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Abstract

The link between human visual perception and activity in the brain is a widely studied,
but currently still unsolved problem. The field of cognitive computational neuroscience is
searching for different models that are able to predict brain activity. This thesis is focused
on a small subtask of this problem; predicting activity in the human visual brain, specifically
in two areas associated with early- and late stages of visual processing.

In 2019 the Algonauts Project issued a challenge for this specific tasks, motivating many
researchers to attempt to find a solution. The challenge has since concluded, and study-
ing the work of the top contestants reveals several promising approaches; including models
based on edge detection, categorization and classification, and various implementations of
convolutional neural networks (CNNs). The hypothesis behind the challenge was that the
brain may be better simulated by models of lower complexity, which meant researchers were
motivated to find alternatives to using deep CNNs.

Current research of the visual brain shows that information coming from the eyes travels
through a sequence of areas associated with recognition of progressively higher level features.
The question behind this thesis is: which computational models are able to capture biological
structures of the early and late stages of visual processing in the brain? Based on the
research of participants of the 2019 Algonauts challenge, a framework was designed for
this thesis that allows the combinations of different models to show their ability to predict
brain activity. Using this framework it was found that an edge detection based model,
inspired by known functions of the Primary Visual Cortex (V1), accounts for the majority
of the total performance when predicting fMRI activity in both the early and late stages.
The combination of this model with categorical and CNN-based models offered only minor
improvements.
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Chapter 1

Introduction

1.1 Background

The field of artificial intelligence is committed to understanding the systems underlying in-
telligent behaviour, in order to allow these behaviours to be emulated and automated using
machines. In order to explain intelligent behaviour in humans it is necessary to understand
the human brain, which is known to provide humans with the facilities required for intelligent
behaviour [Russell and Norvig, 2003]. Among their approaches to simulate human brains,
researchers are developing computational methods that are inspired on biological processes
to perform tasks that humans exceed at, such as object recognition. This research is inter-
ested in this task specifically, and how biologically inspired approaches compare to the more
traditional approach of using a neural network.

The study was inspired by the Algonauts project, which was created to promote the study
of simulating human brain activity. The project presents yearly challenges with the aim to
further the understanding of processes in the human brain and the progress of computational
simulation of processes in the brain [Cichy et al., 2019]. The subject of the 2019 challenge
was inspired by an observed correlation between a convolutional neural network’s (CNN)
performance on the ImageNet database, and its similarity to the human brain as calculated
by the Brain-Score method [Krizhevsky et al., 2012] [Schrimpf et al., 2018]. However, for
the most advanced CNNs this correlation disappears. This inspired the project to follow
the hypothesis that the human visual brain may be better understood with the use of less
complex models.

The challenge data consists of three sets of images of different subjects such as animals,
fruits or scenery. Two of these sets were used for training models, the third was used for
validation. Accompanying the images is the brain measurement data of 15 study partic-
ipants, measured from the areas in the brain known as the Early Visual Cortex (EVC)
and the Inferior Temporal Lobe (ITC). These are associated with early and later stages in
visual processing, respectively [Grill-Spector and Malach, 2004]. The data was collected
using noninvasive brain imaging techniques known as functional Magnetic Resonance Imag-
ing (fMRI) and Magnetoencephalography (MEG) [Huettel et al., 2004] [Hämäläinen et al.,
1993]. In order to allow this data to be compared to computational models, it has been
processed into Representational Dissimilarity Matrices (RDMs). This assigns a similarity
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score to each combination of images, based on the similarity of their associated brain mea-
surements [Kriegeskorte et al., 2008]. The goal of the challenge was to predict this RDM
using only the original image data, using deep neural networks or any other computational
model. Since the conclusion of the 2019 challenge, the evaluation data used for ranking the
model submissions of challenge participants has been made publicly available. This allows
researchers to rapidly evaluate performance of new models, as opposed to using the online
submission system that was available during the challenge.

This study is based the work of the following challenge participants:

• Augustin Lage-Castellanos

Augustin achieved a winning score by using a combination of models [Lage-Castellanos
and De Martino, 2019]. His method consist of generating four initial estimate RDMs;
two based on perceptual features using edge detection, and two based on categori-
cal features extracted from the data. These initial estimates are then combined with
models based on activations from selected CNN layers, using weighted averaging to
optimize their combined performance. This process of combining gradually more ad-
vanced models bears some similarity to processes observed in the brain.

• Anne-Ruth Meijer

Anne-Ruth’s research showed smaller CNNs were able to outperform large networks
that received considerably more training [Meijer and Visser, 2019]. The research
offers knowledge about the performance of many different CNNs, which will be useful
to compare the performance of other models with.

1.2 Scope

This study features exploration of the approaches from the researchers introduced in the
previous section. To gain a better understanding of the models used, a replication study
was performed. The technique of combined models used by Lage-Castellanos was selected
for the reproduction study, not only because this was one of the winning models, but also
because the reproduction simultaneously created a framework for combining and testing
different models. Using this framework, a series of experiments that grant more insight
of the relationship between specific models and the brain processes they aim to simulate.
The results of these experiments illustrate the performance of these models when predicting
RDMs for the different brain areas and time intervals, which is used as a measurement tool
to verify if a model is able to simulate brain activity.

The goal of the research is to answer the following question: which computational models
are able to capture biological structures of the early and late stages of visual processing in
the brain? While CNNs are very capable classifiers, they do not fully capture the biological
structures present in the brain. This study compares the performance of convolutional neural
networks to biologically inspired models.
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1.3 Outline

Before discussing the research the theoretical foundation will be laid out in chapter 2. The
main topic of this research is the visual brain, and how different models correlate to activity
in specific areas. A summary of current knowledge on this matter is given, including the
techniques used to collect the data. To complete the knowledge foundation, the different
computational models and methods used in the research are described. After establishing
this basis, the results several challenge participants will be discussed. Chapter 3 provides
details of the methods used to apply the theory discussed in the preceding chapter. In
chapter 4 the results of the study are presented, which are then discussed in the remaining
chapters.
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Chapter 2

Theoretical Foundation

This section provides an overview of the scientific theory this project is based on. In order to
provide a background for the selected areas of the brain studied in this research, a summary
of current knowledge of the human visual brain is given in section 2.1. In section 2.2, the
employed brain imaging techniques are explained in some detail. To allow comparison of the
measurement data to a computer model, both are mapped to a shared ’similarity space’. This
is done using a method called representational similarity analysis (RSA), which is discussed
in section 2.3. Section 2.4 contains a description of Canny Edge Detection which is used by
one of the models. Section 2.5 introduces Bayesian Classification on which another model
is based. And finally, section 2.6 is dedicated to neural networks, explaining their most
important characteristics and detailing three different variants used in this research.

2.1 The Visual Brain

The human brain can be divided into two pathways; the dorsal and ventral visual streams.
The ventral stream is described as the "what" stream of visual processing, while the dorsal
stream is described as the "where" and "how" stream [Lee et al., 1998]. The ventral stream
is often considered as a feed-forward network; where visual information ascends the visual
hierarchy, which means the size and complexity of detected features increases [Serre et al.,
2005].

The visual cortex receives its input signal in the primary visual cortex (V1), which is
known to detect local features in the input such as edges and lines [Lee et al., 1998]. This
is also the area measured for the early stage of the challenge data (denoted EVC-fMRI and
Early-MEG), which suggests the activity in this area may be in part explained by an edge
detection model (see section 2.4). The signal then proceeds to the secondary visual cortex
(V2), receiving strong feedforward inputs from V1. V2 lies within the visual association
area of the cortex, and in primates it is shown to be tuned to more complex features like
size, shape and spatial frequency [Hegdé and Van Essen, 2000]. Next the signal reaches
the V4 area, which is not yet fully understood in terms of its preferred features, but has
been shown in primates to react to geometric shapes of intermediate complexity [Lee et al.,
1998]. It also has strong bidirectional connectivity with the last area in the hierarchy: the
Inferior Temporal Cortex (ITC). This area is associated with recognition of features with high
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complexity such as faces, objects and patterns [Creem and Proffitt, 2001]. This is the second
area measured for the challenge, representing the late stage of the visual processing cascade
(denoted ITC-fMRI and Late-MEG). Since this area is specialized in complex features, it
could be possible that a categorical approach helps to explain activity in this area.

Figure 2.1: Visualization of the areas in the visual processing hierarchy studied in this
research. The Early Visual Cortex (EVC) corresponds to the V1 area of the brain, the
Inferotemporal area (IT) corresponds to the V4 and ITC areas. Image courtesy: Algonauts
project2

This description is by no means complete, and only serves to illustrate the basic struc-
ture underlying visual processing, which facilitates making comparisons to computational
approaches. One important aspect to note is the increase in complexity of detected features
as the signal travels further up the hierarchy, this principle is also present in many current
CNNs, where the ’deeper’ layers model progressively larger and more complex features of
the input.

2.2 Neural Imaging Techniques

Neural measurement data has the goal of revealing relationships between behaviour and
neural activity. The human brain data used for the Algonauts challenge [Cichy et al., 2019]
was measured using two non-invasive techniques; fMRI, which aims to measure the location
of neural activity within the brain, and MEG, which aims to measure neural activity over
time. By using data from both techniques, researchers can attempt to explain activity in
terms of both location and time.

2.2.1 Functional Magnetic Resonance Imaging (fMRI)

The most common form of fMRI measures differences in the changes of blood flows within
the cortex. This is called blood-oxygenation-level dependent (BOLD) fMRI [Huettel et al.,

2 [Cichy et al., 2019]
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2004]. It is based on the fact that activity in a specific area of the brain results in increased
blood flow to that area; neurons in the brain require both energy and oxygen to function,
which are supplied by the vascular system. What makes it possible to measure changes in
blood flow within the brain, is the difference in magnetic properties between oxygenated
and deoxygenated blood. This difference is very small however and easily influenced by
other factors. This includes environmental factors such as temperature, interference caused
by equipment, and random neural activity, but also includes individual differences such
as a person’s physiological state, differences in mental strategy, and behavioral differences
between people and across different tasks. Current fMRI machines are able to measure the
location of neural activity with up to millimeter precision, the measurement needs to be taken
over a period of more than 1 second however, in order to capture any useful information.

In figure 2.2 an example visualization of fMRI data is shown, with different colored
points that highlight activity in the two brain areas studied in this research.

2.2.2 Magnetoencephalography(MEG)

Magnetoencephalography (MEG) measures brain activity by detecting small magnetic fields
caused by neural oscillations, also known as brain waves [Hämäläinen et al., 1993]. Measure-
ments are performed by placing an array of highly sensitive magnetometers against the skull
of the subject, but because the magnetic fields are so small the equipment can easily cause
interference. Normal environmental magnetic noise is also orders of magnitude stronger
than the strongest magnetic fields generated by the brain, and needs to be shielded from
the magnetometers to prevent interference. MEG measurements are made with millisecond
precision, measuring the activity at each magnetometer over an interval of time, usually
during the presentation of a stimulus. Figure 2.2 shows an example visualization of MEG
measurement data.

(a) fMRI data 3 (b) MEG 4

Figure 2.2: Example visualization of fMRI (left) and MEG (right) measurement data. Image
courtesy 34.
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2.3 Representational Similarity Analysis

In order to allow comparison between the computer generated models and the brain mea-
surement data, these data need to be mapped to a similar space. The method used for
the Algonauts challenge is called Representational Similarity Analysis (RSA). [Kriegesko-
rte et al., 2008] The method involves converting the input activations for all images into a
dissimilarity matrix (RDM), which is done by converting the activations into vectors and
finding the correlation between each pair of images. The dissimilarity value for each pair of
images in the RDM is equal to one minus the correlation. Once the RDM for a set of images
has been calculated, it can be compared to another RDM using the Spearman correlation
[Hauke and Kossowski, 2011].

The challenge evaluates the predicted RDM separately against four different RDMs gen-
erated from brain measurement data: the early and late intervals for the MEG data, and
the two brain areas for the fMRI (EVC and ITC). These scores are then averaged to obtain
two final scores for performance on the fMRI and MEG tracts.

2.4 Canny Edge Detection

Edge detection is a common method of extracting visual information from images. The
Canny edge detector is named after its developer: John F. Canny, who created the algorithm
in 1986 [Canny, 1986]. The algorithm can be described as performing the following steps
on the target image:

• Noise reduction by blurring, according to the value of the σc parameter.

• Gradient calculation using convolutional filters.

• Non-maximum suppression to remove weak edges.

• Upper- and lower threshold application using the parameters tupper and tlower.

Values above the upper threshold are kept while values in between the two thresholds
are selected as candidates for the next step.

• Edge tracking using hystheresis.

This decides which values in between the two thresholds are kept.

Parameterization allows the algorithm to detect a specified range of edges from an image.
This is visualized in figure 2.3, which shows the effect of increasing Canny σ values.

As mentioned in section 2.1, the V1 area of the brain is associated with the detection of
edges [Lee et al., 1998]. This suggests that activity in this area might be better understood
using a model based on edge detection. The results of this research will show some merit
behind this statement, as improved performance is observed when using this model to predict
MEG data.

3http://algonauts.csail.mit.edu/fmri_and_meg.html
4https://psychcentral.com/lib/what-is-functional-magnetic-resonance-imaging-fmri/
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(a) Original (b) Canny σ = 0 (c) Canny σ = 1 (d) Canny σ = 2

Figure 2.3: Edges detected by the Canny filter for increasing values of σc.

2.5 Gaussian Naive Bayes Classifier

Naive Bayes classifiers are a family of algorithms that use probabilistic mathematics to
categorize inputs [Russell and Norvig, 2003]. These algorithms make their predictions with
the use of Bayes’ Theorem [Joyce, 2019], which aims to determine the conditional likelihood
of an outcome given a set of observations.

Algorithms of this family assume that the features of the input contribute independently
from each other to the likelihood of its class membership. For example: a fruit may be
classified as an orange because it is round, orange of color, and falls in the correct weight
range, but no assumptions are made that the shape, color, and weight are related to each
other.

The Gaussian Naive Bayes (GNB) classifier extends the Naive Bayes classifier by allowing
continuous values to be used as input data. The algorithm assumes that the values repre-
senting each class are distributed according to a Gaussian distribution [Weisstein, 2020].
This way it can calculate the class membership by generating a probability distribution for
each class over the continuous variable space.

From the literature studied in section 2.1, it was found that in the human brain processes
visual inputs in a hierarchical sequence, recognizing progressively more complex features. For
this reason it is expected that an image classifier may better explain activity in the later
stages of visual processing, associated with the V4 and ITC areas of the brain [Serre et al.,
2005].

In this research, the GNB classifier is used to categorize images from the 78 image set
based on their representation in a selected layer from a CNN. This will be discussed in the
next section.

2.6 Convolutional Neural Networks

When speaking generally about deep neural networks, more layers often equates to better
performance [Russell and Norvig, 2003]. The ’deeper’ a network gets however, the more
computationally taxing it becomes, especially for traditional neural networks where all layers
are fully connected (FC). As the name implies, all the neurons in a FC layer are connected
to all neurons in the next. This is the most general method of connecting layers, but also
the most costly in terms of execution time. For example: a (10× 10× 1) input image fully
connected to a (10×10×1) layer already results in 100×100 = 10.000 weights to be learned.
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To counteract this problem, a convolutional neural network (CNN) uses convolutional filters
to recognize features from the input, and learns the weights for these filters instead [Ma
et al., 2018]. They were inspired by the finding that cortical neurons in animal brains are only
responsive to stimuli in a select region of the visual field, called the receptive field [Hubel,
1968]. Convolutional layers process their inputs using convolutional filters: a convolution
selects an (n × n) subset of neurons that contribute to the activation of a single neuron in
the next layer. In a sense, the convolutional filter can be seen as a computational analogue
to the receptive field.

Pooling layers are another way to lower the computational cost of a network. They do
this by reducing the number of values in their input, using one of several methods, the most
common of which is max-pooling. Max pooling looks at a small (n×n) section of the input,
and only passes the highest value on to the next layer. This can be seen as filtering noise
out of the input by only passing the inputs that carry important information, given that the
correct filter is applied.

Figure 2.4 shows the basic structure of a convolutional neural network. As the input
image travels through successive sequences of convolutional layers and by pooling layers,
progressively more complex features are being trained by the convolutional filters. The final
fully connected layers then use these features to associate the input image to the outputs.

Figure 2.4: Structure of a convolutional neural network. Image courtesy: 3

2.6.1 VGG

The VGG network was developed to show the effect of using deeper CNNs on image recogni-
tion [Simonyan and Zisserman, 2014]. Scoring two winning placements on the 2014 ImageNet
challenge 4, the network proved that using very small (3×3) convolutional filters and adding
more layers resulted in state-of-the art performance when classifying images from a large
dataset.

The network can be configured with 16 to 19 layers of depth, it always includes five
max-pooling layers which are preceded by a number of convolutional layers depending on
the depth. After the last pooling layer, every network contains three fully-connected layers

3 [Ma et al., 2018]
4http://www.image-net.org/challenges/LSVRC/2014/results
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followed by a softmax layer which converts the activations of the last fully-connected layer
to a value between 0 and 1.

For this research the VGG-19 version of the network is used, a graphic representation of
its structure can be seen in figure 2.5. The last fully connected layer contains 1000 features,
which are used in this research both to train the classifier for the categorical model (section
3.2.2) and for the CNN model (section 3.2.3).

Figure 2.5: Structure of the VGG-19 CNN. Image courtesy: 5

5 [Meijer, 2019]
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2.7 Related Work

This section discusses the research of two participants of the 2019 Algonauts challenge, on
which this research is based.

2.7.1 Augustin Lage-Castellanos

Lage-Castellanos conducted a thorough study of a multi-model approach [Lage-Castellanos
and De Martino, 2019]. His method involved creating four initial estimate RDMs, two based
on perceptual features using edge detection, and two using categorical information derived
from the test set. Next, he combined these initial estimates with RDMs based on activations
from a single layer in a CNN. The optimal models were found by using weighted averaging,
while maximizing for the correlation between the predicted RDMs and the target RDMs.

Figure 2.6: Creating a prediction from different RDM estimates. Image courtesy: 6

In this research, the weighted averaging method is deconstructed into two steps: com-
bining the initial estimates, and combining the result with the RDM based on a CNN layer.
This way the contribution of each model can be observed as they are combined.

2.7.2 Anne-Ruth Meijer

The study done by Meijer was focused on finding smaller, or ’shallower’ neural networks, that
achieve competitive scores on the Algonauts challenge [Meijer and Visser, 2019]. During
the research she tested various CNNs, the results of which are a useful tool for comparison.
The research also involved training a newly designed network, based on the ResNet-18 with
two additional layers. Tests revealed that training this network for 10 epochs improved its
performance beyond that of other networks.

The results of this research are used to compare the differences in performance between
the specifically designed perceptual and categorical models, and the more general CNN
models.

6 [Lage-Castellanos and De Martino, 2019]
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Chapter 3

Approach

This section describes the dataset provided for the Algonauts challenge [Cichy et al., 2019].
The challenge supplies a complete development kit which includes three neural networks
(AlexNet, VGG-19, ResNet-50), code for generating activations from the networks, and
evaluation scripts for scoring RDM predictions. The development kit has been extended for
the purpose of this research to include implementations of models inspired by the research by
Lage-Castellanos: models based on edge detection and models based on classification using
neural network features [Lage-Castellanos and De Martino, 2019].

3.1 Training and Test Data

3.1.1 Image data

The challenge provided three sets of images, two of these are training sets of size 92 and 118.
The third set is smaller (78 images) and is intended for validation of the trained models, as
the brain measurement data for this set was held out until the conclusion of the challenge.
The measurement data has since been made publicly available, making it possible to evaluate
the performance of models on the test set.

What is immediately apparent when comparing the three image sets, is that the 92
set contains almost exclusively images with a white background, while the other sets have
images with almost exclusively colored backgrounds. The subject matter of the images also
varies wildly, featuring pictures with multiple subjects visible, partially obscured subjects,
and ’isolated’ subjects (e.g. a human ear surrounded by a white background). Because of
the limited training data and high variability, higher level features from the data will likely
be more difficult to capture. This is desirable for the challenge design because it motivates
more thoughtful approaches than just training a large neural network.

3.1.2 Measurement Data

Included with each set of images are the RDMs created from the fMRI and MEG measure-
ment data. These are used as training targets for the training sets, and for evaluation on
the test set. The measurement data for every image set and challenge tract each contain 15
RDMs in total, corresponding to the number of subjects.
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3.2 Implementation

This section outlines how the results were obtained from the data. This includes the design
of the perceptual and categorical models, generating activations from neural networks, and
the method of combining these models. The complete code is available on GitHub 1

3.2.1 Perceptual Model/Edge Detection

The edge detection model was recreated from the work of Lage-Castellanos. It is implemented
to allow control over the same three parameters:

• The resize scale in pixels (n).

The input images are all resized to the same dimensions before edge detection.

• The Canny lower edge detection threshold (tlower).

This determines the minimum strength required for edges to be detected.

• The Gaussian smoothing sigma (σg)

This is not to be confused with the Canny edge detection sigma (σc), which is a
parameter of the Canny edge detector. The Gaussian(σg) is used to determine the
amount of smoothing after edges have been extracted, effectively making the edges
wider. The research is not testing for the Canny sigma parameter (σc) and uses the
default value of 1, similar to the model of Lage-Castellanos.

The Canny edge detection function used in this research is version 0.17.dev of the Scikit-
Image library (v0.16.1), implemented in Python 3.7. See figure 3.1 for an example of the
image after edge detection has been applied.

The algorithm takes the following steps:

1. Load and rescale images to size (n× n)

2. For each image:

• Convert the (RGB) image to grayscale

• Apply edge detection using the given threshold t.

• Apply Gaussian smoothing using σg

3. Generate the model RDM by counting overlapping edge pixels for every pair of images.

4. Normalize the model RDM.

1https://github.com/donalddop/Algonauts
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Figure 3.1: Edge detection example on an image from the 118 image set.

3.2.2 Categorical Model/Naive Bayes

The categorical model is also a reproduction from the study by Lage-Castellanos. The model
uses the following method:

• Manual labelling of the 92 training image set into 8 categories.

• Calculation of and (8× 8) categorical RDM:
This is done by averaging the values of the initial RDM for all images in the same
category.

• Training a naive Bayes classifier on neural network features. For the experiments, the
last fully connected layer of the VGG-50 network was selected based on the findings of
Lage-Castellanos.

• Classify the images from the test set.

• Generate the model RDM using the values from the categorical RDM.

To obtain the (8× 8) categorical RDM, the measurement RDMs of the respective image
set are used. The measurement RDMs are averaged over all 15 patients, and over the 20 ms
time interval. The the correlation between two categories is then set to the average activation
for all images in these categories, as they are represented in the averaged measurement RDM.
Next, the images are categorized using a Gaussian Naive Bayes classifier trained on either
the 92 or 118 image set. Based on these classifications, values in the (8× 8) RDM are used
to set the correlation between two images as equal to the correlation between their predicted
classes. There are four versions available for the categorical RDM, based on both intervals
for the MEG (Early and Late) and fMRI (EVC and ITC) data. The results section will show
the performance of each version.

3.2.3 Neural Networks

The challenge dataset includes code for generating activations using three different types of
neural network; AlexNet, VGG, and ResNet. The code is written in Python (3.7.4) and uses
the pytorch library (1.3.1), which features pre-trained models for various versions of these
neural networks. This research uses the activations created by the VGG-19 network after one
epoch of training. This network contains 5 max-pooling and 3 fully connected layers. The
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activations found to have the biggest impact on scores was the last fully connected layer (fc8),
which contains 1000 features per image. These features are used in the categorical model to
train the classifier on, as well as in the final step of the algorithm where the contribution of
an RDM based on the activations in this layer is added to the initial estimates. These RDMs
are created from the activations using the Spearman correlation, the same metric used by
the challenge organizers for generating the RDMs from the measurement data [Hauke and
Kossowski, 2011].

3.3 Evaluation

The evaluation method used for the research calculates scores in the following steps:

• Calculate Spearman’s correlation coefficient between the model and target RDMs.

• Take the squared correlation to eliminate negative values.

• Normalize against the noise ceiling set by the Algonauts project.

• Calculate the average between the Early and Late targets for the MEG tract, and the
average between the EVC and ITC targets for the fMRI tract..

The baseline scores for the Algonauts project were set using AlexNet, a deep neural
network consisting of 5 convolutional layers 3 fully connected layers [Cichy et al., 2019].
Scores above this baseline are assumed by this research to imply that the model performs
well enough to be considered as simulations of brain activity. The new model is considered
an improvement if it obtains better scores than those reported by the challenge winners.
These scores are shown in table 3.1.

Early MEG Late MEG Avg nc % EVC fMRI ITC fMRI Avg nc %
Baseline 5.82 22.93 15.32 6.58 8.23 7.41

A.-R. Meijer 1.20 28.51 16.37 13.67 17.37 15.53
A. Lage-C. 50.95 53.59 52.42 32.88 20.99 26.91

Table 3.1: Baseline scores of the Algonauts challenge, and the scores of the studied challenge
participants.
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Chapter 4

Results

4.1 Initial Model Estimation

4.1.1 Perceptual Model

The perceptual model takes three parameters; the resize scale in pixels (n), the lower edge
detection threshold (t), and the Gaussian smoothing sigma (s). This model is expected to
help explain early visual processing, and will therefore be optimized for the Early-MEG and
EVC-fMRI targets.

The research of Lage-Castellanos describes a set of optimal parameters for predicting
the EVC-fMRI and Early-MEG targets of the 92 image set, these formed a starting point
for the optimization of the recreated implementation. The perceptual model was tested
over various ranges of parameters to study their effect on performance. Figure B.1 in the
appendix contains graphs illustrating the effect of changing these parameters on the 92 image
set prediction scores. The tests revealed the model to favor a different set of parameters than
those found by Lage-Castellanos. This is likely due to differences in implementation, as his
model was created using Matlab instead of Python. Table 4.1 shows the scores of the model
on the 92 image set both when using the initial parameters found by Lage-Castellanos, and
when using the optimal parameters. Optimizing the parameters for the test set yields a
different set of parameters, as can be seen in table 4.2.

Target Resize scale Gaussian sigma Threshold nc %

Lage-C Early-MEG 100 1 0.12 54.64
EVC-fMRI 166 2 0.13 48.71

Optimal Early-MEG 100 2 0.3 61.33
EVC-fMRI 133 2 0.4 51.10

Table 4.1: Scores on the 92 image set using Lage-Castellanos’ parameters and the optimized
ones.
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Target Resize scale Gaussian sigma Threshold nc %

92 Optimized Early-MEG 100 2 0.3 11.36
EVC-fMRI 133 2 0.4 4.88

78 Optimized Early-MEG 100 2 0.4 17.08
EVC-fMRI 100 1 0.4 13.69

Table 4.2: Scores on the test set using parameters optimized for the 92 or 78 image sets.

The initial prediction estimates for the Early-MEG and EVC-fMRI RDMs were created
using the parameters optimized for the 78 image set, their resulting scores are shown in table
4.3. These results show both estimates score more than double the challenge baseline score
on each of the Early MEG, EVC fMRI and ITC fMRI targets. The score on the Late MEG
target is very low however, which causes the average score for the MEG tract to fall below
the challenge baseline. This result is in line with our expectation that the edge detection
models activations of the V1 area of the visual brain, corresponding to the Early MEG and
EVC fMRI targets. The good performance on the ITC fMRI target is unexpected, but
suggests the edge detection model is also able to capture activations in the later stage of
visual processing.

The RDMs are visualized in figure 4.1 to show they have similar patterns, this will be
useful for comparison after combining the initial estimates with the categorical and CNN
models.

Early MEG Late MEG Avg nc % EVC fMRI ITC fMRI Avg nc %
Baseline 5.82 22.93 15.32 6.58 8.23 7.41

Early-MEG 17.08 2.72 9.10 13.54 17.75 15.65
EVC-fMRI 15.23 3.15 8.52 13.69 18.63 16.17

Table 4.3: Performance of the perceptual estimates when predicting the 78 image set, com-
pared to the challenge baseline.

(a) Early-MEG RDM estimate (b) EVC-fMRI RDM estimate

Figure 4.1: Initial RDM estimates for the 78 set using the perceptual model
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4.1.2 Categorical Model

The categorical model is expected to be a better predictor of activity for the Late-MEG and
ITC-fMRI targets, since it models more complex features than edges. Classifiers have been
trained on either of the 92 and 118 image sets to observe their difference in performance on
the test set. Table 4.4 shows the performance of each of the four resulting RDM estimates
on predicting their respective targets.

target score %

92 Classifier & 92 image set

Early-MEG 14.70
Late-MEG 18.00
EVC-fMRI 10.08
ITC-fMRI 46.54

118 Classifier & 118 image set

Early-MEG 12.84
Late-MEG 6.22
EVC-fMRI 2.52
ITC-fMRI 8.31

Table 4.4: Performance of different classifiers when predicting their own training set.

These initial tests revealed the categorical model using the 92 image classifier to be better
at predicting the expected targets; the Late-MEG and ITC-fMRI targets. This effect was
however not present when predicting the 78 image set, as can be seen in table 4.5. The 118
image classifier obtains the highest average score for both targets, for this reason the 118
classifier was chosen to generate the categorical estimate RDMs.

target score %

92 Classifier & test set

Early-MEG 1.31
Late-MEG 2.93
EVC-fMRI 2.67
ITC-fMRI 3.70

118 Classifier & test set

Early-MEG 4.29
Late-MEG 11.43
EVC-fMRI 5.41
ITC-fMRI 3.36

Table 4.5: Performance of different classifiers when predicting the 78 image set.

The difference in performance compared to the training set can in part be explained
by the low accuracy achieved by the classifier when categorizing images from the test set.
This can likely be solved by improving the classifier, as the current implementation does
not receive appropriate training. The research of Lage-Castellanos reports much higher
prediction accuracy, and makes use of cross-validation to improve the accuracy the classifier.
As an example, their classifier was able to categorize all human faces in the test set correctly,
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of which our version is not able to predict a single one. Appendix A.3 and A.4 show the
78 image set as labeled by both classifiers, which illustrates their low accuracy.

Table 4.6 shows the scores for the Late-MEG and ITC-fMRI estimate RDMs generated
by the categorical model. Both models perform below the challenge baseline on all targets,
indicating they are not able to predict activations, including in the expected areas. It will
still prove interesting if these estimates can contribute positively to the overall scores by
combining them with the perceptual estimates.

Early MEG Late MEG Avg nc % EVC fMRI ITC fMRI Avg nc %
Baseline 5.82 22.93 15.32 6.58 8.23 7.41

Late-MEG 3.92 11.43 8.09 5.10 4.71 4.91
ITC-fMRI 0.96 0.88 0.91 3.20 3.35 3.28

Table 4.6: Performance of the categorical estimates when predicting the 78 image set com-
pared to the challenge baseline.

(a) Late-MEG RDM estimate (b) ITC-fMRI RDM estimate

Figure 4.2: Categorical RDMs generated from the 78 image set using the 118 image classifier.

As with the perceptual estimates, the categorical estimates have been visualized in figure
4.2, to allow recognition of shared features. Clearly visible is the low variation in color, which
is caused by the classifier placing most images in the same category.
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4.1.3 CNN model

The CNN model uses the activations in the last fully connected layer of the VGG-19 network.
This layer contains 1000 features per image, the correlation between two images is obtained
by calculating the Spearman correlation between these feature vectors. As can be seen in
table 4.7, this estimate does not perform well on the test set. However, in section 4.2.1
it will be shown that this estimate can still contribute to the performance of a combined
model.

The CNN-based estimate has once again been visualized in figure 4.3, to allow comparison
of features with other RDMs.

Early MEG Late MEG Avg nc % EVC fMRI ITC fMRI Avg nc %
Baseline 5.82 22.93 15.32 6.58 8.23 7.41

VGG-19 fc8 0.40 1.05 0.76 2.19 2.55 2.36

Table 4.7: Performance of the CNN-based estimate when predicting the 78 image set com-
pared to the challenge baseline.

Figure 4.3: The RDM generated by the CNN model using the features of the fully-connected
layer of the VGG-19 network.
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4.2 Combining Models

This section shows how the different models are combined to generate the final scores. The
categorical and perceptual RDMs are combined first by maximizing the score, followed by
the contribution of the CNN activations. In both steps, models are combined by weighted
average, using a set of weights that together add up to one:

Mcombined = w0 ∗Mperceptual + w1 ∗Mcategorical

Mfinal = w0 ∗Mcombined + w1 ∗MCNN

w0 + w1 = 1, {w0, w1 ∈ [0, 1]}

4.2.1 Combining Initial Estimate RDMs

Having obtained the initial estimates from the perceptual and categorical models, they are
combined using the weighted averaging method. Because the scores of the categorical esti-
mates were relatively low compared to the perceptual estimates, it was expected that their
contribution would be limited. Table 4.8 shows scores of the optimal combinations found
for the perceptual and categorical estimates. This shows the Late-MEG estimate did not
benefit either of the perceptual estimates, and the ITC-fMRI estimate improves scores for
the perceptual estimates, but only very slightly. The graphs showing the effect of combining
the perceptual and categorical estimates have been included in appendix B.2

Perceptual est. Categorical est. w1 Avg MEG nc % Avg fMRI nc %
Early-MEG Late-MEG 0 9.10 (9.10) 15.65 (15.65)
Early-MEG ITC-fMRI 0.3 9.11 (9.10) 15.68 (15.65)
EVC-fMRI Late-MEG 0 8.52 (8.52) 16.17 (16.17)
EVC-fMRI ITC-fMRI 0.2 8.54 (8.52) 16.20 (16.17)

Table 4.8: Optimal combinations for the perceptual and categorical estimates when predict-
ing the 78 image set, maximizing the average score. The numbers in parentheses are the
scores of only the perceptual model.

4.2.2 Combining CNN Model with Combined Estimates

Next the four combined initial estimates are further combined with the RDM created by the
CNN model. The effect of adding the CNN contribution can be seen in the graphs provided
in appendix B.3. An interesting thing to note is that the CNN activations are not good
predictions by themselves, but they do slightly increase the overall score in when combined
to a degree. This effect is also observed in the research of Lage-Castellanos, where the CNN
contribution improved scores far more; approximately 5 to 8 percent of the noise ceiling.
It is expected that the level of improvement depends on the choice of CNN layer, as well
as the quality of the initial estimates. Further research will be required to confirm these
expectations.
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In table 4.9, the improvement in scores is displayed after adding the weighted contribution
of the CNN model, showing the optimal weight found for each combination of perceptual
(Early, EVC) and categorical (Late, ITC) estimates.

Combined est. CNN est. w1 Avg MEG nc % Avg fMRI nc %
Early-Late VGG-19 fc8 0.1 9.40 (9.10) 15.83 (15.65)
Early-ITC VGG-19 fc8 0.1 9.54 (9.11) 15.91 (15.68)
EVC-Late VGG-19 fc8 0.1 8.97 (8.52) 16.42 (16.17)
EVC-ITC VGG-19 fc8 0.2 9.34 (8.54) 16.22 (16.20)

Table 4.9: Optimal combinations for adding the CNN contribution to the each pairing of
the initial estimates when predicting the 78 image set. The numbers in parentheses are the
scores of the model before the CNN contribution is added.

4.2.3 Final results

The scores of the final RDM estimates obtained after adding the CNN contributions are
shown in table 4.10.

Early MEG Late MEG Avg nc % EVC fMRI ITC fMRI Avg nc %
Baseline 5.82 22.93 15.32 6.58 8.23 7.41

Early-Late 17.24 3.13 9.40 14.06 17.57 15.83
Early-ITC 17.35 3.29 9.54 14.21 17.59 15.91
EVC-Late 16.00 3.39 9.00 14.32 16.86 15.60
EVC-ITC 17.04 3.80 9.69 14.48 16.89 15.69

A.-R. Meijer 1.20 28.51 16.37 13.67 17.37 15.53
A. Lage-C. 50.95 53.59 52.42 32.88 20.99 26.91

Table 4.10: Performance of the final estimates on the 78 image set after adding the CNN
contribution, compared to the challenge baseline and the scores achieved by the discussed
researchers. In bold print are the scores that improved upon the baseline and the scores of
Meijer.

Table 4.10 shows that the final model is able to make acceptable predictions on the Early
MEG, EVC fMRI, and ITC fMRI targets, improving upon the scores of the challenge baseline
and the networks tested by Meijer. What is also visible is the much better performance of
Meijer on the Late MEG target, which suggests this target prefers a CNN approach.

The RDMs are visualized in figure 4.4, showing the estimates closely resemble the per-
ceptual estimates, which confirms the addition of the categorical and CNN estimates only
slightly modifies the initial perceptual estimate.
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(a) Early-Late model (b) Early-ITC model

(c) EVC-ITC model (d) EVC-Late model

Figure 4.4: The final RDM estimates for the 78 image set after adding the CNN contribution.
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Chapter 5

Discussion

The results section has shown that the most of the performance of the combined model can
be attributed to the perceptual model. The contributions of the categorical and CNN models
are very small, but may be increased by improving the respective models.

On the fMRI tract, all the final estimates outperformed every neural network tested in
the study performed by Anne-Ruth Meijer, including her own ResNet-20 implementation
which received 10 epochs of training [Meijer and Visser, 2019]. This shows promise for
the perceptual model when compared to using CNNs for predicting fMRI data. It may be
possible to improve the performance of the CNNs with more training, but it is not guaranteed
as this can also cause overfitting the model on the training set.

On the MEG tract the performance on the Early-MEG target is very good, almost tripling
the challenge baseline score. On the Late-MEG target the performance is well below the
challenge baseline, which agrees with the low performance of the categorical model. The
categorical model achieved high prediction accuracy on the training set, but did not perform
well on the test set. Both of the tested classifiers got less than half the predictions right. See
appendix A to see the images as labeled by the classifier. The model is expected to have
improved performance when a better classifier is used.

In his report, Lage-Castellanos included graphs showing the optimal CNN contribution
laid around 20 to 30 percent [Lage-Castellanos and De Martino, 2019]. In the performed
study, the CNN contribution improvement the overall scores at a ratio of around 10 to 20
percent, which resembles the results of Lage-Castellanos. Apparent from both studies is
that the CNN layer activations are not good predictions by themselves, but can be used to
increase the score of the estimates generated by other models.
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Chapter 6

Conclusion

The study aimed to find models that explain neural activity in specific areas, corresponding
to early and late stages in visual processing. The reproduction study has shown that a
perceptual model based on edge detection is able to predict activity in the early stage for
both MEG and fMRI data. This correlation was predicted by the hypothesis that the edge
detection model corresponds to functions of the V1 area in the brain, where the measurements
were taken. This indicates that it is possible the edge detection model is capturing the
function of the V1 area to some degree, however further experiments will be required to
confirm this.

The categorical model was chosen as a candidate for explaining activity in the later stage
of visual processing, corresponding to functions of the V4 area of the visual brain where
the measurements were (approximately) taken. The classifiers used by the model have low
accuracy when categorizing images from the test set, which causes the categorical model to
make poor predictions. Choice of classifier and training time likely have consequences for
the prediction scores, which is an area for future research. With an improved classifier it will
be possible to study if the categorical model is better at predicting activations in the later
stage of visual processing.

The use of RDMs based on convolutional neural network (CNN) layer activations to
improve initial estimates was proven successful by Lage-Castellanos [Lage-Castellanos and
De Martino, 2019]. The same effect was observed in our results, however with a reduced
relative improvement. Further research is required to find the best choice of CNN, layer, and
method of converting activation values to RDMs.

The small size of the training and test data sets was an intentional design choice by the
challenge organizers to make it easy for new researchers to get started, as well as to lower
computational requirements. If this study is repeated using a larger set of data however, it
is expected that the results allow for more accurate statements about relationships between
brain functions and computational models.

The research concludes that a perceptual model shows promise for predicting neural acti-
vations in the early visual processing stage. Whether the categorical model is able to predict
activity in the later visual processing stage is inconclusive, but has shown promise in other
research. The contribution of the CNN layer does show promise for improving prediction
performance, but did not have enough impact on performance to suggest correlation to either
the early or late visual processing stages.
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Appendix A

Training and test images

The images of both training sets have been included with their correct labels, in order to
illustrate both the limited size and specificity of subject matter as discussed in section 3.1.
Also included are the test images as labeled by a Gaussian Naive Bayes classifier trained on
either of the training sets, these are discussed in section 4.1.2. Incorrect labels are colored
red to show the accuracy of the classifiers.
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Figure A.1: The 92 image set with correct labels
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Figure A.2: The 118 image set with correct labels

30



Figure A.3: The 78 image set as categorized by the 92 image classifier
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Figure A.4: The 78 image set as categorized by the 118 image classifier
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Appendix B

Plotted graphs

The included graphs in figure B.1 illustrate the effect of varying specific parameters of the
edge detection model, which is discussed in section 4.1.1.

The graphs in figures B.2 and B.3 show the performance of different degrees of model
combinations by varying the weight parameter. These are discussed in sections 4.2.1 and
4.2.2, respectively.
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(a) MEG scores for variable threshold (b) fMRI scores for variable threshold

(c) MEG scores for variable resize scales (d) fMRI scores for variable resize scales

(e) MEG scores for variable Gaussian sigma (f) fMRI scores for variable Gaussian sigma

Figure B.1: Optimizing the parameters of the perceptual model for the 92 image set, with
fixed resize scale and smoothing sigma.
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(a) Early-ITC model (b) Early-Late model

(c) EVC-ITC model (d) EVC-Late model

Figure B.2: Effect of combining the initial perceptual (Early-MEG, EVC-fMRI) and cate-
gorical (Late-MEG, ITC-fMRI) estimates on average scores.
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(a) Early-ITC model (b) Early-Late model

(c) EVC-ITC model (d) EVC-Late model

Figure B.3: Effect of combining the intermediate estimates with the CNN estimate. The
CNN estimate is based on activations in the last fully connected layer of the VGG-19 network.
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