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Abstract

As the usage of Autonomous Vehicles continues to grow rapidly, concerns about their
effectiveness and safety have rightfully emerged. Simulation is currently not the preferred
method for gathering data on driverless vehicles even though there are less safety and cost
considerations. This is because of a significant gap between the simulation used for training
and the reality that it is intended for. This study aims to analyze the reality gap in object
detection specifically related to pedestrian recognition across various simulations. Given
the complexity involved in understanding the causes of this difference, multiple simulation
methods are explored to gain insight into the current state of this gap in learning platforms
for autonomous driving within an abstract environment. To enable this research, three
comprehensive and meticulously annotated datasets were created, enabling us to get an
insight into the present state of pedestrian detection. By comparing the implementation of
simulation methods and their accuracy in capturing real-world scenarios, conclusions about
their effectiveness and suitability for simulation-to-reality training can be drawn.
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CHAPTER 1

Introduction

Autonomous Driving Vehicles have made enormous progress in the last few years, to the point of
mass availability for consumers [1]. Because human drivers cause an unbelievably large amount
of accidents whilst driving, the push for non-human drivers has been increasing rapidly. The
expectation is that these machines will be better, because they can always pay attention, don’t
get tired or drive recklessly. However, proving this statistically has so far been a challenge due
to the difference in data between human and non-human driven miles, making it difficult to
quantifiably demonstrate this risk reduction, relative to humans [2].

To drive without human interaction many problems are needed to be solved, like lane-
following, localisation, environmental modelling and high-level safe decision making. However, Claim, so

give cita-
tion

this thesis will focus on pedestrian detection, which is a problem that has had quite some
development over the years, but still hasn’t reached its full potential. Aside from assisting in
autonomous driving this problem is also relevant to numerous other real-world applications, like
video surveillance [3], action recognition and tracking [4].

Pedestrian detection has historically been a popular problem to tackle as it stems from the
classic problem from computer vision: Object Detection. The basic detection of a singular person
in most environments was never the true problem to solve. The problem has never been getting
good at pedestrian detection, but truly mastering it [5]. In recent years the advancement has been
tackled by looking at specific scenario’s where detections would fail. When pedestrians were near,
detections would fall apart, often due to a large overlap causing predictions to be fused together
[6]–[8]. Pedestrians who were partially occluded were also causing problems, also especially when
in large crowds of people [3], [9]. In these weak areas small incremental improvements have been
achieved and have had an impact on pedestrian detection as a whole. However, when looking at
the development and expectation from years ago [10] in comparison to today the mastery still
has not been achieved [11]. Even the state of the art still has trouble when the domain shifts
even slightly, because they have become tailored for target datasets and their design reflects this
by being less generalizable [4]. Only on

page 20-21
examples
of your ex-
periments
are given.
Give a pre-
view in
your Intro-
duction.

1.1 Reality Gap

To train models for detecting pedestrians in dynamic complex environments, large real-world
datasets are almost always used. The reason for not using simulated data is the difference in
domain realism, which is often referred to as the reality gap. This difference can be visual, but
also physical. Getting this gap as small as possible could enable training in simulation which
can be a large time and monetary improvement. With simulation also comes the advantage of
using automatic labelling of data, which is also a very large optimisation to the entire process of
gathering training data.

It is possible to decrease this gap by changing the training process or the simulation. One
of the most common ways to decrease the gap is using domain randomisation, which is a simple
technique for training models on simulated images by partly randomising the visual [12] and or
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physical [13] domain. The thought behind domain randomisation is that with enough variability
in the simulator, the real world, with all its very specific but hard to define peculiarities, might
be seen as just another variation. The result is a model that is a lot more environment invariant.

Another method that is seen as an alternative to domain randomisation is domain adaptation,
which means trying to get the domain to be as close to reality as possible. This is often done by
making simulations more realistic and detailed. Another approach is by using image-to-image
translations to approximate the difference between simulation and reality. This translation can
then be applied to new images to make them more realistic at a way lower cost than upgrading or
improving an entire simulation [14], [15]. This same method has been shown to convert synthetic
images from a video game to a very realistic looking image [16]. However, it did suffer from
fitting too closely to the dataset it was trained on, changing large parts of the image outright
instead of only improving the visual fidelity.

Even with no adaptation to reality some have been able to get state-of-the-art results with
completely synthetic dataset [17]. With a large enough dataset the domain randomisation was
obtained through the large variety in different environments used.

1.2 DuckieTown

To analyse autonomous driving concepts and problems in a more abstract and simplified envi-
ronment, many educational platforms have been created to allow for a lower barrier of entry
when entering this area of research [18]. One of these platforms is DuckieTown [19], which is a
platform with this specific purpose in mind. It has a supported simulation and also an equiv-
alent platform for real-world testing, which makes it an ideal platform for testing the transfer
from simulation to reality. It provides a world for a small robot (DuckieBot) to drive round an
abstract world (DuckieTown) with rubber duckies to simulate pedestrians. The simulation this
platform provides is very basic, visually and physically, which creates problems when porting a
simulation trained vehicle to the real world. Any trained model in this simulation will be trained
to perform actions only within the domain on which it has trained. The real-world, even though
it is somewhat similar, learnings often won’t transfer directly.

(a) The second edition of AI-
DO took place at the 2019 Inter-
national Conference on Robotics
and Automation (ICRA), with fi-
nals held in Montréal, Canada, in
May 2019.

(b) Two images side by side indicating the lack of visual clarity
in the DuckieTown platform between reality and simulation. The
difference noticed by models trained in simulation between these is
the simulation-to-reality gap.

There was an attempt made of porting trained Machine Learning algorithms from the Duck-
ieTown sim to reality whilst trying to close the reality gap [20]. The attempt was unsuccessful
referencing the gap between simulation and reality to be too large as one of the problems.
However, others were successful crossing this gap using a Proximal Policy Optimization (PPO)
method [21] for Reinforcement Learning. The latter was able to get an in DuckieTown simulation
trained car to drive around a real-world track. Even here the author cited that a faster driven
model still had troubles crossing the gap from simulation to reality.

Though it is known that there is gap to bridge when using Simulators like DuckieTown, how-
ever to what extent there exists a gap is not known. As this is hard to quantify absolutely I
will look at it from a relative perspective. Comparing multiple simulations with one common
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technique. Object Detection is used as a standardised test to perform. It is a common computer
vision problem to solve with artificial intelligence, which also suffers from the reality gap.

In this thesis I will look at the gap of several simulations often used for learning algorithms
and general research purposes. By comparing the performance of different simulations, insight
into how they compare to reality and to each other can be gained. This analysis will help
understand how accurately simulations can replicate real-world scenarios, and which simulations
are the most effective for training object detection models.

This study will look specifically at the current state of pedestrian detection using simulated
data and create an abstraction to allow future research to experiment with a lower barrier of
entry for trying to tackle this problem. The approach is three-pronged: a standardised abstracted
environment is created, which is applicable to any simulation; multiple datasets are collected and
annotated with the intent of detecting objects; finally, a comparative analysis of performance
metrics is conducted using the collected data, aiming to gain valuable insights into the current
state of pedestrian detection and its challenges.
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CHAPTER 2

Method

2.1 Duckietown

Duckietown1 [19], [22] is a modular robotics and AI ecosystem with many tightly integrated
components designed for learning experiences. The aim of DuckieTown is to provide an easy
to use standardised platform for testing autonomous driving implementations. The abstraction
of the self driving problem is as follows: a small robot, called a DuckieBot, drives a round a
road layout created from a standard tilemap which is known as the DuckieTown. Around the
track Duckies can be placed and used for object-detection tasks. The DuckieBot, Duckietown
and Duckies are constant between simulation and real-world implementations, which allows for
comparisons to be drawn between multiple environments whilst reducing the complexity of the
problem dramatically.

2.1.1 Hardware

Figure 2.1: A DuckieBot driving around

a DuckieTown in the real world

Duckiebot is a minimal autonomy platform that al-
lows to investigate complex behaviours, learn about real
world challenges, and do research. It’s designed to drive
on a road layer, which is a tilemap of road segments that
can be connected. Aside from a road layer it also has
the ability to interact with a signal layer to receive infor-
mation regarding traffic signs and road infrastructure.
The only relevant piece of hardware for this thesis is the
camera 2, which is a 5 Mega Pixel 1080p camera with a
field of view of 160◦. As this is quite wide, the camera
can capture a large area to the left and right of itself,
but does give a large distortion to objects close to the
camera. Due to a problem with the DuckieBot, which
was made available to me, the robot isn’t able to move.
However, this isn’t a problem for my application as the only thing that is needed is its camera
and the DuckieTown layout.

1https://www.Duckietown.org/platform
2https://docs.duckietown.com/daffy/opmanual-duckiebot/preliminaries_hardware/get_hardware/

index.html#camera
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2.1.2 Software

Figure 2.2: The camera view of driving

around a DuckieTown world in the Gym

simulation

Instead of running Duckiebot on a real track, it’s
also possible to do the same in simulation. Us-
ing the Duckietown Simulator [23] many of the
same problems can be tested without needing to
build a road. The simulation used by Ducki-
etown is based on the Open AI gym [24], which
is a Python library that standardises the com-
munication between learning algorithms and envi-
ronments. Its main use is reinforcement learn-
ing, but it has become more widely applicable.
To maintain a wide application both the Gym’s
and the Duckietown’s implementation is fairly ba-
sic, with its uniform lighting and lack of physics en-
gine.

2.1.3 Tilemap

DuckieTown defines multiple layers, which can be seen as a level of extra detail. This can entail
traffic lights, signs, street names, but most importantly the tilemap layer which defines the road
network. These tiles are made up of foam with coloured tape laying out different parts of the
road. There are many types of tiles that can be created, but for this research the only necessary
ones are the straight and curved pieces. Each tile type has specific instructions for its creation
to keep tracks reproducible, which is illustrated in figure 2.3

Figure 2.3: Building instructions for creating a straight and curved images, showing the exact
measurements for laying out the tiles for the DuckieTown tilemap layer

3

2.2 Adapting DuckieTown to other Simulations

The environment used by DuckieTown is a great abstraction to use for testing across multiple
Simulations. By porting the environment pieces, mainly the road tiles from the tilemap and the
Duckies we can simulate the same environment wherever. These are the only things that can
be somewhat simulation agnostic. The rest, which constitutes of things like random camera and

3https://docs.duckietown.com/daffy/opmanual-duckietown/assembly/tilemap/index.html
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ducky placement and lighting configuration, is specific to each simulation and not possible to
standardise.

However, with the provided scanned items and a reasonable understanding of any simulation
it should be transferable to anywhere. With this portability any simulation or environment could
be used as a way of recreating and adding to this research. If it allows importing models and
has some kind of randomisation system, it can be used. To demonstrate further how this process
should occur, these steps will be run through in detail for the Unity simulation.

2.2.1 Unity

Unity [25] is a state of the art Game Engine. It provides many features like a physics simulation,
but most importantly it allows for a large amount of customisation called packages. With a
package like the Unity Perception Package [26] we can extend the engine to work for us. This
specific package enables us to automatically label images that we capture with automatic anno-
tations calculated from the position of the camera and the position and dimensions of objects
within the simulation.

2.3 Object Detection

Object detection [27] is collection of tasks that solves the popular problem from computer vision
that aims to detect all instances of an object in an image. The result that a working object
detection algorithm will produce is a 2D bounding box drawn around where it thinks an object
is located. These networks are often trained on labelled data, which means that a human is
required to draw each bounding box as a reference for evaluating the training and testing.

2.3.1 YOLO: You Only Look Once

YOLO [28] is a family of object recognition models that use a single neural network to predict
both bounding boxes and class labels. It is known for its speed and ability to run in real
time. With YOLOv8 being the latest in the family, it provides great improvement to the classic
YOLOv5 object detector and allows for localising and tracking persons and objects[29]. The
name comes from its differing approach to how it handles the input of images. In comparison to
other implementations it doesn’t go over the image multiple times, it only looks once.

The basics of the inner workings are that YOLO divides its input image into a finite grid. For
each grid cell of the image it produces multiple bounding boxes with confidence scores and class
predictions using a Convolutional Neural Network (CNN) backbone. It then uses Non-Maximum
Suppression (NMS) to fuse highly overlapping or duplicate bounding boxes. Based on the class
predictions a class is selected for each bounding box. The result is a list of bounding boxes
with a corresponding confidence score. During training it uses classification and regression loss
functions to optimise both the bounding boxes and the class predictions.

2.3.2 Metrics

YOLO has multiple metrics for determining the performance of the models train with it. Each
metric covers a different, but important part factor in how well a model is functioning.

Average Precision

Recall

Recall calculates the proportion of correctly identified objects, true positives, to the sum of true
positives and false negatives, which indicates the algorithm’s ability to find all the objects of
interest in the image. Higher recall values indicate that the algorithm has a lower rate of false
negatives, meaning it doesn’t miss any important objects in the scene. For pedestrian detection
this is very important as not detecting a pedestrian could result in causing them serious harm
when used in real world scenario’s.
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Precision

Precision measures the accuracy of the positive predictions made by the model. It indicates the
proportion of correctly identified objects among all the predicted objects. A higher precision
means fewer false positives, which shows the reliability of the model. This is an important
metric for pedestrian detection as false positives can result in incorrect behaviour in autonomous
vehicles.

2.4 Prepare simulations

object and To have our simulations be as consistent as possible, we use the same environment and
object for our training and testing purposes. The environment is taken from the Duckietown
world and simulated in each simulation, that will be tested with. As the DuckieTown Gym
based simulation already has everything built in, this process will only be necessary for the
Unity Engine. However, as this same process could later be applied to different simulations a
general description will also be given. When replicating this part of the research, it is important
to note that the official rules for DuckieTown building was used. This consists of exact measures
for lines and rules about track layout requirements. For the exact specifications of how I got
these items from physical to digital can be found in section 3.2.

The main part of the setup consists of four parts: setting up the track; setting up the
randomised Duckies; setting up the camera randomisation; and lastly, configuring the camera
settings. For the road, only two pieces are needed. With a straight and a curved road, all non-
complex layouts can be recreated. The object that will be used for detecting will be a rubber
ducky. The usage of Duckies for Pedestrian Detection is also taken from the DuckieTown world
as an abstraction of pedestrians and/or other road user. These components will be scanned-in
as an .obj file and placed in each respective simulation.

2.4.1 Camera specifications

As described in section 2.1.1, the DuckieBot has a camera with very unique specifications. To
match the real world as closely as possible, these settings should be used when configuring the
robot within simulation. The exact settings that should be used are as follows. The resolution of
the images produced by the camera are 640x480 pixels. The camera is a wide angled lens, with
the exact angle being 160◦.

2.5 Gathering the dataset

The question of this thesis surrounds the problem of porting a simulation trained artificial intel-
ligence to the real world. The training data will be the data from the simulation and the testing
data will be from the real world. In the real world the process of data gathering will be very
manual as the platform itself doesn’t provide a way to capture a dataset or images for a purpose
like this. Each simulation will also have a tailor made method for capturing images, which will
be much easier to automate.

2.5.1 Dataset specifications

For each simulation data gathering will be performed twice. One with the duckies included and
randomised and once without any duckies. The same amount of data will be gathered for with
and without duckies to ensure about a 50/50 split of ducky images and null images. This ensures
that each model will also be able to correctly handle the lack of duckies, which is beneficial to not
detect other yellowish objects that are present in the scene like the centre-line and background
objects.
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2.5.2 Simulation data

In each simulation the world layout will be created using the tilemap with a semi-random place-
ment of Duckies near the track. The camera will than either move past the Duckies to capture
multiple angles and distances to the camera or random ducky placements and road layouts will be
created to capture multiple locations. So its either random driving or placement for the camera
and always ducky placement as random as possible. The placement of duckies does not have to
random for each image if a moving robot is used as the change in position of the camera creates
enough random perspectives if the capturing interval isn’t too low.

2.5.3 Real-world data

Very similar to the data gathering in the simulation, the real-world data is captured on a couple
tilemap layouts with Duckies placed randomly on the surface of the tiles. From the camera,
images will be taken at an interval whilst the DuckieBot is pushed at a constant speed to capture
multiple angles and distances of Duckies near the track and camera. To create variability in
the data multiple lighting environments will be used whilst recording, which can be controlled
through blinds and/or putting the track in the shadow or direct sunlight.

Many things like, the rotation and position relative to windows determines a lot about how
the camera and its internal sensor will react. The dataset that will be gathered for the real world
data should be as broad as possible to capture many different scenario’s as to emulate how real
world pedestrian detection should also be widely applicable. If not enough variety is present in
the dataset, the performance of other models on the data won’t be determined by how well they
adapt, but how well they happen to match the same exact circumstances.

2.6 Label all the data

After all images have been gathered the data needs to be labelled. In the Unity Game Engine
this can be automated, but in the DuckieTown Gym this isn’t possible as with real world data.
Using Roboflow, an online platform providing a wide range of tools for machine learning related
problems, each image can be annotated with a class. Because the dataset only contains Duckies,
there is only one class necessary.

2.7 Train the object-detection

YOLO is used to train a model on each datatset. Each dataset is split into three sections, with
each their own purpose. The training part will be used as data to improve the model. In batches
the model is shown a set of images to improve slightly with. The results is then checked after
each epoch against the validation dataset. Here some hyper-parameters are tweaked to allow for
the next training steps to be as successful as possible. After all the data has been processed the
data is then checked against the testing part of the dataset, which it has never seen before. The
result on the test set is therefore as unbiased as it could be and illustrates the performance the
model will likely have on other data it has never seen before.

The parameters of each training session are slightly varied for each dataset to see if any
change will make a very significant change in its performance. After multiple models have been
trained and analysed a set of arguments is chosen and will stay consistent throughout each test.
These tests are not essential for the main research question and will therefore be placed as an
addition to the thesis in section 7.2

2.8 Evaluate the object-detection on the real-world data

When each dataset has a trained model with the same parameters for training, the models can
be used for testing. Firstly, all models will be evaluated on their own testing data, which will
illustrate how closely fitted it is to its own data. Each model will then also be run on the same
part of real world data, the testing split. From this we will get the performance of each model
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on their own and the real worlds test data. From this we will be able to quantify the reality gap
through multiple performance metrics.

2.8.1 Compare data through Metrics

We take the following criteria that are popular with pedestrian detection as measures for their
performance: Averaged Precision (AP), Precision and Recall. More information about their
inner workings is explained in section 2.3.2.
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CHAPTER 3

Experiments

Figure 3.1: A real-world image with a predicted lo-

cation and confidence level for each ducky.

For my experiments to be possible, multiple
datasets were needed to be created. To allow
each simulation to be used for similar data
gathering some preparations were needed to
be made. Each simulation has its own spe-
cial features and constraints, which need to
be taken into account when adapting environ-
ments to the same purpose. With that pur-
pose being placing randomised duckies within
a realistic DuckieTown track, whilst taking
images from a predefined camera angle and
configuration.

When this setup is completed, the actual
images can be captured or generated depend-
ing on the operating domain. For both the
real world data and the DuckieTown Gym
data, the images are then annotated to cre-
ate a ground truth for models to be trained
and tested against. The Unity simulation has the ability to automate this process by generating
them through its exact knowledge about objects location and orientation.

Each simulation now has its own or multiple datatsets captured with it. The datasets are
then split into three sections: training, validation and testing. The separation of data is needed
to see how the training of the model performs during and after training. As the term suggests,
the training data is used for the improvement of the YOLO model through seeing new data.
During each iteration the model is tweaked slightly with the validation data. Only after the
entire learning procedure is complete, the model is tested on the testing data, which it has never
seen before. This performance of the model will be the metric for how it would react to similar
data it has never seen before.

To more easily distribute and manage the datasets the Roboflow[30] platform is used to
upload the images, including the corresponding annotations if applicable. The platform then
allows the images without annotations to be annotated. At first this was done by hand using
the rectangle tool. After about 100 images were hand annotated, a model was trained on the
platform with this data to use as an intermediate model. The model could then be used as label
assist to speed up the process.

The question of how models that have been trained in simulation transfer to the real world
is answered by using each simulation model on the test part of the real world data and see how
they compare.
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3.1 Real World Setup

Using a corner and straight road from the DuckieTown set tiles two tracks are created, a small
circular track and a larger, more complex track. On the track 25 duckies are placed at random,
which was achieved by throwing the duckies on the track and letting them bounce away. The
DuckieBot is placed on the track and moved along the track whilst capturing an image from its
camera every 2 seconds. This process is then repeated in other lighting conditions. The three
types of lighting conditions that were used are as follows:

• Soft Natural Light: With no harsh shadows or direct sunlight

• Soft Artificial Light: With no harsh shadows, but with direct artificial light

• Harsh Natural Light: With harsh shadows and direct natural light

Figure 3.2: Multiple angles of the setup in the real world for capturing its dataset. The images
show a DuckieTown floor laying on a green underground

3.1.1 Annotation

Each image was annotated using the Roboflow platform [30]. After 100 images were labelled an
intermediate model was trained that was able to assist with annotation through this platform.

3.2 Unity Simulation Setup

In Unity and environment is set up with a model closely representing the actual location where
the real world dataset is recorded. From the DuckieTown platform multiple elements are scanned
into the simulation. Using a picture of two types of tiles a model is closely traced. With only a
straight and corner piece many different layouts can be created. The layout in use throughout
the dataset, pictured in 3.3, is kept the same as when capturing the real world dataset.

As the object to detect the rubber ducky is used. Due to some troubles with scanning in the
ducky with the 3D scanner available, an exact replica of the type of ducky used in DuckieTown
was sourced online1. Due to slight imperfections in the scan, like multiple shadows on the texture
and its material simplicity, some changes were made to the texture to improve its similarity to
its real world counterpart. This included, but was not limited to increased brightness, exposure
and a slight emissive texture to emanate the almost glowing appearance of the real duckies. The
version of the ducky that was eventually used is shown in 3.4 and can be found with the other
created files.

1https://sketchfab.com/3d-models/rubber-duck-3d-scan-ead0a5b7b0ba4a6299a60fd77d85f99a
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Figure 3.3: Multiple angles of the setup within the Unity Game Engine for capturing its dataset.
The images show a DuckieTown floor laying in a room, which is a very close approximation of
the location where the real world data was gathered.

Figure 3.4: On the left an image of the model used for the ducky is shown. On the right this
same model is shown in context after slight texture changes were applied.

The models and textures created for this thesis can be found on Github2

On the area of the tiles 25 duckies are placed randomly for every iteration. Their placement
consists of a random position within the bounds of the tiles. This does not take into account
the collision between duckies, meaning there is a small chance that two of them can collide with
each other causing some visual glitching. But due to the large area of the track the change of
this happening is negligible and won’t have any real effect on any model trained on it.

Now that the track is set up, the camera is placed semi-randomly around the drivable area
of the track. This is accomplished by drawing a spline following the center of the road. The
camera’s position is based on the addition of a random point on this spline and some noise
allowing the car to also be located to either side of the track.

Within the Unity Simulation it is possible to also randomise the lighting conditions, however
for the main dataset this is kept fairly constant to keep the difference between simulations mainly
focused on the level of fidelity, not their ability to perform domain randomisation.

The results of this section including the models, the Unity Environment and the scripts used for
capturing the data and labels can be found on Github3

2
https://github.com/IntelligentRoboticsLab/Robolab-Unity-Env/tree/main/Assets/Models/Custom/DuckieTown

3https://github.com/IntelligentRoboticsLab/Robolab-Unity-Env

23

https://github.com/IntelligentRoboticsLab/Robolab-Unity-Env/tree/main/Assets/Models/Custom/DuckieTown
https://github.com/IntelligentRoboticsLab/Robolab-Unity-Env


3.2.1 Extension: Unity Domain Randomisation

As an extension to my experiments two extra datasets were created with more varying settings
for the lighting conditions within the simulation. The main Unity dataset is very static in its
usage of these features, but because of the ease of using the simulation these two extra datasets
were created to investigate the effect that these features can have. One of these uses these
settings to create a range of conditions that are within reason of conditions that could happen
in the real world. The other is with the settings cranked up the extreme, which creates far more
unrealistic conditions. Though this might make it harder for the model to fit to its own data,
their is a possibility for it to become more generalisable.

3.2.2 Annotation

In contrast to the real world, the camera in the simulation knows the exact position and outline
of each object in the scene. Using the Unity Perception Package we are able to generate images
with annotations already created. This alleviates the need for hand or assisted annotating, which
is one of the largest tasks for generating a dataset. The direct output from the simulation is
annotations in the SOLO file format. This is not the format that will eventually be used to train
the models to perform object detection. So, a script that converts SOLO to YOLO annotations is
used4. Aside from some small problems with this script, the dataset is now complete, annotated
and ready for training.

A portion of the capturing of the dataset in Unity was recorded, which gives a great deal of context
to the explanation above.5

4https://github.com/Unity-Technologies/pysolotools
5https://youtu.be/vVYbwfosOi8
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3.3 Gym DuckieTown Simulation Setup

In contrast to Unity, the Gym DuckieTown simulation doesn’t need a lot of setup. Using a
Reinforcement learning trained driving agent trained [21], the DuckieBot is able to follow any
track with a good speed. The simulation loops over a list of maps picked that are somewhat
similar to the environment of the other setups. The list of maps is as follows: ”zigzag dists”,
”straight road”, ”udem1”, ”small loop”, ”loop empty”. After a certain amount of iterations (if
the robot doesn’t go out of bounds) the next map is loaded in. Before loading each map 25
duckies are placed randomly over the entire track. This resets after each new map load. At an
interval of 2 seconds an image is taken. This makes sure that two images taken after each other
are not too similar.

The code used for collecting the dataset within the DuckieTown Gym Environment can be viewed
online. 6. It’s forked from previous work that created the RL driving agent in DuckieTown [21].

3.3.1 Annotation

Because of the limitations of the Gym based simulation it wasn’t possible to create a program
to automatically annotate the images within the time frame of this thesis. This meant that each
image had to be hand annotated, with the later help of an intermediate model.

3.4 Datasets

My Datasets # images # duckies # duckies / img

Real world [31] 2001 6811 3.4
Gym DuckieTown [32] 2082 7629 3.7
Unity DuckieTown [33] 2000 8421 4.2

Other Datasets # images # duckies # duckies / img

Duckietown Object Detection [34] 200 552 2.8
Duckietown Dataset [35] 1432 2,546 1.8
Duckiebotvision [36] 1446 2,590 1.8

Table 3.1: Ducky density of each dataset. Excluding the part of the dataset specifically meant
to contain no objects.

3.4.1 Other Unity Datasets

Unity Datasets # images # duckies # duckies / img

Static [33] 2000 8421 4.2
Dynamic [37] 2000 8137 4.1
Extreme [38] 2000 8211 4.1

Table 3.2: Ducky density of the alternative Unity datasets

6https://github.com/Fyor/gym-duckietown-data
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3.5 Training

Each dataset is used to train a singular model. The training parameters will stay consistent
for each dataset and have been chosen by playing around with the settings throughout the
project and finding a good balance. The most significant parameters that have been analysed
are the batch size, the number of training epochs, the optimiser used and the learning rate. As
YOLOv8 is a very stable and advanced system, many things worked fine or the best with the
default settings or different parameters didn’t provide any significant improvement. For some
alternative training results with other parameters, take a look at section 7.2.

For training the YOLOv8 models a Jupyter Notebook7 is used with a template provided by
the creators of Roboflow[30], which imports datasets directly from their website. A link to the
resulting models can be found in the following section 4.

7https://github.com/roboflow/notebooks/blob/main/notebooks/train-yolov8-object-detection-on-custom-dataset.

ipynb

26

https://github.com/roboflow/notebooks/blob/main/notebooks/train-yolov8-object-detection-on-custom-dataset.ipynb
https://github.com/roboflow/notebooks/blob/main/notebooks/train-yolov8-object-detection-on-custom-dataset.ipynb


CHAPTER 4

Results

As described in section 3.5 multiple experiments have been carried out with their results being
described in the following chapter. The three different environments, real world, Unity and the
Gym have been tested on both the validation(valid) and testing(test) part of the real world
dataset. With the aim of this experiment being to analyse the difference between the domains
without any augmentations. The second test compares multiple datasets captured in the same
environment, but with each having varying settings. With the aim of this last experiment to see
how well augmentations can help with getting the performance closer to the benchmark of the
real world trained model.

The main trained models can be found online on Github1

4.1 Datasets

Through the Roboflow platform some analysis can be performed to show and illustrate charac-
teristics of the data, which could lead to biases in the model results.

(a) Real-world (b) Unity (c) DuckieTown Gym

Figure 4.1: A heatmap showing the distribution of duckies throughout the camera view for each
environment. Here blue indicates a low number of duckies and lime indicates a high numer of
duckies.

1https://github.com/Fyor/DuckieTown-Ducky-Models
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4.2 Training

In this section the results of the training procedure will be shown. Though this is not relevant
to the actual conclusions that can be drawn from each of the results, it’s still important to show
how each model performed during its training. With this can be shown that each model did
train correctly and was able to fit to its own data well enough.

Figure 4.2: Four plots showing metrics of the model throughout the training procedure. Each
model fits slightly different to its data, due to differing distributions of characteristics between
datasets. As the training furthers each metric increases eventually resulting in a better model.
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4.3 Testing

For each model the following metrics will be tracked. These metrics will be used to evaluate
how each model trained on its own training data. Each model will then also be evaluated on
a separate part of the real-world dataset which no model has seen during training to get a fair
comparison between their actual real world performance.

• mAP

• Precision

• Recall

4.3.1 Training result

Dataset m mAP Precision Recall

Real world 66.0 96.8 92.7 93.8
Gym DuckieTown 69.3 99.2 96.6 97.7

Unity 78.6 90.3 98.9 77.4

Dynamic Unity 75.6 88.9 97.1 77.1
Extreme Unity 68.2 85.3 95.6 73.1

Table 4.1: A comparison of object detection metrics between datasets on tested on the test data
of each dataset. For the metrics mAP, Precision and Recall a higher value is better.

4.3.2 On test data

Model training data m mAP Precision Recall

Real world 66.0 96.8 92.7 93.8
Unity DuckieTown 58.8 92.6 90.6 85.9
Gym DuckieTown 37.1 62.8 73.0 53.8

Table 4.2: A comparison of object detection metrics between datasets on tested on the unseen
test data from real world dataset. For the metrics mAP, Precision and Recall a higher value is
better.

4.3.3 Unity Environment Comparison

The extension adds two more datasets which were generated with Unity, but with increasingly
more complex environment settings. The Unity DuckieTown results from previous tests are now
used as the ”Static Unity” variant, which the two other models are compared against.

Model training data m mAP Precision Recall

Static Unity 58.8 92.6 90.6 85.9
Dynamic Unity 59.3 93.5 92.0 87.0
Extreme Unity 58.2 93.7 90.6 89.7

Table 4.3: A comparison of relevant pedestrian metrics between Unity trained models, tested on
real world data. For the metrics mAP, Precision and Recall a higher value is better.
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CHAPTER 5

Conclusion

As a result from this thesis there are now numerous datasets created, which each on their own
exceed any other similar dataset before it. The datasets are all meticulously annotated and
contain a wide variety of conditions to encompass the domain it was created from. Using these
datasets a model is created to detect abstracted pedestrians, in the DuckieTown world. Aside
from some analysis on its own corresponding test data, each model is assessed on the unseen test
data from the real world as a way of analysing their simulation-to-reality transfer ability. By using
the real-world model as a baseline, it becomes evident that the visual fidelity significantly impacts
the portability of object detection models. The Unity simulation closely approaches the baseline
performance, while the DuckieTown Gym noticeably lags behind. From the second experiment
we can see the effect that domain randomisation on data can have to models trained with it.
A slight but significant improvement is noticed when a reasonable amount of randomisation is
applied, which is plausible for the domain. However, pushing this too far beyond the scope of
the domain offers no clear improvement to its baseline of a static environment.

31



32



CHAPTER 6

Discussion

One of the metrics that I felt was very relevant to pedestrian detection and this thesis was the
Miss Rate, written as MR−2, which stands for log-average Miss Rate on False Positive Per
Image (FPPI). This metric is often used in pedestrian detection as the MR−2 punishes false
positives more [5]. A smaller MR−2 indicates better performance. Due to time constraints of
the project I was sadly not able to include this metric in my evaluation. The implementation is
not a standard for object detection models in general, which is why wide support is unavailable
out of the box. A custom implementation would have been necessary. However, its insights are
invaluable for pedestrian and critical object detection purposes.

DuckieTown provides two mediums for testing autonomous driving or related tasks: A simu-
lation and a physical robot. At the start of the project the physical robot was not in a working
state and the simulation was described as difficult to work with. In the end, it was not pos-
sible to get the physical robot working even after reaching out to the helpful people from the
DuckieTown slack community. The simulation did work, but required a large time investment
to understand and get working. Each method of working with the simulation provided its own
problems, which includes python pip dependencies being deprecated, disappearing and throwing
errors before even starting modifying the code. Eventually, I was able to get it working on one
particular workstation after many modifications, but performing the same steps on a different
workstation did not turn out as fruitful.

The utilisation of domain randomisation appears very much underused in this thesis, which
was not intended at the start of the project. Where domain randomisation really shines is in areas
where visual fidelity fails. Applying various techniques to the DuckieTown Gym environment
would have been an interesting area to research, because of its large simulation-to-reality gap
to be crossed. However, the large task of annotating for this simulation took quite some time
as there exists no way of automating this procedure. Theoretically this could be possible as
the simulation does keep track of the camera location and all objects in the scene. Using these
with some information about the dimensions of the object you’re trying to visualise, a very
close approximation of the location of objects in the scene could be automatically generated.
If a tool like this would exist, the amount of experimentation on this platform could increase
dramatically. Due to uncovering this problem late in the project together with the difficulty of
getting the DuckieTown Gym simulation to a working state, creating this solution was not within
the scope of this project. However, future research could easily build further on this thesis if
such a tool were to be created.

When analysing the data from each dataset in detail for the Results section it appeared
that something went wrong with configuring some of the camera settings. When looking at
the heatmaps of each dataset a clear lack of distortion seemed to be missing. The real world
dataset clearly shows the horizon as being curved, which is logical with the camera being so wide
angled. However, when looking at both simulations a clear curve in the data was missing. For
the Unity simulation this could be explained by the camera settings not being saved in the online
repository when porting the Unity environment to a different workstation. In the DuckieTown
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Gym it appears that this settings, which is available was also missed. Due to them both being
equally wrong in this aspect the comparison should still be unbiased by this. However, a slight
increase in accuracy could be expected if these settings were both set correctly. When looking
at the height of the horizon the Unity simulation does seem to have the correct orientation as it
reaches the same height as the real world data. The provided DuckieTown simulation, however,
shows a clear error with the horizon line being noticeably higher than the two other heatmaps.
This could have an impact on the results as the distribution of data differs, possibly making the
predictions more or less accurate at different positions relative to the camera. The degree of this
error is not known and hard to predict, but future research might need to take this into account
when transferring simulation trained models to reality.
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CHAPTER 7

Appendices

7.1 Appendix A: Model Training Parameters

task: detect

mode: train

model: yolov8l.yaml

data: ‘data directory‘

epochs: 300

patience: 50

batch: 32

imgsz: 640

save: true

cache: false

device: ’’

workers: 8

project: null

name: null

exist_ok: false

pretrained: false

optimizer: SGD

verbose: true

seed: 0

deterministic: true

single_cls: false

image_weights: false

rect: false

cos_lr: false

close_mosaic: 10

resume: false

overlap_mask: true

mask_ratio: 4

dropout: false

val: true

save_json: false

save_hybrid: false

conf: 0.001

iou: 0.7

max_det: 300

half: false

dnn: false

plots: true

source: ultralytics/assets/

show: false

save_txt: false

save_conf: false

save_crop: false

hide_labels: false

hide_conf: false

vid_stride: 1

line_thickness: 3

visualize: false

augment: false

agnostic_nms: false

classes: null

retina_masks: false

boxes: true

format: torchscript

keras: false

optimize: false

int8: false

dynamic: false

simplify: false

opset: 17

workspace: 4

nms: false

lr0: 0.01

lrf: 0.01

momentum: 0.937

weight_decay: 0.001

warmup_epochs: 3.0

warmup_momentum: 0.8

warmup_bias_lr: 0.1

box: 7.5

cls: 0.5

dfl: 1.5

fl_gamma: 0.0

label_smoothing: 0.0

nbs: 64

hsv_h: 0.015

hsv_s: 0.7

hsv_v: 0.4

degrees: 0.0

translate: 0.1

scale: 0.9

shear: 0.0

perspective: 0.0

flipud: 0.0

fliplr: 0.5

mosaic: 1.0

mixup: 0.15

copy_paste: 0.3

cfg: null

v5loader: false
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7.2 Appendix B: Model Training Alternatives

TODO: Show graphs of how the changed parameters like batch size and optimizer didn’t have a
real impact on the resulting metrics.

7.3 Appendix C: DuckieTown Troubles

TODO: Describe what went wrong with Duckietown and what the original plan was for the
thesis.
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