
Towards the Humanoid Robot Butler

Caitlin Lagrand
Universiteit van Amsterdam

Email: caitlin.lagrand@student.uva.nl

Michiel van der Meer
Universiteit van Amsterdam

Email: michiel.vandermeer@student.uva.nl

Abstract—This project focuses on detecting a tomato in a
kitchen environment and grabbing it from the table. The ROS
framework is used for the implementation of this project.
Three detection algorithms are discussed to best detect the
tomato. Also a localization algorithm is defined to determine
the location of the tomato. The ROS library MoveIt is used
for its inverse kinematics to grab the tomato from the table.

1. Introduction

The use of robots has been increasing over the last years.
Not only in the industry, but also in social sectors, such
as health care or education. This project focuses on finding
ways to apply the help of robots in a domestic environment.
It is inspired by the HUMABOT Challenge of 2014 [1]. In
this challenge, the kitchen is used as the environment where
a robot has to perform the following tasks:

• The safety task: one of the burners in the kitchen is
lit and the robot has to turn it off.

• The shopping list: identify missing objects on the
shelves to make a shopping list.

• The roasted tomato: identify a tomato and put it into
a pan.

This project focuses on “The roasted tomato” task.
Section 2 will discuss previous research. In section 3, the
used methods will be explained. Section 4 will demonstrate
the different simulations that were used. In section 5 the
results will be shown. Section 6 will evaluate the project
and discuss ideas for future research. Section 7 will sum up
the project and conclude.

2. Previous research

This section discusses previous research. Two previously
done researches were used: the Cognitive Image Processing
(CIP) and some research from previous competitors of the
HUMABOT Challenge.

2.1. Cognitive Image Processing (CIP)

Ras [2] used a series of filters and detectors to maximize
the accuracy when finding spherical objects. Since the de-
tection is color invariant, the program would be able to find

objects more dynamically. In short, it tries to find edges in
a blurred image from the saturation channel of the original
image. After detecting these edges, the user ends up with
a binary image, with the outlines of objects highlighted if
the recognition worked correctly. These binary images are
then searched for any round shapes using blob detectors.
Section 3.1.3 explains how this works. Eventually, a heavily
modified version of the CIP-module was considered as one
of the three main detectors.

2.2. Previous competitors

Since the HUMABOT Challenge was held in 2014, the
teams have no incentive to keep their code private any
longer. One of the teams, NAO-UPC, made their implemen-
tation publicly available on Github 1. Even though the team
did not complete the challenge, the team’s code provided
some insights into OpenCV. Their low scores were most
likely caused by a very conservative approach to localization
and grasping objects. The localization required markers,
which indicate the different pieces of furniture in the envi-
ronment. This means that if the markers were either missing
or misplaced, the robot would stop functioning properly.

3. Method

The robot used in this research is the NAO from Alde-
baran2. The NAO is a 50 cm tall humanoid robot. The envi-
ronment is the standard play kitchen from IKEA including
all the tools and vegetables (see Figure 1).

The ROS framework [3] was used to give access to the
many tools and libraries it has and, most importantly, to the
MoveIt library [4]. MoveIt introduces a number of tools
that aim to create developer-friendly software for mobile
manipulation. This library, among other things, incorporates
kinematics, motion planning and execution. To process im-
ages, the OpenCV library [5] is used. All of these libraries
are available in both Python and C++. The code presented
with this paper is written in Python. All of our code is
available at our Github repository 3.

1. https://github.com/gerardcanal/NAO-UPC
2. https://www.aldebaran.com/en/cool-robots/nao
3. https://github.com/Caiit/tomato tracker py

https://github.com/gerardcanal/NAO-UPC
https://www.aldebaran.com/en/cool-robots/nao
https://github.com/Caiit/tomato_tracker_py


Figure 1. The kitchen environment

The report is divided into three parts: detecting, local-
izing and grabbing the tomato. This section explains the
methods used for the different parts and the integration
of the three parts. In section 3.1, different approaches to
detect the tomato will be explained. Section 3.2 focuses
on localizing the tomato and section 3.3 will explain the
MoveIt implementation to grab the tomato. Section 3.4 will
describe the implementation in ROS.

3.1. Detecting

To detect the tomato, three different approaches were
used. Two approaches are based on different characteristics
of the tomato. The last approach is based on color invariant
object recognition.

3.1.1. Color based and finding contours. The first ap-
proach focuses on the color of the tomato. Because the
tomato is red, the image can be adjusted to filter out
everything that is not red (see Figure 2a). This is done
by transforming the image into the HSV color space and
using the threshold (0, 140, 60) − (3, 250, 250) to get the
binary image of red. Keep in mind that this range depends
on lighting as well as the camera itself. After removing the
noise by using OpenCVs erode and dilate function, contours
were found with findContours() from OpenCV. From
those contours, the minimal enclosing circles were found,
because a tomato is more or less a circle (see Figure 2b).
From these circles, the “pixel-coordinates” of the center of
the tomato and the radius were obtained. The tomato is
detected when the radius is bigger than 20 pixels to filter
out small red objects in the background. This limitation was
put in place, because the surroundings of the robot are not
filtered in any way. This means that its camera will pick up
anomalies which are not related to the task at hand.

3.1.2. Circle based and average color. The second ap-
proach is based on the fact that a tomato is almost round.
After transforming the image into the HSV color space
and detecting edges with the Canny Edge Detector, cir-
cles were detected in the image using HoughCircles (see

(a) Binary image of red pixels (b) Finding the tomato with
findingContous

Figure 2. Color based detection in combination with finding contours

(a) Detecting circles using
HoughCircles

(b) The best circle with red as
average color

Figure 3. Circle based detection in combination with average color

Figure 3a). The next step is to calculate the average color
of the found circles. If the average color is in the range
(20, 20, 70) − (55, 70, 200), the circle is considered as red
and thus as the tomato (see Figure 3b). The range for red
used in this method differs from the one used in the color
based approach. This is because after a circle is detected,
some small areas inside this circle might not be red, but for
instance part of the crown. Because the circle detector has
to find a perfect circle and the tomato is not, the color of
these areas is weighted into the average color. This makes
it not the same shade of red as the tomato, but a slighty
adjusted red.

3.1.3. Color invariant and blob detection. The last ap-
proach is color invariant. It is a simplified version of
CIP. It uses blob detection to detect blobs in the image.
In this process, the raw image is parsed to OpenCV’s
SimpleBlobDetector()4, which will then perform
blob detection on the image. These blobs are defined as
regions in the image that differ from surrounding regions.
The algorithm performs four steps:

1) Thresholding: Converts the image to binary images
(images containing only two distinct colors, i.e.
black and white) using parameterized thresholds.
The image is processed into these binary images,
each image containing colors that are inside the
thresholds as white, and the colors outside the
thresholds as black. This is repeated multiple times,
until the entire image is divided.

2) Grouping: For each binary image, the pixels of one
color are grouped together. This color is kept the

4. http://docs.opencv.org/2.4/modules/features2d/doc/common
interfaces of feature detectors.html

http://docs.opencv.org/2.4/modules/features2d/doc/common_interfaces_of_feature_detectors.html
http://docs.opencv.org/2.4/modules/features2d/doc/common_interfaces_of_feature_detectors.html


Figure 4. Detecting the tomato using the blobDetector

same across multiple binary images. The centers of
these blobs are calculated.

3) Merging: If blobs show up across multiple binary
images and their centers are close together, they are
considered the same blob and are merged together.

4) Center and Radius calculation: Per blob group the
center and radius are then returned to the caller,
which can span multiple binary images.

When these centers and radii are returned, it is possible to
put constraints on what the blob looks like. For the tomato
detector, a largely circular blob would be accepted and a
square blob would be rejected.

3.2. Localizing

To localize, a simplified method was used instead of
using reference worlds. Since it is known that the target
object is at a fixed height in the area, a simpler method
was both easier to implement and faster to work with. The
robots starts out receiving images from his top camera. As
long as there is no tomato detected, the robot will turn to
the right. This simplified approach might cause issues in a
more dynamic environment, where the table is further away
from the robot’s starting position (1+ meters). At that point,
even when the target object comes into vision, either the
resolution of the camera would make the object too small
to detect or the detector would not consider the generated
output as a valid target.

If it does manage to detect the tomato in an image, the
x,y-position and the radius of the tomato are found. Now
this position needs to be converted to real-world coordinates
with the robot as origin (see Figure 5). The z-coordinate is
fixed, because the height of the table is known: 0.35m. This
is 0.9m in the robot orientation.

3.2.1. Finding the x-coordinate in the robot orientation.
The x-coordinate of the robot is the distance between the
robot and the tomato. This is calculated by determining what
the radius of the tomato is in an image with the tomato lying
on a distance of 0.3 meter. The radius was 36 pixels. The
radius for a distance of 1 meter can be derived from those
values as shown in (1). This constant can now be used to
calculate the x-coordinate (2).

RADIUS TO METERS = 36/0.3 (1)

distanceX = RADIUS TO METERS/radius (2)

(a) The robots coordi-
nates system

(b) The different orientations shown in one image

Figure 5. The different orientations from the robot and the image

3.2.2. Finding the y-coordinate in the robot orientation.
When drawing a vertical line in the middle of the image,
the y-coordinate is the offset from this line to the center of
the tomato. There are two possibilities: if the tomato is left
of this line, the y-coordinate is positive; if it is on the right
side, the y-coordinate is negative.

To get this offset in pixels, the x-position of the image
is subtracted from this line (3).

Now those pixels must be converted to meters. This is
done using the real width of the tomato, which is 0.05m (4).

Multiplying this with the offset in pixels will result in
the y-coordinate of the robot (5).

offsetInP ixels = (IMG WIDTH/2)− x (3)

pixelToMeter = REAL WIDTH/(radius ∗ 2) (4)

offsetY = pixelToMeter ∗ offsetInP ixels (5)

3.3. Grabbing

Grabbing the tomato is done by MoveIt. As mentioned
before, this library contains a number of tools for mobile
manipulation. Only the left and right arm groups are used.
Given the center point of the tomato, MoveIt first moves
the arms of the robot 5cm to the left or to the right of the
tomato, but it does not grab it yet. This is done to correct
any possible localization errors. Next, both arms are moved
towards each other with 2cm to squeeze the tomato to grab



TomatoDetectorCamera MoveIt

Walker

Image Point

Pose2D

Figure 6. The implementation in ROS showing the used nodes and topics

it. Finally, the arms are lifted up a bit and moved towards
the chest to avoid hitting the table and to be more stable
while moving.

3.4. Implementation in ROS

The ROS-implementation consists of four nodes (see
Figure 6). The main node is the TomatoDetector node. This
node is a subscriber to the Image topic and a publisher to
the Point and Pose2D topics. The Camera and Walker nodes
start while running the nao bringup for the connection with
the NAO. Those nodes are used for the images and to walk.
The MoveIt node is used for inverse kinematics to grab the
tomato.
Our ROS implementation for the NAO depends on the
following packages:

• nao robot
• vision opencv
• naoqi bridge
• nao moveit config
• nao dcm robot
• nao virtual

3.4.1. The idea behind the implementation. The Camera
node publishes images taken by the NAO. The TomatoDe-
tector is subscribed to those images, so it receives them.
Firstly, it tries to find the tomato in the image. If it does not
find the tomato, it turns right and searches again. If it does
find the tomato, it checks whether it is close enough to grab
it. If so, it publishes a Point and the MoveIt node will start
grabbing the tomato. However when it is not close enough to
grab it directly, it publishes a Pose2D to move closer to the
tomato. This Pose2D has the obtained x-coordinate of the
tomato minus 0.3m as its x-coordinate, otherwise the robot
will hit the table. The y-coordinate is the y-coordinate of the
tomato. When moving closer to the tomato, it will search
for the tomato again to check if it is now close enough to
grab the tomato. This is done to compensate for possible
errors during localization.

4. Simulations

Most of the software this paper discusses can be used
within simulations. For the implementation described in this
paper, two different simulators were used primarily:

• Webots
• RVIZ

4.1. Webots

Webots is a commercial robot simulator promoted by the
HUMABOT organizers. They made the working environ-
ment available in a format that can be used in Webots, such
that developers that do not have access to physical robots can
still practice programming one. However, it became apparent
that in order to work with Webots, new controllers for the
robots would have to be written. After considering this, it
was decided that this would take too much time. Therefore,
Webots was dropped as a simulator.

4.2. RVIZ

RVIZ is not an actual simulator, but a 3D visualization
tool integrated with ROS. The program loads configurations
that define what kind of objects are in the world and gets the
data from ROS nodes. By simply listening to the broadcast
data it is then able to show in what way everything is
moving. By sending back data, for instance two objects
colliding, it sends information to the relevant nodes.

Due to the architecture of different nodes, controllers are
not necessary. Instead, it is possible to pretend that a real
robot is sending information to RVIZ. This way, while RVIZ
thinks a real robot is connected, it is just receiving broadcast
data from a robot that is running virtually. By design, it is
then also possible to actually plug in a physical robot, and
have the program execute without significant changes, aside
from recalibration.

One drawback from RVIZ was that the environment was
not readily available, and had to be converted manually. This
meant exporting all the objects to a format that was readable
by RVIZ with Blender. Blender is 3D graphics software that
supports multiple plugins, one of which is an automated
converter. 5 After converting, all object lost their original
position and had to be manually readjusted.

With RVIZ working and the robot connected, it is now
possible to simulate the robot grabbing a tomato at a spec-
ified point, since MoveIt is also controlled using the ROS
system (see Figure 4.2. The specification of this point would
be done by the detector program.

5. Results

The results described in this section are split into three
parts. This is because these three parts form a core to our
project. If one part was unreliable, the other would suffer

5. https://www.blender.org/

https://www.blender.org/


Figure 7. A screenshot of the RVIZ visualization

from it. Firstly, the tomato detectors are evaluated in section
5.1. Then, with the best performing detector, the localization
algorithm is evaluated in section 5.2 and section 5.3 will go
into detail about the results of grabbing the tomato. This is
not subjected to much theoretical testing, as it has to perform
well in a physical setting. This means that we did not give
the task a measure on how well it was performed.

5.1. Tomato detector evaluation

The three detection algorithms are tested on ten different
images: five images containing only one vegetable (tomato,
carrot, cucumber, garlic or lettuce), three images containing
all vegetables and two images containing all vegetables
without the tomato. Table 1 shows the results of the different
detection algorithms. “1” means that it detected the tomato
and “0” means that it did not detect anything. If something
else was detected, it will say what this was. As can be
seen in this table, the color based method always detects
the tomato and does not detect anything else. The circle
based approach does detect the tomato most of the time but
it detects something in the background as a tomato once. The
blobs based method detects the tomato most of the time, but
detects a lot of other vegetables as the tomato as well. The
color based method is the best method and is used for the
rest of project.

5.2. Tomato localization evaluation

In order to create a sensible evaluation, a chessboard was
used to make sure the tomato was put in the same place
every time. The squares on this chessboard are each of a
fixed length, making it very easy to create a discrete space
on the surface. Table 2 shows the difference between the

TABLE 1. RESULTS OF THE DIFFERENT DETECTING ALGORITHMS
1 MEANS DETECTED TOMATO, 0 MEANS DETECTED NOTHING

color based Circle based Blobs

tomato 1 1 1
carrot 0 0 0
cucumber 0 0 0
garlic 0 background 0
lettuce 0 0 lettuce
all1 1 1 1
all2 1 0 garlic
all3 1 1 1 & background
without1 0 0 garlic
without2 0 0 carrot

detected point and the actual point of the tomato. As can be
seen in this table it does not work perfectly. However when
looking at the differences, these are often not very large.
Since there are ways to compensate those errors, they are
disregarded.

5.3. Tomato grabber evaluation

Getting MoveIt to run on a physical NAO proved more
difficult than anticipated. Even with the ROS interface being
able to easily swap between a simulation and a real NAO, the
actuators that are controlled by MoveIt did not correspond
to any on the physical NAO. This resulted in being unable
to run a complete test including the tomato grabbing.

However, the simulation did show great results. The
animation was able to grab the tomato after specifying the
location the tomato detector thought it was at.

6. Discussion

After testing three different detectors, the one that per-
formed best was picked, which was the color based and
finding contours detector. Since both the detector and the
localization were interfaced with ROS, it was possible to
create a rosbag. This rosbag contains information about the
location the program thought the tomato was during tests.
It is possible to play back the stored temporal information
by reading the file6.

Even thought the localization seemed to work within a
certain error margin, future research might want to imple-
ment a more sophisticated process. The simple approach
worked because we optimized the algorithm to our environ-
ment. When looking at the future, a new method is suggested
where the x distance from the robot is not calculated using
the somewhat unreliable size, but for instance a position
derived from multiple viewpoints.

6. http://wiki.ros.org/rosbag



TABLE 2. RESULTS OF THE LOCALIZATION ALGORITHMS, IN METERS

Real x Real y Estimated x Estimated y Difference x Difference y

0.224 0 0.225 -0.00572916666667 0.001 -0.00572916666667
0.224 0.076 0.27 0.076875 0.046 0.000875
0.224 -0.076 0.27 -0.07625 0.046 0.00025
0.30 0 0.308571428571 0.0 0.008571429 0.0
0.30 0.076 0.308571428571 0.0617857142857 0.008571429 0.014214286
0.30 -0.076 0.385714285714 -0.0709077426365 0,085714286 0,005092257

0.376 0 0.372413793103 0.000862068965517 0.003586207 0.000862068965517
0.376 0.076 0.372413793103 0.0614359099289 0.003586207 0.01456409
0.376 -0.076 0.54 -0.07625 0.164 0.00025

7. Conclusion

Multiple object recognition methods were explored in
this project and three were implemented and tested. The
color invariant detector does not work nearly as good as the
color based detectors and thus was no longer considered.
Using the best of the two left over detectors, the location of
the tomato was estimated using pixel values. The location
was fed to an inverse kinematics solver, which would then
be able to grab the tomato and await further instructions.
We view this as the first steps to a dynamic robot cook.

Acknowledgments

The authors would like to thank Arnoud Vissser.

References

[1] P. J. S. Enric Cervera, Juan Carlos Garcia, “Toward the robot butler:
The humabot challenge,” Robotics & Automation Magazine, IEEE
(Volume:22, Issue: 2), 2015.

[2] G. Ras, “Cognitive image processing for humanoid soccer in dynamic
environments,” 2015.

[3] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA Workshop on Open Source Software, 2009.

[4] S. C. Sachin Chitta, Ioan Sucan, “Moveit!” Robotics & Automation
Magazine, IEEE (Volume:20, Issue: 1), 2012.

[5] G. Bradski, Dr. Dobb’s Journal of Software Tools.


	Introduction
	Previous research
	Cognitive Image Processing (CIP)
	Previous competitors

	Method
	Detecting
	Color based and finding contours
	Circle based and average color
	Color invariant and blob detection

	Localizing
	Finding the x-coordinate in the robot orientation
	Finding the y-coordinate in the robot orientation

	Grabbing
	Implementation in ROS
	The idea behind the implementation


	Simulations
	Webots
	RVIZ

	Results
	Tomato detector evaluation
	Tomato localization evaluation
	Tomato grabber evaluation

	Discussion
	Conclusion
	References

