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Abstract

Large and diverse datasets are required to train accurate object detection models. To
create these datasets, specialized annotation software is used to specify where objects are
present in an image. Object locations are defined by bounding boxes, which are then ex-
ported in a format that can be used in model training. A lot of human labour is required to
construct these datasets. Alternatively, synthetic datasets can be generated in 3D virtual
environments. No human annotators are needed in this case, as computers can calculate
ground truth bounding boxes for all objects present in the environment.

In this thesis, we explore how training object detection models using synthetic datasets
can contribute to the performance of an object detection model. In particular, we focus
on object detection tasks relevant to the RoboCup Standard Platform League. Namely,
detecting NAO robots and a small football. We do so by generating synthetic datasets from
a 3D virtual RoboCup environment using the Unity Perception package.

From our experiments, we found that synthetic data can be used to increase a models
performance when used in combination with real-world images. However, using only syn-
thetic images as training data will result in poor model performance compared to comparable
amounts of real-world images.

We conclude that synthetic datasets can be used to increase the accuracy of object
detection and could therefore be a valuable addition in preparing NAO robot systems for
the RoboCup Standard Platform League.
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CHAPTER 1

Introduction

Because of the rapid acceleration of developments in the field of artificial intelligence, computers
are now able to perform human-like tasks better than ever before [16]. Tasks and activities that
were once too complex for robots to perform, such as delivering packages, working at construction
sites and playing sports are becoming increasingly achievable for robots [25]. The problem of
making robots interact with their surroundings in the way humans do is multifaceted. To do so,
computers need to have the capability of observing the world around them, reason about the
circumstances and take action [16]. Developing each of these requirements is very challenging.

1.1 Object Detection

In order for robots to interact with the world around them, it is important for them to observe
their environment [1]. A robot has to know what type of object is in its field of vision before
it can decide what to do with that object. Human beings can easily recognise objects, but it is
quite difficult for computers to do it accurately [24]. Also, computers have to be able to recognise
an object in an image under different conditions. For example, a computer should be able to
determine that an object is a coffee cup if it fell on its side, is occluded by another object or not
lit very well. It is also important for a computer to know where objects are located in an image.

Detecting and localizing objects in images or frames of a video are much researched tasks in
the field of computer vision. Different machine learning algorithms have been developed over the
years. One family of machine learning models, which we further describe in Chapter 2.1, is the
”You Only Look Once” (YOLO) line of models. The YOLO model, when trained on a dataset
that is sufficiently large and diverse, can determine bounding boxes around multiple objects in
an image and determine what class each object belongs to using a single network pass [13]. The
YOLO models are fast enough to be used in real-time object detection applications [20]. In this
project we use the eighth version of this family of models. In particular, we use the smallest
”nano” variant of the model.

Large datasets are required to train accurate object detection models [6]. In order to create
these datasets, images need to be labeled. The labeling of these images requires a substantial
amount of human labour [10]. Instead of using real-world images for object detection model
training, researchers have looked at using synthetic data.

1.2 Synthetic Datasets

3D virtual environments can be used to generate images [2]. Synthetic datasets can then be
constructed with these images. The objects in these pictures have corresponding ground truth
bounding boxes. Since it is a 3D environment, the computer is able to compute the exact
location and dimension of each bounding box, as well as the class that the object inside of it
belongs to [2]. This means that the ground truth bounding boxes precisely contain the objects
inside of them, without including too much of the background. The images and their ground
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truth bounding boxes can be exported into an appropriate format for object detection model
training. Frameworks exist to generate synthetic datasets.

The Perception package is the framework that we use in this project. It is a package that can
be imported into the Unity game engine. The package adds functionalities to the existing Unity
environment that can be used to generate large and diverse synthetic datasets [3]. An example
of a synthetic training example is visible in Figure 1.1. Different kinds of parameters can be set
and randomized through an interface to create synthetic images fit for object detection systems.
This thesis goes over the details of the randomization parameters that we use in this project in
chapter 2.3.1.

There are several benefits to generating synthetic datasets and using them as training data
for object detection algorithms as opposed to using real-world datasets [3]. Firstly, real-world
datasets require human labour to create [10]. Therefore, the production of large datasets can
be expensive [11] [21]. This is especially the case for small companies [21]. Since human beings
are prone to errors, especially when working for long hours, using computer generated datasets
becomes an especially attractive alternative. This is because synthetic datasets do not need to
be audited [3].

It is also important that a dataset captures a wide range of situations [3]. It is important for
such diverse datasets to contain labeled images that accurately represent the real world. This
means that rare cases need to be included in the dataset. For example, a self driving car should
be able to recognize a cat that crosses the road or a tree that fell down. Other cases include
blur and overexposure of the camera lens. Additional work is required to ensure that these cases
are present in the dataset. However, with synthetic datasets, you can make sure that even rare
situations are included in the dataset with a certain probability.

Besides these difficulties, privacy is also an important part of data collection [3]. Potentially
harming data with regard to personal privacy must be filtered from the training set. This is not as
much of a problem when generating synthetic datasets. If it is established that 3D environments
and models within them do not violate anyone’s privacy, resulting datasets do not either.

We can mitigate these problems by generating synthetic datasets [3]. What remains to be
seen is if synthetic datasets can actually benefit the performance of object detection models,
which is what we investigate in this thesis. In particular, we focus on object detection tasks
relevant to the RoboCup Standard Platform League, described in the next section.

Figure 1.1: A screenshot of the Unity camera window. The bounding boxes and classes are
determined and visualized using the Perception package.
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1.3 RoboCup Standard Platform League

The focus of this project is on object detection tasks relevant to the RoboCup Standard Platform
League. The RoboCup Standard Platform League is a championship in which autonomous robots
play football matches against each other. RoboCup football events are organised worldwide on
a yearly basis. A photo of such an event is shown in Figure 1.2. The robots that compete in
the league are of the NAO variety. Systems and functionalities used by the NAO robots are
researched and developed by teams all over the world. The purpose of the league is to promote
research into artificial intelligence and autonomous robots1.

Many different algorithms are needed in order to allow robots to play a game of football. The
object detection tasks that we focus on in this research are detecting NAO robots and a small
football.

Figure 1.2: A photo taken at the 2019 RoboCup Standard Platform League event in Sydney2.

1.4 Research Question

The goal of this project is to contribute to a better understanding of model performance when
trained, either fully or partially, using synthetic datasets. In particular, the aim of this project
is to investigate the performance of models that are trained in order to detect objects relevant
to the RoboCup Standard Platform League. That is, detecting NAO robots and a small football
in images.

This study will answer the following research question:

• How can using synthetic training data improve the performance of object detection models?

Besides this, we want to gain insights in the factors that contribute to the performance of
the trained models. This leads to the subquestion:

• How do randomizations in a 3D environment that generates synthetic data influence the
performance of an object detection model?

1https://spl.robocup.org/
2https://www.robocup.org/photos
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1.5 Related Work

Multiple papers have been released that document the use of synthetic datasets in the training of
object detection models. Borkman et al. [3] describe their experiment, called SynthDet, in which
they trained a Faster R-CNN model to detect grocery items. The experiment showed promising
results as synthetic data contributed positively to the model’s performance, but only when used
in combination with real data.

Similar results were achieved by Vanherle et al. [21], who trained object detection models
to detect industrial metal objects. They also conducted tests to investigate the importance of
object positions and lighting in the environment. They emphasize that it is important to mimic
the real world as closely as possible to get an accurate model. But this was solely the case when
using transfer learning.

Another way of using 3D environments to generate effective synthetic datasets is described
by Tremblay et al. [19], in which they train a model to detect cars. In their research they
examine a so-called ”domain randomization” method. With this method, they add different
kinds of randomized objects to the 3D world that are not necessarily realistic (random meshes
and textures). When trained this way, a model learns to focus only on the important features
[19]. They found that such a model can even outperform models trained with photorealistic
synthetic datasets.

The thesis by Deprez [4] provides insights into the use of synthetic datasets in the context of
the RoboCup Standard Platform League. In particular, the thesis describes an approach with
which images obtained from virtual environments can be augmented in order to resemble real-
world images more closely. The augmented data was shown to more closely resemble real data
by measuring the ”Fréchet Inception Distance”. The author notes that augmenting synthetic
images can improve the performance of an instance segmentation model. In our project, we
perform experiments with object detection models instead.

Hess et al. [5] describe their approach to designing a system that generates synthetic training
images for the RoboCup SPL. To do so, they used the Unreal game engine. The framework cal-
culates semantic segmentation masks for each of the generated synthetic images. Convolutional
neural networks were then trained using only synthetic images. High segmentation accuracy was
achieved.

In a previous project undertaken by Rogier van der Weerd at the University of Amsterdam
[22] a variant of the YOLO object detection model was trained to detect Nao robots and a ball.
The YOLO model was chosen because of its inference speed and accuracy. With this model, ob-
ject detection tasks could be performed more accurately compared to an older “Haar” method.
This particular model was then used to allow a Nao robot to do pathfinding tasks on a football
field.

1.6 Thesis Outline

The thesis is structured in the following way. Chapter 2 provides relevant background information
regarding this project. This includes information about the YOLO model, commonly used object
detection metrics, the Unity Perception package and the virtual 3D environment we use in this
project. Subsequently, Chapter 3 goes into the project method. In particular, we specify the
datasets that we generate and use for our experiments, as well as the way we train our YOLO
models. Next, in Chapter 4 we explain our results and findings3. Lastly, in Chapter 5 we conclude
this thesis by formulating our insights and answering our research question.

3https://github.com/Tobie1999/SyntheticObjectDetection
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CHAPTER 2

Theoretical background

2.1 Object Detection Models

Object detection is an important and well researched task within the field of computer vision.
Object detection deals with the task of recognising contents of an image or frames of a video. In
the past, multiple different approaches have been taken to address this problem. In this thesis,
we use train and test a YOLO model. In this section we describe this model in further detail.

2.1.1 You Only Look Once (YOLO)

In this project, we train and test a particular model from the ”You Only Look Once” (YOLO)
line of object detection models. We now provide some details of this family of models.

The YOLO algorithms are an especially fast and accurate family of object detection systems.
YOLO models are used in a wide variety of computer vision applications because of the speed
at which they can make predictions. These applications include autonomous robots, self-driving
cars and security systems [17]. With each new version of the YOLO algorithm, several unique
and innovative techniques have been devised to improve the performance of the model. In this
project, we use YOLO version 8 to do experiments. In order to understand the workings of
this version of YOLO, we go over some of the main developments that have been made in the
preceding versions.

2.1.2 Basics of the YOLO model

The paper describing the first version of the YOLO algorithm was released in 2015 [13]. The
way the YOLO model made predictions was quite unique compared to other models at the time.
Other object detection algorithms required multiple steps of execution in order to make bounding
box predictions. For example, some algorithms used image classifiers at multiple regions in an
image to perform object localization. Because of these repeated steps, such types of systems were
difficult to optimize [17]. Instead of doing that, YOLO makes multiple bounding box predictions
in an image with only a single network use [13]. This is the reason the algorithm got its name.

Besides the speed of YOLO, [13] mention other benefits to using YOLO as well. One of which
is that YOLO makes very few false positive predictions because it looks at an image as a whole.
Besides this, YOLO is better at recognizing objects in different situations compared to other
models.

The algorithm

The YOLO model works by first separating an image into an S x S grid [13]. Each square in
the grid is in charge of detecting an object whose center is in that square. B bounding box
predictions are made for each square in the grid. The model also predicts so called ”confidence
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scores” associated with each bounding box. The confidence score indicates how sure the model is
about the location of that particular bounding box prediction and the associated classification.
The value of the confidence specifies how close a bounding box prediction resembles the ground
truth bounding box. This is determined by the Intersection over Union, which we explain in
Section 2.2.1.

A bounding box prediction is made up of five values. These include the coordinates (x and y),
the dimensions (width and height) and the confidence score of the bounding box. The coordinates
indicate the location of the center of the bounding box. They are relative to the square in the
grid that the object is in. The width and height of the bounding box relative to the width and
height of the image.

2.2 Metrics for object detection

In order to compare the performance of trained object detection models, it is important to
understand the metrics that are commonly used to analyse them. We now provide an overview
of these metrics.

2.2.1 Intersection over Union (IoU)

Figure 2.1: The IoU is com-
puted by dividing the area of
overlap by the area of union
of a bounding box prediction
and ground truth. This fig-
ure is inspired by the article
by [15].

The metric ”Intersection over Union” (IoU) is used to describe
how well an object detection model predicts the bounding box
placements and dimensions in an image [9]. The IoU is deter-
mined by comparing the bounding box prediction with the ground
truth bounding box. To do so, we calculate the ”Area of Overlap”
and the ”Area of Union” between the two bounding boxes [14].
To obtain the IoU we de divide the Area of Overlap by the Area
of Union, as shown in figure 2.1.

An IoU value of one indicates a perfect prediction, where
the predicted bounding is exactly the same as the ground truth
bounding box. And an IoU of zero means that the predicted
bounding box is not accurate at all, as the prediction and ground
truth bounding box do not overlap. The ”average precision” met-
ric, described in Section 2.2.2, makes use of the IoU. It is impor-
tant to note that the way the IoU is calculated inflicts penalties
on predicted bounding boxes in two situations. Namely, when
there is little overlap with the ground truth bounding box and
too much overlap with the background [7].

2.2.2 Average Precision (AP)

One of the most popular metrics used to measure object detection performance is the average
precision (AP) [12]. If a model is trained to detect multiple classes, the AP is calculated for each
class. Then we take the average of all the APs to get the Mean Average Precision (mAP).

The way in which researchers compute the average precision (and mAP) has changed over
the years. The reason for this is because it was noticed that models which scored equally on the
mAP test, did not perform equally in reality [8]. Even currently, different kinds of AP metrics
are in use throughout the object detection scene.

TP, FP and FN

To determine the average precision of an object detection model, an understanding of the terms
”true positive” (TP), ”false positive” (FP) and ”false negative” (FN) is essential. For object de-
tection, the definitions of these terms are slightly different than for the task of image classification
[8]:
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• True positive: The bounding box prediction closely matches the ground truth bounding
box. A bounding box prediction is measured as true positive if the IoU measure of that
bounding box is greater or equal than a certain threshold value t.

• False positive: An incorrect bounding box prediction. This is the case when the IoU is
lower than threshold t. In this case, the predicted bounding box either differs too much
from the ground truth bounding box, or detects an object that is not present in the image
[26].

• False negative: An object was not detected. This means that no bouning box prediction
was made for an object that has a ground truth bounding box around it.

In the context of object detection, true negative does not exist, as the background does not need
a bounding box prediction (there would be a near infinite ways to do this) [8].

Knowing these terms enables us to understand the ”Precision” and ”Recall” metrics.

Precision and Recall

• Precision indicates the fraction of correct positive predictions out of all the (positive)
predictions:

Precision =
TP

Total bounding box predictions
=

TP

TP + FP
(2.1)

• Recall is the fraction of correct positive predictions out of all ground truth bounding boxes:

Recall =
TP

Number of ground truth boxes
=

TP

TP + FN
(2.2)

Ideally, the Precision and Recall of a model are both close to one. In reality however, there
is often a trade-off between the two [12]. A model has a perfect precision if it makes no FP
predictions. This can occur if the model is careful in making predictions and therefore only
makes a bounding box prediction when it is absolutely certain that is has a high IoU. This,
however, causes the model to have a high number of FN predictions, as a significant amount of
ground truths are missed. This means that although the model has a very high Precision, the
Recall could be very low. This also works the other way around. If the model makes a large
number of predictions, the number of ground truths (TP + FN) it misses would be very low.
This results in a high Recall value. However, an increase in the number of guesses can cause the
number of false positive to grow. This leads to a lower Precision.

This trade-off property is important to keep in mind to understand the Precision-Recall curve.

Precision-Recall curve

We can calculate the Average Precision by determining the area under the Precision-Recall (P-R)
curve. The P-R curve shows how the Precision and Recall of a model changes when only looking
at all the bounding box predictions with a certain confidence value or higher. The best way to
understand this is with an example, shown in Appendix A.

2.2.3 Mean Average Precision (mAP)

To describe the accuracy of a model in detecting all classes, the Mean Average Precision (mAP)
metric is used. The Average Precision (AP) only describes a model’s accuracy at predicting one
particular object class. However, most of the time object detection models are used to detect
different types of objects in an image. We calculate the mAP by first calculating the AP for each
detectable class. Then we simply take the average of all the AP values to get the mAP. The
mAP is a value between zero and one just like the AP. If the mAP is one the model has perfect
accuracy and a value of zero means that it is not accurate at all.
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It is important to note that the IoU threshold that is chosen influences the final mAP score. In
object detection literature and challenges, such as PASCAL VOC 2010 and ImageNET, threshold
values of 0.5 (mAP@0.5) and 0.75 (mAP@0.75) are standard [8]. It is also common to increment
the IoU from 0.5 to 0.95 with steps of 0.05 (mAP@[0.5:0.05:0.95]). With this method, the Mean
Average Precision mAP is calculated multiple times and then averaged.

2.3 Dataset generation with the Unity Perception package

To generate the synthetic datasets, we use the Unity game engine in combination with the ”Unity
Perception” package. The Unity Perception package was released in 2021 and adds functionalities
to the Unity environment to create synthetic datasets [3]. The synthetic datasets that Unity
Perception generates contain perfectly annotated training examples [3]. The Unity Perception
team also mentions an additional benefit. Namely that the virtual environments and objects
within them can be used many different times, each time with slight modifications. The Unity
Technologies team mentions that synthetically generated datasets generated with the Perception
package can successfully be used in combination with real labeled images. As the use of this
combined dataset can even lead to a better model performance.

2.3.1 Unity Perception workflow

Setting up

After a Unity scene with an environment and objects is constructed, Unity Perception compo-
nents can be set up1. The Perception package provides users with so called ”labeler” com-
ponents. With these labelers, different types of ground truths can be generated. The type of
labelers to use depends on the computer vision task to be performed. The supported computer
vision tasks include object detection (2D and 3D bounding boxes), instance segmentation and
semantic segmentation (per-pixel classification). The ”perception camera” component needs to
be attached to the camera that we use to generate images with.

To specify the class that each object belongs to, we can attach the ”label” component to
those objects. The ”labeler”, attached to the perception camera component, then uses these
labels to determine the ground truth class information. Users can specify the exact names that
objects should be labeled as. However, the classes for each ground truth in the final dataset are
represented as numerical IDs.

Randomizations

An object with a ”scenario” component has to be created before randomizations can be config-
ured. Different scenarios can be created with different randomization behaviours. The scenario
also controls some important settings, such as the randomization seed and the number of images
that are be generated. Multiple ”randomizers” can be added to the scenario in any order. A
large number of randomizers are available, so we only describe the ones used in this project.

The first one is the transform randomizer. With it, the position and rotation of all objects
with a “transform randomizer tag” component are randomized. We can specify the bounds
within which an object is randomly placed by setting minimum and maximum values for the
three axes of motion (x, y and z). The same can be done for the three rotational axes.

The sun angle randomizer is used to vary the rotation of the directional light. The time of
day, the day of the year, and the latitude can all be randomized.

The skybox randomizer is used to randomly pick a skybox from a list of skyboxes. The
rotation of the skybox can also be randomized.

Properties of the global volume can be randomized using the volume randomizer. The prop-
erties include bloom effects, lens distortion, depth of field, motion blur and camera type. We
only randomize the first two properties for this project.

1https://docs.unity3d.com/Packages/com.unity.perception@1.0/manual/Tutorial/Phase1.html
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Analyzing synthetic datasets

Finally, the developers of the Perception package provide additional code to perform dataset
analyses and create visualizations. Examples are the number of objects per generated image and
the occurrences of objects in the entire dataset.

2.4 Virtual RoboLab environment

The virtual environment that we use in this project is a replication of the Intelligent Robotics
Laboratory at the University of Amsterdam (UvA) inside of Unity. It was kindly provided to us
by Joey van der Kaaij, who works at the the Visualization Laboratory at the UvA.

Inside of the Unity environment is a complete RocoCup football field, along with NAO robot
and football models. The Unity project also has Unity Perception installed and configured.
Several objects inside of the scene have randomizers attached to them in order to generate
diverse synthetic datasets. Figure 2.2 shows a screenshot of the environment.

Figure 2.2: A screenshot of the virtual Intelligence Robotics Lab at the University of Amsterdam
inside of Unity. The environment was created by Joey van der Kaaij.
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CHAPTER 3

Method

3.1 Real-World Datasets

3.1.1 SPL Dataset

In this project we use a subset of the images in the SPL dataset, made public by [23]. The
dataset contains just under 5000 images. The images are all taken from the view of a NAO robot
at positions on soccer fields used in Robocup tournaments. Over all the image, about 5500 NAO
robots and 4500 footballs are visible. Some images contain multiple robots and some contain
none. Diverse situations are captured in the set of images. Some occlusions of robots and the
ball occur in the dataset. The lighting conditions also vary over the dataset, as some images are
taken under natural lighting and some under artificial lighting. Some images are heavily blurred
because of a fast motion of the camera. Images are also present with different people in the
background.

We made some alterations to this dataset. In this project, we are only considering the
detection of NAO robots and a football. The SPL dataset however, also contains two additional
classes: goal post and pentalty spot. We removed all occurences of these labels because they are
not needed in this project.

For our project, we randomly sample a smaller subset of 2500 images from the SPL dataset.
This is our largest dataset made up of purely real-world data used in the project.

3.1.2 Experimental Real-World Datasets

For our experiments, we use multiple real-world datasets of different sizes. We do this to be
able to compare models trained on real data with models trained on synthetic data at different
levels of training. Also, we use these real-world datasets in combination with synthetic datasets
in order to gain additional insights in model performance. All datasets are split into a training,
validation and testing set. In this thesis we perform tests on four datasets containing only
real-world images.

Our largest real-world dataset contains 2500 labeled images. It is split into a training set
of 1500 (60%) training examples, a validation set of 500 (20%) images, and a testing set of 500
(20%) images. We obtained this dataset by randomly sampling images from the SPL dataset
described in the previous section. The test set of 500 images are used for all tests performed in
this project. This includes tests on models trained on real-world, synthetic and combined data.

The second largest dataset consists of 900 labeled images. It consists of a training set of size
300, a validation set of size 100, and a testing set of 500 images. The training set is a subset
of the training set of our largest dataset and contains 20% of its images. In the same way, the
validation set is a subset of the validations set of the largest dataset. As described above, the
same 500 images are used for testing all models.

Next, we use a dataset that has 580 images total. The training set contains 60 images. This
is also a subset of the training set of the largest dataset (4% of 1500). Similarly, the validation
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set holds 4% of the images of largest dataset’s validation set.
Lastly, only 516 images make up the smallest dataset. Of those 516 images, 12 are the training

set and 4 the validation set. Like with the previous datasets, the validation and training sets are
subsets of the training and validation sets of the largest dataset (0.8%).

Below is a concrete list of the four real-world datasets:

• Real-world dataset 1: Size 2500, 1500 Train, 500 Validation, 500 Test

• Real-world dataset 2: Size 900, 300 Train, 100 Validation, 500 Test

• Real-world dataset 3: Size 580, 60 Train, 20 Validation, 500 Test

• Real-world dataset 4: Size 516, 12 Train, 4 Validation, 500 Test

3.2 Synthetic Datasets

We construct multiple synthetic datasets to perform experiments with. The datasets differ both
in size and in the randomizations applied during the generation process. We run experiments
with models trained on these synthetic datasets, as well as combinations with real-world datasets
described in Section 3.1.2. The synthetic datasets are all generated using the Unity Perception
package.

3.2.1 Converting SOLO to YOLO format

YOLO is unique in the way its dataset folders are structered and how it specifies bounding boxes.
The Unity Perception package outputs its images and ground truth bounding boxes in a different
format, called SOLO. In order to train a YOLO model with the data from Unity Perception, we
have to convert the datasets from the SOLO format to the YOLO format.

The Perception package outputs a single folder which contains folders that correspond to
each generated image. Each folder contains the generated image and a JSON file containing the
ground truth bounding boxes and some metadata. The bounding boxes are defined differently
than the way YOLO defines them. The position of the bounding boxes are defined by their
pixel coordinate, from the top left of the image to the top left of the bounding box. The width
and height are also expressed in pixels. However, the YOLO format defines the coordinates of
the bounding box centres, relative to the size of the image. The dimensions are also relative to
the image size. Besides these differences, the folder structures also differ, as YOLO separates
the data into train, test and validation sets. Unity Perception outputs all images and bounding
boxes into a single folder.

We wrote code to do this conversion, as well as to split the data into training, validation and
testing sets 1.

3.2.2 Randomized datasets

While generating synthetic datasets using the Perception package, we apply multiple random-
izations to our Unity scene. The reason for this is that, hypothetically speaking, a more diverse
training dataset leads to a model that is able to detect objects in more situations. In order to
create these randomizations, we use the randomizers provided by the Unity Perception package.
We describe randomizers in Section 2.3.1.

In total, we randomize five components in our scene. The randomization parameters were
specifically chosen to create a dataset that resembles a real-life dataset. The five Perception
randomizers we use are: TransformRandomizer, LightRandomizer, SunAngleRandomizer, Vol-
umeRandomizer, SkyboxRandomizer.

Below follows an explanation of the settings we used for each of these randomizers.

1https://github.com/Tobie1999/SyntheticObjectDetection
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Transform randomization

The transform ramdomizer varies the location and rotation of objects in each generated image.
We attach the ”Transform Randomizer Tag” component to the objects whose transform we want
to randomize. In our case, we attach the tag to six NAO robots, one football and the camera.
The tag settings for the position are the same for all objects, namely:

• X: between -40 and 40 units (uniformly sampled)

• Y: always 0 units

• Z: between -30 and 30 units (uniformly sampled)

The positions are relative to the starting position of the object (the center of the football
field). The position ranges are set to these values so the robots are placed over the whole football
field.

The rotation randomizer settings differ slightly between the three types of objects. NAO
robots are only rotated around the Y axis (between 0◦and 360◦, uniformly picked). The ball is
rotated around all three axes (also between 0◦and 360◦). The camera is mainly rotated around
the Y axis (between 0◦and 360◦), but is also given a slight tilt around the X and Z axes (between
-2◦and 2◦).

Light intensity/temperature randomization

The two main sources of light in the scene are the directional light and the ceiling lights. All
of these objects have the ”Light Randomizer Tag” components attached to them in our scene.
With the tag we can randomize the intensity and the temperature of the light. The directional
light’s randomizations are set as follows. The intensity is randomly picked between 15 and 500 lux
(uniformly sampled). The temperature is set between 4000 and 7200 kelvin (uniformly sampled).
As for the ceiling lamps, the intensity is a random value between 900 and 9500 lux (uniformly
sampled) and the temperature a value between 2400 and 9000 kelvin (uniformly sampled).

Sun angle randomization

We vary the time of day by setting up the ”SunAngleRandomizer”. The scene contains a single
directional light, which has a ”Sun Angle Randomizer Tag” connected to it. We use the following
randomization parameters:

• Hour: between 0 and 24

• Day of the year: between 0 and 364

• Latitude: between -90 and 90

Global volume randomization

Within a Unity Scene, an object with the global volume component can control various post-
processing effects. For our experiments, we have a global volume object whose settings we vary
using the ”VolumeRandomizer”. Specifically, we randomize the ”bloom” and ”lens distortion”
volume effects. We use the following settings on the volume randomizer tag:

• Bloom: threshold between 0 and 0.75, intensity between 0 and 1 and scatter between 0
and 0.75.

• Lens distortion: intensity between -0.5 and 0.5, X and Y multiplier between 0 and 1, center
at X = 0.5 and Y = 0.5, and scale between 0.01 and 5.

Skybox randomization

Lastly, we randomize the skybox of our scene. One out of eight skyboxes is randomly picked
for each generated image. The skybox is visible when looking out of the window of the virtual
RoboLab environment.
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Figure 3.1: Occurrences of the object counts per
image. In the 3D environment are six robots and
one football.

We generated 1600 synthetic images with
all of these randomizations enabled. We set
the number of robots in the 3D environment
to six, as this results in a robot count per im-
age that roughly matches the real-world SPL
dataset. The frequencies of the object counts
per image is visible in figure 3.1. In total, 2670
NAO robots and 400 footballs are present in
the dataset. From these synthetic images we
created three datasets to experiment with.

Our largest synthetic dataset contains
2100 images. 500 of these images are real-
world images only used for testing. These are
the same 500 real images that we use to test
every model in this project (Section 3.1.2).
The 1600 remaining images are synthetic im-
ages, split into a training set of 1200 images
and a validation set of 400 images.

We also created a dataset containing 1300
images. 800 of the images are synthetic, split into a training set of 600 images and a validation set
of 200 images. The training set is a subset of the training set of the largest synthetic dataset. In
the same way the validation set is a subset of the largest datasets validation set. The remaining
500 images are real and used for testing.

Lastly, the smallest synthetic synthetic dataset contains 900 images, split into 300 synthetic
training images, 100 synthetic validation images and 500 real-world testing images. The training
set is a subset of the training set of the synthetic dataset of 1300 images, and the validation set
a subset of its validation set.

Below is a list of the synthetic datasets:

• Synthetic dataset 1: Size 2100, 1200 Train, 400 Validation, 500 Test (real-world)

• Synthetic dataset 2: Size 900, 600 Train, 200 Validation, 500 Test (real-world)

• Synthetic dataset 3: Size 580, 300 Train, 100 Validation, 500 Test (real-world)

In addition, we also have 3 additional synthetic datasets with 1500, 300, 60 and 12 training
examples. We did this in order to compare the accuracy with the real-world datasets for the
same amounts of training data.

3.2.3 Datasets for randomization experiments

The datasets described here are made in order to find out how much each randomizable setting
contributes to the accuracy of the resulting model. For example, the Perception package can
randomize the intensity of the lights in each generated image when provided with a minimum
and maximum value (0 and 500 lux in our case). For each image, Unity uses these values to
sample an intensity value from a uniform distribution. However, it is also possible to use a fixed
intensity for all generated images.

With this experiment, we generate datasets keeping all but one parameter randomized. The
parameter that we do not randomize is kept constant throughout the image generation process.
In some cases we generated multiple datasets for a parameter, each with a different constant
value for that parameter (e.g. one dataset with a light intensity of 50 lux, one with an intensity
of 250 lux, and one with an intensity of 500 lux).

Our hypothesis is that a better synthetic dataset (for yolov8 model training) can be gen-
erated by randomizing the different Unity Perception parameters (light intensity/temperature,
sun angle, blurriness and skybox) instead of keeping the parameters constant. This hypothesis
seems intuitive because randomizing the parameters gives a more diverse dataset, and a model
trained on a diverse dataset should be able to accurately detect objects in more situations. Also,
the real-world dataset that we are testing our models with contains images taken in different
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situations. This should mean that a model trained with diverse synthetic data performs better
on the real-world test set.

For each experiment we use 300 synthetic training examples in combination with 300 real
training examples to train a model. The synthetic datasets are generated using the same seed
each time. We do this to only measure the effect of disabling one randomization. When we
describe our results in Chapter 4.1.3, we only consider the dataset with the best result for each
randomizer configuration.

3.3 Combined Datasets

Other types of datasets we use in our project are combined datasets. These datasets contain
both real-world and synthetic images. To create combined datasets, we use the real-world and
synthetic datasets described in the previous sections.

To create the combined dataset, we combine the real-world and synthetic datasets by adding
their entire training sets together. We do the same with the validation sets. The test set
consists of the same 500 real-world images used as test set throughout this project. We created
combinations with the datasets described in the previous sections in order to get a insights into
what the effect is on performance at different blends of real and synthetic data.

3.4 YOLOv8 nano Training

All models in this research are trained for 50 epochs with a batch size of 16. The hyperparameters
are set to the default values of YOLOv8. However, we also analyzed and compared the accuracy
of models with different hyperparameter settings. An increase of accuracy can be achieved when
modifying one of the mosaic augmentation parameters. Setting the close mosaic parameter to
10 will increase a models mAP[0.5] score (when trained with 300 real-world images) by nearly 2
percentage points.

We also experiment with training a YOLOv3 model using different combinations of real and
synthetic data. These models are also trained for 50 epochs. We do this in order to obtain
more robust findings. Where possible, the hyperparameters are set to the same values as for the
YOLOv8 model.
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CHAPTER 4

Experiments

4.1 Results

4.1.1 Real-world versus synthetic datasets

(a)

(b) (c)

Figure 4.1: Diagrams showing the difference between the accuracy of models trained using only
real-world images versus those trained using only synthetic images. Plots (a), (b) and (c) show
the metrics mAP@[.5], mAP@[.75] and mAP@[.5:.95] respectively.
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Figure 4.1 shows comparisons between models trained on real-world data and those trained
on synthetic data. As can be seen, models trained using only real-world data greatly outperform
models trained using only synthetic data at multiple training set sizes. The law of diminishing
returns is visible. Significant mAP score improvements are visible when using 300 training
examples instead of 60. At 300 training examples, models trained on real-world data already
reach sufficient accuracy (mAP@[0.5] = 0.882). However, there is still room for improvement.
The three metrics show a similar pattern. We will therefore only focus on the first metric
(mAP@[0.5]) in the following experiments.

4.1.2 Combined datasets

We now look at the performance of models that are trained using datasets that consist of both
real-world and synthetic images. Figure 4.2 shows that adding synthetic data to real data in
the training set improves the performance of the model. The blue bars in the figure show that
using only 300 real-world training images to train a YOLOv8 model results in an mAP@[.5] of
around 0.88. The orange bars show the accuracy boosts that are obtained by adding 300, 600 and
1200 synthetic training examples to the 300 real-world examples. In all three cases, the model’s
accuracy improves. To check whether the results are robust, some experiments were repeated a
number of times. This can be seen in Appendix C

Figure 4.2: The accuracy of YOLOv8 models trained on a combined dataset of real-world and
synthetic images. The figure shows the mAP of models trained on 300 real-world images (blue
bars), as well as the mAP improvements observed when adding 300, 600 and 1200 synthetic
images to the 300 real images (orange bars).

The performance boost is especially apparent when the number of real-world images is not
very large, such as 300. If the model is already quite accurate, because it has been trained
on more real-world data, adding synthetic data only results in a small performance boost. For
example, at 1500 real-world training examples, the accuracy of the model is already high (almost
0.98 mAP[0.5]). This leaves little room for improvement. Figure 4.3 shows that the addition of
synthetic data does not lead to significant accuracy improvements, as the orange bars are barely
visible.
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Figure 4.3: The mAP of models trained on 1500 real-world images (blue bars), as well as the
mAP improvements observed when adding 300, 600 and 1200 synthetic images to the 300 real
images (orange bars).

Adding synthetic data to the training set only improves the accuracy of a model up to a certain
amount. For example, the accuracy of a model increases when adding up to approximately 600
synthetic images. After that no significant performance improvements are achieved anymore.
This can be seen in Figure 4.4. The figure shows by how many mAP[.5] points a model’s
accuracy increases when adding different amounts of synthetic training examples to 300 real-
world training examples. The mAP increases by roughly 0.037 points when adding 300 synthetic
training examples. The accuracy further improves when 600 synthetic examples are added to the
300 real-world examples, increasing the mAP by approximately 0.053. No further improvements
are made to the model when adding 1200 synthetic training examples, as the mAP also improves
by 0.053 points. A similar pattern is visible for the model that uses 1500 real-world training
images, as can be seen in Figure 4.5.

Figure 4.4: The mAP@[0.5] increase when using 300 real-world images in combination with
different amounts of synthetic images
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Furthermore, Figure 4.5 below shows that adding synthetic images to an already large training
set of real-world images only leads to a small performance boost. The main reason for this is that
the model already reaches a near perfect mean average precision when trained on that amount
of real-world data.

Figure 4.5: The mAP@[0.5] increase when using 1500 real-world images in combination with
different amounts of synthetic images

The mAP measurements we observed from models trained using synthetic, real and combined
datasets are visible in table 4.1. Besides these tests, we also performed similar experiments on
YOLOv3 models. The results are described in Appendix B.

Table 4.1: Mean average precision of YOLOv8 nano models trained on real-world, synthetic or
combined datasets (both football and NAO robot).

Number of real
training examples

Number of synthetic
training examples

mAP
(IoU=.5)

mAP
(IoU=.75)

mAP
(IoU=[.5:.05:.95])

12 0 0.0009 0.0002 0.0003
60 0 0.204 0.040 0.079
300 0 0.882 0.777 0.645
1500 0 0.976 0.917 0.783
0 300 0.089 0.008 0.032
0 600 0.161 0.060 0.074
0 1200 0.183 0.082 0.092
300 300 0.919 0.807 0.682
300 600 0.935 0.798 0.680
300 1200 0.935 0.824 0.698
1500 300 0.979 0.917 0.787
1500 600 0.982 0.928 0.798
1500 1200 0.981 0.927 0.796
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Another finding is that using real-world data, if available, is still preferred over synthetic
data. Figure 4.6 shows that a model performs better if a large share of its training set is made
up of real-world images. The figure shows that exchanging real data for synthetic data slowly
deteriorates the accuracy. It can therefore be concluded that real data is more valuable than
synthetic data.

Figure 4.6: The mAP[0.5] of models trained using 600 training examples. Each model is trained
using a different percentage of synthetic data in its dataset.

Based on the results of the previous experiments we can conclude that even though synthetic
data does not perform well on its own, it can result as a performance boost when used in addition
to available real-world data.
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Accuracy in predicting the football and robot class

We also analyze the accuracy of models at predicting a football and NAO robot separately.
Again, models trained purely with real-world data perform significantly better than models
trained with only synthetic data. This applies to both the detection of a football and a robot.
This is illustrated in Figure 4.7. Nevertheless, adding synthetic data to a real-world training set
improves the accuracy in predicting both the football and the robot, as shown in Figure (4.8).

Figure 4.7: The accuracy of models in predicting the football and robot class. The models are
trained with real-world images or synthetic images. The blue bars indicate the model’s accuracy
when trained using only real-world data. The orange bars show the accuracy when trained on
only synthetic data. The dark blue bar shows the model’s accuracy in detecting the football,
and the light blue bar the accuracy in detecting the robot. The same applies to the dark and
light orange bars.

Figure 4.8: The accuracy of models trained using 300 real-world images in addition to 300, 600
and 1200 synthetic images. The dark and light blue bars show the performance of models trained
on 300 real images in detecting a football and a NAO robot. The orange bars show the accuracy
improvements when adding different amounts of synthetic training examples.
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An observation can be made when using only real-world data for model training. At small
amounts of real data, such as 300 images, there is a discrepancy between the accuracies in
detecting the football and the robot. The model detects footballs with higher accuracy (0.91
AP) than robots (0.85 AP). A possible cause for this is that the NAO robot is a more complex
object. When synthetic data is added to a real-world training set of this small quantity, more
improvements are made in detecting the robot than the football. This is visible in figure 4.9.
This means that synthetic data helps in bridging the gap between accuracy in predicting different
classes.

Figure 4.9: The AP increase when adding different amounts of synthetic images to 300 real-
world training examples. The dark and light blue bars show the accuracy increase in detecting
the football and robot respectively.
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4.1.3 Effect of randomizations

We performed another experiment where we analyze the performance of a model when trained
using different randomization settings in the 3D environment. In the previous section, we ran-
domized multiple settings for each generated synthetic image. The following attributes inside
the Unity scene were randomized: the positions of objects, lighting properties, the angle of the
sun, bloom effects, distortion effects, and the skybox.

In order to understand the effect of the randomizations on the model’s accuracy, we fixed each
one of the aforementioned settings separately, except for the position randomizations, and tested
the performance of the resulting models. The results are visible in figure 4.10. We also tested the
performance of the model when keeping every setting fixed except the positions randomizations
(”mostly fixed” in figure).

From the figure we can conclude that randomizing all settings results in a synthetic dataset
that can be used to boost the performance of a model. Fixing settings did not lead to significant
accuracy improvements compared to randomizing everything. The most accuracy was achieved
when we kept the sun angle fixed inside of the 3D environment.

The exact measurements are visible in Appendix D.3.

Figure 4.10: mAP@[0.5] of models trained with 300 real and 300 synthetic images. The synthetic
training examples are generated using a different randomization configuration each time. All
synthetic datasets had positions of objects randomized, and some had only one fixed parameter.
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Figure 4.11 shows the accuracy improvements. Adding synthetic data leads to better results
for all randomization configurations. Even randomizing only the positions of objects leads to a
sufficient accuracy boost. Fixing the angle of the sun leads to a slightly better result compared
to the other randomization configurations. However, this is not a significant improvement.

Figure 4.11: The mAP@[0.5] increase when adding synthetic data generated with different ran-
domization configurations inside of the 3D environment. 300 synthetic training examples are
added to 300 real-world examples each time.
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CHAPTER 5

Discussion

5.1 Comparison with Relevant Works

The results obtained are consistent with the findings of previous studies. Previous studies have
shown that synthetic data on its own does not lead to reasonable model performance compared
to real data [3] [21]. This is most likely due to the so-called “reality gap” between synthetic
data and real data [18]. The studies conclude that adding synthetic data to real data leads to
satisfying results. We have also noticed this with our research. The research by Vanherle et al.
[21] also shows that models perform better when a large proportion of the training data consists
of real data. We have also seen this.

However, our observations differ from one of the relevant sources when it comes to the effect
of randomizations. Vanherle et al. [21] conclude in their study that randomizing lighting settings
leads to better performance. However, our research shows that this is not always the case.
Fixing certain parameters in the 3D environment, such as the angle of the sun, did not degrade
the model. A possible explanation for this is that a large part of the SPL dataset consists of
photos with similar lighting conditions. As a result, keeping certain settings fixed can yield better
results than the fully randomized settings.

5.2 Conclusion

As mentioned in Section 1.4 this project’s goal is to explore object detection model performance
when trained, either entirely or partially, using synthetic datasets. We particularly focused
on detecting objects relevant to the RoboCup Standard Platform League, a football and NAO
robots.

The main research question we wanted to answer was:

• How can using synthetic training data improve the performance of object detection models?

This research question now has an answer. Using synthetic data as training data on its own
will result in poor model performance, especially when compared to the same amount of real-
world training. However, the strength of synthetic data lies in using it in addition to real-world
data.

From our experiments we found that a significant performance improvement can be obtained
when only adding a small amount of synthetic data (300) to a real-world dataset. The per-
formance boost is especially significant if the number of real images available is not very high.
If a lot of real data is already present in a dataset, adding synthetic data will not result in a
significant accuracy improvement.

Another important finding is if we add synthetic images beyond a certain amount, the per-
formance will not increase anymore. In fact, it can even cause the model’s accuracy to slightly
decrease.
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We also wanted an answer to the following subquestion:

• How do randomizations in a 3D environment that generates synthetic data influence the
performance of an object detection model?

During our project we experimented with different randomization settings. From our ex-
periments we conclude that a dataset obtained from a virtual environment with all parameters
randomized can improve model performance. However, keeping certain parameters fixed, such
as the lighting and sun direction, can cause the model to perform slightly better. However, the
effects of this are not significant.

5.3 Ethical Aspects

There are concerns regarding data privacy when it comes to machine learning. According to
Borkman et al. [3], generating synthetic images from 3D environments can help mitigate this
problem. Choosing to use 3D simulations to create images gives us more control over the images
that end up in the resulting dataset. However, in our case we concluded that synthetic training
examples are only effective when used in combination with real-world data. Studies on synthetic
datasets for other applications [3] [19] [21] draw the same conclusion. Since synthetic datasets
can not be completely relied on, we emphasize that privacy is still a major concern when it comes
to creating object detection datasets.

Furthermore, the usage of synthetic training sets may cause people to lose their jobs. Compa-
nies hire employees to annotate and audit datasets [21]. Less annotators and auditors are needed
to create a dataset if synthetic images are added to them [3]. More research is needed to gain
insights into potential loss of employment in this field of work.

5.4 Future Work

Future research could focus on doing experiments with different real-world datasets. Throughout
our project we only used the SPL dataset described in Section 3.1.1. These studies are needed
to arrive at more robust findings on the impact of synthetic training data on model accuracy.
Future studies could also look at the effect of synthetic data using newer versions of the YOLO
model to be released in the future, or experiment with entirely different models.
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APPENDIX A

Precision-Recall Curve Calculation
Example

Below follows an example of how the area under the precision-recall curve (AP) is calculated.
Table A.1 shows ten bounding box predictions. The predictions are not real as they are just

for illustrative purposes. The bounding box predictions in this table could have been the results
from analyzing multiple images, or just one. In this example, we assume that there were five
total ground truth boxes that had to be correctly guessed by the model. The predictions in
this table are sorted by their confidence values in descending order. Also, the table displays for
each prediction whether it was true positive of false positive (we assume that an appropriate IoU
threshold was chosen in order to determine this).

In order to construct the P-R curve, we first have to compute the cumulative number of
TPs and FPs for different minimum bounding box confidence values [26]. We do this by simply
adding one to the cumulative TP or FP value for each row. The results of this are shown in the
Cumulative TP and FP columns. Then we calculate the Precision and Recall for each confidence
level, as shown in the last two columns. We use these Precision and Recall values as coordinates
in order to plot the P-R curve. The P-R curve plot is shown in blue in figure A.

Table A.1: An example showing the calculations needed to construct a Precision-Recall curve.
The P-R curve is needed to calculate the Average Precision metric. The bounding box predictions
are sorted by their confidence level in descending order from top to bottom. The Precision and
Recall are computed for each confidence level by using the cumulative TP an FP values. In this
example, it is assumed that there are a total five ground truth bounding boxes to be predicted.
The plot of the P-R curve is visible in figure A.

Bounding box
prediction

Confidence TP/FP
Cumulative

TP
Cumulative

FP

Precision

( TP
TP+FP)

Recall

(TP5 )

1 0.94 TP 1 0 1 1/5
2 0.93 FP 1 1 1/2 1/5
3 0.85 FP 1 2 1/3 1/5
4 0.74 TP 2 2 1/2 2/5
5 0.69 TP 3 2 3/5 3/5
6 0.60 FP 3 3 1/2 3/5
7 0.38 TP 4 3 4/7 4/5
8 0.25 FP 4 4 1/2 4/5
9 0.24 FP 4 5 4/9 4/5
10 0.23 FP 4 6 2/5 4/5
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Figure A.1: The Precision-Recall curve of the example data in table A.1. The 11-point interpola-
tion Precision values are shown in orange. We take the average of these 11 values to approximate
the area underneath the P-R curve (AP).

Calculating the Average Precision (area underneath the P-R curve)

Preferably, a model has a high Precision for each Recall value, as that would mean that it is very
accurate. A model with a large area underneath the P-R curve would be such a model. But as
previously described, there is often a trade-off between the two.

It may seem easy to calculate the area underneath the P-R curve. However, this example
only contains ten bounding box predictions. Depending on the size of the (testing) dataset, this
table could be a lot larger and the resulting P-R curve a lot more complex. Different ways have
been devised and used over the years to calculate the area underneath the P-R curve.

A common way to calculate the area under the curve is using 11-point interpolation [12].
With this method, we determine the Precision at eleven different Recall values. The Recall
values we consider go from 0 to 1 with increments of 0.1. To determine the Precision at a Recall
value, we take the maximum Precision of the P-R curve at that Recall value or to the right of it.
The resulting Precision values are shown as orange dots in figure A. Then we take the average
of these precision values to get an approximation of the area under the P-R curve, which is the
Average Precision.

We emphasise that this is not the only way to calculate the AP. Other ways include using
101 interpolation points to approximate the area under the curve (MS COCO 2014) [8] .
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APPENDIX B

YOLOv3 Experiments

The YOLOv8 nano model was used for the object detection model training in this project.
However, we also evaluated the performance of a YOLOv3 model when trained using different
combinations of real and synthetic training data. The same datasets used to train the YOLOv8
models are used to train the YOLOv3 models. The same real and synthetic training examples
are always considered and the resulting models are also always evaluated on the same testing
set. The YOLOv3 model’s hyperparameters are also set, as much as possible, the same as the
parameters we used for the training of the YOLOv8 model. The results are visible in Table B.1.

Remarkably, YOLOv3 scores better or equal when looking at the mAP@[.5] metric. With
only 50 real training examples, YOLOv3 already gives a score of around 0.5. YOLOv8 is only
around 0.2 in this case. When we use more real examples, the results converge to about the same
maximum (0.98). Also, with YOLOv3 we see the benefits of adding synthetic examples to 300
real examples. Similarly, the benefit stops at about 600 synthetic examples. For both YOLOv3
and YOLOv8, the maximum mAP@[.5] of models trained on combined training data seems to
be 0.98. The added value of YOLOv8 compared to YOLOv3 is reflected in the mAP[.5:.05:.95]
metric. YOLOv3 scores a maximum of around 0.75 on this stricter metric. With YOLOv8, this
maximum is a lot higher at 0.80.

Table B.1: Mean average precision of a YOLOv3 model when trained on different combinations
of real and synthetic training data.

Number of real
training examples

Number of synthetic
training examples

mAP
(IoU=.5)

mAP
(IoU=[.5:.05:.95])

12 0 0.0020 0.0006
60 0 0.507 0.232
300 0 0.921 0.601
1500 0 0.980 0.744
0 300 0.136 0.062
0 600 0.204 0.087
0 1200 0.259 0.118

300 300 0.942 0.647
300 600 0.951 0.651
300 1200 0.953 0.659
1500 300 0.979 0.748
1500 600 0.981 0.748
1500 1200 0.979 0.754
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APPENDIX C

Statistical Analysis

To investigate the robustness of the obtained results, some tests were repeated a number of times.
In total, the basic tests were performed 5 times. The results of this can be seen in Table C.1.

In all tests we see the same recurring pattern: with 300 real examples, stable results are
obtained based on the mAP@[0.5] metric. The average score is 0.863 with a standard deviation
of 0.014. Assuming a normal distribution, the 95% confidence interval for the true mean is 0.835
and 0.891. The value we measured Section 4.1.2 is 0.882, which is within this confidence interval.
The value observed in this study is therefore not an outlier. After adding 300 Synthetic data,
the resulting mAP@[0.5] increases in all cases, on average by 0.046. The associated standard
deviation is 0.011. With 95% confidence, it can therefore be stated that adding 300 synthetic
data to 300 real data leads to an mAP improvement between 0.024 and 0.068 (mean plus or
minus 2 times the standard deviation). Based on the analyses, it can be excluded that adding
synthetic data will not lead to an improvement of the mAP@[0.5]. Given the observed outcomes
this probability is only 0.002%. We can therefore say that the conclusion, ”synthetic data can
improve model performance”, is robust.

Table C.1: Results of the five tests. For each test two models were trained. The first model
was trained using 300 real-world training images, the second model had 300 additional synthetic
training images. For each model, the real dataset was randomly sampled from the SPL dataset
dataset, described in Section 3.1.1. The synthetic datasets were generated using a different seed
for each test.

Test
300 Real

mAP@[0.5]
300 Real + 300 Synthetic

mAP@[0.5]
Improvement

1 0.882 0.919 0.037
2 0.851 0.915 0.064
3 0.844 0.891 0.047
4 0.870 0.920 0.050
5 0.868 0.900 0.032
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APPENDIX D

Results of the Experiments

D.1 Results of Different Percentages of Synthetic Data

The results of tests with different percentages of synthetic data in the training set are shown
below.

Table D.1: Mean average precision of a YOLOv8 model when trained using 600 examples. The
share of synthetic (and real) data is set to 100%, 75%, 50%, 25%, and 0% for the experiments.

Number of real
training examples

Number of synthetic
training examples

mAP
(IoU=.5)

mAP
(IoU=.75)

mAP
(IoU=[.5:.05:.95])

600 0 0.946 0.853 0.730
450 150 0.926 0.825 0.696
300 300 0.912 0.776 0.662
150 450 0.841 0.666 0.574
0 600 0.161 0.060 0.074
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D.2 Results of Detecting the Football and Robot

Table D.2: Average precision in detecting footballs

Number of real
training examples

Number of synthetic
training examples

AP
(IoU=.5)

AP
(IoU=[.5:.05:.95])

12 0 0 0
60 0 0.317 0.123
300 0 0.913 0.709
1500 0 0.974 0.803
0 300 0.129 0.044
0 600 0.247 0.123
0 1200 0.312 0.163

300 300 0.935 0.732
300 600 0.949 0.722
300 1200 0.945 0.736
1500 300 0.979 0.807
1500 600 0.984 0.818
1500 1200 0.983 0.816

Table D.3: Average precision in detecting NAO robots)

Number of real
training examples

Number of synthetic
training examples

AP
(IoU=.5)

AP
(IoU=[.5:.05:.95])

12 0 0.002 0.001
60 0 0.091 0.034
300 0 0.852 0.580
1500 0 0.979 0.762
0 300 0.050 0.019
0 600 0.076 0.025
0 1200 0.055 0.021

300 300 0.902 0.632
300 600 0.921 0.638
300 1200 0.926 0.659
1500 300 0.979 0.768
1500 600 0.979 0.778
1500 1200 0.979 0.776
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D.3 Randomization Experiments Results

We performed experiments where we kept certain parameters fixed in the 3D environment instead
of randomizing them. The randomizers that we disabled were: light, sun angle, skybox, and
volume randomizer. For each experiment we use 300 synthetic training examples in combination
with 300 real training examples to train a model. The results are shown below in the tables
below. We compare only the best result of each fixed setting in Section 4.1.3.

No light randomization

Table D.4: mAP when lighting settings are fixed (temperature: 6500, intensity: 250 lux)

Number of real
training examples

Number of synthetic
training examples

mAP
(IoU=.5)

mAP
(IoU=.75)

mAP
(IoU=[.5:.05:.95])

0 300 0.042 0.006 0.014
300 300 0.923 0.813 0.679

Table D.5: mAP when lighting settings are fixed (temperature: 6500, intensity: 400 lux)

Number of real
training examples

Number of synthetic
training examples

mAP
(IoU=.5)

mAP
(IoU=.75)

mAP
(IoU=[.5:.05:.95])

0 300 0.022 0.003 0.006
300 300 0.922 0.803 0.684

Table D.6: mAP when lighting settings are fixed (temperature: 6500, intensity: 50 lux)

Number of real
training examples

Number of synthetic
training examples

mAP
(IoU=.5)

mAP
(IoU=.75)

mAP
(IoU=[.5:.05:.95])

0 300 0.061 0.007 0.021
300 300 0.921 0.821 0.687
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No sun angle randomization

Table D.7: mAP with fixed sun angle (hour: 12, day: 182, latitude: 0)

Number of real
training examples

Number of synthetic
training examples

mAP
(IoU=.5)

mAP
(IoU=.75)

mAP
(IoU=[.5:.05:.95])

0 300 0.034 0.007 0.013
300 300 0.921 0.805 0.677

Table D.8: mAP with fixed sun angle (hour: 24, day: 364, latitude: 90)

Number of real
training examples

Number of synthetic
training examples

mAP
(IoU=.5)

mAP
(IoU=.75)

mAP
(IoU=[.5:.05:.95])

0 300 0.073 0.020 0.030
300 300 0.927 0.817 0.690

Table D.9: mAP with fixed sun angle (hour: 18, day: 273, latitude: 45)

Number of real
training examples

Number of synthetic
training examples

mAP
(IoU=.5)

mAP
(IoU=.75)

mAP
(IoU=[.5:.05:.95])

0 300 0.054 0.009 0.019
300 300 0.920 0.802 0.683

No skybox randomization

Table D.10: mAP with fixed skybox (always use the ”3d camera skybox” skybox for each image)

Number of real
training examples

Number of synthetic
training examples

mAP
(IoU=.5)

mAP
(IoU=.75)

mAP
(IoU=[.5:.05:.95])

0 300 0.098 0.024 0.040
300 300 0.919 0.789 0.676

No bloom and lens distortion randomization (volume randomizer)

Table D.11: mAP with fixed bloom and lens distortion.

Number of real
training examples

Number of synthetic
training examples

mAP
(IoU=.5)

mAP
(IoU=.75)

mAP
(IoU=[.5:.05:.95])

0 300 0.051 0.012 0.020
300 300 0.922 0.805 0.680
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No randomizations except for the transforms of objects.

Table D.12: No randomizations except the transforms.

Number of real
training examples

Number of synthetic
training examples

mAP
(IoU=.5)

mAP
(IoU=.75)

mAP
(IoU=[.5:.05:.95])

0 300 0.008 0.001 0.003
300 300 0.924 0.803 0.683
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