negative images

• samples: name of the output file con-
taining the positive samples for train-
ing

• num: number of positive samples to
generate

• bgcolor: background color controlled
by bgthresh

• bgthresh: background color thresh-
old

• maxxangle: maximal rotation angle
towards x-axis, must be given in ra-
dians

• maxyangle: maximal rotation angle
towards y-axis, must be given in ra-
dians

• maxzangle: maximal rotation angle
towards z-axis, must be given in ra-
dians

• maxidev: maximal intensity deviation
of pixels in foreground samples

• w: Width in pixels of the output sam-
ples

• h: Height in pixels of the output sam-
ples

The code that is used to compute positves.txt and negatives.txt are represented in
Appendix B.

3.3. Further Transformation of Data
In this study, multiple Multi-scale Color LBPᖣs are implemented. Each one of these LBPᖣs
requires different color channels of both the positive and negative samples. This section
will expand on how these color channels are obtained. All code examples will be in C++.
The complete codes can be found in Appendix C. Examples of these color channels are
displayed in the results.
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RGB-LBP: OpenCV has a function called split() that takes in an image and returns
a Mat-file containing the red, green and blue color channels. An example would be:

vector<Mat> rgbChannels(3);
split(image, rgb_channels);

To obtain the blue channel one would do so by using: rgb_channels[0], for green:
rgb_channels[1] and for red: rgb_channels[2].

nRGB-LBP: First, the RGB color channels are obtained by using split() in the same
way as described in the section above. The normalized RGB channels are then computed
by using equation (2.13). Where each pixels value is divided by the sum of the pixel’s
value over all channels. This is done by first calculating the sum of all pixel values as
such:

cv::Mat intensity_f(rgb_channels[0] + rgb_channels[1] + rgb_channels[2]);
cv::Mat intensity;
intensity_f.convertTo(intensity, CV_8UC1);

Then the divide() function is used to divide the RGB channels by the sum of pixel
values. An example of computing the normalized blue channel would be:

cv::Mat b_normalized_f;
cv::divide(rgb_channels[0], intensity_f, b_normalized_f);
cv::Mat b_normalized;
b_normalized_f.convertTo(b_normalized, CV_8UC1);

Transformed Color LBP: After split() is used to obtain the RGB channels. For each
channel, the mean and standard deviation is calculated. They are obtained by using the
function meanStdDev();. Both are returned as scalars so it will need to be used Like so:

cv::Scalar mean, stddev;
cv::meanStdDev(rgb_channels[0], mean, stddev);
float Mean = mean.val[0];;
float stddev = stddev.val[0];

Finaly as seen in (2.14) Each pixel is subtracted by the mean of the corresponding chan-
nel. After which it is divided by its standard deviation. An example of the code for ob-
taining the transformed red channel is:

cv::Mat trans_Blue = (rgb_channels[0] - mean[0]) / stddev[0];
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Opponent-LBP: All opponent channels are calculated with equation (2.15), where 𝑂ኻ
is computed by subtracting each pixel value in the red channel by the value of the same
pixel in the green channel. After that, all pixel values are divided by the square root of
two.

cv::Mat O_1 = opponentChannels[0].at<uchar>(y, x) =
saturate_cast<uchar>(0.5f*(255 + g - r));

𝑂ኼ is obtained by adding each pixel value in the red channel by the value of the same
pixel in the green channel and then subtracted this by the value of that pixel in the blue
channel multiplied by two. After that, all pixel values are divided by the square root of 6.

cv::Mat O_2 = opponentChannels[1].at<uchar>(y, x) =
saturate_cast<uchar>(0.25f*(510 + r + g - 2*b));

Finally, 𝑂ኽ is obtained by taking the sum of every pixel’s value over all channels and then
dividing each pixel value by the square root of three.

opponentChannels[2].at<uchar>(y, x) = saturate_cast<uchar>(1.f/3.f
* (r + g + b));

nOpponent-LBP: Firstly the opponent channels are computed in the way just de-
scribed in the section above. The normalized opponent channels are then obtained by
using equation (2.16) where 𝑂ᖣኻ is calculated by dividing each pixel value in the 𝑂ኻ channel
by the pixel’s value in the 𝑂ኽ channel.

cv::Mat nO_1;
cv::divide(O_1, O_3, nO_1);
cv::Mat b_normalized;
nO_1.convertTo(n_O_1, CV_8UC1);

𝑂ᖣኼ is calculated by dividing each pixel value in the 𝑂ኼ channel by the pixel’s value in the
𝑂ኽ.

cv::Mat nO_2;
cv::divide(O_2, O_3, nO_2);
cv::Mat b_normalized;
nO_2.convertTo(n_O_2, CV_8UC1);

Hue-LBP: Is obtained by using the function cvtColor, which converts images from
one color space to another, and again split(). cvtColor is used to convert the image
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from a RGB to a hsv color space. split() is then used to split the converted image into
three channels of which the first one is the hue channel. To do this the following code is
used:

Mat hsv, hue;
vector<Mat> hsvChannels(3);
cvtColor(frame, hsv, CV_BGR2HSV);
split(hsv, hsvChannels);
hue = hsvChannels[0];

3.4. Training
The next step is the actual training of the cascades. 70% of the dataset is used for train-
ing, 15% for testing and 15% for validation. The training is executed by using the train
cascades tool form the OpenCV library An example of a opencv_traincascade command
used in this study is:

$opencv_traincascade -data Classifer -vec samples.vec -bg negatives.txt
-numStages 20 -minHitRate 0.999 -maxFalseAlarmRate 0.4 -featureType LBP -
numPos 1000 -numNeg 2000 -w 15 -h 15 -precalcValBufSize 6000 -precalcIdxBufSize
6000

• data: Where the trained classifier
should be stored. This folder should
be created manually beforehand

• vec: vec-file with positive sam-
ples (created by opencv_createsamples
utility)

• bg: Background description file. This
is the file containing the negative sam-
ple images

• numStages: Number of cascade
stages to be trained

• minHitRate: The minimal desired hit
rate for each stage of the classifier

• maxFalseAlarmRate: Maximal de-
sired false alarm rate for each stage of
the classifier

• featureType: Type of features. In this
case LBP

• numPos: Number of positive samples
used in training for every classifier
stage

• numNeg: The number of negative
samples used in training for every
classifier stage.

• w: Width of training samples (in pix-
els)
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• h: Height of training samples (in pix-
els)

• precalcIdxBufSize:Size of buffer for

precalculated feature indices in Mb

• precalcValBufSize: Size of buffer for
precalculated feature values in Mb

opencv_traincascade will return an xml file containing all the cascades. In section
2.6.2 and 3.3 was mentioned that some Multi-scale color LBPᖣs use multiple color chan-
nels on which LBP is computed. Every color channel is trained independently and thus
has it’s own cascades.xml file.

3.5. Classification
Before a frame or image can be classified, it will first have to be split in the correct color
channels. Which color channels it has to be split into depends on the LBP that is used.
If the concerning LBP computes LBP over multiple channels, the cascades.xml files are
used on each of these channels of the image that has to be classified. To determine if a
jersey is detected, voting is used. This means that if in the majority of the color channels,
a jersey is detected, the overall LBP-classifier detects a jersey. LBPᖣs using either three
channels or one channel will always have a majority and thus will always be able to
classify an image. Two-channel LBPᖣs detect a jersey if either both or just one channel
detects a jersey.

3.6. DetectMultiscale
Once the classifier is trained, and the required color channels are obtained, everything
is set to classifier an image. This is executed by using the detectMultiscale function from
the OpenCV library. An example of a detectMultiscale command is:

$cascade.detectMultiScale( image, objects, SF, MNN, Size(w,h), Size(W,H));

• cascade: The xml file obtained from
opencv_traincascade

• image: The image in which is to be de-
tected

• object: A vector containing the coor-
dinates of the object (If the object is
detected)

• MNN: Minimum nearest neighbor

• SF: The sample window scaling factor.
SF > 1

• Size(w, h): Minimum sample window.
Not smaller than trained sample win-
dow

• Size(W, H): Maximum sample win-
dow. Not larger than the frame size
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3.7. Evaluation Criteria
The detector will be evaluated using the following five criteria:

• Precision: The precision is calculated with equation 7. The true positives (TP) are
divided by the true positives (TP) + the false positives (FP). Where the true positives
are the jerseys detected of which the classifier is supposed to detect, and the false
positives are the jerseys or objects detected that should not have been classified as
a opponents jersey.

Precision = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃 (3.1)

• Recall: The recall is calculated with equation 8. The true positives (TP) are divided
by the true positives (TP) + the false negatives (FN). Where the false negatives are
the opponent jersey that should have been detected but where not.

Recall = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁 (3.2)

• Detection range: The distance the object should be detected by the classifier.

• Average Detection Speed: The time the opponent detector takes to detect an oppo-
nent in an image.

• Training speed: How long the opponent detector takes to be trained.

15% if the data is used for validation, 15% for testing and the remaining 70% is used
as the training set. 10-fold cross validation will be used. To make sure that the data is
not misrepresented k-folds should be applied. For example, using ten folds would mean
the data is split into ten equal parts of which each time one of the folds is selected to
be the test data and the remaining data is used for training. This is executed ten times
with each time a different fold being selected as the testing set. Finally, the average is
taken over all testing results. This ensures that the data is not misrepresented by an
unfortunate selection for a test set. Moreover, this way, all the data can be used for both
testing and training.
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3.8. Validation Training Parameters
In this section, the validation process of the parameters used in the opencv_traincascade
is discussed. Tweaking these parameters will optimize the performance of the classifier.
More information on these parameters can be found in section 3.4. To parameters are
validated one by one. While validating a parameter, all the others are fixed. As mentioned
in section 3.6, the performance is measured by recall, precision, and F1. The parameters
validated are the number of stages, window size, false alarm rate, and hit rate.

With validating the number of stages parameter, one increases the number of stages
starting from one. The expectation is that one will encounter underfitting at this point.
Here the precision will be lower than the recall while increasing the number of stages
the precision increases while the recall decreases. Eventually, the precision exceeds the
recall. This is where the parameter is considered approximately optimal. After this point,
increasing the number of stages will result in overfitting.

With window size, the width and height parameters are implied. It is expected that
small window sizes will result in high false positives and recall because features extracted
from a small window are limited. Big windows might fail to detect any jerseys.

Within the opencv_traincascade the false alarm rate (FAR) is represented as ’max-
FalseAlarmRate’. And it is defined by the maximally tolerated percentage of false posi-
tives made by the classifier. A FAR of 0.5 is equivalent to a random guess. Decreasing the
classifier will use more features in each stage to eliminate negatives. At a certain point,
this does not improve much of the results. This would be the value the FAR is set to.

Lastly, the hit rate (HR) is represented within the opencv_traincascade as the ’min-
HitRate’ parameter. It represents the minimum accepted percentage of true positives
detected by the classifier as positives in each stage. Set the HR to high, and it will cause
overfitting. Too low will result in underfitting as the HR increases the speeds of the clas-
sifier decreases.

3.9. Validation Detection Parameters
The parameters used in the detectMultiscale function should also be validated to optimize
the results but also increase the speed of the detection.

Firstly the scale factor (SF) parameter. Every round it scales up the searching window
by its value until it would otherwise exceed the width and height of the image. Decreasing
the SF will result in the classifier using more windows to fulfill scanning an image. This
produces a high detection rate; however, it does lower the precision. Furthermore, as a
result of the classifier using more windows, the complete process of scanning the entire
image will take longer.
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A situation that can occur while scaling up the window size is that multiple labels
are set on the same object. This is where the MNN (Minimum nearest neighbor) param-
eter proves to be useful. It groups the overlapping labels into one single averaged label.
Increasing the MNN parameter will increase precision; however, the recall decreases be-
cause now, more true positives are discarded.



4
Results

In this section, the results of this study are presented. The product of splitting images
into multiple color channels are laid out, and a fraction of the samples obtained from the
opencv_createsamples is given.

4.1. Color Channels
All the color channels are collected from the same four images. These images are dis-
played in figures 4.1, 4.2, 4.3 and 4.4. These images have been chosen because together,
they contain the four jerseys that have been used in this study, and thus giving a better
overview of the effect of the color channels in all categories. This section will present all
the color channels corresponding to their LBPᖣs. The code with which the color channels
have been obtained can be found in Appendix C.

Figure 4.1: Original RGB im-
age of blue jersey.

Figure 4.2: Original RGB im-
age of red jersey.

Figure 4.3: Original RGB im-
age of black jersey.

Figure 4.4: Original RGB im-
age of yellow jersey.
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All the color channels are displayed in grayscale except for the merged normalized RGB
channels in figures 4.29, 4.30, 4.31 and 4.32.
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RGB-LBP: In this section figures 4.5 to 4.16 In this section, figures 4.5 to 4.16 are
representations of the RGB channels from the original images. While comparing the
red channel of the yellow jersey (4.16) with the green (4.8) and blue (4.12) channels, it is
noticeable that the jersey is much darker in the blue channel than in the other two. From
this, one could conclude that yellow has very low pixel values within its blue channel and
high values in the green and red channels. Furthermore, The red jersey within the red
channel (4.6) and the blue jersey in the blue channel (4.13) have higher pixel values than
they have in their other channels. This is expected because objects of a particular color
will have high pixel values if expressed in a channel from that same color. Lastly, it is
noticeable that the black jersey has low pixel values in every channel.

Figure 4.5: Red channel of
blue jersey.

Figure 4.6: Red channel of
red jersey.

Figure 4.7: Red channel of
black jersey.

Figure 4.8: Red channel of
yellow jersey.

Figure 4.9: Green channel
of blue jersey.

Figure 4.10: Green chan-
nel of red jersey.

Figure 4.11: Green chan-
nel of black jersey.

Figure 4.12: Green chan-
nel of yellow jersey.

Figure 4.13: Blue channel
of blue jersey.

Figure 4.14: Blue channel
of red jersey.

Figure 4.15: Blue channel
of black jersey.

Figure 4.16: Blue channel
of yellow jersey.
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nRGB-LBP: Figures 4.17 to 4.28 represent the Figures 4.17 to 4.28 represent the normal-
ized RGB channels. Firstly, the normalized green channel in figures 4.21 to 4.23 exists
mainly out of big white spots. This is a consequence of the field being green and thus
having high pixel values in the normalized green channel. Furthermore, within the nor-
malized red channel (figures 4.17 to 4.20) it is very clear where the NAO is located within
the image. An explanation is that it has low pixel values for all jersey colors except for the
normalized red jersey. Moreover, the green field has low pixel values as well, causing the
NAO robots white arms and legs, which have high pixel values, not to fade away in the
background. Lastly, two points that where also noticeable within the RGB channels are
the black jersey having low pixel values in all normalized channels (4.19,4.23 and 4.27)
and the yellow jersey has high pixel values in the normalized red(4.20) and green(4.24)
channels and very low pixel values in the normalized blue channel (4.28).
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Figure 4.17: Normalized R
channel of blue jersey.

Figure 4.18: Normalized R
channel of red jersey.

Figure 4.19: Normalized R
channel of black jersey.

Figure 4.20: Normalized R
channel of yellow jersey.

Figure 4.21: Normalized G
channel of blue jersey.

Figure 4.22: Normalized G
channel of red jersey.

Figure 4.23: Normalized G
channel of black jersey.

Figure 4.24: Normalized G
channel of yellow jersey.

Figure 4.25: Normalized B
channel of blue jersey.

Figure 4.26: Normalized B
channel of red jersey.

Figure 4.27: Normalized B
channel of black jersey.

Figure 4.28: Normalized B
channel of yellow jersey.

In figures 4.29, 4.30, 4.31 and 4.32 the normalized RGB channels are merged together.

Figure 4.29: Merged normal-
ized RGB of blue jersey.

Figure 4.30: Merged normal-
ized RGB of red jersey.

Figure 4.31: Merged normal-
ized RGB of black jersey.

Figure 4.32: Merged normal-
ized RGB of yellow jersey.
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Transformed-LBP: The transformed channels seem to be similar to the RGB and nRGB
channels. Within the transformed green channel the field has higher pixel values com-
pared to the other channels (4.37 to 4.40). The black jersey has low pixel values in all
channels (4.35, 4.39 and 4.43). The blue jersey has high pixel values in the transformed
blue channel (4.41) and low pixel values in the other two channels (4.33 and 4.37). The
yellow jersey has low pixel values in the transformed blue channel (4.44), and high pixel
values in the other two channels (4.36 and 4.40). Finally the red jersey seems to have
slightly higher pixel values in the transformed red channel (4.34) than in the other two
channels (4.38 and 4.42).

Figure 4.33: Transformed
red channel of blue jersey.

Figure 4.34: Transformed
red channel of red jersey.

Figure 4.35: Transformed
red channel of black jersey.

Figure 4.36: Transformed
red channel of yellow jer-
sey.

Figure 4.37: Transformed
green channel of blue jer-
sey.

Figure 4.38: Transformed
green channel of red jer-
sey.

Figure 4.39: Transformed
green channel of black jer-
sey.

Figure 4.40: Transformed
green channel of yellow
jersey.

Figure 4.41: Transformed
blue channel of blue jersey.

Figure 4.42: Transformed
blue channel of red jersey.

Figure 4.43: Transformed
blue channel of black jer-
sey.

Figure 4.44: Transformed
blue channel of yellow jer-
sey.
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Opponent-LBP: In figures 4.45 to 4.56 the opponent channels of the four original images
are presented. One of the first things noticed is the O_3 channel (4.53 to 4.56) being
a lot clearer than the other two channels. The O_3 channel is more alike the RGB and
nRGB channels. Some jerseys seem to fade away in the background within the O_1 and
O_2 channels (4.47, 4.48, 4.50 and 4.51). The blue jersey is a bit clearer in O_1 and
O_2 (4.45 and 4.49), however still difficult to see. Finally, in figure 4.46 and especially in
figure 4.52 the jerseys stand out significantly.

Figure 4.45: O_1 channel of
blue jersey.

Figure 4.46: O_1 channel of
red jersey.

Figure 4.47: O_1 channel of
black jersey.

Figure 4.48: O_1 channel of
yellow jersey.

Figure 4.49: O_2 channel of
blue jersey.

Figure 4.50: O_2 channel of
red jersey.

Figure 4.51: O_2 channel of
black jersey.

Figure 4.52: O_2 channel of
yellow jersey.

Figure 4.53: O_3 channel of
blue jersey.

Figure 4.54: O_3 channel of
red jersey.

Figure 4.55: O_3 channel of
black jersey.

Figure 4.56: O_3 channel of
yellow jersey.



30 4. Results

nOpponent-LBP: In figures 4.57 to 4.64 the normalized opponent channels of the original
images are presented. Firstly, the blue jersey is not distinguishable from its background
in both the normalized channels (4.57 and 4.61). Secondly, the red and black jerseys are
distinguishable from its background (4.58, 4.59, 4.62, and 4.63); however, it is not clear
that one is looking at an NAO robot. Also, noticeable is the NAO’s wearing yellow jerseys
are relatively easy identifiable in both channels (4.60 and 4.64). Finally, when comparing
representations of the jersey colors by the two normalized opponent channels, there is
almost no discrepancy between them. Only the yellow jersey seems to have more high
pixel values in the nO_2 channel then in nO_1 (4.60 and 4.64).

Figure 4.57: Normalized O_1
channel of blue jersey.

Figure 4.58: Normalized O_1
channel of red jersey.

Figure 4.59: Normalized O_1
channel of black jersey.

Figure 4.60: Normalized O_1
channel of yellow jersey.

Figure 4.61: Normalized O_2
channel of blue jersey.

Figure 4.62: Normalized O_2
channel of red jersey.

Figure 4.63: Normalized O_2
channel of black jersey.

Figure 4.64: Normalized O_2
channel of yellow jersey.
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Hue-LBP: Figures 4.65 to 4.68 present the hue channels of the original images. In figures
4.65 ,4.66 and 4.68 the jersey is clearly distinguishable from the arms and legs of the
NAO robot. in 4.67 it is less clear. The yellow jersey () has low pixel values, the red jersey
(4.66) has high pixel values, and the blue jersey (4.65) is somewhere in between.

Figure 4.65: Hue channel of
blue jersey.

Figure 4.66: Hue channel of
red jersey.

Figure 4.67: Hue channel of
black jersey.

Figure 4.68: Hue channel of
yellow jersey.

Finalizing this section, the statement must be made that to be able to visualize the
nRGB-, Transformed-, Opponent- and nOppoennt-LBP some adjustments have been
made. First of all, is the conversion to grayscale. And secondly, the pixel values had
to be multiplied by a scalar, to be able to represent the relative proportions between the
pixel values. The relative difference between the pixel values within a color channel where
small. imwrite() would end up saving a completely white or black image. Multiplying these
values by a scalar was a way of figuratively stretching out the relative difference among
the pixel values and thus making it possible to visualize these relative differences.

4.2. Samples from opencv_createsamples
In figure 4.69, a fraction of the samples created by the opencv_createsamples function
is displayed. As mentioned in the method section, after create_samples is given the di-
rectories to the positive and negative datasets in the form of positive.txt and negative.txt
it takes an image from this negative dataset and then proceeds with placing one of the
positive images over it. This produces an image containing the object that is to be de-
tected within a background in which the object would generally be found, and thus a
new positive image is produced. In figure 4.69 is displayed how these positive images
are placed upon the background images. create_samples produces samples in grayscale,
which is a problem when working with color LBPᖣs. This is further expanded upon in the
discussion.
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Figure 4.69: Samples produced by opencv_createsamples.
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Discussion

This study started with the goal of following through with the complete process that
is described in the method section. However, complications with the installation and
running of the OpenCV library from source appeared to be more considerable obstacle
than was expected. This resulted in the training of the LBP cascades not being completed
within the bounds of time that were given for this study. This was, without doubt, the
most significant complication the study came across. Therefore, it is brought to mind to
all that wish to reproduce or expand on this study to assign this task as one of the first
to be carried out. Another recommendation, within the reason of possibility, would be
to operate in Linux instead of Mac OS. This study started out using Mac OS until after
approximately one, and a half month later, the decision was made to start using a Linux
Virtual Machine.

Another point of discussion would be the data created by create_samples. The function
does generate new positive samples as it should; however, the problem is the images
produced are in grayscale, which would be a problem since this study is using color
LBP’s and thus needs positive samples to be colored. The expectation is that this obstacle
can be overcome by altering the source code in createSamples.cpp and utility.cpp. An
attempt to do so has been made, however not thoroughly because the end if this study
approaching, priorities had to be taken. So if one were to reproduce or expand on this
study and the size of one’s own dataset leads to wishing to use create_samples also, it
might be beneficial to ascertain if this is indeed a possibility. Another solution, which will
produce even better results, is not using create_samples at all but instead supplying all
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positive images oneself 1. This would be achieved by using the NAO robots upper camera.
If time allows it, this would be the preferred approach of creating a positive dataset.

The following point of discussion is the size of the dataset. It seems that more massive
datasets result in higher accuracy because they contain more variety in representations of
the object that is to be detected. Therefore expanding on the amount of positive and nega-
tive images could be beneficial to the accuracy of the classifier. Moreover as mentioned in
the Miami study, during the training of the cascades with more massive datasets, an ac-
ceptable degree of accuracy can be obtained with a fewer number of stages in comparison
to having used a smaller dataset.

In this study, all images used are in jpg format; however, the images the classifier is
trained with should be uncompressed. Formats like jpeg or jpg can cause compression
noise or loss of image information. Therefore it would be best to switch to a png format.

Additional to the positive dataset discussion points are those of the negative dataset.
The ideal negative dataset would contain every single object that could occur in the sur-
roundings of an NAO robot during a RoboCup SPL match multiple times. This would
reduce the number of false positives detected by the robot. The negative dataset used
in this study is acceptable but could be better. It contains a few images of which it is
questionable if they should be included in the dataset. Examples of these images are pre-
sented in figure 5.1. There you can see that some images contain an object that would
not usually be in the surroundings of an NAO robot during a match. Moreover, the last
two images contain a jersey, which is of a negative effect on the results if this is also the
jersey color the classifier has to detect. Further research might compare the results of
the trained cascades with and without these images included. Another expansion on this
study would be to include other colored jerseys in the negative images; then the classifier
is supposed to detect.

Figure 5.1: Questionable negative images

1https://docs.opencv.org/3.3.0/dc/d88/tutorialᑥ፫ፚ።፧ፚ፬ፚ፝፞.፡፭፦፥
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Finally, a point of discussion for future research. Zhu et al. [17] concluded that a
combination of the three best Multi-scale Color LBP_s (Opponent-, nOpponent- and Hue-
LBP) had even greater accuracy than the three LBP_s independent. The expectation is
that the combination of these three LBP_s is executed by voting over all the channels
combined. It might be interesting to take a look at combining even more Multi-scale
Color LBP_s and seeing what the results are





6
Conclusion

Based on what has been shown in the results, it seems that the RGB-, nRGB- and
transformed-LBP would have better accuracy than the other LBP_s brought forward by
this study. The black jersey can be detected by having low pixel values in all chan-
nels. The yellow jersey can be identified by having high pixel values in the red and green
channels and low pixel values in the blue channel. The red jersey can be detected by
having higher pixel values in the red channel and low pixel values in the other two. The
blue channel can be identified by having low pixel values in the red channel and high
pixel values in the other two channels. However, this is contradictory to the results of
the study: Multi-scale color local binary patterns for visual object classes recognition, in
which the conclusion is that the best three Multi-scale Color LBP_s where the Opponent-,
nOpponent- and Hue-LBP. It may be that the conversion to grayscale loses some infor-
mation within the color channels resulting in the wrong interpretation of the channels.

In the introduction, the research question of this paper was presented as follows:

Does the performance shown by the NAO robots within the RoboCup Standard Platform
League increase when using Multi-scale Color Local Binary Patterns relative to that of

using Multi-Block Local Binary Patterns?

As to answering the research question: Multi-scale Color Local Binary Patterns will out-
perform the Multi-block LBP used in the study of Miami[3]. Among the Multi-scale Color
Local Binary Patterns, the Opponent-, nOpponnent- and Hue-LBP will have the highest
accuracy. Eventhough the color channels shown in the result section might seem con-
tradictory to this statement. However, the conclusion from Zhu et al. [17] still forms a
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strong argument for this claim. As mentioned in section 2.6.2 all the Multi-scale Color
LBPᖣs brought forward by this study, outperform not only the original LBP but also the
Multi-scale LBP. And indeed, amongst each other Opponent-, nOpponnent- and Hue-LBP
had the best accuracy. On top of that, it seems an LBP that includes color coding would
have higher accuracy in the detection of objects that are almost only distinguishable by
their color relative to an LBP working in grayscale.
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A
The RoboCup, SPL and NAO

A.1. RoboCup
The RoboCup, also known as the International Robot Soccer World Cup, is an interna-
tional competition. It was founded in 1997 as an attempt to promote AI and to advance
the development in robotics and AI using soccer as a means of motivation [10]. There are
multiple RoboCup soccer leagues:

• Humanoid

• Standard Platfrom

• Middle Size

• Small Size

• Simulation

This study focusses exclusively on the Standard Platform League (SPL), which will be
expanded upon in the preceding section on the next page.

A.2. Standard Platform League
The RoboCup SPL is a league, in which all teams compete with identical robots. There is
no way to control the robots externally. With other words, they need to act entirely au-
tonomously 1. The current standard platform used is the humanoid NAO manufactured
by SoftBank Robotics, of which further information will be given in the next paragraph.

1https://spl.robocup.org
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The soccer-field that is used is of length 10.4 m, and its width is 7.4 m. The surface
of the field is as flat as possible (see figure A.1).

Figure A.1: SPL field.

Where:
A Field length = 9000 mm
B Field width = 6000 mm
C Line width = 50 mm
D Penalty cross size = 100 mm
E Penalty area length = 600 mm
F Penalty area width = 2200
G Penalty cross distance = 1300
H Center circle diameter = 1500
I Border strip width = 700
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As far as coloring, a few things are certain: The field is green; The lines on the field
are white; The posts and top crossbar of the goals are white; The net and the support
structure for the net are either white, gray, or black; The ball has a black and white
soccer-ball print2.

The lighting conditions differ per location. The league moves towards using natural
lighting. So if the possibility is there the field will be placed near windows. Otherwise,
ceiling lighting is used to guarantee most of the field will not be darker than 300 Lux.
The lighting intensity does not necessarily have to be even across the whole field. The
lighting ratio between the darkest and brightest area is aimed at ten to one. Lighting
irregularities occurring during a match will not be a reason for stopping the game. A
few examples of lighting irregularities occurring would be the sun streaming through a
window are lightbulbs turning off2.

2http://spl.robocup.org/wp-content/uploads/downloads/Rules2019.pdf
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A.3. NAO
The match is played by NAO robots manufactured by Soft-Bank Robotics (see figure A.2)).
Here you see that NAO has two cameras, one bottom, and one top camera. This study
will focus solely on the view of the top camera [3].

Figure A.2: Hardware of NAO.

Two teams play a match. Each team exists out of 5 players. One of these is de keeper,
which always has jersey number ‘1’. The other players are called field players and will
always have a jersey number from the set 2, 3, 4, 5, 6. Number 6 is a substitute player
which could potentially enter the game later during the match 2.



B
positves.txt & negatives.txt

This code is used to obtain the txt files containing the directories to the positive and
negative images that are used in the creating of samples with the opencv_createsamples
application. The following code is in python:

import cv2
import glob

f = open(”positives.txt”,”w+”)
for file in glob.glob(’positive_images/*jpg’):

f.write(”%s” % file)

f = open(”negatives.txt”,”w+”)
for file in glob.glob(’negative_images/*jpg’):

f.write(”%s” % file)
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C
Transformed Data Code

BGR-LBP:

static void BGR_LBP( const Mat image, vector<Mat> BGRChannels )
{

split(image, BGRChannels);
}
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nBGR-LBP:
// This code was partly obtained from: https://stackoverflow.com/
// questions/24417082/normalizing-colorchannels-of-and-image-by-
// -intensity-values-opencv

static void nBGR_LBP( const Mat image, vector<Mat> nBGRChannels )
{

vector<Mat> BGR_channels(3);
split(image, BGR_channels);

cv::Mat intensity_f(BGR_channels[0] + BGR_channels[1] +
BGR_channels[2]);
cv::Mat intensity;
intensity_f.convertTo(intensity, CV_8UC1);

cv::Mat b_normalized_f;
cv::divide(BGR_channels[0], intensity_f, b_normalized_f);
cv::Mat b_normalized;
b_normalized_f.convertTo(b_normalized, CV_8UC1);
cv::Mat b_norm;
nBGRChannels[0] = b_normalized * 255.0;

cv::Mat g_normalized_f;
cv::divide(BGR_channels[1], intensity_f, g_normalized_f);
cv::Mat g_normalized;
g_normalized_f.convertTo(g_normalized, CV_8UC1);
cv::Mat g_norm;
nBGRChannels[1] = g_normalized * 255.0;

cv::Mat r_normalized_f;
cv::divide(BGR_channels[2], intensity_f, r_normalized_f);
cv::Mat r_normalized;
r_normalized_f.convertTo(r_normalized, CV_8UC1);
cv::Mat r_norm;
nBGRChannels[2] = r_normalized * 255.0;

}
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Transformed Color LBP:

static void Trans_LBP( const Mat image, vector<Mat> TransChannels )
{

vector<Mat> rgb_channels(3);
split(image, rgb_channels);

cv::Scalar Redmean, Redstddev, Greenmean, Greenstddev,
Bluemean, Bluestddev;
cv::meanStdDev(rgb_channels[0], Bluemean, Bluestddev);
cv::meanStdDev(rgb_channels[1], Greenmean, Greenstddev);
cv::meanStdDev(rgb_channels[2], Redmean, Redstddev);

float rMean = Redmean.val[0];
float rStddev = Redstddev.val[0];
float gMean = Greenmean.val[0];
float gStddev = Greenstddev.val[0];
float bMean = Bluemean.val[0];
float bStddev = Bluestddev.val[0];

TransChannels[0] = (rgb_channels[0] - rMean) / rStddev * 255;
TransChannels[1] = (rgb_channels[1] - gMean) / gStddev * 255;
TransChannels[2] = (rgb_channels[2] - bMean) / bStddev * 255;

}
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Opponent-LBP:

// This code was partly obtained from: https://github.com/opencv
// /opencv/blob/2.4/modules/features2d/src/descriptors.cppL126

static void Opponent_LBP( const Mat image, vector<Mat> opponentChan-
nels )
{

if( image.type() != CV_8UC3 )
CV_Error( CV_StsBadArg, ïnput image must be an BGR image of
type CV_8UC3)̈;

opponentChannels.resize( 3 );
opponentChannels[0] = cv::Mat(image.size(), CV/8UC1);
opponentChannels[1] = cv::Mat(image.size(), CV/8UC1);
opponentChannels[2] = cv::Mat(image.size(), CV/8UC1);

for(int y = 0; y < image.rows; ++y)
for(int x = 0; x < image.cols; ++x)
{

Vec3b v = image.at<Vec3b>(y, x);
uchar b = v[0];
uchar g = v[1];
uchar r = v[2];

opponentChannels[0].at<uchar>(y, x) = saturate_cast<uchar>(0.5f
*(255 + g - r));

opponentChannels[1].at<uchar>(y, x) = saturate_cast<uchar>(0.25f
*(510 + r + g - 2*b));

opponentChannels[2].at<uchar>(y, x) = saturate_cast<uchar>(1.f/3.f
*(r + g + b));

}
}
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nOpponent-LBP:

static void nOpponent_LBP( const Mat image, vector<Mat> nopponentChan-
nels )
{

vector<Mat> opponentChannels(3);
Opponent_LBP(image, opponentChannels);

cv::Mat intensity_f(opponentChannels[2] + opponentChannels[1] +
opponentChannels[0]);

cv::Mat O1_normalized;
cv::divide(opponentChannels[0], intensity_f, O1_normalized);
cv::Mat O1_norm;
O1_normalized.convertTo(O1_norm, CV_8UC1, 255.0);

cv::Mat O2_normalized;
cv::divide(opponentChannels[1], intensity/f, O2_normalized);
cv::Mat O2_norm;
O1_normalized.convertTo(O2_norm, CV_8UC1, 255.0);

nopponentChannels[0] = O1_norm;
nopponentChannels[1] = O2_norm;

}

Hue-LBP:

static void Hue_LBP( const Mat image, Mat hueChannel )
{

Mat hsv;
vector<Mat> hsvChannels(3);
cvtColor(image, hsv, CV_BGR2HSV);
split(hsv, hsvChannels);
hueChannel = hsvChannels[0];

}
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