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Abstract

In contrast to human soccer players, autonomous robot soccer players
often move according to a limited set of predefined behavioural rules. This
knowledge can be used advantageously: If the opponent’s behavioural rules
are learned, it will be possible to detect these during a match and react
accordingly. A method for autonomous activity mining in videos, called
Probabilistic Latent Sequential Motifs, is used to find optical flow patterns
in video’s of a robot soccer player during a penalty shootout. The found pat-
terns are used by a humanoid goalkeeper to predict and anticipate opponent
behaviour. Effectiveness of the method is tested by comparing the perfor-
mance of this goalkeeper, i.e., the ratio of number of goals to number of
goals prevented, to that of an existing goalkeeper that only reacts when the
ball approaches at sufficient speed. Results show that the found goalkeeper
performs fairly well, but that it loses to the existing goalkeeper in terms of
performance. Methods that may improve performance are discussed.
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1 Introduction

RoboCup is an international research and education initiative, attempting
to foster Artificial Intelligence and robotics research by providing a standard
problem where a wide range of technologies can be integrated and examined.
One of these problems is teaching a robot to play a soccer match. During
these matches, the goalkeeping robot will often only react if a ball approaches
at sufficient speed. Other features in the scene, such as presence of opponent
players or proximity of the ball, are often not taken into account. The reason
for this is the following: If a logical representation is used to describe the
preconditions for a reaction, a new set of logical rules is necessary when a
new opponent strategy is encountered.

It would be more efficient if instead, the goalkeeper finds the precondi-
tions for these logical rules autonomously and in an unsupervised manner.
A method for unsupervised activity mining in videos called Probabilstic
Latent Sequential Motifs (PLSM) is introduced by Varadarajan et al [13],
which makes use of topic models to find temporal activity patterns in image
data. These patterns represent an activity in a video. Their relation to
video data can be compared to the relation of combinations of syllabi to a
word. Using this method, a model describing recurring patterns in a dataset
can be found by learning offline, i.e., before a match. The detection of these
patterns during a match will enable the goalkeeper to anticipate the oppo-
nent’s behaviour. The effectiveness of the method is tested by comparing
performance in a penalty shootout between a regular rule-based goalkeeper,
that only reacts when a ball approaches, and the goalkeeper that has found
rules using PLSM.

2 Related work

Activity mining is a field of research that is often associated with surveillance
scenarios [14], e.g., to detect violent behaviour in a crowd or to analyze busy
traffic scenes. In activity mining, the use of topic models [9] is an approach
that has proven to be quite successful [4][7]. This model is a statistical type
that enables discovery of so-called ‘topics’, which are abstract occurrences
in a document. Often, topic model-based approaches first convert a video
to documents containing bags-of-words, where each word is a representation
for quantized pixel motion at certain locations in the image [4][7][13][15].
Note that the ‘words’, the visual features, are only a tag corresponding to
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the correct optical flow vector, and do not contain the vector itself. One
document is thus the result of analysis of optical flow data in one video. An
activity pattern in a video can be represented as a set of relative movement
vectors along with their respective starting positions and starting times.
These activity patterns are the topics that are to be learned. To remain
faithful to the terminology used by Varadarajan et al, these topics will be
referred to as ‘motifs’ in this thesis.

When a regular bag-of-words approach is used, the temporal information
is lost in the process [15]. To take this information into account as well,
methods have been proposed where both the motifs and their starting times
are jointly learned by complementing the visual features with their respective
timestamps [13] [4]. A method introduced by Emonet et al [4] both the total
number of motifs and the motifs themselves are learned in an unsupervised
manner using the Hierarchical Dirichlet Process (HDP) [12], which allows for
an infinite amount of motifs on multiple levels. In the problem addressed
in this thesis, two levels can be used: On the first, the total number of
motifs that is shared by all documents; on the second, the individual motifs
and their starting times in each document. This in contrast to PLSM,
which requires some a priori knowledge (e.g., the number of motifs) to be
set beforehand. Although the HDP-based approach may be more complete
than PLSM, it would seem that the latter is sufficient to solve the problem
addressed in this thesis: The number of strategies for robot soccer may be
theoretically infinite, in practice, it is always limited to a certain number of
re-occurring actions. For example: Shooting at the goal can be described as
a motion in an infinite number of directions and can occur on every position
on the field. However, it only occurs when at least one robot is moving and
there are only as many possible shooting directions as there are quantization
categories. If the number of possible activities is learned in an automatic
manner, it is likely that this number will be too high to be useful. Instead,
we will use a small number of motifs and let PLSM determine what they
are.

PLSM has been used in pedestrian and traffic analysis [13], in scenarios
in which the camera is stationary, to find recurring activities in video data.
In this thesis, PLSM will be applied in a new area. Instead of a camera
placed above the scene, all video data will come from the goalkeeper’s point
of view.
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3 Approach overview

Several steps are performed to solve the addressed problem. The first step
is the creation of temporal documents, derived from video data. From these
documents, a model that describes the motifs can be derived using PLSM
[13]. Next, a reaction that enables the goalkeeper to anticipate the oppo-
nent’s activity has to be created. The final step is the prediction of an
opponent robot’s activity pattern, based on detection of the first frames of
a learned motif.

3.1 Probabilistic Latent Sequential Motifs

Figure 1: Graphical representa-
tion of a temporal document. Im-
age courtesy of Emonet et al [4].

To find recurring activity patterns, a
temporal document d, that represents
the image data as a bag-of-words, has
to be derived. This document is of size
V × T , where V is the vocabulary size
and T is the number of timesteps the
document covers. At each timestep, the
document is filled based on the presence
of visual words w (See figure 1). PLSM
is applied on this document to find mo-
tifs z, and their starting times ts.

The main assumption of the PLSM
model is that given a motif z, the occurrence of words within the document
is independent of the time of occurrence. Note that there is a deterministic
relation between the time variables ta = ts + tr, enabling the use of variable
tr to denote the relative time since the start of a motif: In this model,
occurrence of a word depends only on the motif and the time it occurs in
the topic, not on the absolute time of occurrence ta. The joint distribution
of the model is given by:

p(w, ta, d, z, ts) = p(d) p(z|d) p(ts|z, d) p(w|z) p(ta − ts|w, z)

The Expectation-Maximization algorithm can be used to estimate the set of
model parameters Θ, by maximizing the log-likelihood of the model for the
observed data. It is an iterative algorithm, that is initialized using random
values as parameters, and is stopped when the increase in log-likelihood is
too small. The log-likelihood is given by:

E[L] =
D∑

d=0

Nw∑
w=0

Td∑
ta=0

Nw∑
z=0

Tds∑
ts=0

n(w, ta, d) p(z, ts|w, ta, d) log p(w, ta, d, z, ts)
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The posterior distribution of variables ts and z is calculated in the E-step
of the algorithm, given w, the absolute time ta and the document d:

p(z, ts|w, ta, d) =
p(w, ta, d, z, ts)

p(w, ta, d)
with p(w, ta, d) =

Nw∑
z=1

Tds∑
ts=1

p(w, ta, d, z, ts)

Next, in the M-step, Θ is updated accordingly:

p(z|d) ∝
Tds∑
ts=1

Tz−1∑
tr=0

Nw∑
w=1

n(w, ts + tr, d) p(z, ts|w, ts + tr, d) (1)

p(ts|z, d) ∝
Nw∑
w=1

Tz−1∑
tr=0

n(w, ts + tr, d) p(z, ts|w, ts + tr, d) (2)

pw(w|z) ∝
D∑

d=1

Ts∑
ts=1

Tz−1∑
tr=0

n(w, ts + tr, d) p(z, ts|w, ts + tr, d) (3)

ptr(tr|w, z) ∝
D∑

d=1

Tds∑
ts=0

n(w, ts + tr, d) p(z, ts|w, ts + tr, d) (4)

The motifs and their starting times can be found in the optimized distribu-
tions p(z|d) and p(ts|z, d).

3.2 From images to documents

The content of temporal documents, that will serve as input for PLSM,
depends on how the visual words w that form the vocabulary are defined.
These words will be based on optical flow in the image, so first, optical flow
is computed in areas of interest, namely the areas containing the ball and
opponent robot (See figure 2). If we set the robot so its camera is stationary,
the majority of the noise due to camera motion will be eliminated. The
resulting optical flow vectors are quantized into four general directions (up,
down, left and right) or marked as static if the norm is not sufficiently
large. Based on their respective starting locations in the image, they are
also quantized into non-overlapping cells of 10 × 10 pixels. It is possible to
use these categorized vectors and their timestamp as low-level features in
the temporal document. However, the resulting documents are quite large,
as the vocabulary would consist of 64× 48× 5 = 15360 words.
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Figure 2: Left: Found features in frame f indicated by thin yellow circles.
Only found in areas of interest, which are determined by location of the ball
(thick yellow circle) and waistband (thick purple circle). Right: Optical flow
vectors between frame f and frame f + 1, indicated by red arrows.

Instead, Probabilistic Latent Semantic Analysis (PLSA) [5], a dimen-
sionality reduction method that makes use of latent classes, will be used to

Figure 3: The generative
model of PLSA.

reduce the size of this vocabulary. This method
was used by Varadarajan et al as well, in order
to reduce computation time [13]. Its generative
model, describing how each variable in the dis-
tribution can be sampled, is given by figure 3.
PLSA models the probability of co-occurrence
of words and documents as a mixture P (ω, d ),
creating the assumption that the occurrence of
a word ω is independent of the video document
d it belongs to, given a latent class c:

P (ω, d ) =
∑
c

P (c)P (d |c)P (ω|c)

The documents d are defined as word count matrices of size f × V ex-
tracted from overlapping clips of f frames. The parameters of the model
P (ω|z), P (c) and P (d |c) are estimated using the maximum likelihood prin-
ciple. Given a set of training documents D, the log-likelihood of the param-
eters Θ is given by:

L(Θ|D) =
∑
d∈D

∑
ω

n(d , ω) log(P (ω|d ))
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Similar to the PLSM model, the parameters are optimized using the EM
algorithm [6], which allows to learn distributions P (ω|c) for every latent
class. The found distributions are then used to define words w for PLSM,
meaning that w = c and Nw = Nc. By specifying the desired number of
latent classes Nc beforehand, we are able to reduce the size of the vocabulary
to any given number. To keep the runtime low, Nc = 25 was chosen. The
presence of each word w at an absolute time ta in a document d is then
defined as the normalized correlation:

n(d, ta, w) =
1∑

ω∈Wc
n(d, ω)

∑
ω

n(d, ω)p(ω|c)

In this equation, Wc indicates the set of all words in the distribution
P (ω|c) with a non-zero probability. This ensures us that the found presence
is independent of activities elsewhere in the scene.

A resulting temporal document, that is to be used by PLSM, is of size
Nw × T , where Nw is the vocabulary size and T the range of absolute times
(see figure 1). The documents are used as input for the PLSM method.
As stated before, each word w in the vocabulary is a representation of a
temporal pattern from the distribution P (ω|c), as found by PLSA.

3.3 Prediction task: anticipation

The final step is detection of activities, and reacting if one has been detected.
The optical flow is calculated in areas containing the ball and the waistband
of the opponent robot at one frame per second. The resulting vectors are
quantized and converted to the bag-of-words representation. The found
PLSA model is used to calculate presence for every latent class c, resulting
in a document of exactly one timestep. The probability of dnew being a part
of a motif is calculated as follows, with 0 ≤ α ≤ 1:

p(z, tn|dnew) = (1− α) ∗ p(z, tn−1|dnew) + α ∗
Nw∑
w

n(w, dnew) p(z|w, dnew)

In this equation, the probability that a new document of one timestep is
part of a motif z depends on previous probabilities p(z, t1...n−1|dnew). If, for
several timesteps, this probability is higher than a predefined threshold, we
assume that the rest of the activity will be similar to the rest of the motif, and
the goalkeeper will react accordingly. Note that the goalkeeper’s reactions
are intended to anticipate the end of their respective corresponding motifs:
How the reaction is executed is independent of which of the timesteps in the
motif is perceived.
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Robot soccer behaviour is often limited to several different strategies.
Therefore, it is highly likely that mirroring will enable us to reduce the
number of motifs even further: The reaction to an activity perceived on the
right side of the goalkeeper can be mirrored, this will result in a reaction that
can be used if the same activity, but mirrored, is perceived on the left side
of the goalkeeper. However, in practice, mirroring the patterns results in
more motifs, which increases computation time (also see 5.2). This renders
it useless in real-time applications for the Nao, which only has a single
ATOM processor. It will be possible to apply this method for humanoids
with greater computing power.

4 Experiments and results

The used robot is the Aldebaran Nao 4.0 [11], which is a humanoid robot
with an Intel ATOM 1,6ghz CPU. It has two cameras, capable of taking
snapshots of 640×480 pixels. The dataset used for training consists of 2370
images, taken at one frame per second, from one of these cameras. The set
of images is split into 43 groups, each of which is between 20 and 128 frames
long and describes a single recording of a penalty shootout by one opponent
robot, as seen from the goalkeeper’s point of view. PLSA was applied on
the optical flow found in these images as described in subsection 3.2, with
Nc = 25, resulting in 43 temporal documents. PLSM was applied on these
documents to find recurring motifs. For comparison, activity patterns were
found in the data for various numbers of motifs Nz and its maximum dura-
tion Tz, as activities in the image sequence may vary in length (see figure
4).

A fitting reaction was created manually for each motif after analyzing
the pattern of optical flow that it describes. The reaction consists of at least
one action: Either walking, diving or a combination of the two. The walking
direction and distance and the diving direction (left or right) were adjusted
as well. As the reactions themselves are not found automatically and are
not optimized, there is no guarantee that these are the best anticipating
reactions to a specific motif.

The optical flow vectors that correspond to a motif were found by taking
distribution p(ω|z) and, for each motif, calculating the presence of a word
in the scene at a timestep t, given the motif, as:

n(ω, t, z) = p(ω|z)n(ω, t)
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(a) Found temporal motifs for number of motifs Nz = 5 and maximum number of
timesteps Tz = 10.

(b) Found temporal motifs for number of motifs Nz = 10 and maximum number of
timesteps Tz = 20.

Figure 4: Graphical representations of two of the found sets of motifs, for
different numbers of motifs Nz and maximum duration Tz. Motifs are of
size Tz ×Nc, with the number of PLSA patterns Nc = 25.

During the anticipation task, p(z) is calculated for real scenes once every
second. If, for any motif, this probability exceeds a predefined threshold for
five successive seconds, the goalkeeper assumes this motif is perceived and
executes the corresponding reaction regardless of what happens after the
start of the reaction. The effectiveness of these reactions was compared to
performance of a ‘regular’ goalkeeper, that only reacts if the ball approaches
at sufficient speed by diving, through a total of 15 penalty shootouts. These
shootouts were conducted by a Nao with a basic behaviour model: Find the
ball, walk towards it, locate the goal, shoot. Figure 5 depicts the starting
positions of both robots and the ball in a penalty shootout.
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Figure 5: A typical start of a penalty shootout. The opposing player (left)
starts at a distance of 3 meters to the goal, walks towards the ball, then
kicks it.

We say that a goalkeeper interferes if the ball would have gone into the
goal, were it not for the goalkeeper. A miss is when the ball does not reach
the goal at all. A hit is, obviously, when the ball passes the keeper, in
between the poles of the goal. If the keeper does not react but prevents the
hit by sitting still, this is counted as a hit. Interestingly, the goalkeepers
that were the result of PLSM did not react in case of a miss, whereas the
regular goalkeeper did, although this may be due to chance. There is no
time limit for a single shootout: It ends when the player scores, the ball is
kicked out of the field (behind the goal line), or the goalkeeper has made a
save. Details on specifications the field and goals can be found in [3]. The
results can be seen in the following table:

Nz / Tz Hit Miss Goalkeeper
interferes

5 / 10 8 3 4

5 / 20 9 4 2

10 / 10 9 3 3

10 / 20 11 4 0
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From these results, we can conclude that the most effective goalkeeper
that was found using PLSM uses a small number of motifs. A likely cause
for this is that PLSM is forced to map a large number of found patterns to
a predefined number of motifs: The smaller the number of motifs, the more
general they will be. Results also indicate that effectiveness is increased if
Tz is low. This seems counterintuitive, as the longer motif contains more
timesteps that could match the new document. However, the activities that
are represented by motifs of Tz = 10 are forced to represent short and
concise patterns that match typical recurring actions, whereas the motifs of
Tz = 20 may represent an entire penalty shootout. An indication for this is
that, when shown a real-life scene, p(z) is large for almost every motif, for
Tz = 20, whereas there is more contrast for Tz = 20 (see figure 7).

The goalkeepers that were found using PLSM were compared it to the
regular goalkeeper model. This model bases its actions on the speed of the
ball. If this speed exceeds a certain threshold, the direction is calculated
and the keeper dives left or right. The direction is based on the expected
location where the ball will cross the goal line. Results are shown below:

Hit Miss Goalkeeper
interferes

Regular
goalkeeper

2 4 9

Clearly, results of the goalkeeper found by PLSM are still poor when
compared to those of the regular goalkeeper. It is likely that this is due to
the noise and redundant information that each motif contains, as figure 6
indicates. The noise may render a motif too general to be useful, as features
that do not contribute to the action represented by the motif are included
in it as well. Such a motif generally has a high p(z), even if the activity it
represents is not perceived. The opposite can also be true: Figure 7 shows us
that the fourth motif is, compared to the other motifs, a motif with very low
probability of occurring, given the document dnew that describes the scene.
There are two possible causes: Either the motif is the result of a specific
activity that does not occur in the scene, or the motif is the result of noisy
optical flow and will therefore always have low probability. In the second
case, this motif will not be of any use, which would influence goalkeeper
performance.
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Figure 6: Three consecutive timesteps of a noisy motif z for Nz = 5, Tz = 10.
Circles indicate cells where optical flow is found, with the thickness of the
circle corresponding to presence p(w|z). Obviously, this motif is too general
to be of use.

Figure 7: Probability p(z) for Nz = 5, for two identical static scenes (left)
and two similar non-static scenes (right), for 14 timesteps. Top: Results for
Tz = 10. Bottom: Results for Tz = 20.
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5 Discussion and future work

In this thesis, PLSM is applied in an environment in which an activity can
occur at every position on the field, with different orientations. This in
contrast to, for example, traffic analysis scenarios, in which cars are always
on the road and can move in a limited number of directions. It seems that
for this problem, the location cue can be discarded: Optical flow vectors on
which the activity patterns are based can be translated and scaled to find
the pattern that describes the activity when it is perceived at a different
location. If this technique was applied, an action can be represented by
optical flow alone. Whether this will improve results, and several other
factors that are likely to influence results, are discussed in this section.

5.1 Location quantization and scaling

As mentioned in 3.2, the possibility exists that the same activity is per-
ceived at different locations. As a result, a set of perceived patterns, in
reality consisting of only one activity but seen at different locations, will not
necessarily be mapped to the same motif. One reason for this phenomenon
is difference in distance: An opponent robot that is close to the goalkeeper
appears larger in the image than when it is far away, and will thus occupy
a larger part of the grid. Possible solutions for this problem involve use of
a cell grid that uses a logarithmic scale, or dividing the image into larger
cells, both of which reduce the number of possible features. However, each
activity pattern represents a possible activity of an opponent robot, and
these activities affect the game differently if they occur on unusual positions
on the field. Therefore, it is impossible to group patterns that are a result of
optical flow found on an unusual position, with the already learned motifs,
even if they describe the same action by the robot player.

For example: When a player shoots the ball to the left of the goalkeeper
and is close, the goalkeeper may want to move left as well to defend the
goal, while the same action, when perceived at a greater distance, may not
pose a threat at all and not require a reaction. A second reason is that the
number of features may be reduced, but it is hard to tell whether we can
afford to lose these features: This method may cause PLSM to find motifs
that are too general to be used.
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5.2 Mirroring

If we assume that a perceived pattern is the result of an action in arbitrary
reaction, it should be possible to reduce the number of motifs by mapping
patterns that are mirrored versions of each other to a single motif. The
disadvantage of this approach is that it increases computation time for the
prediction, as each motif that is mirrored requires calculation of p(z). Even
if the mirrored versions are mapped to the same motif, it will be necessary
to check which of the two versions is perceived before a fitting reaction can
be given. Additionally, there may be exceptions to the rule, or the mirrored
motif may be too similar to a different motif, causing the goalkeeper to react
wrongly.

5.3 Motion

In this thesis, the difficulty of the problem is greatly reduced by removing
camera motion. The calculation of optical flow is quite different for a non-
stationary camera, even if the absolute camera motion is known. However,
the Nao does not stand perfectly still due to the servos not being able to keep
a pose exactly the same. As a result, there is always some noise present in
calculation of optical flow in a static scene. This slight movement also makes
it hard to use background subtraction [8], a method which may improve
results due to the removal of objects that are not of interest. If the Nao is
be able stand perfectly still during motif detection, it will still be hard to
use background subtraction: Camera calibration is needed after the robot
has moved (e.g., walking towards an opponent, diving to stop the ball) and
this will cost time. Additionally, the Nao’s camera moves inside the head
after an impact or sudden movement, making any method that assumes that
the camera is stationary very susceptible to noise. It is imperative that the
goalkeeper reacts as fast as possible, and therefore, background subtraction
was not applied.

5.4 Bias due to difference in moves

It can be argued that the experiment is biased: There is no guarantee that
the set of possible moves of the goalkeeper found using PLSM is ‘better’ than
that of the existing goalkeeper model. It is also impossible to say if these
are put to better use in either of the models, as the reactions for both goal-
keepers were created manually. However, the goal of the conducted research
was to surpass the existing goalkeeper model: There is no uncertainty to
whether the method is effective or not, although results indicate that better
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behavioural rules for the goalkeepers found by PLSM will improve effective-
ness.

5.5 Future work

The RoboCup consists of several leagues, each league having its own rules
and fields of research. The league in which the Nao is used is the Stan-
dard Platform League, a soccer competition for humanoid robots. Although
optimization of soccer behaviour is one field of research in the league, de-
tection of opponent’s behavioural patterns has not been attempted before.
The main reason for this is that participating teams are constantly adjusting
behaviour; it would be futile to analyze the opponent to create opponent-
specific strategies manually.

Automatic activity mining has been used in the Small Size League [2],
for example in [1], where Bayesian approaches are used to find patterns
in opponent behaviour, and [10], in which a method is described that finds
patterns in combinations of actions (e.g., passing, shooting, dribbling) rather
than in general movement. Similar to the goal of the research in this thesis,
the patterns are used to predict the opponent’s behaviour, and effective
strategies are created to exploit the opponent’s weak points. An important
difference between this league and the Standard Platform League is that
data is retrieved from two stationary camera’s that are placed above the
playing surface, whereas in the humanoid leagues, the camera feed of the
robots is the only available source of visual information. It is likely that
results for PLSM will improve when, instead of point-of-view image data
from the goalkeeper, an external camera that gives a top is used. However,
as the Standard Platform League rules do not allow use of sensor data other
than that of the robots [3], any method that uses external sensors cannot
be applied in an official match.

The use of similar automated activity mining methods in official com-
petitions may prove to be advantageous: Detection and prediction of an
opponent’s movement will make complex actions such as defending the goal
by blocking, or passing the ball without it being intercepted, a lot more sim-
ple. It is likely that eventually, the detection of an opponent’s behavioural
patterns will become a necessary part of any robot soccer team, as adapting
to the opponent’s strategy is a basic element of soccer.
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6 Conclusion

This thesis describes an implementation for automatic unsupervised activity
mining in video’s for a humanoid soccer robot, and its effectiveness when
used for the prediction and anticipation of opponent actions. A topic model-
based method called Probabilistic Latent Sequential Motifs [13] is used to
find recurring patterns of optical flow, referred to as motifs, in a dataset of
short image sequences. The number of motifs and the maximum length of
such a motif is specified beforehand. The found patterns are then used by
the goalkeeper to predict an opponent’s action and react accordingly. The
effectiveness of the used method was tested by comparing performance (i.e.,
the ratio of the number of prevented goals to the number of scored goals)
of the resulting goalkeeper to that of a simpler goalkeeper model, that only
reacts when the ball is approaching, through a penalty shootout. Results
indicate that setting the desired number of motifs relatively low contributes
to performance, but that a goalkeeper with a predefined set of behavioural
rules performs better overall. Nevertheless, the thesis shows that automatic
activity mining is a promising field of research in robot soccer.
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