
Taking up the RoCKIn@Work
Object Recognition Challenge

With The Bag of Keypoints Approach

Areg Shahbazian,
10283234

BSc Kunstmatige Intelligentie thesis
18 ECTS

Supervisor
Dr. Arnoud Visser

Faculty of Science
University of Amsterdam

Science Park 904
1098 XH Amsterdam



Abstract
This research project addresses the problem of object-classification by a robot in an
industrial context. Solving this problem brings industrial robots one step closer to
being able to operate autonomously and eventually to reproduce themselves. The
approach described in this thesis enables a system to distinguish classes of objects

using RGB data only, which can be a difficult task when the classes are similar.
Other approaches have been to compare generic features of objects to classify

them, and to build histograms of more distinct features. By performing
experiments I was able to determine some specific parameters for our problem and

combine different types of input features. By experimenting with different
classification techniques, error-rates of nearly 22% for object type and 11% for

object category were reached.



Contents

1 Introduction 1

2 Literature Review 3

3 Method 5
3.1 Bag of Key-points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Significance of k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Extra Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.3.1 Distribution of Key-points . . . . . . . . . . . . . . . . . . . . . . . 9
3.3.2 Occupied Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3.3 Number of Key-points . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3.4 Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.4 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4.1 k-Nearest Neighbours . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4.2 Naive Bayes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Experiments and Results 13
4.1 Significance of k, Experiments . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Extra Features, Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3 Classification, Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Evaluation and Conclusion 18

Appendices 20

A Confusion Matrices 20



1 Introduction

In an increasingly industrialized world, the field of robotics has gained much sig-
nificance for factories and manufacturers, with the purpose of utilizing machine in-
telligence to produce faster and more efficiently. Furthermore, having intelligent
robots participate in their own reproduction is a big step in developing autonomous
robotic intelligence. An important functionality-requirement for such a robot is ob-
ject recognition and classification using its sensors.
This thesis describes my research project about object-classification using RGB camera-
data. The research is done in the context of the RoCKIn@Work Competition1.
The purpose of the @Work is to challenge competitors to develop innovative indus-
trial solutions using robots. In the RoCKIn competition, the goal is to develop a
robot-system that assists with the partial assembly of another robot. This involves
locating and transporting necessary parts, checking the quality of these parts and
manipulating them with actuators.

The project focuses on the perception of the different objects, specifically for clas-
sification of the object types using camera images. This task is relevant for the lo-
cation and recognition of objects, as well as for object-manipulation. For the robot
to be able to pick up and manipulate the objects at the RoCKIn@Work competition,
a pose-estimation functionality is also required. This problem will however not be
assessed in this thesis and the focus will be on the classification of the objects.
The problem definition of this research project is inspired by the “Object Percep-
tion" functionality benchmark of RoCKIn@Work 2014. In this benchmark, an object
is placed on a white-surfaced table, and using a sensor of choice, the competitor-
robot must classify the object as one of the known types. The competitor is allowed
to make a dataset of images of all objects. The competition also provides the com-
petitors with 3D models (.STL) of the objects, which can be used in combination
with depth-images to identify the correct type.
In this project however, no depth images or any other 3D data is used and object-
classification is performed using only RGB images. The reason for this is that most of
the RoCKIn@Work objects are made of shiny metal (Figure 1.1), which reflects most
of the rays used by sensors to make a depth image and leads to incomplete depth
maps.

RGB data is used by finding interesting points (key-points) in the image and describ-
ing these in vectors. Then, following the Bag of Key-points approach ([5]), image
histograms are constructed and are used to classify new images with a classification
algorithm. This is the classic way of applying the Bag of Key-points method to the
object-classification problem.
In this thesis some questions will be addressed regarding the customization of this
method for the RoCKIn@Work object-classification task. First, the effect of the num-
ber of clusters used for making the image histograms will be examined. Then, dif-

1http://rm.isr.ist.utl.pt/projects/rockin-competitions-wiki/wiki/FBWork#FBM1-
%E2%80%9CObject-perception%E2%80%9D

1



(a) type 0
(b) type 1

(c) type 2 (d) type 3
(e) type 4

(f) type 5
(g) type 6 (h) type 7 (i) type 8 (j) type 9

Figure 1.1: The ten RoCKIn@Work object types. Note the small difference between
object type 7 and type 8 (the bottom-right screw hole around the round gap is
smaller for type 7).

ferent types of features of objects and their effect on the classification result will be
investigated. Finally, experiments will be done using different classification algo-
rithms to try and find the one with the best results.
In the following sections a review will follow of some relevant literature that inspired
the approach of this study. Then the method of addressing the object-classification
problem will be presented. The type of data used, the way it’s represented and the
method of classifying it will be explained. Experiments will be performed with a
program written in the C++ language and the results of the experiments will be pre-
sented. Finally, the thesis will be concluded and suggestions will be made for future
improvements of the approach.

2



2 Literature Review

The “Object Perception" Functionality Benchmark has been tackled by many com-
petitor teams of the @Work challenge. The approach of the winner of the 2014
RoboCup@Work competition, the smARTLab@Work team2 was to use various vi-
sual features of the objects such as the length of the principal axis and the intensity
of the image ([3, p. 9]). Using a labelled dataset, the new images were classified with
a decision-tree algorithm.
Although the approach described above led the team to victory, its applications are
limited. Among the benchmark-objects used in the RoCKIn@Work competition are
objects with very similar shapes and average intensities (Figure 1.1h and 1.1i). Us-
ing these features to distinguish the objects does not seem promising. The smART-
Lab@Work team solved this problem by changing the camera position (moving the
robot arm on which the camera is mounted) to see the objects from more distinct
angles. Following the rules of the RoCKIn@Work 2014 functionality-benchmark, the
camera-sensor is not allowed to move, and image-data from a single point of view
has to be used. This requires more distinct features of the objects to be extracted
from the sensor-data.
In the RoboCup@Work 2014 challenge object perception functionality is also re-
quired. Here, the winning team (Wright Eagle3) used depth-images to recognize
objects. As described in the introduction, using a depth-sensor is not a good option
for the RoCKIn@Work objects, so RGB images are the best choice. The team descrip-
tion papers of the RoboCup@Work 20134 and RoboCup@Home 20145 competitors
are published on their websites. Unfortunately, the team description papers of the
RoboCup@Work 2014, which is most relevant for this project, have not been pub-
lished.

Instead of using generic information about the shape and color of the objects more
distinct features could be used to perform the task. The features should be extracted
and represented in a way that is invariant to changes in the object-pose and envi-
ronment lightning. The SIFT method, as described in [9], uses features extracted
from an image using multiple scales. This scale-space is searched for interesting
key-points and these are described in a way that is invariant to shape distortion and
changes in illumination. [9, p. 2]. These descriptors are used to match objects in
new images with images in the dataset in order to assign an object-type to the new
object.
The SIFT method performs well in cluttered environments. Since there is mini-
mal cluttering in the object-environment of the RoCKIn@Work, good results are ex-
pected in matching, if the objects are distinctive enough. However, as Figure 1.1
shows, the objects of the RoCKIn@Work benchmarks are not all highly distinctive.
Similarly to SIFT, the SURF method also uses scale- and rotation-invariant features

2http://www.robocup2014.org/?page_id=3297
3http://www.robocup2014.org/?page_id=3293
4https://staff.fnwi.uva.nl/a.visser/activities/robocup/RoboCup2013/Symposium/TeamDescriptionPapers

/RoboCup@Work/index.html
5http://fei.edu.br/rcs/2014/TeamDescriptionPapers/RoboCup@Home/index.html

3



to describe key-points in images. Here, the Hessian-matrix approximation of an im-
age is used to detect key-points. Also, instead of the gradient used in SIFT, Haar
wavelet responses are used to describe a key-point. These are calculated within
a circular neighbourhood of the detected point in the x and y direction to assign
an orientation to it. To calculate the descriptor of a key-point, a rectangular region
around it is divided in 16 subregions. For each subregion a 4-dimensional descriptor
is calculated using Haar wavelet responses, leading to a 64-dimensional descriptor
for each key-point location, instead of the 128-dimensional SIFT descriptors.
SURF is claimed to outperform SIFT [1, p. 7] and is a more recent method. Further-
more, the lower dimensionality of the key-point descriptors is a big advantage when
using a large dataset of images.

In addition to feature extraction and description, the Bag of Keypoints method, as
described in [5], uses the Harris affine detector to extract interesting key-points from
grey-scale image and uses the SIFT-descriptors of these key-points to form a vocab-
ulary of key-points. Then, for each image, a histogram is formed that contains the
number of key-points per category, where the categories are determined using clus-
tering. The number of clusters to be used is chosen by running the k-means algo-
rithm several times and selecting the value of k that gives the ‘lowest empirical risk
in categorization’ [5, p. 6]. However, this way of empirically selecting the value for
k is can be costly when there are many data-points to be clustered. The approach
in [5] produces state-of-the-art results on a dataset of 1776 images of seven different
classes of objects (faces, buildings, trees etc.). These images contain a significant
amount of background cluttering and the objects to be classified are often partially
occluded.
In [12] a method is presented to choose the value for k. As k is increased, the error
measure of the clustering algorithm, which in the case of [12] is the within clus-
ter dispersion, decreases at a lower rate. From some k-value onwards this decrease
flattens significantly and at the location of that k, the plot of the decreasing error
rate resembles an ‘elbow’ shape. [12] presents a procedure to formalize this way of
choosing k.

Another aspect of object-recognition using image features is the way the feature-
vectors are used to match a new image with the existing dataset. The smARTLab@Work
team uses a J4.8 decision tree ([3, p. 9]) to classify observed features. In [5] a Naïve
Bayes classifier and Support Vector Machines are used for the classification, with
the latter outperforming the former [5, p. 14]. Many other classification algorithms
exist. The WEKA Data Mining Software ([7]) provides a workbench for experiment-
ing with different classification methods and a can be convenient tool to compare
results and help choose the right method.

4



3 Method

In the following subsections a method to solve the object-classification problem will
be explained. The version of the Bag of Key-points method used in this research
project will be explained and enhancements of the system in different areas will
be presented. Some of these enhancements are specific to the Bag of Keypoints
method, while others are more general customizations of the system for the object-
classification problem of the RoCKIn@Work challenge.

3.1 Bag of Key-points

In this research the Bag of Key-points approach is used, inspired by the method
of Csurka et al. [5], as a basis. A description of the classic implementation of this
method will follow below. As described above, this approach leads to good results on
a dataset with background cluttering and where the objects are partially occluded.
However, the experiments in [5] are performed on a dataset where the different
classes of object are very distinct. For example, recognizing the difference between a
face and a building is arguably simpler than distinguishing between two very similar
metal objects from Figure 1.1. Fortunately, when performing object recognition for
the RoCKIn@Work, we don’t have to worry about much cluttering in the images or
occlusion of the objects. These differences between the experimental setup of this
project and that of Csurka et al. [5] make it necessary to customize the approach.
The Bag of Key-points method uses a dataset of descriptors of interesting key-points
to construct image histograms of length k. In the implementation of this research
project, the key-points are detected and described using the SURF detector and de-
scriptor implementations, which are included in the OpenCV library ([2]) and im-
plemented according to the algorithms described by Bay et al. [1]. From each of the
N images a number of key-points is detected and described. On average around 120
key-points are detected per image in the dataset. Each descriptor is a 64-element
vector and represents the neighbourhood of a detected key-point. Denoting the av-
erage number of key-points per image as µ, this leaves us with Ndescr =µN descrip-
tors in a Ndescr ×64 matrix.
Many of the descriptors extracted from images are very similar, and some represent
the same key-points transformed between images. They are simply occurrences of
local neighbourhood-types in images. These descriptors could be used directly to
match images. However, this is computationally impractical, given the great amount
of descriptors for the whole dataset (typically around 12000 in this case).
Figure 3.2 shows the descriptors of the key-points which were extracted from 1029
images of the ten objects. Examples of images, with some key-points illustrated as
ellipses, are shown in Figure 3.1.
Figure 3.2 shows the projection-image of the data projected on its three main component-
vectors (using the Principal Component Analysis (PCA, [11]) implementation from
OpenCV). The descriptors of 3.2a are ordered by the object-types from which the
key-points are extracted. As can be seen in the figure, the image type is not a distinct
feature of the descriptors. Data-points with different colors don’t occupy separate
subspaces of the data-space and are not ordered or grouped in a distinct way. A de-

5



Figure 3.1: Three images of the same object, with SURF keypoints.

scriptor, or a group of descriptors, can not be used directly to determine the object-
type of the image.

(a) (b)

Figure 3.2: Descriptors projected on their main three dimensions. In 3.2a ordered
by object-types, in 3.2b all 130000 descriptors ordered by cluster number

Instead, the key-points in each image can be summarized in histograms. This is
done by clustering all Ndescr descriptors into k clusters (categories) and describing
each image i in a k-dimensional histogram vector ~hi (Figure 3.3). Here, the number
of descriptors in image i that fall within cluster j (i.e. the number of category- j key-
points in image i ) is the value at index j of ~hi , with j in [0,k).

Clustering is an important step and in this project it is done using the k-means algo-
rithm included in OpenCV ([2, p. 479]). This algorithm starts with k random points
in R64 as cluster centres. It then assigns a cluster number to each data-point (de-
scriptor vector). Then each cluster centre is moved to the centroid of its data-points.
The last two steps are repeated until some convergence is reached. The clustered de-
scriptor dataset is shown in Figure 3.2b.
Forming histograms for each image using the clusters is a way of summarizing the
higher-dimensional descriptor-dataset into a much smaller, lower-dimensional histogram-
dataset (the dimensionality depending on the choice of k for clustering). This re-

6



Figure 3.3: Schematic representation of the Bag of Keypoints method: SURF key-
points are extracted and represented in descriptors, with on average µ descriptors
per image. The descriptors are clustered in k clusters. For each image, the number
of descriptor-occurrences per cluster is stored in a histogram.

duces the computational power needed to process the image-data.
Another benefit of clustering the descriptors is its intuitive usefulness when using
scale- rotation- and illumination-invariant key-points. Key-points of this kind are
meant to have multiple occurrences in different images of the same object. Even
though some key-point may have different descriptors in different images, these
different descriptors will be close to each other in the 64-dimensional descriptor-
space, since they represent the same spot on the same object. These advantages of
using histograms are illustrated in Figure 3.4. The histograms of the images con-
taining object-type 9 (the most distinct of the objects, Figure 1.1j) clearly occupy a
different subspace of the histogram-space than those with other object types (Figure
3.4a), while the very similar object-types 6, 7 and 8 have histograms largely overlap-
ping the same subspace (Figure 3.4b).
This way, an N ×k histogram matrix is formed, which represents each of the N im-
ages as a histogram of the categories it contains. In order to classify an object in a
new image, key-points from the image are extracted and the descriptors are calcu-
lated. Of the k cluster-centres, the nearest one is assigned to each descriptor, and
counting the number of descriptors per cluster-centre a histogram of the new image
is formed.
The k dimensional histogram of the sample image can be used to assign an object
type to the image. The simplest way of doing this is perhaps assigning to an image
the object type of the histogram-vector from the dataset with the smallest Euclidean
distance to it in Rk .

7



(a) (b)

Figure 3.4: Two 2D plots of the histograms (k = 8), projected on their three main di-
mensions. The histograms are ordered by the object-type of their image. Histograms
of the most similar objects are ordered very similarly (right)

3.2 Significance of k

Having seen the intuitive usefulness of clustering, a less intuitive point-of-choice in
this process must be acknowledged: the number of clusters to be formed (k). Hav-
ing a small k reduces the dimensionality of the data but brings with it the risk of
insufficient expression of the diversity of the descriptor-types. On the other hand, a
large value of k will significantly slow down the process of clustering. In [5, p. 9], this
choice is made by empirically experimenting with different values of k and choosing
one that presents “a good trade-off between accuracy and speed". Although the way
these experiments are performed is not described, it’s implied that the accuracy is
the classification-accuracy of the object-recognition algorithm. Similar experiments
will be performed in 4.1 to determine the desired value k∗ for the rest of the experi-
ments.

3.3 Extra Features

In the classic implementation of the Bag of Key-points algorithm the image his-
tograms contain only vocabulary information: the number of key-points from each
category. SURF key-points are easy to extract from images and are scale- and rotation-
invariant. They also provide some robustness to occlusion of objects and cluttering
in the image. However, it’s hard to distinguish objects that look very similar using
only key-points. To the naked eye, other features of objects such as colour, angular-
ity, number of visible lines and the object silhouette can play a role in distinguishing
between objects. This thesis will describe the latter two of these features and ways
of extracting them from an image. They will be added to the image-histograms and
used in the classification.

8



3.3.1 Distribution of Key-points

From the human perspective, an intuitive way of describing an object would be us-
ing its shape. However, while describing simple geometric shapes might be straight-
forward to implement, most objects, including the ones in Figure 1.1, have more
complex forms. Describing the shape or the silhouette of an object can be impracti-
cal, especially when the image quality is not that well.
Another way of including object-shape information in the object-classification pro-
cess is using the locations of the SURF key-points to approximate the area of the
image that is occupied by the object. This only takes into account the “interesting"
parts of the object, the parts where key-point were found in the first place. This is
nevertheless a good way to describe the shape of the image, since as far as the algo-
rithm is concerned, the object ends where the key-points end.
Using the locations of the key-point as data-points in R2, PCA ([11]) can be used to
determine the two principal axes (eigenvectors) of the data-cloud. Projecting data-
points on the eigenvectors ~e1 and ~e2 results in the distance of the points from the
mean, in the respective principal direction. Using these distances, the standard de-
viations σ1 and σ2 can be calculated:

σi =
√√√√ 1

Nk

Nk∑
k=1

(~pk ·~ei )2 (3.1)

Where ~pk is the location of the k-th key-point and Nk is the number of key-points
found in the image. Figure 3.5 shows the standard deviation ellipses, scaled with
a factor 3. The ratio σ2

σ1
(in the figure the length of the shorter axis divided by the

length of the longer axis) can be added to the histogram of the image and used in
the classification.

Figure 3.5: Standard deviation ellipses drawn over the key-point locations using 3σ
for the ellipse dimensions.

This way of describing the shape of the image is preferable to using the occupied
area of the key-points, because it’s invariant to different object distances. It is how-
ever sensitive to 3D rotations of the object, causing oblong shapes to appear round
and vice versa. The hypothesis to be investigated is that these changes, as an effect
of 3D rotation of the object, are still distinct characteristics of the object and add
enough valuable information to improve classification results.

9



3.3.2 Occupied Area

Like theσ-ratio described above, the area occupied by the cloud of key-points is sen-
sitive to rotations of the objects and its distance to the camera. It can however still be
a useful feature. When using a calibrated camera, the distance to the camera could
be dealt with by multiplying the calculated areas by some factor. In the database
used here however, we can assume the camera distance to be approximately the
same for all images. Since the different objects have observably different areas of
occupation, we will also use this feature in classification.

3.3.3 Number of Key-points

The number of SURF key-points can be of significance when classifying object types.
It’s a measure of the amount of details to be seen on the surface of the object visible
to the camera. A small surface or a smooth surface with no holes, edges or other pat-
terns will lead to a low number key-points. Although this number is also dependant
on the sharpness and quality of the image, using the same camera, mostly from the
same distance, will eliminate this dependence for a great part. Thus, the number of
key-points will be added to the object features.

3.3.4 Lines

Another way to characterize an object is to analyse the patterns in the image that
resemble lines. These can be patterns in the contour of the object, edges or even
patterns printed/engraved on the object.
Finding lines in an image can be done using the Hough-transform ([6]). This method
constructs a parameters-space using the parameters θ and r , the angle of a line and
its perpendicular distance to the origin. After making this Hough-space discrete, all
possible lines of are calculated and votes are counted for each time a pixel is on each
line. Using these votes, the Hough-transform of an image can be made, which ex-
presses the presence of lines in the image.
Prior to applying Hough-transform to the image, the edges of the object are calcu-
lated using the Canny algorithm in OpenCV ([4]).
For simplicity, only the number of lines are used as a feature, ignoring the line lengths
and orientations. Figure 3.6 shows that this feature can be considered a characteris-
tic of the object type. Objects with a round shape have few (if any) lines while oblong
objects with straight edges have much more.

3.4 Classification

The eventual goal of the system is to classify a new image as one of the 10 ob-
ject types. To do this, a histogram of key-points must be made for each new im-
age. After extracting key-points and calculating the corresponding descriptors, the
cluster centres calculated for the training-images must be used to assign the k his-
togram values to the new image. Also, the extra features must be appended to the
histogram-vector to form the final data-vector ~d of the image.
From looking at Figure 3.4a a slight linear ordering of the histogram vectors can be

10



Figure 3.6: Edges of the objects, using a Canny edge detector (top) and the lines
found with the Hough-transform drawn on the images (bottom).

seen for object-types, especially for types 0, 1 and 9. The subspaces of the data-space
which are occupied by the different groups of histograms with different object-types
are also to some extent separable, although partly overlapping.
In Section 2 the Support Vector Machines classification method was mentioned as
one of the choices of Csurka et al.. [5, p. 7]. The WEKA implementation of this al-
gorithm will be used first and the results of other algorithms will be evaluated using
the SVM results.

3.4.1 k-Nearest Neighbours

To classify a new data-vector ~d , the simple k-nearest neighbour algorithm will be
used first. This algorithm takes the object-type labels of the k nearest data-vectors
to ~d and the most frequently occurring label amongst these neighbours is assigned
to ~d . The Euclidean distance between data-points is used to find the nearest neigh-
bours:

d(~a,~b) =
∥∥∥~a −~b

∥∥∥
3.4.2 Naive Bayes

Although k-nearest neighbour is a very efficient and simple algorithm, it only uses
k other data-points (images) for classification while the information contained by
the rest of the data is ignored. The Naive Bayes classifier ([8]) uses the conditional
probability P (c j |~d) of each class to classify a new image. The class-label (in our case
the object type) is chosen which has the highest conditional probability:

11



c∗ = argmax
c j ∈C

P (c j |~d) (3.2)

Following Bayes’ rule and seeing that P (~d) stays the same for each class, the condi-
tional probability can be written as:

P (c j |~d) =P (c j )P (~d |c j )

P (~d)

=P (c j )P (~d |c j )

≈P (c j )
d∏

i=1
P ( fi |c j )di η

With the number of dimensions of ~d (the number of descriptor clusters plus the 4
extra features) denoted as d and fi being the i -th dimension (feature) of the data-
space. Using Laplace smoothing, the conditional probability of a feature, given a
class, is defined in by Csurka et al. in [5, p. 7].
With the Naive Bayes classifier, the assumption is made that each value di is statis-
tically independent of the other values of the ~d vector ([8, p. 2]). However, in the
case of the key-point histograms, the sum

∑d
i=1

~di is the total number of key-points
found in an image. Although the distribution of the sum amongst di depends on the
cluster-centres, the total stays constant, which means that if one element changes,
the other elements have to compensate. Thus, each value in ~d is clearly dependent
of the others. Despite this weakness the Naive Bayes classifier will be used for it’s
efficiency.

12



4 Experiments and Results

In the previous Section 3 some ideas were presented for the improvement and cus-
tomization of the Bag of Key-points method, applied to the problem of this study.
In this section experiments are described to investigate the effect of these improve-
ments. The software used for these experiments is mostly written in C++ and makes
extensive use of the OpenCV library. For classification, the algorithms implemented
in the WEKA Data Mining Software are used in a Java program.

4.1 Significance of k, Experiments

When performing the clustering-step of the Bag of Key-points method it is interest-
ing to look at the effect of k on the eventual classification. Using different dataset-
sizes and different values of k, the classification error-rate, using k-nearest neigh-
bour classification ([10]), is illustrated in Figure 4.1.

(a)

(b)

Figure 4.1: Classification results using k-nearest neighbour and different dataset
sizes/k-values

The value of k is incremented exponentially, using powers of 2. As the figure shows,
the right values of k doesn’t depend very much from the dataset-size. It’s interesting
to see that there is a minimum in each line of Figure 4.1b. This minimum is some-
where around k = 50 for our dataset of 1029 images.
It might seem intuitive that the error-rate of the classification is proportional to the
result of the clustering process. However, if we take the compactness of the formed
clusters as a measure to evaluate the clustering result, it can be shown that this is
not the case.

13



CD (k) =
Ndescr∑

i=1

∥∥∥Di −Cl abel si

∥∥∥2
(4.1)

In Eq. 4.1 the compactness of the clusters is defined, with D being the 130000×64
matrix containing the descriptors. If the value of k is taken to be 130000, the dis-

tances
∥∥∥Di −Cl abel si

∥∥∥2
of the data-points to their cluster-centres become 0. How-

ever, most of the lines in Figure 4.1b stop declining at some point and don’t seem to
be approaching 0 for higher value of k.

4.2 Extra Features, Experiments

By adding the extra features of 3.3 to the dataset, some extra variance is added.
In Figure 4.2 the data-points of all images, created with the different features are
shown. The data-clouds of Figures 4.2b and 4.2c look almost identical. This means
that most of the variance in the data with the combined features is contributed by
the four extra features. Also, most of the clouds of data, ordered in color by object
type, look separable.

(a) (b) (c)

Figure 4.2: From left to right: the histogram data, the extra features data, and the
combination.

Using these extra features, experiments were performed and the resulting error-
rates can be seen in the table below.

histograms only extra features histograms and extra features
error-rate 0.247446 0.502294 0.216262

The results were acquired with 10-fold cross validation using 1029 images. As a clas-
sifier the 1-nearest neighbour algorithm provided in WEKA was used. The extra fea-
tures improve the result slightly but consistently through the cross-validation. Using
only the four extra features doesn’t provide a usable classification result on its own,
but the error-rate for 10 object types is still smaller than a 0.9 error-rate expected by
chance, see Figure 4.3a.
The confusion matrices of the classification results are included in Appendix A. Note

14



that a different number of instances is used for every object type. The number of im-
ages per object type can be seen in Figure A.1.
As could be expected, when using only the key-point histograms (A.2), object types
0,1 and 6,7,8 are often confused with each other. When using the extra features
(width/height ratio, area, number key-points and number of lines) even without us-
ing key-point histograms the number of false negatives for object type 3, the oblong
object, are the same as when using the key-point histograms (A.3). Types 0,1,2 and
6,7,8 still have lots of false negatives, because the values of the extra features, espe-
cially the width/height ratio, are very similar (Figure 1.1).
In the table below the error rates are shown of classification using only one of the
extra features, without the key-point histograms. The best features turned out to be
the number of lines that can be fitted on the object and the occupied area of the
key-points.

feature key-point distribution area nr. of key-points nr. of lines
error-rate 0.83 0.79 0.83 0.73

Table A.4 and Figure 4.3 show the results of the extra features being combined with
the key-point histograms. Performance increases slightly, but the same objects re-
main hardest to distinguish. Also, the great amount of extra variance brought in the
data by the extra features is not justified with increase in performance. Despite this
variance, most of the useful information is still represented in the remaining dimen-
sions of the data (the 2D plots are projections of the higher dimensional data on its
two main components).

(a)

(b) 2,5,9

(c) 0,1,6,8

Figure 4.3: The error-rate using histograms only, extra features only, and the combi-
nation (Fig. 4.3a). The object types with lowest and highest error-rates, using only
histograms or the combination, are shown in Fig. 4.3b and 4.3c respectively.

The RoCKIn@Work objects are also divided into categories and it’s also relevant to
look at the classification results using only the object-categories as labels. The error
rates of assigning of the right category, using all features, is shown in the table below.

15



category I (6,7,8) II (0,1) III (2,3,9) IV (4,5) total
error-rate 0.11 0.14 0.10 0.08 0.11

Although a different dataset is used here than in the RoCKIn@Work competition,
the objects are the same and it’s interesting to compare the results with those of the
2014 competition6. The winning team (b-it-bots) had a 80% object category accu-
racy (89% here), and a 60% object type accuracy (78% here).

4.3 Classification, Experiments

With the classification algorithms described in 3.4 experiments were performed on
the dataset of 1029 images. Using 10-fold cross validation, the error-rates are shown
in Figure 4.4c.
The Naive Bayes classifier was outperformed by the other two. This might be caused
by the incorrect assumption of statistical independence. The best results were ac-
quired using the k-nearest neighbour algorithm and 1029 images, although the dif-
ference with the SVM error-rate is small. The data-points of the three most similar
objects using 350 and 1029 images are shown in Figures 4.4a and 4.4b respectively.
The good performance of the SVM classifier on the smaller dataset can be under-
stood by looking at the figures. In the smaller dataset, linearly separating a part of
the data-cloud of one object from all other points looks easier than in the larger
dataset, where the multiple object-types overlap even more.

6http://rockinrobotchallenge.eu/work2014_scores.pdf

16



(a) (b)

(c)

Figure 4.4: Fig. 4.4a and 4.4b: object types 0,1, and 6,7,8 (highest error-rates), with
with different dataset-sizes, Fig. 4.4c: error-rates per classifier.

5 Evaluation and Conclusion

Three aspects of the Bag of Key-points methods have been investigated in this the-
sis. In Section 4.1 the value of k was determined by choosing a minimum for the
error-rate. Although this is exactly what we need, performing multiple runs of clus-
tering and classification with the whole dataset of 130000 descriptors is very time-
consuming7. It would be more efficient to be able to predict the error-rate caused
by a k value using a less time-consuming process. It’s interesting to see that unlike
the clustering result, the classification result has an optimum for some k. Using a
clustering algorithm that determines k might be a solution.
In Section 4.2 the histograms of key-points combined with generic features of the
objects showed to have the best classification results, although the contribution of
the histograms was much bigger. As an extension of the methods of this study, a
combination of other sorts of key-point detectors and generic object features might
lead to even better results.
Choosing a classifier is not arbitrary, as shown in Section 4.3. Three classifiers were
examined in this study, but there are of course many more. Using distinct object-

730+ minutes on a 2.7 Quad-Core machine with 8GB RAM

17



types as labels seems to exclude linear classifiers, but seeing the linear ordering of
the data of some of the object-types in Figure 3.4a, linear classifiers might be worth
investigating after all.
To conclude this study, it can be said that the Bag of Key-points methods leads to
good results in the RoCKIn@Work Object Recognition challenge. An error-rate of
22% was reached with cross-validation of the 1-nearest neighbour classifier. Using
only the object-categories, an error-rate of 11% was reached. The experiments were
done using a dataset with only the objects in the images. The official datasets8 of the
RoCKIn@Work have not been tried out and it’s a logical next step to experiment with
this data. It can be concluded however, from looking at the results of this study and
the application of its methods on the @Work competition, that using a big dataset
enhances the result. Data is not scarce in most industrial environments, and making
grateful use of this fact can improve the performance.

8http://thewiki.rockinrobotchallenge.eu/index.php?title=Datasets

18



References

[1] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Speeded-up
robust features (surf). Computer vision and image understanding, 110(3):346–
359, 2008.

[2] Gary Bradski and Adrian Kaehler. Learning OpenCV: Computer vision with the
OpenCV library. " O’Reilly Media, Inc.", 2008.

[3] Bastian Broecker, Daniel Claes, Joscha Fossel, and Karl Tuyls. Winning the
robocup@ work 2014 competition: The smartlab approach. In RoboCup 2014:
Robot World Cup XVIII, pages 142–154. Springer, 2015.

[4] John Canny. A computational approach to edge detection. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, (6):679–698, 1986.

[5] Gabriella Csurka, Christopher Dance, Lixin Fan, Jutta Willamowski, and Cédric
Bray. Visual categorization with bags of keypoints. In Workshop on statistical
learning in computer vision, ECCV, volume 1, pages 1–2. Prague, 2004.

[6] Richard O Duda and Peter E Hart. Use of the hough transformation to detect
lines and curves in pictures. Communications of the ACM, 15(1):11–15, 1972.

[7] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reute-
mann, and Ian H Witten. The weka data mining software: an update. ACM
SIGKDD explorations newsletter, 11(1):10–18, 2009.

[8] David D Lewis. Naive (bayes) at forty: The independence assumption in infor-
mation retrieval. In Machine learning: ECML-98, pages 4–15. Springer, 1998.

[9] David G Lowe. Distinctive image features from scale-invariant keypoints. In-
ternational journal of computer vision, 60(2):91–110, 2004.

[10] Leif E Peterson. K-nearest neighbor. Scholarpedia, 4(2):1883, 2009.

[11] Jonathon Shlens. A tutorial on principal component analysis. arXiv preprint
arXiv:1404.1100, 2014.

[12] Robert Tibshirani, Guenther Walther, and Trevor Hastie. Estimating the num-
ber of clusters in a data set via the gap statistic. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 63(2):411–423, 2001.

19



Appendices

A Confusion Matrices

Table A.1: Number of images per object type.

Object type 0 1 2 3 4 5 6 7 8 9 total

Nr. of Images 122 101 101 105 92 102 95 107 86 118 1029

Table A.2: Key-point histograms only, using k-nearest neighbours

Classified as → 0 1 2 3 4 5 6 7 8 9 error

0 79 21 1 6 1 7 4 0 3 0 0.35
1 20 67 1 1 3 3 0 0 1 5 0.34
2 0 0 86 2 7 3 0 0 3 0 0.15
3 6 4 4 78 4 8 0 0 1 0 0.26
4 1 2 3 1 72 10 0 0 1 0 0.20
5 1 1 4 2 10 82 0 0 0 2 0.16
6 3 2 1 2 2 0 62 10 13 0 0.35
7 0 1 1 4 3 2 6 82 8 0 0.23
8 3 2 3 4 3 1 13 9 47 1 0.45
9 0 0 0 0 0 0 0 0 0 118 0

Table A.3: Four extra features only, using k-nearest neighbours

Classified as → 0 1 2 3 4 5 6 7 8 9 error

0 77 16 9 2 1 3 4 6 1 3 0.37
1 33 35 3 0 1 6 9 8 3 3 0.65
2 14 7 42 11 17 6 0 0 3 1 0.58
3 4 1 5 78 9 5 2 0 1 0 0.26
4 0 2 16 6 56 9 0 0 1 0 0.38
5 7 4 14 4 9 63 0 0 0 1 0.38
6 19 25 0 2 0 0 18 21 6 4 0.81
7 22 13 0 0 0 1 22 45 4 0 0.58
8 23 17 5 2 1 2 14 7 9 6 0.90
9 7 9 1 1 0 8 2 0 2 88 0.25

20



Table A.4: Histograms and extra features, using k-nearest neighbours

Classified as → 0 1 2 3 4 5 6 7 8 9 error

0 83 19 1 3 1 7 3 1 4 0 0.32
1 15 75 1 1 1 2 0 0 2 4 0.26
2 0 0 85 1 9 4 0 1 0 1 0.16
3 5 1 4 82 6 7 0 0 0 0 0.22
4 1 2 4 0 74 9 0 0 0 0 0.18
5 1 1 2 2 8 87 0 0 0 1 0.15
6 3 1 2 1 1 1 68 7 11 0 0.28
7 0 0 1 1 4 2 6 86 7 0 0.20
8 5 3 3 2 1 1 11 12 47 1 0.45
9 0 0 0 0 0 0 0 0 0 118 0

Table A.5: Histograms and extra features, using Naive Bayes

Classified as → 0 1 2 3 4 5 6 7 8 9 error

0 80 31 0 0 1 3 1 2 4 0 0.34
1 28 61 3 0 1 5 1 1 0 1 0.40
2 3 0 75 1 5 11 0 0 1 5 0.26
3 12 0 1 54 8 18 1 1 9 1 0.49
4 2 2 3 0 54 24 3 0 1 1 0.40
5 3 0 6 0 7 81 0 0 2 3 0.21
6 2 5 0 1 0 2 50 16 19 0 0.47
7 0 4 0 0 0 0 19 65 19 0 0.39
8 4 3 2 0 3 1 18 16 35 4 0.59
9 1 0 0 0 0 0 0 0 1 116 0.02

Table A.6: Histograms and extra features, using Support Vector Machines

Classified as → 0 1 2 3 4 5 6 7 8 9 error

0 95 16 0 4 2 3 1 0 1 0 0.22
1 36 54 0 2 1 5 1 0 0 2 0.47
2 0 0 88 1 4 7 0 0 0 1 0.13
3 4 1 1 89 3 6 0 1 0 0 0.21
4 2 0 0 0 71 15 0 2 0 0 0.21
5 1 1 2 0 6 92 0 0 0 0 0.10
6 0 3 0 0 1 0 63 15 13 0 0.34
7 1 1 0 2 2 0 14 74 13 0 0.31
8 2 0 2 2 6 1 14 17 41 1 0.52
9 0 0 0 0 0 0 0 0 0 118 0

21


