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Abstract

Successful urban search and rescue missions rely on rescue robots accurately and reliably mapping
unknown environments while at the same time accurately tracking their pose. To that end,
realistic measurement models with inhomogeneous and anisotropic noise can more accurately
estimate rigid transformations, but such a model only exists for the 2-D case. The 3-D case
is derived here and is combined with an algorithm that takes these noise characteristics into
account when estimating rigid transformation. An efficiently encoded octree is introduced boost
the performance of the algorithm. The resulting algorithm runs in real-time and is slightly more
accurate with potential for larger gains.
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CHAPTER 1

Introduction

More than a a decade ago, the first Urban Search and Rescue (USAR) mission where robots were
used for technical search tasks, took place after the attack on the World Trade Center (WTC)
Towers [5]. They were tasked with examining areas too small or too dangerous to be examined
by human rescue workers, searching for victims and detecting hazards. Robots are expendable,
a potential life can be spared for any task a robot can perform instead of a human rescue worker.
Unfortunately, robots are not perfect and problems do arise. One of the problems during the
USAR at the WTC was a lack of state of the world [5], where the map of the environment or the
position of the robot were unclear. This left operators and rescue workers in difficult to handle
situations, where they would lose the robot.

Dealing with unknown environments in USAR missions using robots is a key challenge. Accu-
rately and reliably measuring the position and orientation of a robot is fundamental in building
a map from an unknown environment. Robots are generally equipped with inertial navigation
sensors (INS) to estimate relative motion, but as these estimates are not completely accurate,
the estimated position of a robot accumulates a significant amount of error over time. This
prevents building an accurate map of the environment, which is key in planning and navigation.
The error in the estimated position can be reduced by using observations acquired by laser range
scan data. Laser range scanners provide accurate range data, often with millimeter precision,
which can be transformed to a set of 3-D points. By corresponding sets of 3-D points of a past
observation with a current observation, a rigid transformation can be estimated, which can be
used to correct the estimated position. Not only does it need to be accurate, it needs to perform
in real-time. A search and rescue robot does not have the luxury of time as human life is fragile
and every second matters.

Finding the rigid transformation that minimizes the sum of the squared distances between
corresponding points is known as the Procrustes problem and, as pointed out by Dorst in [6],
has long been solved in various fields, ranging from biomechanics [8], satellite control [23] and
statistical shape analysis [24] to vision and robotics [2], [9], [10], [26]. The solution provides a
rigid transformation with minimal variance if the points have identical and isotropic Gaussian
noise. However, as noted in [21] and [20], this model is not realistic as it does not account for
the physical phenomena that affect the accuracy of the range measurements, i.e. inhomogeneous
and anisotropic sources of noise. The measurement model presented in [21] does take this into
account, but is only derived for the 2-D case. The same goes for the rigid transformation
estimation, however, this is covered by [20] and [16]. The 3-D measurement model will be
derived here and combined with the algorithm in [16] to provide accurate rigid transformation
estimates. In order to make this perform in real-time, an efficient octree implementation will be
introduced to significantly boost the performance of the otherwise not real-time friendly point
correspondence process.
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CHAPTER 2

Measurement Model

In order to accurately estimate the rigid transformation of a robot, a more realistic model of the
noise affecting the laser range data points and their correspondence between successive poses is
required. Let {ūi} and {v̄i} denote the range scan data point sets acquired in subsequent poses.
As these data sets are affected by noise, the measurements can be decomposed into the following
terms:

ūi = ui + δui + bui (2.1)

v̄i = vi + δvi + bvi (2.2)

where ui and vi are the ”true” Cartesian scan point locations, δu and δv are noise or uncertainty
in the measurement process, while bui and bvi denote the possible range measurement ”bias” [21].
In this paper the bias error will be ignored as for many data sets the bias error is often unknown
for the used sensor [27] and as demonstrated in [21] it has a negligible impact on the actual
position estimate, reducing Eq. 2.1 and Eq. 2.2 to:

ūi = ui + δui (2.3)

v̄i = vi + δvi (2.4)

Let {(x̄, ȳ)i} be the set of closest corresponding points between subsequent poses, which
are not necessarily the same physical point. The conventional method of determining the rigid
transformation between two sets of points is minimizing the following equation:

n∑
i=1

‖x̄i −Rȳi − p‖2 (2.5)

where R is a rotation matrix and p is a translation vector. The error between two corresponding
points is:

εi = x̄i −Rȳi − p (2.6)

Substituting Eq. 2.3 and Eq. 2.4 into Eq. 2.6 results in:

εi = (xi −Ryi − p) + (δxi −Rδyi) (2.7)

If xi and yi correspond to the exact same physical points, then xi −Ryi − p = 0. However, xi
and yi generally do not correspond to the exact same physical point as illustrated in Fig. 2.1.
Thus the correspondence error ci is denoted by

ci = xi −Ryi − p (2.8)

The covariance matrices of the measurement noise and the correspondence error will be
derived in Section 2.1 and 2.2.
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Figure 2.1: Two corresponding points measured in two different poses A and B
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Figure 2.2: Spherical coordinate (l, θ, φ)
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2.1 Measurement Noise

Let {(l, θ, φ)i} be a set of measurements described in spherical coordinates where l is the range,
θ is the inclination and φ is the azimuth (see Fig. 2.2). Converting spherical coordinates to
Cartesian coordinates gives:

s̄i = li

sin(θi) cos(φi)
sin(θi) sin(φi)

cos(θi)

 (2.9)

The measurements of li, θi and φi will be imperfect due to measurement noise. The range
measurement l can be decomposed into the following terms:

li = Li + εli (2.10)

where Li is the ”true” range and εli is an additive noise term. The noise εli is assumed to be a
zero-mean Gaussian random variable with variance σ2

li
[21]. The angle measurements θi and φi

can respectively be decomposed into the following terms:

θi = Θi + εθi (2.11)

and
φi = Φi + εφi (2.12)

where Θi and Φi are the ”true” angles and εθi , and εφi
are again zero-mean Gaussian random

variables with variances σ2
θi

and σ2
φi

. The ”true” point then becomes:

si = (li − εli)

sin(θi − εθi) cos(φi − εφi
)

sin(θi − εθi) sin(φi − εφi
)

cos(θi − εθi)

 (2.13)

Substituting s̄i and si into Eq. 2.3 or Eq. 2.4 and making the reasonable assumption that
εli � 1, εθi � 1 and εφi � 1, the measurement noise δsi becomes:

δsi = li

εθi cos(φi) cos(θi)− εφi
sin(φi) sin(θi)

εφi cos(φi) sin(θi) + εθi cos(φi) cos(θi)
−εθi sin(θi)

+ εli

cos(φi) sin(θi)
sin(φi) sin(θi)

cos(θi)

 (2.14)

where the following approximations are used:

sin(εθi) ' εθi
sin(εφi

) ' εφi

cos(εθi) ' cos(εφi
) ' 1

εliεθi ' 0

εliεφi
' 0

εθiεφi
' 0 (2.15)

The noise covariance matrix is:
PN
i = E

[
δsi(δsi)

>] (2.16)

Assuming that li, εθi and εφi are independent, then PN
i =

[
C1 C2 C3

]
where

C1 =

σ2
l cos(φ)2 sin(θ)2 + σ2

θ l
2 cos(φ)2 cos(θ)2 + σ2

φl
2 sin(φ)2 sin(θ)2 + σ2

φσ
2
θ l

2 cos(θ)2 sin(φ)2

(σ2
l − σ2

φl
2) cos(φ) sin(φ) sin(θ)2 + (σ2

θ l
2 − σ2

φσ
2
θ l

2) cos(φ) cos(θ)2 sin(φ)

(σ2
l − σ2

θ l
2) cos(φ) cos(θ) sin(θ)


C2 =

 (σ2
l − σ2

φl
2) cos(φ) sin(φ) sin(θ)2 + (σ2

θ l
2 − σ2

φσ
2
θ l

2) cos(φ) cos(θ)2 sin(φ)

σ2
l sin(φ)2 sin(θ)2 + σ2

φl
2 cos(φ)2 sin(θ)2 + σ2

θ l
2 cos(θ)2 sin(φ)2 + σ2

φσ
2
θ l

2 cos(φ)2 cos(θ)2

(σ2
l − σ2

θ l
2) cos(θ) sin(φ) sin(θ)


C3 =

(σ2
l − σ2

θ l
2) cos(φ) cos(θ) sin(θ)

(σ2
l − σ2

θ l
2) cos(θ) sin(φ) sin(θ)

σ2
l cos(θ)2 + σ2

θ l
2 sin(θ)2
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Figure 2.3: Correspondence error

2.2 Correspondence Error

A complete description and derivation of a second order probabilistic approximation to this
error is given for the 2-D case in [21]. This section describes the error and derives the 3-D case.
Consider the sets of range scan data points {x̄i} and {ȳi} of two subsequent poses, x and y, lying
on the same plane. The implicit ordering of the sampled points means that x̄i+1 is adjacent to
x̄i, with an angle difference of β. Let the distances between two adjacent points be denoted by:

d+i = ‖x̄i+1 − x̄i‖
d−i = ‖x̄i−1 − x̄i‖ (2.17)

Geometric analysis of Fig. 2.3 shows that d+i can be expressed as

d+i =
r sin(β)

sin(ψ − β)

=
r sin(β)

sin(π − cos−1((l× n) · s)− β)

=
r sin(β)

sin(cos−1(α) + β)
(2.18)

where s denotes the normalized direction of a sensor beam striking a surface with normal n, l
denotes the normal of the scanning plane and α = (l× n) · s. Similarly, d−i can be expressed as

d−i =
r sin(β)

sin(ψ + β)

=
r sin(β)

sin(cos−1(α)− β)
(2.19)

For adjacent points on two successive planes with an angle difference of δ, the error distance can
be expressed similarly as

d⊥+i =
r sin(δ)

sin(cos−1(γ) + δ)
(2.20)

d⊥−i =
r sin(δ)

sin(cos−1(γ)− δ)
(2.21)

where γ = n× (l× n) · s, which is the angle between the binormal of the surface and s.
The maximum error distance at which point x̄i can correspond with point ȳj is half the

minimum distance between adjacent points in pose x or y. Anything larger would cause the
point to either correspond with another point or not correspond with any point at all.
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Local to the boundary, the correspondence error can be expressed as a linear combination of
the boundary’s tangent and binormal. Let µi = ci · ti and νi = ci · bi be the projections of ci
onto the boundary’s tangent and binormal resulting in the signed quantities µi and νi. Let µi(x)
and νi(y) denote the correspondence error along their respective direction. The expected values
of the error in the intervals x ∈ [−d−i , d

+
i ] and y ∈ [−d⊥−i , d⊥+i ] are:

E[µi] =

∫ d+i

−d−i
µi(x)P (x)dx (2.22)

E[νi] =

∫ d+i

−d−i
νi(y)P (y)dy (2.23)

where P (x) and P (y) are the probabilities that xi will be located at (x, y) local to the boundary.
As the geometry of the environment is unknown, it is not possible to know the probabilistic

distribution of the correspondence errors P (x) and P (y). The assumption is made that µi and
νi are a priori uniformly distributed in the intervals [−d−i , d

+
i ] and [−d⊥−i , d⊥+i ], thus P (x) =

1/(d−i + d+i ) and P (y) = 1/(d⊥−i + d⊥+i ). Evaluating Eq. 2.22 and Eq. 2.23 yields:

E[µi] =
(d+i )2 − (d−i )2

d+i + d−i
= d+i − d

−
i

=
−2r sin2(β) α

sin2(cos−1(α))− sin2(β)
(2.24)

E[νi] =
−2r sin2(δ) γ

sin2(cos−1(γ))− sin2(δ)
(2.25)

Note that when s is not parallel to n, α and γ become unequal to 0, at which point the means
become non-zero. However, since the means are proportional to sin2(β) and sin2(δ), this term
is negligible when β and δ are small. Thus the correspondence errors can be considered to have
zero-mean. The variances of the correspondence errors µi and νi can then be computed, assuming
the means are zero, as follows:

E[µ2
i ] =

∫ d+i

−d−i

x2

d+i + d−i
dx

=
(d+i )3 + (d−i )3

3(d+i + d−i )
(2.26)

E[ν2i ] =
(d⊥+i )3 + (d⊥−i )3

3(d⊥+i + d⊥−i )
(2.27)

Expressing ci in terms of µi, νi, ti and bi gives:

ci = µiti + νib =
√
µ2
i + ν2i

(
µi
|µi|

t +
νi
|νi|

b

)
‖t + b‖

=
√
µ2
i + ν2i

(±t± b)√
2

(2.28)

The covariance matrix of the correspondence error can then be found as:

PC
i = E[ci(ci)

>] =
1

2
E[µ2

i + ν2i ](±b± t)(±b± t)> (2.29)

The covariance matrix of the matching error at the ith point correspondence of two subsequent
poses then becomes:

Pi = PN
i + PC

i (2.30)

With these matrices, more accurate pose estimations can be acquired as described in Chapter 4.
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CHAPTER 3

Estimating Surface Normals

The correspondence covariance matrix is a function of the environment’s surface normals. As
the environment is unknown, the normal vectors have to be estimated by performing surface
detection on the laser range data points. Surface detection from point cloud data is a well known
and studied topic [17], [11], [1], [14]. But these techniques require dense and high quality data
sets [22]. Even though solutions exist that better fit the problem of laser range data points
that run in real-time [22] [4], the LINMER algorithm [25] will be used here, for its ease of
implementation and fast performance.

By using the implicit ordering of the laser range data scan points, the simple and fast
LENCOMP algorithm described in [25] can be used to detect lines along each plane in a scan
(see Fig. 3.1). Let {āi} denote the range scan data points on a single plane. Assume that points
āi through āj form a line, point āj+1 also lies on that line if:

‖āj+1 − āi‖∑j
k=i‖āk+1 − āk‖

< ε(j) (3.1)

(a) (b)

Figure 3.1: Result of LENCOMP line detection: a) Laser range data scan points on a single scan
plane to be processed; b) The two lines that were detected. Figures courtesy of [19].

The lines found in every plane can then be used to detect surfaces with the LINMER [25]
algorithm. Assume that the laser range sensor scans from bottom to top. Let L = {} be the
stored set of lines and S = {} be the stored set of surfaces, combined with LENCOMP the
LINMER algorithm proceeds as follows:

1. Find a line n with LENCOMP.

2. Check if the line matches any line in L, if a match l is found, n and l are transformed into
a surface and added to S. Remove l from L if a match was found.

3. If no matching line is found, check if n might be an extension of a surface in S by matching
against the top line of the surface. Replace the top line of the surface with n, resulting in
an enlarged surface.

13



(a) (b)

Figure 3.2: Surface expansion in the LINMER algorithm: a) The red lines mark the top line of
surfaces for which a new line match has been found; b) Top lines of surfaces replaced by their
matching lines. Figures courtesy of [19].

4. If no matches are found at all, store n in L.

5. Go back to step 1 until no new lines are found.

In order for a line to match another, the following criteria have to be met:

• The angle between two lines has to be smaller than a given angle ω.

• The endpoints of each line must lie within a given distance λ of the corresponding endpoints
of the other line.

• The lines must lie roughly in the same plane.

Lower values of the threshold angle ω will result in more lines, but are more sensitive to noise,
whereas higher values result in fewer lines at the potential cost of detail [19].

Using a fixed threshold distance λ is not ideal as the distance between endpoints are smaller
for lines scanned at close range than lines scanned at long range. Furthermore, using a single
value performs a check against a sphere, which is not optimal for all directions as shown in
Fig. 3.3.

A better approach is introduced here, one that checks against a bounding box or ellipsoid
instead of a sphere. Let Λi denote the radii of the bounding box or ellipsoid and let ri denote
the sensor scan ranges, from Fig. 3.3a and 3.3b we can derive values for each of the components
of Λi:

Λi = ri

 γ
tan(β)
tan(α)

 (3.2)

(a) (b)

Figure 3.3: Suboptimality of using a fixed distance for line matching: a) Range scans are almost
perpendicular to the wall, in this case the radius of the inner circle is desirable; b) Here the range
scans are almost parallel to the wall, in this case the radius of the outer circle is desirable.

14



where γ is a fraction of the range in the direction of the laser, β is the angle between rays on the
same scan plane and α is the angle between two scan planes. Let the vector from endpoint ai to
bj be denoted by di. In order to match the endpoints, di has to be rotated to line up with the
axis aligned Λi. The rotation matrix can be constructed with the inclination θi and azimuth φi
of the measurement:

Ai =

sin(θi) cos(φi) sin(θi) cos(φi − π
2 ) sin(θi − π

2 ) cos(φi)
sin(θi) sin(φi) sin(θi) sin(φi − π

2 ) sin(θi − π
2 ) sin(φi)

cos(θi) cos(θi) cos(θi − π
2 )

−1 (3.3)

The first column is simply the direction in which the point was sampled, the second and third
columns are respectively the tangent and normal of the scan plane. The vector ri = Aidi lies
within ellipsoid Λi under the condition that:(

rxi
Λxi

)2

+

(
ryi
Λyi

)2

+

(
rzi
Λzi

)2

< 1 (3.4)

If Λi represents a bounding box instead, checking if a point lies within the bounding box reduces
to a trivial comparison of each of the components of Λi and ri

With the LINMER algorithm and the improvement suggested above, the environment’s sur-
face normals can be detected and used to calculate the correspondence covariance matrices, which
is necessary for the pose estimation algorithm described in Chapter 4.

15



16



CHAPTER 4

Pose Estimation

In order to estimate the pose of a robot, the rigid transformation between two point sets must
be determined. In the absence of noise, the corresponding points a and b satisfy the following
constraint:

b = Ra + t (4.1)

where R is a rotation matrix and t is a translation vector. A conventional method of determining
the rigid transformation between two sets of points in the presence of noise, is minimizing the
following equation:

n∑
i=1

‖yi −Rxi − t‖2 (4.2)

where {xi}ni=1 and {yi}ni=1 are point sets of two successive scans. Closed-form solutions exists
for Eq. 4.2 in which the data points are considered to have homogeneous and isotropic noise.
However, in reality the noise is heteroscedastic, that is, inhomogeneous and anisotropic. One
algorithm that takes this into account is presented in [20], but is limited to rotation estimation
alone. The algorithm presented in [16] simultaneously estimates the translation and rotation
and will be used and described here. However, both algorithms assume known correspondence
between points. A method to correspond points in an unknown two-dimensional environment is
given in [15]. Here a somewhat similar, but more simple approach is taken. Given two points are
within distance d of each other, they correspond when they both are their nearest neighbour.

Any rotation or sequence thereof in three-dimensional space about a fixed point is param-
eterizable by an angle θ and a unit vector l indicating the direction of the axis of rotation. A
quaternion is a four-dimensional vector that can encode this axis-angle representation and can
be used to apply the corresponding rotation to a three-dimensional point. The quaternion q that
encodes the rotation of θ about l is defined as

q =
[
cos θ2 , l sin θ

2

]>
(4.3)

Note that the norm of q is by definition 1, thus q is a unit quaternion. The constraint in Eq.
4.1 is equivalent to [16] [20]:

Mq + χ = 0 (4.4)

where M is a 3× 4 matrix defined asbx − ax 0 −bz − az by + ay
by − ay bz + az 0 −bx − ax
bz − az −by − ay bx + ax 0

 (4.5)

and

χ = Qt, Q =

−q0 −q3 q2
q3 −q0 −q1
−q2 q1 −q0

 . (4.6)
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Note that the determinant of the matrix Q is equal to −q0, thus the matrix is invertible as long
as q0 6= 0. It is therefor not recommended to apply the algorithm for cases where the rotation
angle is close to ±π.

Let the rows of matrix M be denoted by m>k , k = 1, 2, 3. The matrices Γkl are defined as
the covariance matrices between the vectors mk and ml, k, l = 1, 2, 3, which can be expressed
in terms of the covariance matrices aP and bP derived in Chapter 2. By definition, Γ11 =
E
[
(m1 − E

[
m1

]
)(m1 − E

[
m1

]
)>
]
. Assuming measurements are uncorrelated

Γ11(1, 1) = E
[
(bx + ux − E

[
bx
]
− E

[
ax
]
)2
]

= E
[
(bx − E

[
bx
]
)2
]

+ E
[
(ax − E

[
ax
]
)2
]

+ 2E
[
(bx − E

[
bx
]
)(ax − E

[
ax
]
)
]

= E
[
(bx − E

[
bx
]
)2
]

+ E
[
(ax − E

[
ax
]
)2
]

= bP(1, 1) + aP(1, 1) (4.7)

Defining S = bP + aP and D = bP− aP and repeating this for all elements of Γ11 results in

Γ11 =


S(1, 1) 0 −D(1, 3) D(1, 2)

0 0 0 0
−D(1, 3) 0 S(3, 3) −S(2, 3)
D(1, 2) 0 −S(2, 3) S(2, 2)

 (4.8)

The rest of the Γ matrices are computed the same way (see Appendix A). The algorithm to
estimate the rigid motion proceeds as follows:

1. Obtain an initial solution q̂ and t̂, where t̂ is the estimated translation. Here the odometry
estimates are used.

2. Find the set of corresponding points while taking q̂ and t̂ into account.

3. Compute the 3× 3 matrices Σi, i = 1, ..., n for all measurements, having the kl-th element
defined by q̂>Γkliq̂.

4. Compute the weighted ”centroid” matrix M̃

M̃ =

(
n∑
i=1

Σ#
i

)#( n∑
i=1

Σ#
i Mi

)
(4.9)

where A# stand for the pseudoinverse of matrix A, which can be computed using the
Singular Value Decomposition of matrix A

A = UEV>, (4.10)

inverting all non 0 singular values in E, the pseudoinverse is then

A# = UE′V>. (4.11)

Note that for computational stability, a small value of ε should be used instead of 0, where
all singular values smaller than ε are set to 0.

5. Compute the ”scatter” S(q̂) relative to M̃

S(q̂) =

n∑
i=1

(
Mi − M̃

)>
Σ#
i

(
Mi − M̃

)
(4.12)

and

C(q̂) =

n∑
i=1

3∑
k,l=1

ηkiηliΓkli (4.13)

where
ηi = Σ#

i

(
Mi − M̃

)
q̂ (4.14)

Note that the dependency of S and C on q̂ was made explicit.
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6. Update the quaternion estimate as the solution of the generalized eigenproblem

S(q̂)q̂ = C(q̂)q̂ (4.15)

corresponding to the smallest eigenvalue. Solving Eq. 4.15 with the generalized singular
value decomposition (GSVD) could be used, which has better numerical behavior [13].

7. Iterate through Steps 2 and 6 until the value of the smallest eigenvalue becomes one, up
to a tolerance.

8. Estimate the translation as t̂ = Q̂−1M̃q̂

With this, the new pose can be estimated by applying the estimated rigid transformation to
the current pose.
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CHAPTER 5

Octree

Finding point correspondence relies heavily on nearest neighbour search. A näıve implementation
would have to visit every point in order to determine the nearest one, resulting in a complexity
of O(n) in the number of points. Having to do this for every point leads to quadratic complexity,
which has serious impact in terms of performance. This complexity can be reduced by utilizing
octrees.

An octree is a tree data structure in which every node represents a cube shaped volume. A
node contains eight children that subdivide the volume in to eight smaller cubes, called octants.
Octrees are the three-dimensional equivalents of the two-dimensional quadtrees where nodes
represent a square area. Having this recursively subdivided tree structure allows for the fast
search algorithms similar to binary trees.

A näıve implementation of an octree would look similar to Fig. 5.1. The size of this structure
would range from 56 to 112 bytes depending on whether it is a 32-bit or 64-bit machine and
on the size of the used floating point types, which are usually 8 bytes for increased precision in
scientific applications. This is not very efficient memory wise, nor does it fit in a typical cache
line, making it more costly to traverse.

There is a lot of redundant information stored in this structure, some of which is completely un-
necessary and others that could be inferred during tree traversal. The structure always contains eight
children, therefore only a single pointer is needed that points to the eight children laid out contiguously
in memory, this saves upto 56 bytes, reducing the size in half. Similarly, the number of points and the
pointer to the contained points can be combined into a single pointer. The center and radius are only
really needed in the root node, while traversing the tree these can be calculated on the fly. This comes
with the trade off that you can only traverse down the tree, unless you store which octant a child node
is. However, there is no trade off here as traversing up the tree will not be necessary. This saves up
another 32 bytes, reducing the total amount of bytes from 112 to 16 bytes composed out of two pointers,
which is a lot more memory efficient and also fits four times into a single cache line of 64 bytes.

Apart from the data structure, there is another aspect of octrees that involves redundancy, namely
the fixed amount of child nodes. In a non-homogeneously distributed point cloud, most nodes will be
void of points. That is, if you have a point cloud representation of some objects, only their surfaces will
be covered with points, the entire volume will be empty. An octree data structure that stores only the

struct Octree {
Octree ∗ c h i l d r e n [ 8 ] ;
int pointCount ;
r e a l ∗∗ po in t s ;
r e a l [ 3 ] c en t e r ;
r e a l r ad iu s ;

} ;

Figure 5.1: Implementation of a naive octree model with eight pointers to its children and a
pointer to the points it contains.
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leaf children valid
1 23 8

(a)

leaf first point count
1 23 - 31 8 - 0

(b)

Figure 5.2: Efficient 4 byte encoded octree structure: The leaf bit indicates whether the block of memory
should be interpreted as either: a) Parent node containing the total number of children for efficient tree
traversal and the 8 bits in valid indicate which child octants are valid; b) Leaf containing an index to the
first point and the number of points in the leaf. Number of point indices vs. points per leaf is adjustable.

nodes that contain points, could thus greatly reduce the amount of nodes required. These types of octrees
are called sparse, as opposed to dense octrees. Even though sparse octrees require extra bookkeeping on
knowing which octants are present and which are not, efficient encoded octree structures exist that are
only 8 bytes in size [12] [7].

5.1 Memory Efficient Encoded Octree

The size of an octree data structure can be made even smaller with a serialized pointer-free encoding
where only leaves containing points are laid out linearly in memory, in which case there is no need to
store the actual octree structure. Leaves are generally stored in the The Morton order [18] where multi-
dimensional data is mapped to one dimension while preserving locality. For octrees this is accomplished
by first partitioning points in one dimension relative to the center of a node, into two partitions. Repeat-
ing this in another dimension for each partition, and then again for the final dimension results in eight
partitions. When done recursively for every node, the result is a linear array of points in depth-first
order. As partitioning a set into two subsets has a complexity of O(n) in the number of points, the
octree can be generated in O(n logn).

However, modifying such serialized trees by adding or removing points involves shifting the entire
region before or after the point and traversing them cannot be performed in the classical sense [7] as
there is no actual structure to traverse. By adding minimal structure data, a 4 byte encoding with
efficient tree traversal is devised here, supporting approximately 8 million child nodes per octant of the
root node. Fig. 5.2 and 5.3 show the resulting octree data structure and implementation.

union EncodedOctree {
struct
{

unsigned32 l e a f : 1 ;
unsigned32 c h i l d r e n : 23 ;
unsigned32 v a l i d : 8 ;

} ;
struct
{

unsigned32 l e a f : 1 ;
unsigned32 f i r s t P o i n t : 24 ;
unsigned32 count : 7 ;

} ;
} ;

Figure 5.3: Implementation of an efficient 4 byte encoded octree model. Note that the two structs
share the same bytes and that the three variables within them are so called bitfields, occupying
the amount of bits specified after the colon.

Unlike [12] and [7], a parent contains no knowledge of whether a child node is a leaf or not. Every
node contains a bit indicating if it is a leaf or not, saving seven bits in parent nodes at the cost of one in
leaf nodes, thus leaving 23 bits to be used for efficient tree traversal. For an efficient nearest neighbour
algorithm, there must be a way to skip a branch and continue on a neighbouring node. Storing the
number of child nodes in every parent node is a means to that end, as it is the amount of nodes that
need to be skipped in the array to get to a neighbouring node.
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5.2 Nearest Neighbour

Algorithm 5.1 shows the nearest neighbour search algorithm, which uses the FindNearestLeaves() func-
tion described in Algorithm 5.2. The algorithm is straight forward, it searches for all leaves that overlap
the region around the point. From all the points contained in the leaves, the nearest point is returned.

The nearest leaves are found by doing an axis-aligned bounding box intersection test for all octants
in a node with the region of interest. To be able to go from one octant to a neighbouring octant, the
number of children is used to skip the right amount of nodes. Doing this recursively for all nodes that
intersect results in a list of all nearest leaves.

As traversing down the tree is done in O(n) and the number of nodes that will intersect with the
region of interest is practically constant, the nearest neighbour search is performed in O(n).

Algorithm 5.1: Nearest Neighbour Search

NearestNeighbour ( point , maxDistance to po int ) {
pointAABB = AABB around point with maxDist as rad iu s
l e a v e s = FindNearestLeaves ( root , pointAABB)

for a l l l e a v e s {
for a l l po in t s in l e a f {

i f nea r e s t po int {
s t o r e as neare s tPo int

}
}

}

return neare s tPo int
}

Algorithm 5.2: Nearest Leaves Search

FindNearestLeaves ( node to search in , r eg i on o f i n t e r e s t ) {
i f node i s l e a f {

return node
}

for a l l oc tant s in node {
i f v a l i d {

i f AABBIntersect (octantAABB , r eg i on ) {
l e a v e s += FindNearestLeaves ( octant , r eg i on )

}
i f octant not l e a f {

sk ip c h i l d r e n to get to next octant
}

}
}

return l e a v e s
}
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CHAPTER 6

Experiments

Every experiment described in this chapter was performed on an Intel(R) Core(TM) i5-4200u 1.60 GHz
CPU with 8 GB of ram running at 1600 MHz. Although there are two cores and four logical processors
available on the CPU, the implementation used here was written in a single threaded manner, thus
utilizing only a single core. The implementation was done in C++ and compiled using the Microsoft
Visual Studio 2015 compiler. For the linear algebra parts of the implementation the Eigen 3.2.5 and
Armadillo 5.200 libraries were used, where the latter was only used to solve the generalized eigenproblem
as the Eigen library’s implementation was not complete.

Virtual robot simulations were performed using UDK 2014 and USARSim. Collection of three-
dimensional sensor data was done using a P3AT virtual robot with a custom 3-D laser range sensor
script (see Appendix B), with a maximum range of 20 meters. UvARescue 2014 was used to control the
virtual robot and retrieve the sensor data.

6.1 Surface Detection

The surfaces depicted in this section are all from a single environment, see Fig. 6.1. Fig. 6.2 shows the
results of the traditional surface detection algorithm of a single pose. For the same pose, Fig. 6.3 shows
the results of the newly introduced methods applied. Another pose is shown in Fig. 6.4 and Fig. 6.5.
Note that back facing surfaces are not displayed. The points in the figures are color coded according to
their elevation, where blue points are at ground level and red points are at ceiling level.

Figure 6.1: Virtual environment used for experimenting with the algorithms.
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(a)

(b)

Figure 6.2: Surface detection using the traditional spherical check: a) Radius of 0.5 meter; b)
Radius of 1 meter.
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(a)

(b)

Figure 6.3: Surface detection using the newly introduced methods: a) bounding box; b) ellipsoid.
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(a)

(b)

Figure 6.4: Surface detection using the traditional spherical check: a) Radius of 0.5 meter; b)
Radius of 1 meter.
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(a)

(b)

Figure 6.5: Surface detection using the newly introduced methods: a) bounding box; b) ellipsoid.
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6.2 Pose Estimation

To test the accuracy of the pose estimation, a virtual robot was steered through the environment seen
in Fig. 6.1. On its path, 450 poses were recorded whereby the true position, odometry data and the
laser range sensor data was recorded. For every pose, approximately 3800 laser ranges were recorded.
The poses resulting from the odometry data were then processed by the pose estimation algorithm. The
estimations of the algorithm were only taken into account if at least 70% of the points corresponded
between poses. Lower values would result in too many faulty correspondences from which the algorithm
could not recover. The average distance from the unprocessed poses to the true poses was 0.415 meter,
for the processed poses this was 0.399, a reduction of 3.9%. Processing the poses took an average of
265 milliseconds and the algorithm usually converges within 10 iterations. The paths are visualized in
Figures 6.6 through 6.9.

Figure 6.6: Path of the virtual robot starting at the right, working its way to the left. The white
path is the true path, cyan is from odometry data and magenta is the processed path. Note that
the magenta path is hidden under the cyan path at the beginning, as it is practically similar
during that time.

Figure 6.7: Path of the virtual robot right at the start as it is ’dropped’ into the world.
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Figure 6.8: Path of the virtual robot where the processed path gets closer to the true path right
before turning around the corner.

Figure 6.9: Path of the virtual robot where the processed path stays closer to the true path with
slight turning after a corner.
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6.3 Octree Efficiency

For the octree memory requirement and performance experiments, the publicly available Thermocolorlab
data set [3] was used. The data set contains a total of 8 poses, where every pose is constructed out of
9 scans. A single pose holds approximately half a million points. Fig. 6.10 shows a visualization of the
points in the first pose, for which the experiment results are listed in Table 6.1. The first four rows in
the table are randomly sampled points from all points in that pose. The three rows after that are all
points in some of the scans, while the last row is for all of the points in the pose.

Nearest Neighbour (ms)

# Points # Nodes # Leaves Mem. size Constr. time (ms) Max dist. 1 cm 5 cm

3535 237 189 980 b 0.23 2.3 3.6
7070 411 325 1.68 kB 0.44 4.7 9.3
14140 930 741 3.75 kB 0.86 10.3 21.1
28280 1711 1363 6.87 kB 1.9 24.6 58.7
56560 3880 3130 15.56 kB 3.4 54.9 162
112817 6908 5503 27.67 kB 6.7 99.1 255
227149 14090 11339 56.39 kB 15.0 210 532
516110 32014 25634 128.1 kB 42.3 563 1146

Table 6.1: Memory requirements and performance of the octree data structure for varying amount
of points using the Thermocolorlab data set of Jacobs University Bremen [3]. Leaves are also
included in the number of nodes. The last two columns show the total time of searching a nearest
neighbour for every point in the tree at different maximum distances.

Figure 6.10: Visualization of the points in the first pose of the Thermocolorlab data set.
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CHAPTER 7

Conclusion

Accurately mapping the environment and estimating the robot pose is of utmost importance to USAR
missions. To do this accurately, a realistic measurement model needs to be used that accounts for the
inhomogeneous and anisotropic nature of measurement noise. A derivation of such model is presented
here, based on an existing model for the 2-D case. Real-time performance matters as every second
matters in saving human lives.

As a result of the very fast octree nearest neighbour search, the algorithm performs in real-time with
an average of 265 milliseconds per pose. Furthermore, a very slight increase in accuracy is achieved
by the pose estimation algorithm. On average the processed poses are 3.9% closer to the true poses
when compared to the poses estimated from odometry data. However, the odometry data returned
by the USARSim simulation is unrealistic, as the resulting noise error does not accumulate over time.
Considering that and the fact that the estimated poses are on average 4 meters off from the true poses, the
accuracy increase is poor. Good point correspondence is absolutely paramount to correct pose estimation.
Unfortunately, a simple nearest neighbour search is insufficient to find the right correspondences. More
often than not, the pose estimation can not be improved upon due to a lack of point correspondences.
The potential accuracy increase could be much higher.

Part of the measurement model is adjusting for correspondence error. For this the surface normals
need to be detected. Visual inspection of the surface detection methods shows that the bounding box and
ellipsoid method outperform the traditional method. Wall surfaces are almost similar, but cover slightly
more area in the bounding box and ellipsoid method. The biggest improvement comes from detecting
surfaces on the floor, which the traditional method seems to have trouble with. Correspondence errors are
largest for points on surfaces nearly parallel to the laser’s incidence vector, meaning these points should
be less of a determining factor in pose estimation. With more surfaces detected by the bounding box
and ellipsoid method, more accurate covariance matrices for the correspondence errors can be computed,
thus lowering the effect of points on the floor on pose estimation, resulting in more accurate estimations.

The algorithm runs in real-time as it is, but leaves a lot to be gained from fully utilizing every core
of the CPU. This could open up room to increase the amount of points per scan, perform more complex
surface detection algorithms or more complex point correspondence. Although surface detection could be
improved, the biggest hurdle lies with point correspondence. It is at the root of accurate pose estimation
as the algorithm heavily relies on it. Improving this might not only yield better results, the algorithm
might require less iterations to converge, possibly resulting in even better performance. Finally, to get a
better understanding of how well the algorithm performs under realistic conditions, the simulated noise
should reflect those conditions. Either that, or experiments should be performed with real robots and
scanners.
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APPENDIX A

Covariance matrices

In this appendix the Γkl matrices described in Chapter 4 are provided.

Γ11 =


S(1, 1) 0 −D(1, 3) D(1, 2)

0 0 0 0
−D(1, 3) 0 S(3, 3) −S(2, 3)
D(1, 2) 0 −S(2, 3) S(2, 2)

 (A.1)

Γ12 =


S(1, 2) S(1, 3) 0 −D(1, 1)

0 0 0 0
−D(2, 3) −S(3, 3) 0 S(1, 3)
D(2, 2) S(2, 3) 0 −S(2, 1)

 (A.2)

Γ13 =


S(1, 3) −D(2, 2) D(1, 1) 0

0 0 0 0
−D(3, 3) S(3, 2) −S(3, 1) 0
D(2, 3) −S(2, 2) S(2, 1) 0

 (A.3)

Γ22 =


S(2, 2) D(2, 3) 0 −D(2, 1)
D(3, 2) S(3, 3) 0 −S(3, 1)

0 0 0 0
−D(1, 2) −S(1, 3) 0 S(1, 1)

 (A.4)

Γ23 =


S(2, 3) −D(2, 2) D(2, 1) 0
D(3, 3) −S(3, 2) S(3, 1) 0

0 0 0 0
−D(1, 3) S(1, 2) −S(1, 1) 0

 (A.5)

Γ33 =


S(3, 3) −D(3, 2) D(3, 1) 0
−D(2, 3) S(2, 2) −S(2, 1) 0
D(1, 3) −S(1, 2) S(1, 1) 0

0 0 0 0

 (A.6)

Due to symmetry Γ21 = Γ12, Γ31 = Γ13 and Γ32 = Γ23.
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APPENDIX B

3-D Laser Range Scanner

The implementation of the 3-D laser range scanner used to scan the environment is shown in Listing
B.1.

Listing B.1: 3-D sensor implementation for USARSim.

class SICK3D extends RangeScanner c on f i g (USAR) ;

var vec to r d i r ;
// Retr ieves the range data using trace and repor ts t h i s range in UU or meters
// depending on presence of converter .
// The Trace method traces a l i n e to point of f i r s t c o l l i s i o n .
// Takes actor c a l l i n g trace c o l l i s i o n proper t i e s into account .
// Returns f i r s t h i t actor , l e v e l i f h i t l e v e l , or none i f h i t nothing
f unc t i on f loat GetRange ( )
{

l o c a l vec to r Star tLocat ion ;
l o c a l vec to r HitLocation , HitNormal ;
l o c a l Actor HitActor ;
l o c a l SmokeInter face smoke ;
l o c a l f loat range , curRange , maxRangeRemaining ;

Star tLocat ion = Locat ion ;
HitActor = s e l f ;
curRange = 0 . 0 ;
maxRangeRemaining = MaxRange ;

while (maxRangeRemaining > 0 . 0 )
{

HitActor = HitActor . Trace ( HitLocation , HitNormal ,
Star tLocat ion + maxRangeRemaining ∗ dir , StartLocat ion , true ) ;

smoke = SmokeInter face ( HitActor ) ;
range = VSize ( HitLocat ion − Star tLocat ion ) ;

i f ( HitActor == None )
{

range = curRange + maxRangeRemaining ;
range = class ’ UnitsConverter ’ . stat ic . LengthFromUU( range ) ;
return range ;

}

// No smoke , so a normal ob j e c t . Smoke tha t uses p a r t i c l e s always b lock .
i f ( smoke == None | | smoke . SmokeAlwaysBlock ( ) )
{

range = curRange + VSize ( HitLocat ion − Star tLocat ion ) ;
range = class ’ UnitsConverter ’ . stat ic . LengthFromUU( range ) ;
return range ;

}

Star tLocat ion = HitLocat ion ;
maxRangeRemaining = maxRangeRemaining − range ;
curRange = curRange + range ;

}

curRange = class ’ UnitsConverter ’ . stat ic . LengthFromUU( curRange ) ;
return curRange ;

}

f unc t i on St r ing VecToStr ( vec to r v )
{

return v .X $ ” , ” $ v .Y $ ” , ” $ v . Z ;
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}

f unc t i on St r ing GetData ( )
{

l o c a l vec to r ray , look , r ight , up ;
l o c a l S t r ing rangeData ;
l o c a l f loat a , i , range ;
l o c a l f loat r e s ;
l o c a l f loat minInc l i na t i on ;
l o c a l f loat maxInc l inat ion ;
l o c a l f loat maxAzimuth ;

r e s = class ’ UnitsConverter ’ . stat ic . AngleFromUU( Reso lut ion ) ;
m in Inc l i na t i on = 0.5∗Pi − Pi / 1 8 . 0 ;
maxInc l inat ion = 0.5∗Pi + Pi / 1 8 . 0 ;
maxAzimuth = class ’ UnitsConverter ’ . stat ic . AngleFromUU(ScanFov ) / 2 . 0 ;

time = WorldInfo . TimeSeconds ;

GetAxes ( Rotation , look , r ight , up ) ;

for ( i = min Inc l i na t i on ; i <= maxInc l inat ion ; i += re s )
{

// from r i gh t to l e f t
for ( a = maxAzimuth ; a >= −maxAzimuth ; a −= re s )
{

ray .X = Sin ( i ) ∗ Cos ( a ) ;
ray .Y = Sin ( i ) ∗ Sin ( a ) ;
ray . Z = Cos ( i ) ;

// ro ta te d i r ec t i on vector by current or i en ta t ion
d i r .X = look .X ∗ ray .X + r i gh t .X ∗ ray .Y + up .X ∗ ray . Z ;
d i r .Y = look .Y ∗ ray .X + r i gh t .Y ∗ ray .Y + up .Y ∗ ray . Z ;
d i r . Z = look . Z ∗ ray .X + r i gh t . Z ∗ ray .Y + up .Z ∗ ray . Z ;

range = GetRange ( ) ;
i f ( rangeData == ”” )

rangeData = class ’ UnitsConverter ’ . stat ic . F l oa tSt r ing ( range , 4 ) ;
else

rangeData = rangeData $ ” , ” $
class ’ UnitsConverter ’ . stat ic . F l oa tS t r ing ( range , 4 ) ;

}
}

return ”{Name ” $ ItemName $ ”} {Reso lut ion ” $
class ’ UnitsConverter ’ . stat ic . Str AngleFromUU( Reso lut ion ) $ ”} {FOV ” $
class ’ UnitsConverter ’ . stat ic . Str AngleFromUU(ScanFov ) $ ”} {MaxRange ” $
class ’ UnitsConverter ’ . stat ic . LengthFromUU(MaxRange) $
”} {Range ” $ rangeData $ ”}” ;

}

d e f a u l t p r o p e r t i e s
{

BlockRigidBody=true
bCol l ideActor s=true
bBlockActors=fa l se
bProjTarget=true
bColl ideWhenPlacing=true
bColl ideWorld=true

Begin Object Name=StaticMeshComponent0
StaticMesh=StaticMesh ’ SICKSensor . lms200 . Sensor ’
Co l l i d eActo r s=true
BlockActors=fa l se
BlockRigidBody=true
BlockZeroExtent=true
BlockNonZeroExtent=true

End Object
}
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