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Abstract

As the computing capacity grows steadily and continuously, there is a grow-
ing need for the right tools to aid scientists in using the available computing
resources. The past few years the Grid has become the standard in this area.
Although the Grid offers an unprecedented amount of resources, right now it
lacks tools that aid the user in handling, analyzing and visualizing information
flows. The University of Amsterdam tries to bridge this gap with the Gridbased
Virtual Laboratory AMsterdam (VLAM-G). It offers a distributed analysis plat-
form for applied experimental science and provides science portals for several
domains.

In this thesis we describe such a portal for the traffic domain called the Virtual
Traffic Lab. We explore the possibilities of such an environment, where scientists
can experiment with traffic applications. We have charted the requirements for
a Virtual Traffic Lab based on the traffic tools that are currently in use. Sev-
eral several interfaces have been created between MatLab, an environment for
mathematical computing, analysis and visualization, and VLAM-G to enable the
integration of ADSSIM, a discrete event simulation environment for Automatic
Debiting System simulations. Using these interfaces, we have designed and par-
tially implemented a prototype traffic application called ADSSIM-VLAM. This
prototype can execute a distributed traffic simulation based on user supplied
parameters.

Although our prototype application shows the possibilities of VLAM-G for the
traffic domain, the user still has to cope with low level details that ideally will
be hidden in the future.

keywords: parallel computing, Grid, collaborative environment, Virtual
Laboratory, traffic applications, simulation, MatLab, Simulink.
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Chapter 1

Introduction

Glaucus Proteomics BV announced on April 24th 2002 that it has
entered into agreements with SARA, one of Europes largest super-
computing facilities, and GigaPort, a next generation Internet ini-
tiative which provides a state-of-the-art broadband network, both of
the Netherlands. These agreements are expected to provide the bio-
computing capacity and connectivity to help with the development of
novel tools and technologies for high throughput proteomic analysis
and the rapid screening of antibody and small molecule drug candi-
dates for improved specificity. [...] “Genomics and proteomics will
transform the search for new medicines into an information driven
science. In order to understand the causes of human disease, high
performance computing is essential and must, therefore, be an in-
tegral part of the business strategy of Glaucus Proteomics,” stated
Prof. Tan Humphery-Smith, Chief Scientific Officer at Glaucus Pro-
teomics.

The rapid increase in computer capacity and bandwidth has fundamental im-
pact on the way science is practiced. Until recently, we relied heavily on theory
and experiment to find answers to scientific questions. More and more, we have
the capability to simulate and model systems considered too complicated to
characterize experimentally with previously available technology [8]. This leads
to huge information flows which have to be managed and analyzed. Supercom-
puting and mass storage systems can aid us in controlling these information
flows.

As the computing capacity grows steadily and continuously [21], there is a grow-
ing need for the right tools to aid scientists in using the available computing
resources. One of the advancements that is made in this area is the Grid [3].
Grids serve as a scalable computing platform for executing large-scale compu-
tational and data intensive applications in parallel through the aggregation of
geographically distributed computational resources [13]. Although the Grid of-
fers an unprecedented amount of resources, right now it lacks tools that aid the
user in handling, analyzing and visualizing information flows.

The University of Amsterdam tries to bridge this gap with the Gridbased Vir-
tual Laboratory AMsterdam (VLAM-G). It offers a distributed analysis plat-
form for applied experimental science and provides science portals for several



domains: chemo-physical analysis of material surfaces, simulated bio-medical
vascular reconstruction using immersive visualization techniques, correlation of
gene expression data from heterogeneous databases, and a simulation/analysis
environment for road-traffic measurement data.

The Dutch roads are equipped with an extensive set of devices, which can
measure a large and diverse set of features of the Dutch traffic. The measure-
ments can be simple vehicle counters, or complex systems that track individual
vehicles over longer distances based on license plate numbers. A scientist who
wants to analyze these type of measurements, for instance to compare it with
simulations, has to be supported by a number of tools to be able to manage large
datasets and to visualize certain aspects. We are interested in the tools users in
this area of research need, and how they can use the power and possibilities of
the Grid that are offered in a userfriendly way through VLAM-G.

1.1 Aims of this thesis

At this moment there exist few real VLAM-G applications. For the further
development of VLAM-G, it would be useful to develop a prototype of an ap-
plication, in our case for the traffic domain. Eventually, VLAM-G wants to
offer a traffic science portal consisting of several applications. Traffic scientists
currently use several tools to perform analyses. Ideally, in the future there will
exist a set of modules that are specifically written for the analysis and visu-
alization of traffic data. Using these modules scientists will able to perform
distributed experiments that previously had to be conducted with improvised
tools on standalone computers.

We want to explore the possibilities of an environment in which scientists can
experiment with traffic applications. In this thesis we want to give insight into a
Virtual Traffic Laboratory by designing and partially implementing a prototype
traffic application.

Before we continue we need to clarify some terms and make some assumptions.
The Virtual Traffic Laboratory denotes the traffic science portal of VLAM-G.
When we say we want to give insight into such a laboratory, we mean two things.
We want to give this insight by describing the functionality such a Virtual Traffic
Laboratory should possess, and by describing our hands-on experience during
the design and implementation of a prototype of a traffic application.

We will follow the evolutionary approach of systems development [11] for the
design and implementation of this prototype. This approach breaks up a project
into separate parts, and then, one by one, each of the parts is taken through
the systems development process. The choice for this approach is based on
our assertion that the specification and implementation of parts of VLAM-G
might change while we are designing and implementing our prototype, because
VLAM-G is still in development. Another reason is the expectation that hands-
on experience with VLAM-G might ask for a different design or implementation
of our prototype. The evolutionary systems development approach minimizes
the costs, time and efforts of a possible reiteration of the systems development
cycle.



The realization of the entire Virtual Traffic Lab is too extensive for the purposes
of this thesis, we therefore limit the scope to partially implementing a prototype
traffic application. By partially implementing we mean that we will select one
of the current applications and integrate this into VLAM-G. The result will be
a prototype, a VLAM-G application for the traffic domain which will prove the
functionality and benefits of the Grid and VLAM-G for traffic applications.
Traffic applications are defined as applications which enable the user to perform
experiments and analyses on data that is generated by real or simulated traffic
flows.

Now that we have defined the aims of this thesis and the terms in which these
aims are expressed, we can describe the approach we have followed to reach
these aims.

1.2 Approach

We have followed a bottom-up approach in this thesis. The Grid is the founda-
tion beneath VLAM-G, so we start with background information on the Grid.
When the features of the Grid are known, we can take a look at VLAM-G and
explain how it relates to the Grid on the one side, and to scientific users on the
other side. We will describe the context of VLAM-G, i.e. discuss the past and
the future, and compare it to other Virtual Laboratories. The next step is to
narrow our focus to a particular instance of VLAM-G: the Virtual Traffic Lab.
In order to discuss traffic applications, we first have to establish the domain spe-
cific information and terminology used by traffic scientists. Using this knowledge
we can start designing the Virtual Traffic Lab. This design starts with the re-
quirements determination which consists of several phases: problem definition,
requirements acquisition and requirements analysis. These phases are described
in detail and eventually lead to a requirements specification for the Virtual Traf-
fic Lab.

Applications
interfaces i matlab—-viab
Virtual
VLAM-G ' Traffic
. Lab
GRID

Figure 1.1: Framework for the approach



Because we will not develop the entire Virtual Traffic Lab, and want to prove
the functionality and benefits of the Grid and VLAM-G for traffic applications,
we decided to try to integrate a current application into VLAM-G. To realize
this integration we have created an interface. Before we actually implement this
interface, we first describe which environments and languages we will use.

We have developed several interfaces in order to integrate VLAM-G with ADS-
SIM, the traffic simulator we selected to use for our prototype (the reason for
selecting this application will be discussed in the final chapter). Besides de-
scribing the implementation of these interfaces, we also evaluate their design
and implementation.

The prototype application for the Virtual Traffic Lab is the last step. We show
how we envision a traffic scientist using our application through a real-life ex-
ample of a topic that is investigated by traffic scientists at the University of
Amsterdam. This example is followed by the design, implementation and eval-
uation of the prototype.

We conclude the thesis by summarizing the aims that we intended to reach, de-
scribing our findings and the implications of these findings, and identify topics
that require further study or analysis.

The approach we followed is summarized in the framework of figure 1.1.

1.3 Overview

The thesis reflects the approach that was followed.

Chapter 2 describes the Grid, its architecture, strengths and weaknesses. We
discuss the future of the Grid and make a comparison between the Grid and
ASP, and between the Grid and Web Services.

Chapter 3 shows the Gridbased Virtual Laboratory AMsterdam, its users and
architecture. We review the development, compare it to other Virtual Labora-
tories in order to determine the added value of VLAM-G, and take a look at
the future of VLAM-G.

Chapter 4 outlines the Virtual Traffic Lab. After supplying the necessary
background information on traffic research, we choose a systems development
method, and perform the requirements determination. One of the phases of this
process involves requirements acquisition, where we take a look at the tools that
are currently used by traffic scientists to perform their analyses and visualiza-
tions. We analyze these tools and tasks and distill wishes and requirements.
Chapter 5 describes environments (MatLab, Simulink) and languages (MDL,
XML) that will be used for the creation of our interfaces.

Chapter 6 continues with the description of several interfaces we created for
the Virtual Traffic Lab. Small code examples will be given to explain their
functionality, accompanied by screenshots and small experiment descriptions.
We evaluate each interface to show to what degree they can be used or can be
adapted.

Chapter 7 starts with the selection of the application that will be converted to
a prototype for the Virtual Traffic Lab. A case example is used to describe the
way we imagine this prototype could be used. Based on this example is our
design and implementation, which is evaluated at the end of this chapter.
Chapter 8 sums up the conclusions based on our findings in the previous chap-
ters and on our initial aims. We conclude with topics that require further study
or analysis.



Chapter 2

The GRID

2.1 Introduction

Simulations play an essential role in evaluating different aspects of traffic systems.
As in most application areas, the avai-
lable computing power is one the de-
termining factors with respect to the
level of detail that can be simulated
[1] and. The availability of datasets
that can validate the results is equally
important [10]. Consequently, lack of
these factors leads to more abstract

Applications

interfaces | matlab-vlab

models [2]. Since we focus on the use Virtual
of computational power as part of an VLAM-G Traffic
experimentation platform and want to Lab
be able to afford more detailed simula- GRID

tions, we looked how we could use the
resources provided by the Grid.

2.2 The Grid

The term “the Grid” was invented in the mid 1990s to denote a proposed dis-
tributed computing infrastructure for advanced science and engineering [3]. The
vision behind this idea is that users can “plug into” the Grid to get access to
resources and data similar to the ease of use of electricity, water or the telephony
system. The main problem in creating this Grid infrastructure is the coordi-
nation of resource sharing and problem solving in dynamic, multi-institutional
virtual organizations [9]. Foster defines a virtual organization as a set of indi-
viduals and/or institutions which act as resource providers and/or consumers,
who have clearly and carefully defined what is shared, who is allowed to share,
and the conditions under which sharing occurs. Up till then the available dis-
tributed computing technologies were unable to provide these features. The
Grid addresses these issues by creating an architecture which consists of several
(standards based) protocols, Application Programming Interfaces (API’s) and
Software Development Kits (SDKs). This open and extensible architecture acts



as middleware to enable the sharing and accounting of resources.

Grids serve as a scalable computing platform for executing large-scale compu-
tational and data intensive applications in parallel through the aggregation of
geographically distributed computational resources. They enable exploration of
large problems in science, engineering, and business with huge data sets, which
is essential for creating new insights into the problem [13].

The Grid architecture is composed of several layers. Each layer provides dif-
ferent capabilities and at the same time utilizes the functionality of the lower
layers. We will briefly describe these layers.

Application \

Collective

\ Resource \

| Connectivity |

| Fabric |

Figure 2.1: Grid Protocol Architecture

Fabric layer provides the resources to which shared access is mediated by Grid
protocols: for example computational resources, storage systems, catalogs, net-
work resources and sensors.

Connectivity layer defines core communication and authentication protocols re-
quired for Grid-specific network transactions. Communication protocols enable
the exchange of data between Fabric layer resources. Authentication protocols
build on communication services to provide cryptographically secure mecha-
nisms for verifying the identity of users and resources.

Resource layer builds on Connectivity layer communication and authentication
protocols to define protocols (and APIs and SDKs) for the secure negotiation,
initiation, monitoring, control, accounting and payment of sharing operations
on individual resources.

Collective layer contains protocols and services (and APIs and SDKs) that are
not associated with any one specific resource but rather are global in nature
and capture interactions across collections of resources. Examples are directory
services, co-allocation, scheduling and brokering services, monitoring and diag-
nostics services, Grid-enabled programming systems and community accounting
and payment services.

Application layer is constructed in terms of and calls upon services defined at
any layer. Each underlying layer consists of protocols (and possibly APIs and/or
SDKs) that provide access to specific services and that perform desired actions.
The Globus Toolkit! is the de facto standard in the area of Grid computing. It

L hitp://www. globus. org



offers a set of services and software libraries to support Grids and Grid appli-
cations. The Toolkit includes software for security, information infrastructure,
resource management, data management, communication, fault detection, and
portability.

Wide-area distributed computing, or “grid” technologies, provide the foundation
to a number of large-scale efforts utilizing the global Internet to build distributed
computing and communications infrastructures. As common Grid services and
interoperable components emerge, the difficulty in undertaking these large-scale
efforts will be greatly reduced and, as importantly, the resulting systems will
better support interoperation.

Our department participates, via the DutchGrid, in the European DataGrid
project. This makes seamless resource sharing by all participants both within
the Netherlands and in Europe possible. The actual sharing of resources remains
of course subject to bilateral usage agreements, but in principal this promises
users unprecedented computational power.

Two important factors facilitate the existence of the Grid. Number one is

bandwidth. A significant amount of bandwidth is needed for the communica-
tion between computers and the exchange of data. Without this bandwidth
the response time of applications would be unacceptable, and the quality of the
service would be perceived as poor by the end users. The fact that bandwidth is
becoming increasingly plentiful and increasingly inexpensive, with the promise
of that trend continuing, is a major reason why Grid applications are able to
function.
Another important factor is the wide acceptance and use of standards. Because
of the heterogeneous nature of networks, computers and data that form the
Grid, there has to be a set of common languages and protocols to get things to
work together. Open standards such as TCP/IP, XML and SOAP provide this
interoperability.

We have described the basic outline of the Grid. But what makes it so spe-
cial?

2.3 Strengths and weaknesses of the Grid

The Grid has several strengths that can be noted.

Mauaintenance. Software and data do not have to run locally, so the system op-
erators can decide which software will be installed and maintained on a chosen
platform.

Scale of operation. More data can be processed with more computer capacity
in a smaller amount of time with more detailed information as a result.
Higher reliability. A different part of the Grid can be used in case of a malfunc-
tion of hardware or software, without the end user even knowing.
Transparency. Details of the lower levels of the Grid are hidden for the end
user. Ideally, a Grid application can be run as if it runs on one computer.
Security. Access to data and resources is restricted. This is a necessary condi-
tion for trust (in the integrity) of the Grid.

Less redundancy. Because the Grid offers transparency and security, several cur-
rently separated information systems can be integrated into one (virtual) Grid



system. Example: sharing of data between hospitals, medical organizations,
drugstores and family doctors.

Accounting. The use of every resource in a particular time frame is logged. This
is essential for a fair exchange of resources, or for converting the use of resources
to an amount of money.

Of course there also exist some drawbacks and weaknesses to the Grid.
Applications. A lot of work has been done on the layers that form the basis of
the Grid. Accounting, security, transparency, etcetera are all taken care of. At
first, the top level which consists of applications did not receive as much atten-
tion as the lower levels of the Grid. The majority of the users of the Grid at
this moment therefore consists of computer scientists. Applications are mostly
centered around scientific problems which demand lots of storage and/or com-
putational capacity. Examples are GridLab? (gravitational wave detection and
analysis, numerical relativity), NASA’s Information Power Grid (IPG)? (numer-
ical propulsion system simulations, distributed/collaborative scientific visualiza-
tions), Astrophysics Simulation Collaboratory [14] and Molecular Modelling for
Virtual Drug Design [13].

Now that the possibilities of the Grid become more and more obvious and within
reach of (application) developers, other application domains such as analysis of
medical data are explored, but few Grid applications have been realized for
those domains.

One possible solution to lower the threshold for Grid applications in other do-
mains could be the the integration of ASP concepts into the Grid.

2.4 Grid and ASP

The core idea behind Application Service Providers (ASP’s) is that applications
can be made available as a service rather than an installation. Businesses or
consumers pay a monthly or yearly fee to have access to and make use of the lat-
est applications supplied by the ASP. Its core competencies are to produce and
maintain the service. This is beneficial to both parties: the ASP can special-
ize in this service, receives a continuous amount of money and builds a lasting
relationship with the customer. The business or consumer that purchases this
service does not have to worry anymore about the time, energy and costs of
keeping the application(s) up to date.

The application can be accessed from every trusted host or trusted user within
or outside of the company. The application itself and the data however are
stored at one central location.

The Grid takes this concept further by removing the need for the application
to live in a particular location or on specific hardware. A Grid application can
obtain resources from anywhere on the network. An application can get disk
space from here, computing cycles from there, specialized application services
from over there, and network bandwidth from yet another place.

Because sensitive data can be compromised, ASP’s rather keep this data within
the protected network that they provide. They can offer encrypted transfer of
data or the encrypted storage of data to ensure the data privacy [23]. The Grid

2 http://www.gridlab.org
3 http://www.ipg.nasa.gov/



also supports the encrypted interchange and storage of data [24], so it would be
a logical step to offer Grid-based ASP solutions.

IBM is one of the first major IT companies to have embraced Grid technol-
ogy and Grid computing. They are involved in several projects, one of which
is the Electronic Medical Record (EMR) data grid and repository. This is a
patient-centric medical record system that can capture from any location the
full range of healthcare files including high-fidelity patient medical images (CT,
MRI, mammograms), records, and clinical history. In collaboration with the
University of Pennsylvania they have built a Grid that delivers computing re-
sources as a utility-like service over a secure Internet connection. Enabling up
to thousands of hospitals to store mammograms (X-ray examination of breasts
for detection of tumors) in digital form, it gives authorized medical personnel
near-instantaneous access to patient records and reduces the need for expensive
X-ray films. Hospitals are connected to the grid via secure Internet portals that
allow authorized physicians to upload, download, and analyze digitized X-ray
data to identify potential tumors and other problems. Sophisticated algorithms
can uncover patterns that appear in the population, such as cancer “clusters”,
or abnormal concentrations of disease in a particular community.

Several other applications are in development, such as analytical tools to help
physicians diagnose identify cancer, and educational tools for training medical
students, interns and radiologists [25].

Related to the idea of ASP is the concept of “web services”.

2.5 Grid and Web Services

The Grid is far from finished. One of the topics that is heavily influencing the
(direction of the) development of the Grid is the concept of services. The current
Grid architecture as described in the beginning of this chapter is structured in
terms of protocols. Instead of this protocol-centered view, the Grid is now seen
from a functional point of view. To meet the needs of a (virtual) organization,
the Grid has to supply a set of services [26]. One increasingly popular type of
services is known as “web services”.

Each vendor, standards organization, or marketing research firm defines Web
Services in a different way. Gartner, for instance, defines web services as ”loosely
coupled software components that interact with one another dynamically via
standard Internet technologies.” Forrester Research takes a more open approach
to web services as ”automated connections between people, systems and appli-
cations that expose elements of business functionality as a software service and
create new business value.” [27]. The more technical definitions however agree
on the fact that a web service is a network-accessible application based on open
standards, plus a formal description of how to connect to and use the service*.
Several aspects of web services are desirable when heading to a functional ori-
ented Grid. Examples of these aspects of web services are service description
and discovery; automatic generation of client and server code from service de-
scriptions; binding of service descriptions to interoperable network protocols;
compatibility with emerging higher-level open standards, services and tools;
and broad commercial support.

4See http://www.jeckle.de/webServices/ for more than ten different definitions of the
term web service.



The majority of the current Grid applications has been developed for the sci-
entific domain. Generally speaking the technology should be useful for several
domains, including the commercial one. This domain has some specific demands
which can not be fulfilled using the current Grid technology, such as seamless in-
tegration with existing resources and applications, tools for workload, resource,
security, network Quality of Service, and availability management.

One important difference between web services and (future) Grid services is
the state of the service. Web services offer an interface to a persistent, net-
work accessible application. Grid services on the other hand can be created
and destroyed dynamically, just like the allocation of resources. These types
of services are called transient. This dynamic state has significant implications
on the management, naming, discovering and usage of the Grid services. The
Open Grid Services Architecture (OGSA), a framework which is currently in
development and builds on the foundation of the Globus Toolkit and on the
existing web services framework, addresses these issues. Ultimately the Globus
Toolkit will be integrated and conform to the OGSA.

2.6 Summary

We have outlined the concept and architecture of the Grid. We have shown the
strengths and weaknesses, and discussed possible ways to solve these weaknesses.
In the next chapter we describe middleware for the Grid, that tries to bridge the
gap between the distributed computing of the Grid and the application layers
above: the Gridbased Virtual Laboratory AMsterdam (VLAM-G).

10



Chapter 3

VLAM-G

3.1 Introduction

Simulation and real world experimen-
tation both generate huge amount of
data. Much of the effort in the com-
puter sciences groups is directed into
giving scientists smooth access to stor-
age and visualization resources; the so
called middle-ware on top of the Grid-
Virtual technology. In this chapter we will de-
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VLAM-G Traffic scribe one particular type of middle-
Lab ware called VLAM-G, short for Grid-
GRID based Virtual Laboratory AMsterdam.

3.2 The Virtual Laboratory

VLAM-G wants to hide resource access details from scientific users, and allows
scientific programmers to build scientific portals. These portals give access to
the user interfaces to scientific studies: combinations of information gathering,
processing, visualization, interpretation and documentation. A typical applica-
tion is a large instrument, gathering so much data, that the analysis has to be
off-line.

The Virtual Laboratory facilitates the software and hardware-control for
working on large studies in distributed environments. Yet, it is important not
to forget the human factor. Large studies involve multiple scientist to cooperate.
A Virtual Laboratory has to facilitate the means to communicate between those
scientist, for instance when they can not be in the same room due to time
constraints or the geographical distance.

VLAM-G offers a distributed analysis platform for applied experimental sci-
ence. Summarized in one sentence, VLAM-G is a science portal for remote
experiment control and collaborative, Grid-based distributed analysis in applied
sciences, using cross-institutional integration of heterogeneous information and
resources [4].
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This laboratory is called “virtual” for several reasons. The allocation of re-
sources is invisible for the user, when the user performs an experiment it looks
as if it runs on one virtual supercomputer. Besides that, VLAM-G aims to
actually be a Virtual Lab, in the sense that scientists that are geographically
dispersed can work together on experiments as if they were in the same labo-
ratory. This requires collaborational tools to support the scientists, tools that
will be described in more detail in paragraph 3.5.

3.3 Users

The Virtual Lab is meant for users who want to perform scientific experiments.
These experiments consist of the analysis and/or visualization of large quanti-
ties of (sensory) data. Prerequisite is that they are computationally intensive
and can be decomposed well. If these experiments are relatively simple, it would
probably be quicker and more efficient to use an alternative of the Virtual Lab.
If the problem can not be decomposed the advantages of the Virtual Lab can
not be fully utilized.

For somebody with a desktop application there is no real use of the Virtual Lab.
However, a demanding application which needs lots of computational power has
to be executed on a powerful system. One option is for instance to use SARA®.
In that case, the user has to setup (software) connections to SARA, send and
receive data, monitor the progress, etcetera. This is unnecessary and time-
consuming work from the point of view of the user, who just wants to get his
work done and see the results. The alternative which saves him this extra work
is the Virtual Lab.

Besides those advantages, the Virtual Lab offers a set of predefined modules, for
instance hundreds of different visualization modules that can display a vector,
display 3D data, rotate 3D data and perform other visualization routines. This
offers the scientist options that were previously unavailable.

Another option is for instance to go to CERN in Switzerland to perform some
physics experiment. The use of the Virtual Lab saves time that otherwise would
be spent on traveling and on adapting the software to prepare it for execution
at CERN.

If we assume that the problem is suitable for the Virtual Lab, then it is in-
teresting to see what type of users the Virtual Lab has and at what level they
operate. We discern three sorts of actors: the resource manager, the scientific
programmer and the scientist.

At the bottom of figure 3.1 we see the Resource Manager. The Resource
Manager is responsible for the Grid infrastructure: he grants access to the local
resources, configures the environment to make sure that VLAM-G modules can
run, provides Scientific Programmers with some general VLAM-G modules, and
monitors the resource usage of the VLAM-G studies by the Scientists.

The Scientific Programmer (in the middle of figure 3.1) creates study tem-
plates. Study templates are a decomposition of the study in a number of logical
steps, represented by a process-flow graph. Some of the steps are forms, that

ISARA Computing and Networking Services supplies a complete package of High Perfor-
mance Computing- and infrastructure services, based on state-of-the-art information technol-
ogy, and is located at the Wetenschap & Technologie Centrum Watergraafsmeer (WTCW)
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Figure 3.1: Three different actors for a study

force the scientist to document the experiment by providing meta-data (sample-
description for instance). Other steps are real operations, some manual, some
by real devices, and some by the Grid. The Grid operations are defined as
experiments: a number of computational modules coupled via ports. The Sci-
entific Programmer takes care that there exists a template with those steps and
experiments, that is nearly ready to execute, so that the Scientist only has to
fill in the details specific for this sample.

The Scientist is the one that actually is performing the studies. He first

prepares a study by filling in the required meta-data, and adjusts some of the
parameter-settings to his own personal preferences. He then starts the exper-
iment, which steps through the different operations specified in the template.
Some steps can be quite time-consuming, so the Scientist can log-out from this
study, prepare another study, and come back to inspect the intermediate results
and perform another step of the study.
So, when the Scientist starts working with VLAM-G, the Resource Manager
and Scientific Programmer have done their job, and do not have to be present.
Their roles are taken over by two systems: the information management system
VIMCO (Virtual laboratory Information Management for COoperation) and
the Run Time System (RTS).
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3.4 Architecture

The description of the different actors for a study already mentions some of
the subsystems that are a part of VLAM-G. Seven principal components can be
identified: the Graphical User Interface (GUI), Session Manager, Collaboration,
PFT Assistant, Module Repository, Run Time System (RTS) and VIMCO.
The GUI is the only part of VLAM-G that the user directly interacts with.
He can select an existing Process Flow Template or choose to create a new
experiment. The assistant can aid the user during this process, by suggesting
appropriate modules or experiment topologies. When the experiment is ready to
be executed, it is passed in XML form via the Session Manager to the RTS. The
Session Manager makes it possible for a user to work on multiple studies, execute
one study while preparing another study. The systems are coupled via Session
Manager, which provides a single access point to VIMCO (the preparation) and
RTS (the execution). VIMCO provides access to study and experiment descrip-
tions that are stored in application specific databases. The RTS takes care of
scheduling, instantiating and monitoring the computational modules of an ex-
periment. It makes extensive use of Globus services to perform these tasks. The
Collaboration System will offer audio and video communication, an electronic
whiteboard and possibly other collaborative aspects to enable cooperation be-
tween scientists that participate in an experiment.
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The entire architecture of VLAM-G can be seen in figure 3.3. The dotted boxes
located on resource A and B represent examples of modules instantiated by the
RTS as part of a specific experiment.
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Figure 3.3: The architecture of VLAM-G

How did this architecture develop, which aspects are realized and which are still
work in progress?

3.5 Development of VLAM-G

In the fall of 2001 the University of Amsterdam started the development of
the Virtual Laboratory. It was decided that there were several objectives that
had to be met. An incremental systems development process was followed to
gradually achieve these objectives.

First milestone was the development of the Run Time System. The role of
the RTS is described in the previous paragraph.

Second milestone was to provide APIs for each component of the Virtual Lab.
This ensures interoperability between components while they can be developed
concurrently. Each component is implemented stand-alone, while integration
tests take place at fixed moments in time. During this phase, the GUI which
enables users to compose experiments has been developed. The user can drag &
drop modules from the module repository, and can supply meta-data about the
experiment by filling in the template. The VIMCO and session manager have
also been implemented. Their function is described above.

Integrating security aspects is the third milestone. (Grid) Authentication at
the lower levels, making the system hacker proof against possible intruders from
the outside world and enabling fault tolerance are important security aspects
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that are taken care of in this phase. “Fault tolerance” involves the migration of
processes to other computers in case of a malfunction (i.e. hardware failure) of
one of the currently used computers.

One of the objectives that is yet to be reached is the implementation of col-
laborational aspects. In principal it should not be a big step to implement these
features. The major part of the required functionality is already available for
one person to operate the Virtual Lab. Aspects that need attention are typical
multi-user problems, such as the “protection” of an experiment when multiple
persons are modifying parameters or modules, keeping the view up to date for all
participants and possibly integrating third party software for video conferenc-
ing and/or which provide a multi-user electronic whiteboard. A (commercial)
example of such a groupware application is DOLPHIN [29], which is suitable
for face-to-face and remote meetings, which provides an electronic whiteboard,
audio/video-connectivity and which supports the creation and manipulation of
informal structures (e.g. free hand drawings, handwritten scribbles) as well as
formal structures (e.g. hypermedia documents with typed nodes and links).
An Open Source example of a collaborative computing environment is the Col-
laborative Virtual Workspace (CVW) [30]. This project uses the metaphor of
virtual rooms where different users can gather. To a user, a CVW is a build-
ing that is divided into floors and rooms, where each room provides a context
for communication and document sharing. CVW allows people to gather in
rooms to talk through chat or audio/video conferencing and to share text and
URLs with one another. Document types include whiteboards, URLSs, notes and
other documents edited through the user’s local applications (e.g., word proces-
sor, spreadsheet). Documents that can be edited through local applications are
managed through a document server within CVW, which provides a universally
available file space.

Because VLAM-G is still in development, some of the features have a lower
priority than others and have been delayed until a later moment. The assistant
is one of these features. Ideally, some sort of intelligent agent should support
the (non computer) scientist when preparing (and possibly while executing) an
experiment. This assistant may suggest module definitions or study templates of
previous experiments. Decisions of the assistant are planned to be supported by
knowledge gathered from the RTS and the application databases under VIMCO.

One of the strengths of VLAM-G is the existence of a large library of generic
modules which perform a specific task or computation. This does require a mod-
ule repository however that has to be filled, for several different domains (e.g.
biology, chemistry, physics). A one time effort has to be made to adapt or
convert current blocks of software to the module specification of VLAM-G [39].
Other modules will only be added or developed when actual users perform ex-
periments, and can give feedback about frequently used operations (modules)
that are not yet supplied by VLAM-G.

To summarize, VLAM-G provides a GUI, structures to encapsulate and in-
terface to experiment specific software and hardware, data storage and visual-
ization systems. Standardized Grid services are used to execute experiments in
a transparent manner. In the future it will offer an assistant to guide a scientist
through the process of structuring his study, by giving a unified view and intelli-
gent advice. It will also have a collaboration system which will enable scientists
to jointly perform experiments while they and their instruments are located at
different locations.
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3.6 Comparison of Virtual Labs

We are not the only group that wants to provide a Virtual Laboratory. Sev-
eral other universities are developing systems that are somewhat similar to our
Virtual Laboratory. We will give a short description of these projects and will
point out what the main similarities and differences are.

Molecular Modelling for Drug Design, Monash University Australia [31].

“The Virtual Laboratory project is engaged in research, design, and develop-
ment of Grid technologies that help in solving large-scale compute and data
intensive science applications in the area of molecular biology. The virtual lab-
oratory environment provides software tools and resource brokers that facilitate
large-scale molecular studies on geographically distributed computational and
data grid resources. This helps in examining/screening millions of chemical
compounds (molecules) in the Protein Data Bank (PDB) to identify those hav-
ing potential use in drug design.”

This project shares the use of Grid technology to solve a computationally heavy
problem. The most important difference between these two projects is the appli-
cation domain. This example focuses on the specific (sub) domain of molecular
modelling in chemistry. The explicit starting point of our Virtual Lab however
is its generic infrastructure. Domain specific knowledge is put into (reusable)
modules, but not into the Virtual Lab itself. This way the Virtual Lab can (in
theory) be used as a laboratory for every imaginable domain.

The Virtual Lab from Monash University also lacks tools to support collabora-
tion within the Virtual Laboratory.

Materials Microcharacterization Collaboratory, Argonne National Laboratory,
Lawrence Berkeley National Laboratory, National Institute of Standards and
Technology, Oak Ridge National Laboratory, University of Illinois [32].

“The Materials Microcharacterization Collaboratory links several laboratories
through videoconferencing, shared data-viewing, and collaborative analysis. Ma-
terials Science is a blend of a multitude of disciplines ranging from basic sci-
ence to applied engineering, from physics and chemistry through metallurgy
and ceramics, in which researchers combine their expertise with state-of-the-
art instrumentation to push forward the frontiers of materials technology. The
team members of this project collectively house virtually every characterization
technique which employs electrons, ions, photons, x-rays, neutrons, mechanical
and/or electromagnetic radiation to elucidate the microstructure matter. [...]
The ultimate goal of the program is to create a virtual laboratory where all sites
can interact with one another and share information and expertise. [...] Another
large component of the MMC is its educational aspect. By putting these re-
sources on the internet, it will allow teachers and students from all educational
levels to access the virtual lab. Additionally, with proper security, these people
will be able to interact and control electron microscopes themselves, and even
perform experiments.”

This laboratory has multiple application domains just like our lab. It has in-
terfaces to and remote control over several different instruments. Our lab aims
to offer similar access, but this has not been realized yet. The MMC does not
utilize the Grid or Grid services to perform analysis or visualization, in contrast
to our laboratory which used the Grid as a foundation for everything else.
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Virtual Lab, FernUniversitit Hagen (Germany) [33].

“This contribution presents a collaborative virtual environment for a remote
laboratory. Students have access to the remote laboratory via Internet from
anywhere at any time. The remote laboratory is based on a client/server ar-
chitecture, which is mainly implemented in the Java programming language.
[...] The collaborative environment allows the experimentation in a team. The
group is able to interact and to discuss the results of their work.”

The focus in this lab is on the collaborative aspects and the universal access
provided by the platform independence. Our lab is also platform independent,
it eventually will include the same collaborative tools as are used in this case.

We can conclude that VLAM-G is the only project that combines all of the
mentioned aspects; it is Grid-based, platform independent and suitable for dif-
ferent (scientific) domains. Add to this the fact that VLAM-G will be extended
in the future with a collaborative environment and interfaces to real instru-
ments, and it is clear that it comprises the most ambitious and comprehensive
Virtual Laboratory to date.

3.7 The future of the VLAM-G

While the first official release of VLAM-G is imminent (approximately Septem-
ber 2002), this does not mean that is finished. Besides the obvious bug fixing
that will take place based on errors encountered by the first users, they will
(hopefully) supply comments, suggestions and feature requests based on their
experiences with the Virtual Lab. We attempt to provide feedback on our ex-
periences in this thesis.
The first release of VLAM-G will not conform to the ideal vision of the Virtual
Laboratory. The current GUI for instance is made so that it works. It is build
using the logic of computer scientists, which is (probably) not equal to the logic
of other (non-computer) scientists. It is pretty straight forward with tables and
forms that contain data about modules, there is no stepwise procedure that as-
sists the user while creating or editing an experiment. The GUI still implicitly
requires an understanding of the internal working of the Virtual Lab, because it
does not hide details like internal data structures of modules and process flow
templates. Creating a user friendlier GUI which operates on a conceptually
higher level is one of the challenges for the future. The planned assistant is a
step in the right direction trying to achieve this goal.
Another direction that can be pursued is adapting the GUI to (the users of) the
different domains. One can imagine that the type of user or the type of domain
requires a different GUIL. By “a different GUI” we do not just mean the look
and feel of the Virtual Lab, but for instance the amount of information that
is presented on the screen. It could be that a physicist wants to control every
detail of an experiment, while a biologist just wants to have a few buttons like
7Go” or 7 Auto-select optimal scenario”. The GUI has to support the user and
has to comply with the way the user thinks and acts in the Virtual Lab. In
order to determine what the preferences of the users are, it would be advisable
to conduct interviews or to use prototyping to develop the GUI.

The credentials system is one of the components that also has to be improved
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in the future. Right now the credentials for the Grid are stored locally on each
computer. A much more elegant solution would be something like a chipcard
reader and a PIN-code as an authentication method. The same ease of use
should be available for the Virtual Lab.

Right now access to the Virtual Lab is still limited to computers that are
located on desks. Wireless access on all sorts of devices would offer more freedom
to the users and would increase the virtuality of the lab (just imagine checking
out intermediate results of an experiment while traveling from one meeting to
another).

VLAM-G is aimed at scientists and uses scientific resources. The architec-
ture however is very generic, and could also be used for domains that have
not been integrated into VLAM-G. One could imagine that certain types of
businesses would be very interested to have access to an environment such as
VLAM-G to perform analysis on large data sets. Possible examples are telecom
providers who want to analyze their GPS data or large companies in general
that want to search their client data for interesting patterns. Although the
architecture could in theory support these new domains, VLAM-G currently
does not embody an important aspect: expressing the computational services
in terms of money. How much it costs for the end user to use a developed
module is unknown. It is also unknown how much it costs to perform an entire
experiment. One could imagine that the user would like to have the option to
choose between performing the experiment in one day for a certain amount of
money (say ten thousand dollar), in three days for a quarter of this amount or
in one week for one thousand dollar.

The examples above show that considerable work has to be done before VLAM-
G will fully reach the goal of providing a science portal for remote experiment
control and collaborative, Grid-based distributed analysis in applied sciences.

3.8 Summary

VLAM-G offers a distributed analysis platform for applied experimental science.
It provides a GUI, structures to encapsulate and interface to experiment specific
software and hardware, data storage and visualization systems. Standardized
Grid services are used to execute experiments in a transparent manner. In
the future it will offer an assistant to guide a scientist through the process of
structuring his study, by giving a unified view and intelligent advice. It will
also have a collaboration system which will enable scientists to jointly perform
experiments while they and their instruments are located at different locations.
VLAM-G is the only project that is Grid-based, platform independent and has
a generic infrastructure that is suitable for different (scientific) domains.

In the next chapter we will describe the traffic domain, for which we will design
the Virtual Traffic Lab.
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Chapter 4

The Virtual Traffic Lab

4.1 Introduction

The Organisation for Economic
Co-operation and Development (OECD),
an international organisation with over
thirty member countries helping gov-
ernments tackle the economic, social

Applications

interfaces | matlab-vlab

Virtual and governance challenges of a glob-

VLAM-G Traffic alised economy, states the following in
Lab an overview document about their Road

GRID Transport Research Programme [35] :

“[...] as a general rule road investments lag behind what would be
necessary to properly address infrastructure limitations. However,
even if sufficient funding were available, it is likely that the problems
would still exist because the conventional approach of building more
roads is hampered for political, financial, social, and environmental
reasons. In addition, there is more and more resistance to building
new roads because it is believed that it has proven to often compound
the problem by simply inducing a more rapid rate of travel growth.

The challenge [...] is to identify or develop the ways and means to
alleviate traffic-related problems without building new roads. The
two principal ways in which these problems can be addressed without
new roads is through the application of better traffic management
measures and the development of new technologies.”

In the previous chapter we have taken a look at the Virtual Lab. We stated that
VLAM-G will offer several science portals that can support scientists. In this
chapter we focus on one of these portals: the Virtual Traffic Lab. Purpose of
this portal is to support researchers to aid them in their quest to design, analyze,
evaluate and improve new technologies in the area of traffic management.

Traffic research covers a wide span of areas, ranging from traffic psychology
to road safety, from the planning, design and evaluation of infrastructure to
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analysis and solutions for negative aspects of traffic such as pollution, accidents
and congestion of the roads. Great expectations are placed on advanced road
transport technologies to control traffic congestion. This control should lead to a
more efficient road use and hopefully to less (serious) accidents. Other research
efforts focus on alternative transportation methods instead of automobiles to
reduce the amount of traffic and therefore road congestion and the amount of
pollution.

Not all of these topics are suited to be incorporated into the Virtual Traffic
Lab. Since experiments consist of a number of modules that each perform a
(set of) calculation(s), only those areas of traffic research that require that kind
of tools are candidates for the Virtual Traffic Lab. Research areas that evolve
around systems engineering, simulations and analysis of large quantities of data
are particularly suitable, because they are likely to fit into the topology of the
Virtual Lab.

4.2 Background information on traffic research

In this section we outline some basic terms and abbreviations that are common
in the field of traffic. We will refer to these concepts in the rest of this chapter.

The past few years the Dutch government has been contemplating and investi-
gating the use of road pricing as a means to try to control the increasing amount
of traffic and congestions. The payment for the use of a transport service with-
out any action from the user at the moment of the use of the service (in this
case a road), is denoted by several terms: Automatic Debiting, Electronic Fee
Collection (EFC), road pricing or in Dutch Rekening Rijden.

The systems are not allowed to impose any constraints on the traffic flow, which
means that the techniques have to be used which can cope with cars performing
lane changes while traveling with high speeds.

The Dutch Government organized a tendering procedure in 1999 to test
and select an Electronic Fee Collection system, which will be used for road
pricing in the future. A twofold approach was taken: field tests were used to
demonstrate the performance of several EFC systems under real life conditions
on a part of the A12 near Utrecht in The Netherlands, and simulations were
used to investigate the systems for a large amount of traffic under different
circumstances.

Figure 4.1: Photograph of gantries over the A12 near Utrecht
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Electronic Fee Collection systems consist, in principle, of a group of technical
components, which together perform the functions necessary for automatic fee
collection. The systems are not allowed to impose any constraints on the traffic
flow, which means that techniques have to be used which can cope with cars
performing lane changes while traveling with high speeds. Gantries are therefore
positioned over the road at fixed locations. Attached on top of these gantries
are cameras that monitor and register traffic on the road, and antennas that
perform communication with equipment at the road-side and with vehicles on
the road. Every vehicle has a device mounted inside the car behind the front
window called an On-Board Unit (OBU). It also contains a smart card which
keeps the data required to allow the transaction and (possibly) acts like an elec-
tronic purse. The EFC communicates with the OBU using the antennas above
the road. This (local) exchange of messages over a short distance is called Ded-
icated Short Range Communication (DSRC) [40].

Figure 4.2 schematically displays the way an EFC system works [42].
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Figure 4.2: An Electronic Fee Collection System

This figure represents a fictitious EFC, i.e. it describes functionality an EFC
should possess, but it is not an actual EFC that is positioned on a highway (the
cameras are for instance facing each other, which would not be the case in a
real EFC). The functions contained in this figure can be described as follows
(partly based on [41]) :

Entering ADS zone - When the vehicle has entered the automatic debiting
zone, a photo is taken from the rear license plate.

Vehicle tracking - An Inductive Loop System (ILS) in the road tracks the move-
ments of the vehicle during his passage of the ADS zone. A laser curtain can

also be used to detect the vehicles.

Initialization of communication - The charging procedure starts with waking
up the OBU through a signal broadcasted by a DSRC beacon on top of a gantry.

Read OBU data - The OBU replies with data relevant for the charging, such as
its ID.

Determination of class - The class to be applied for the determination of the
fee will be determined according to a classification scheme.
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The input for this determination can either come from

- the data read from the OBU or

- a measurement of vehicle characteristics or

- data collected from some available database (using the number plate)

Determination of fee - The due fee will be calculated on the basis of the deter-
mined class.

Debit of charging account - The due fee is put as a debt on the users electronic
purse. If the user does not have an electronic purse or if the communication
with the OBU fails, the bill will be sent to the address corresponding with the
license plate.

Registration - The complete charging transaction is registered centrally. If the
transaction has succeeded, the photograph of the rear license plate will be re-
moved from the system. If the transaction failed, a photo of the front license
plate will be taken and is sent to the back office for further processing.

Q-Free is one of the consortia that participated in Dutch tendering procedure.
Q-Free’s system! uses gantries that are located above the road to measure pass-
ing traffic on multiple lanes. It registers the width and height of the vehicles
and exchanges messages with the OBU through antennas that are located on
top of the gantries.

Part of the QFree system is OBU localisation. The OBU localisation is a func-
tionality performed by the DSRC equipment. Every uplink transmission from
the OBU to one of the antennas can be used to estimate the position of the
OBU within an accuracy that is limited by the antenna setup. The unique
OBU identifier needs to be kept together with the localisation data and the
transmission time. With this data a set of all position estimates belonging to
one OBU can be generated, and can be compared to the result of a completed
EFC transaction. The system can now check whether a specific vehicle (with a
given OBU) has paid.

Experimenting with real EFC systems is not something that can be done every-
day. Besides the fact that there exist few operational EFC systems, not all of
the desired conditions can be controlled, such as different types of weather and
different traffic volumes. This is where traffic simulators come in.

A simulation is the execution of a model, represented by a computer pro-
gram that gives information about the system being investigated. The decision
whether to use a discrete or a continuous model for a particular system depends
on the specific objectives of the study. For example, a model of traffic flow on a
freeway would be discrete if the characteristics and movement of individual cars
are important. Alternatively, if the cars can be treated “in the aggregate,” the
flow of traffic can be described by differential equations in a continuous model
[43]. In case of a discrete model, the activities of the model consist of events,
which are activated at certain points in time and in this way affect the overall
state of the system. Events exist autonomously and are discrete, so between the
execution of two events nothing happens.

L http://www.qfree. com/References/tolling /rekning-rijden/rekning_rijden. html
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Traffic simulators offer the possibility to (re)view several scenarios in a very con-
trolled environment. One parameter, such as the traffic density, can be changed,
and the effects can be seen in the simulation. Once the simulator is properly
calibrated and validated (we will discuss this in more detail in paragraph 4.3.1),
predictions can be made about interesting questions such as under which certain
circumstances congestion forming takes place.

4.3 Requirements determination

During the development of the Virtual Lab, it was decided that an analysis
workbench for electronic fee collection would be one of the application domains.
This decision leads to the development of a (sub) system within the framework
of the Virtual Lab. The logical step following this decision is to choose the
appropriate systems development process.

We are dealing with a changing environment, the specifications of the Virtual
Lab can change because it is still in development. The (traffic) user require-
ments can also change, because they become more aware of the features the
Virtual Lab (will) offer. Because of these relative uncertain circumstances, we
have chosen the evolutionary approach of systems development. This approach
breaks up a project into separate parts, and then, one by one, each of the parts
is taken through the systems development process (requirements - design - im-
plementation - testing). Each part either adds to the functionality of one of
the earlier parts or integrates into the system with other parts. The emphasis
is on a learning process, whereby users and developers refine the requirements
or learn more about the possibilities of the technology, from the experience of
developing and testing a given part, and then use this knowledge to shape the
development of the next part [11]. After every part has been integrated the final
phase of systems development is reached, the maintenance phase.

The development of the entire Virtual Traffic Lab is much too comprehensive
for this thesis. We will perform the requirements determination phase, which
in turn consists of several other phases.

Problem definition is the first step. We take a look at the problems in traffic
research at the University of Amsterdam and explain how we think these can
be solved by and will from VLAM-G.

Normally a feasibility study will be conducted. During this phase it is ascer-
tained whether the proposed system will help to attain organization objectives
(i.e. does it fit in the organization strategy?) and what the economic (i.e. costs
versus the expected benefits), technical (i.e. hard- and software requirements)
and operational feasibility (i.e. acceptation by the users) of the proposed sys-
tem is. In our case the decision to develop the Virtual Traffic Lab as part of
VLAM-G has already been taken. The manpower and funds are allocated as
part of this project, the required hardware and software is available, and since
the traffic researchers actually are developing the system themselves, the accep-
tation should not be a problem. Because of these premises we assume that a
further extensive study into these factors is not necessary.

Requirements acquisition involves collecting and analyzing information sources
that describe the tasks that are performed. This can range from observing or
interviewing the current users to the analysis of existing system documents. We
have made an inventory of tools that are currently used to perform traffic anal-
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yses, based on manuals and reports that describe these tools. Conversations
with and demonstrations by the end users took place to explain unclear parts
of the manuals or tools.

Finally during the requirements analysis we translated the descriptions of the
tools into a more formal and structured list of requirements. We make a distinc-
tion between functional and technical requirements. Functional requirements
describe what the system should do. These requirements are based on the goals
users want to reach and the tasks they intend to perform with the system. Tech-
nical requirements describe technological solutions or the types of technology
components for the functional requirements.

Many studies show that the lack of, or inadequate requirements, are a ma-
jor cause of system failure, where “failure” is defined as not meeting predefined
expectations by the contractors, or even actual system bugs or crashes. Boehm
[12] states that the cost difference to correct an error in the early phases of
system development as opposed to following phases is in the order of one to
one hundred. In other words: we need to pay attention to the requirements,
otherwise we will regret it in the next phases of systems development.
Requirements are statements of what a proposed system is supposed to do. This
is separate from how the function is to be accomplished: the how is a design
issue, not a requirements issue. For example: ”The system shall allow users to
select from a set of predefined modules”, is a requirement. On the other hand,
”"Module descriptions will be stored in a Matisse database”, is a statement of
how something might be accomplished, and is therefore not a requirement. The
design of the system can only start after completion of the requirements phase.
We start with explaining the problems that are present in traffic research.

4.3.1 Problem definition

Two elements are essential for experimental traffic research at the University
of Amsterdam: traffic simulators, and files or databases that contain logs from
real or simulated traffic. These two factors consume most of the time when
performing or analyzing traffic experiments.

It might seem obvious to think that simulating specific traffic situations is the
most important issue and challenge in traffic research. What is less known, is
the fact that the preparation and interpretation of data that is produced by real
or simulated traffic is far from trivial.

A lot of meta data about a simulation or about a conducted traffic experiment
has to be registered in order to provide a solid basis for hypotheses and their
proof. An example is the accuracy of the sensors in or above the road that are
used to detect traffic. The way they are configured has to be known, if not, a
certain configuration of the sensor may for instance lead to the situation where
trucks pass the sensor and are (wrongfully) classified as “regular traffic” instead
of “heavy traffic”’. This has severe consequences for the interpretation of the
recorded traffic data.

Another problem is occlusion, or in other words: visual obstruction. In the
context of EFC systems “occlusion” is used to denote the situation where a spe-
cific aspect of a vehicle (i.e. the OBU or license plate) is blocked from sight by
another vehicle, and therefore making it impossible to establish communication
or to make a photograph. EFC systems have to comply with several System
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Quality Factors such as preventing free rides (where a violator, through an er-
ror in the sensor system or coordination system, is not identified as such and
therefore is not registered). The Dutch government demands the chance for this
event to happen to be smaller than one in a million.

The calibration of (real or virtual) sensors therefore needs attention. This is es-
pecially difficult for simulators, because it requires large and various amounts of
traffic data. Calibration of a traffic simulator involves the process of fine-tuning
model parameters with the objective of reproducing specific traffic flows [36].
Once it is calibrated, it also needs to be validated. Validation is the process of
checking whether a model (including fine-tuned parameters) reproduces traffic
flows for which it was not calibrated. By definition, since traffic flows differ
with each situation, validation results will not be as good as calibration results.
However, validation allows application of the model for other traffic flows than
the flow(s) for which the model is calibrated. This is of course one of the major
strengths of traffic simulators, although one still has to keep in mind that it
presents a possible outcome and not necessarily the one and only outcome.
One of the related problems that traffic researchers face is the lack of registered
and available traffic flows. It takes a lot of careful planning and organization to
produce valid and interesting data from real traffic flows. Our group uses data
that is derived from RDW'’s Test Centre Lelystad? and from an electronic fee
collection test that was held in the beginning of 2000 at the A12 near Utrecht.
The problem is that there is hardly any reference material, benchmarking data
that can be used to validate the experiments. In some cases this data is avail-
able, but it lacks information about the specific conditions (about the weather,
the vehicles, the sensors) surrounding the registration of the traffic flow. In the
worst case this renders the data useless, or requires lots of time and energy for
manual inspection and editing of the data.

Traffic scientists also encounter problems that are not directly related to their
area of expertise but that have to be solved anyway. An example is the use
of overhead cameras above the road; the pictures or movies of traffic that are
recorded show perspective and radial distortion, caused by the angle and by the
lens of the camera. Computer graphics techniques have to be used to try to
compensate for these distortions.

Some tools have been developed through the course of the last few years to
support researchers in coping with these problems. These tools are not generic
however, they are specifically engineered to perform one task and are not de-
signed to cooperate with other tools.

The users have expressed the wish to have an analysis workbench at their dis-
posal. VLAM-G offers a generic approach for problem solving and offers re-
usability of (parts of) tools. It promises to deliver a more integrated set of tools
than the current disjoint collection.

The cooperation and sharing between traffic researchers might be stimulated by
the collaborative aspects that VLAM-G will offer. Multiple users from differ-
ent countries who are also doing research on electronic fee collection, or traffic
management in general, would be able to perform analyses in the Virtual Traffic
Lab, and could learn and benefit from each others experiments. This could also
lead to an increase of validation data.

2 http://www.rdw.nl/eng/diensten/ondernemingen/tcl/index.htm
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Because VLAM-G utilizes the Grid, the time it takes to perform analyses can
be reduced significantly. This time benefit can lead to a faster progress or to a
more detailed study.

To (re)develop all the routines that are now available for VLAM-G would take
too much time and effort for the purposes of this thesis (which aims to give an
exploration of the Virtual Traffic Lab and not an entire implementation). We
therefore limit the scope of the solution to the problems to the integration of
the current tools into VLAM-G.

To summarize, several problems exist that have to do with traffic simulators,
and with data generated by these simulators or by real traffic flows. While most
of these problems can be solved right now with the current tools, the expecta-
tion is that VLAM-G will offer, besides the distributed computational resources,
more flexibility through its module repository, which will have to be filled with
specific traffic operations. Additional (indirect) benefits are expected, caused by
the collaborative aspects of VLAM-G. Development of the Virtual Traffic Lab
will first be directed towards the integration of the current tools into VLAM-G.

4.3.2 Requirements acquisition

In order to be able to integrate the current tools into VLAM-G, we need to
investigate two things. First, we need to make an inventory of the tools that
are currently used to aid researchers in preparing or performing analyses, and
in general, which tasks the users perform. Second, we need to analyze these
tools and tasks and distill wishes and requirements. If we split them up and can
distinguish atomic (sub) tasks, we have the basic decomposition in modules for
VLAM-G.

In this paragraph we will give a short description about each tool and will
summarize its functionality. This inventory will offer us an overview of tasks
the traffic researchers perform at the University of Amsterdam.

ADSSIM

ADSSIM is short for Automatic Debiting System SIMulator, and is a joint devel-
opment of CMG and the University of Amsterdam. ADSSIM is a discrete event
simulation environment for Automatic Debiting System simulations. ADSSIM
is one of the components of a traffic simulator. The entire simulation starts with
a Traffic Generator, which generates amongst other things several types of vehi-
cles, their arrival time and their intended speed. These variables can be based
on injection files containing real traffic flow data or on a stochastic process. The
generated traffic is handed over to the Road Traffic Simulator. This simulator
determines the trajectory of each vehicle through the ADS section of the road.
It also determines longitudinal and lateral behaviour of each vehicle on the road.
This behaviour is based on several parameters such as the intended headway (in
case of a car in front) and the intended speed for longitudinal behaviour, and the
“wish” to make a lane change and small in-lane changes for lateral behaviour.
Events are scheduled which represent all activities of the ADS. These events
represent e.g. a start-up of communication, OBU activity, a sensor activity or a
registration activity. For each vehicle all ADS activity is logged. Next, after the
vehicle leaves the ADS, it enters an analysis module, which generates estimates
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of the desired System Quality Factors. These factors are requirements that are
specified by the contractor of the ADS, the Dutch government in case of the
Rekening Rijden project. The System Quality Factors can be seen on the right
side of figure 4.3.

Evaluation Framework
ADS Simulator Incorrect
Enforcement
——®  Coordination Incomplete
Charging
. Incorrect
Traffic " bt
Communication Detection Classification Registration -
W‘ subsystem subsystem subsystem subsystem Non-charging

Figure 4.3: ADSSIM system overview

This structure closely resembles the functionality and steps which are described
in the background information on traffic research (section 4.2). The commu-
nication subsystem exchanges messages with the OBU inside the vehicle. The
detection subsystem detects the vehicles with sensors when they are passing
gantries. The classification system determines the type of vehicle. When these
readings are combined, almost every vehicle can be uniquely identified (besides
a few exceptional cases which will have to be investigated further).

The evaluation framework outlines interesting scenarios that can be examined,
such as different types and amounts of traffic, and different types of weather.
On the right side the requirements for the ADS which have to be evaluated after
the simulation run has finished.

VideoRecorder Tool

This tool can capture and display footage that was recorded on video using an
overhead camera on a gantry. A text file containing the desired start time, end
time and filename is given to the application. It digitizes and compresses the
selected analog video signal and saves it on disk.

The application also enables the user to view a selected movie. The interface
offers the ability to select a movie, play it forwards and backwards at regular
and high speed, pause the movie and to copy the current frame to the clipboard.
The videotool offers an API built in ActiveX, a standard that enables software
components to interact with one another in a networked environment, which
means that other environments such as MatLab are able to control the videotool.

Detection of occluded vehicles

Purpose of this tool is to seek occlusions of specific vehicle locations from a
sensor by other vehicles, based on a given ADS configuration file, a traffic file and
trigger condition of the sensor. Three possible situations exist where occlusion
can take place: occlusion of a sensor pointing in the traffic direction, occlusion of

28



a sensor pointing against the traffic direction and lateral (side-ways) occlusion.
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Figure 4.4: Three types of occlusion. On the left lateral occlusion, in the middle
occlusion of a sensor pointing against the traffic direction, on the right occlusion
of a sensor pointing in the traffic direction.

In each of these situations there exists a critical distance between the vehicle
that has to be registered by the sensor and the vehicle that causes the occlusion
(typically a truck or lorry). These three distances first have to be calculated
for a given setup (in a simulation). Once these distances are calculated, their
occurrence in the traffic files has to be found. Traffic files do not contain dis-
tances between vehicles, but the inter-vehicle distance can be calculated using
the inter-arrival time and velocity of two vehicles. The resulting distance can
then be compared to the critical occlusion distance(s).

Detection data analysis tool

Purpose of this tool is to give visual insight into communication messages that
are used to detect vehicles. The communication logs contain thousands of lines,
each consisting of seventeen separated numbers that indicate the OBU ID, the
communication zone, etcetera. For a human reader it is difficult to interpret
these messages. The analysis tool can filter detection and communication mes-
sages from a logfile. A listbox is presented to the user in which he can select a
date, and a half hour or hour interval on that date. The logfile is indexed dy-
namically in order to display the dates and the time intervals, this intermediate
result is stored in a temporary file. The file is then used for visualization of the
data in the selected interval.

Another option is to use a listbox which displays the test cases that were per-
formed. The user selects one of these cases, and all the available data for this
test (usually several hours in one day) is displayed in a plot. After selecting
a test, OBU data needs to be matched to the detection data. This process
is performed by a validation tool, which calculates and validates the matches.
Afterwards the user is able to manually remove or add a match.

The results that are displayed in the plot can offer a starting point for further
analysis and give an indication of the detection quality.
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DataVisTools

This tool gives a (symbolic) visual representation of the location of vehicles
as recorded by laser curtains and the ILS of the EFC. It also displays an AVI
which contains the actual footage of the traffic on the road taken by the overhead
cameras. This tool was used to (manually) determine and locate discrepancies
in the measurements by the ILS and overhead cameras.

Two lanes are shown vertically, with cars represented by blocks moving on this
road. The user interface offers the scientists the possibility to step through the
data on two scales: time based and frame based. The user can move forward
and backward on a logarithmic scale.
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Figure 4.5: DataVis tools

We selected this figure on purpose, to show one of the exceptions that can be
determined using this tool. Several things can be noticed in the example figure.
The symbolic representations and still frame show an example of a situation
where the detected data is slightly offset; the time, location and length of a
detected vehicle differs when viewing the ILS and overhead camera data.
Figure 4.5a also shows a small black square. This denotes a detected vehicle,
while the still frames do not show a vehicle in the left lane. Detailed analysis
of the (moving) frames showed a drop of water falling down from the gantry
on the road, with light reflecting on it. This probably caused the (incorrect)
detection of a non-existent vehicle.

ComVis

During the development and testing of Q-Free’s Rekeningrijden Electronic Fee
Collection system a tool called ComVis was created. ComVis (short for Com-
munication Visualization) is a graphical tool that presents the Dedicated Short
Range Communication in an easy to understand fashion. This tool is similar to
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the detection data analysis tool, but ComVis is able to visualize different types
of communication in several plots.

The program runs under MatLab 5.3 and is written as a collection of function
scripts. ComVis extracts data from logfiles which contain time-stamped lines.
It only extracts lines that contain specific markers which denote interesting mes-
sages. Based on these messages, several visualizations are presented to the user.
ComVis displays plots which show the number of messages involved in each pas-
sage, the type of activity (transmission or reception) and the transmissions and
receptions per zone. These plots show data of all the registered OBUs, but the
user also has the possibility to view the data of an individual OBU. Appendix
B contains an example of the plots made by ComVis.

OBU Localisation Comparison Tool

An EFC system has to comply with a specified accuracy of OBU localisation.
Analysis of the accuracy can be used to evaluate this aspect of a EFC system,
but it can also be used as input for this aspect in a simulation.

This tool compares the lateral OBU localisations (as seen by the communication
system of Q-Free) to the position as seen from the overhead camera.

Figure 4.6: Still frame of traffic passing through a gantry

The communication logs are filtered for localisation messages. The user specifies
a date and time, a transaction number and an OBU number, which results in
a matrix containing the position messages. This matrix is converted to a script
file which contains commands for the VideoRecorder utility which is described
in section 4.3.2. A MatLab routine reads the AVI-file that is created by the
VideoRecorder utility and enables the user to scroll interactively through the
frames of the movie. On the frame where the OBU is above the detection line,
the user clicks on the position of the OBU. This frame and the location (image
coordinates) are saved.

The final step is the conversion of the location of the OBU from image coor-
dinates (i.e. pixels) to real world coordinates (i.e. meters). A pinhole camera
model [38] is used to compensate the perspective and radial distortion caused
by the camera (which can be seen in figure 4.6).

The OBU localisation as detected by the overhead camera can now be compared
to the OBU localisation that is based on communication messages. The mean,
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minimum and maximum error and the standard deviation are calculated for the
specified OBU.

Observations

While studying the manuals and tools, we made some observations and had
some conversations about the way the traffic researchers are used to work.

Traffic users are demanding, they will not accept one single button which
promises to solve all problems. They expect the ability to view and (if they see
that as necessary) add, edit, or remove intermediate data. This requirement
has influence on the level of detail of the tools. A more fine grained set of tools
has to be created to fulfill this requirement.

The traffic scientists perform two roles. On the one hand they develop traffic

tools themselves, on the other hand they use these tools to verify hypotheses
and to perform analysis and visualization on traffic data. The first role requires
a thorough understanding of topics in computer science. It is not surprising to
see that the traffic scientists have a background in computer science. The sec-
ond role requires domain specific knowledge, in this case knowledge about traffic
flows, Automatic Debiting Systems, OBUs, etcetera. Because traffic scientists
combine the computer science and traffic domain, we make two assumptions.
The first assumption is that a high level or abstract user interface is not ab-
solutely necessary. If some of the details of the underlying implementation are
shown to the user, the traffic scientists probably would not mind because they
are used to it.
The second assumption is that we expect more feedback from traffic scientists
about applications then from users from other domains. This assumption is
based on the fact that we think that traffic scientists have a better understand-
ing of the underlying techniques and implementation than other users (such as
biologists or chemists). We expect that this will result in more accurate feedback
and in more feedback in general. This does not mean that feedback from other
users will not be appreciated, on the contrary, users with a non-computer sci-
ence background should be able to supply valuable feedback exactly because of
this reason. They can provide feedback about the usability that the developers
did not think of because they are “too close” to their application.

The majority of the tools are MatLab-based. This environment is used be-
cause of the powerful data analysis and visualization tools it offers. After we
have summarized the requirements, we will explain what consequences this has.

4.3.3 Requirements analysis

In the previous paragraphs we have described several tools that are used to
perform specific tasks. We analyzed these tasks and have translated them into
a more formal description. Before we specify these requirements, we first sum-
marize frequently used abbreviations.
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Abbreviations

ADS
ADSSIM
DSRC
EFC

ILS
OBU

Automatic Debiting System

Automatic Debiting System SIMulator
Dedicated Short Range Communication
Electronic Fee Collection

Inductive Loop System

On-Board Unit

Requirements specification

Functional requirements

FUNCO01

FUNCO02
FUNCO03

FUNC04

FUNCO05

FUNCO06

FUNCO7

FUNCO08

FUNCO09

The system shall be able to visualize DSRC communication of
an EFC in an easy to understand fashion.

The system shall provide access to ADSSIM.

The system shall provide processing algorithms on ADSSIM-
or EFC-logfiles.

The system shall provide the option to select part of an
ADSSIM- or EFC-logfile based on user specified characteris-
tics.

The system shall provide access to the VideoRecorder Tool.
The system shall be able to compare two sets of localisation
data.

The system shall be able to give a symbolic visualization of a
road with traffic.

The system shall offer the user the possibility to view, add,
edit, or remove intermediate data.

The system shall be able to detect occurrences of occlusion in
ADSSIM- or EFC-logfiles.

Technical requirements

TECHO01

TECHO02

TECHO03

TECHO04

TECHO05

TECHO06

The system shall be able to provide input to ADSSIM in the
form of a runtime specification defined in several files.

The system shall be able to read logfiles from an EFC and from
ADSSIM.

The system shall give the user the option to specify one or more
communication markers, which will result in a cleaned up EFC-
or ADSSIM-logfile containing only those messages.

The system shall give the user the option to specify which of
the available parameters of the logfile should be selected.

The system shall give the user the option to specify a time and
date, or a time and date interval, which will result in a cleaned
up EFC- or ADSSIM-logfile containing only data of this time
and date (range).

The system shall give the user the option to view a list of all of
the performed real life or simulated traffic runs and will register
the selection.
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Technical requirements (continued)

TECHO7

TECHO08

TECHO09

TECH10

TECH11
TECHI12

TECH13

TECH14

TECH15

TECH16

TECH17

TECH18

The system shall be able to graphically display the location of
detected vehicles at a certain moment in time, based on a given
(selection of a) logfile. Desired display: x-axis: time (hh:mm),
y-axis: y-position (m).

The system shall be able to draw plots of DSRC, for every OBU
that was logged and for each individual OBU:

Number of messages in each passage: x-axis: time (s), y-axis:
number of messages.

Type of activity: x-axis: time (s), y-axis: transmission and re-
ception.

Transmission / reception per zone: x-axis: time (s), y-axis:
zone (zone number), separate markers for transmission and re-
ception.

The system shall be able to give commands to the Video-
Recorder Tool via an ActiveX-interface

The system shall be able to create a scriptfile suitable for the
VideoRecorder Tool based on a given date, time, transaction
number and OBU number.

The system shall be able to read and display an AVI-file.

The system shall be able to retrieve the image coordinates based
on the position where a user clicked in a still frame of an AVI-
file.

The system shall be able to convert image coordinates to real
world coordinates, based on a pinhole camera model that com-
pensates for perspective and radial distortion caused by the
camera.

Necessary inputs: image coordinates (x, y) and camera position
(X7 y7 Z? w? 997 K)'

The system shall be able to calculate the mean, standard de-
viation, minimum and maximum error for two given sets of
(lateral) positions during a time interval (y1, t1, y2, t2 ).

The system shall be able to compare two sets of location data
(ID, y, t) and shall give the matches as a result.

The system shall give the user the option to view a set of loca-
tion data (ID, y, t) and manually add or remove rows.

The system shall provide a top view of a road with vehicles
represented as blocks, based on EFC and ILS data contained
in files. This display shall be accompanied by a user interface
which enables the user to move seconds or frames forward or
backward, based on a logarithmical scale.

The system shall calculate the critical distance between two ve-
hicles so that one does not occlude the other vehicle (as seen
from the sensor point of view).

Necessary input: type of occlusion (lateral, sensor pointing in
traffic direction, sensor pointing in traffic direction), ADS con-
figuration file, traffic file, trigger condition of the sensor.
Output: occlusion distance (m).
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Technical requirements (continued)

TECH19 The system shall be able to find occurrences of inter-vehicle
distance smaller than a given distance (i.e. critical occlusion
distance).

Necessary input: sensor passage time of a vehicle (s), vehicle
velocity (m/s).

Output: occurrence of inter-vehicle distance smaller than spec-
ified (true/false), inter-vehicle distance (m)

The requirements that have been determined form a starting point for the design
and implementation of the Virtual Traffic Lab. The development of the entire
Virtual Traffic Lab is too comprehensive for this thesis. We want to prove the
functionality and benefits of the Virtual Traffic Lab by developing a prototype.
This prototype will not demonstrate the full possibilities of the Virtual Traffic
Lab, because that would require the development of over a dozen separate mod-
ules. The majority of these tools runs in MatLab. We have chosen to use the
currently available traffic tools as much as possible. In order to use these tools
in combination with the Virtual Lab, an interface is needed between these two.

4.4 Summary

We have discussed several problems which exist for the traffic domain, that
have to do with traffic simulators and with data generated by these simulators
or by real traffic flows. While most of these problems can be solved right now
with the current tools, the expectation is that VLAM-G will offer a significant
time reduction to run these tools. The distributed computational resources are
expected to decrease the time spent on waiting for an analysis to complete.
The resources of the Grid also provide far more storage capacity than currently
available.

Another expectation is an increased flexibility through VLAM-G’s module repos-
itory. Additional (indirect) benefits are expected, caused by the collaborative
aspects of VLAM-G. We have analyzed the current tools and have specified the
functional and technical requirements for the Virtual Traffic Lab based on these
tools. The requirements can form the starting point for the development of
several traffic modules.

Because traffic scientists are demanding, a fine grained set of modules will have
to be created to satisfy their needs. The development of the Virtual Traffic
Lab will first be directed towards the integration of the current (MatLab based)
tools into VLAM-G.

In the next chapter we discuss some common terms and concepts such as Mat-
Lab and XML that will be used to create an interface between VLAM-G and
the current traffic applications.
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Chapter 5

Interfaces

5.1 Introduction

In order to realize mobile applications,
an interface is needed between the Vir-
tual Lab and an environment in which
the mobile applications can run. This
environment has to comply with cer-
tain requirements.

First of all, general knowledge and ac-

Applications

interfaces | matlab-vlab

Virtual ceptation of the environment by the

VLAM-G Traffic (end) users is a prerequisite.
Lab Earlier on we already described that
GRID the analysis and visualization of (sen-

sory) data are essential tasks as part of
experiments. So in the second place,
the selected environment has to be able to perform these tasks.

Thirdly, the environment has to support various options for modelling and sim-
ulation. And finally, the environment must offer interfaces to external systems,
such as databases and hardware interfaces (sensors) but also other programming
environments like C, C++ and Fortran.

5.2 MatLab

Environments that meet these requirements are MatLab and Mathematica.
MatLab is the de facto standard for scientific computing, enjoying wide use
in industry and universities. MatLab already offers a database interface to Ma-
tisse, a (multimedia) database which will be used in the near future to store the
descriptions of the Virtual Lab-modules. Considering these arguments we favor
the Matlab environment for complex system engineering as traffic systems.
The increase of computational power the past few decades has been largely
influenced by the introduction of multiple processors and parallel processing
architectures. These systems offer a significant performance advantage over
conventional (single processor) systems. High Performance Computing has ma-
tured over the decades, and the availability of key applications (such as database
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applications) make these systems interesting not only for the academic world
but also for commercial customers [21]. MatLab however is an application that
is still based on a single processor. In the past, MathWorks has developed a
few experimental versions of MatLab for parallel computers. They found three
difficulties while evaluating these versions, which lead to the conclusion that a
fully functional MatLab running on parallel computers was not viable [20]. The
three reasons for this decision are:

the memory model; it takes longer to distribute the data than to do the actual
computation.

granularity; MatLab spends only a small portion of its time in routines that
can be parallelized, like the ones in the math library. It spends much more
time in places like the parser, the interpreter and the graphic routines, where
parallelism is difficult to find.

business situation; there are not enough potential customers with parallel ma-
chines to justify fundamental changes in the MatLab architecture.

In principle the first two reasons could also apply to the Grid. The expecta-
tion however is that these factors will play a small role, since the Grid will be
used for computations of large blocks of data.

Despite MathWorks decision not to develop a parallel MatLab, there have
been a number of initiatives to circumvent this situation. We can distinguish
four general approaches to providing parallel functionalities to Matlab:

1. Provide message passing routines (like PVM / MPI) in Matlab.
The user can issue PVM- or MPI-calls inside MatLab, can start MatLab
processes on other machines and then pass commands and data between
between these various processes [15]. Examples of implementations are
MultiMATLAB, Cornell Multitasking Toolbox for Matlab, DP-Toolbox,
MPITB/PVMTB, MATmarks, Parallel Toolbox for MATLAB and Mat-
labMPI.

2. Provide routines to split up work among multiple Matlab processes.

A tool which enables the user to start MATLAB processes on remote ma-
chines or on multiprocessor machines. The tool allows the user to spawn
a set of slave Matlab sessions “underneath” the current session forming
a Virtual Machine [16]. Loops where the individual loop iterations can
be performed independent of one another are executed on the different
machines. The amount of inter process communication is minimal [17].
These types of problems are commonly referred to as embarrassingly par-
allel. Examples of implementations are the MULTI Toolbox, Paralize,
PMI, PLab, Parmatlab and the MATLAB Parallelization Toolkit.

3. Translate (sequential) MATLAB code for parallel platforms.
A compiler translates ordinary MatLab scripts into (for instance) C pro-
grams, which invoke parallel function libraries such as ScaLAPACK. Main
advantage besides the parallelism is the fact that the original code (Mat-
Lab scripts) does not have to be adapted to create the parallel version
[19]. Examples of implementations are Otter, RTExpress, ParAL, FAL-
CON, CONLAB Compiler, MATCH and Menhir.
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4. Enable parallel processing inside MATLAB.
As explained before, MathWorks has decided not to pursue a parallel
MatLab because they estimated this would not be viable at that moment
in time (1995). However, if the communication bandwidth is no longer
a bottleneck and if there is enough demand for a parallel MatLab, they
might reconsider and re-evaluate the possibilities for parallelism within
MatLab.

There exist some crossovers which combine the message passing routines of
the first approach with the spawning of multiple MatLab processes, such as
PPServer / MATLAB*P [18], Netsolve, DLab, Matpar, PLAPACK and Para-
mat.

As Dongarra states in his article “High Performance Computing Today”, two
things remain consistent in the realm of computer science: I) there is always
a need for more computational power than we have at any given point, and
IT) we always want the simplest, yet most complete and easy to use interface
to our resources. In recent years, much attention has been given to the area
of Grid Computing. We want to combine the ease of use of MatLab with the
computational power that is provided by the Grid. We have chosen to try to
re-use as much of the available tools as possible.

Ideally we do not want to alter the existing MatLab code and want to apply
a wrapper around the relevant parts so we can use it in the Virtual Lab. MatLab
offers the option to create a standalone application based on MatLab-files. The
idea is to develop a new or use an existing algorithm in MatLab to perform a
(set of) operation(s), and use the MatLab Compiler to create a C shared library
or a C++ static library. The algorithm can then be integrated into another
application, in our case the Virtual Lab, by loading the library.

A different approach is to execute external C-code using the so-called MEX-
construction. This construction consists of two distinct parts [34]:

1. A computational routine that contains the code for performing the com-
putations that you want implemented in the MEX-file. Computations can
be numerical computations as well as inputting and outputting data.

2. A gateway routine that interfaces the computational routine with MAT-
LAB. The interface is provided by the function mezFunction which re-
quires a number of right-hand input parameters and a number of left-
hand output parameters. The gateway calls the computational routine as
a subroutine.

The figure 5.1 shows how inputs enter a MEX-file, what steps the gateway
function performs, and how outputs return to MATLAB.

MEX-files run in the same process space as the MatLab interpreter. When
the user invokes a MEX-file, the MATLAB interpreter dynamically links in the
MEX-file. This is different from the first approach, because stand-alone C or
C++ applications run independently of MATLAB.

In the next chapter we describe the implementation of the MatLab-VLAM-
interface, and we also discuss the choice between these two approaches.
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Figure 5.1: The MEX-cycle

One of the advantages of MatLab is the amount of toolboxes and additional
software that is available. One of MathWorks main products is Simulink.

5.3 Simulink

Simulink is a simulation and prototyping environment for modelling, simulating,
and analyzing real-world, dynamic systems. Simulink provides a block diagram
interface that is built on the core MATLAB numeric, graphics, and programming
functionality. It provides a graphical simulation environment called StateFlow
for modelling and designing event-driven systems. It makes extensive use of
blocksets, collections of application-specific blocks that support multiple design
areas. Examples are electrical power-system modelling and digital signal pro-
cessing. These blocks can be incorporated directly into Simulink models. Each
block has one or multiple inputs, outputs and mathematical functions that to-
gether form the state of that particular block at a given moment in time.

One of Simulinks predefined blocks is the S-Function. An S-function (system-
function) is a custom code module that defines the behavior of a Simulink block.
Simulink provides templates for creating custom S-functions using existing or
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newly-developed code (C, Ada, Fortran, or MATLAB). Simulink also provides
a masking capability. This allows us to create a custom user interface, called a
mask, for any subsystem or S-function block. The mask can include a custom
icon, parameter dialog, online help, and initialization script. Using this mask
we can alter a block’s appearance and user interface. These features will be
very useful for creating our interface with VLAM-G.

Simulink blocks and models are saved in a format called MDL.

5.4 MDL

MDL is short for Model Definition Language. Using Simulink, one can create
a model which consists of several connected blocks. The constructed model, its
connected lines and specified parameters are stored in an ASCII-file with the
.mdl-extension. The internal format used is MDL. Each system or subsystem is
described by the corresponding name followed by curly brackets. Inside these
brackets the system’s parameters are specified. Parameters are stored using the
construction name (tab) "value”.

MatLab and Simulink run on various platforms (Windows, Macintosh and sev-
eral Unix and Linux platforms such as Solaris, IRIX and HP-UX) which means
that users can exchange their Simulink models by exchanging MDL-files (mod-
els and possibly libraries). Nonetheless MDL is a MatLab specific data format.
If one wants to execute or validate a certain model in another simulation en-
vironment, the only option is to rebuild it manually which takes a lot of time
and effort. The possibility that errors are introduced during this process is very
likely. A more generic data structure would circumvent these problems and
would offer a more universal exchangeable format. XML is an example of a
generic language that could be used instead of MDL.

5.5 XML

XML is short for eXtensible Markup Language. It is a common syntax for
expressing structure in data. XML originated in 1996, as a result of frustration
with the deployment of SGML on the Internet.
Key concept underlying SGML (Standard Generalized Markup Language) is
separating the representation of information structure and content from in-
formation processing specifications. Information objects modelled through an
SGML markup language are named and described (using attributes and sub el-
ements) in terms of what they are, not in terms of how they are to be displayed
or otherwise processed.
The SGML family of standards that include SGML (the modelling framework),
DSSSL (the transformation framework for presentation) and HyTime (the link-
ing and timing framework) are ISO standards that proved difficult to implement
and aroused little interest outside of specialist fields of expertise. XML simpli-
fied the requirements for implementation, with the specific intention of enabling
deployment of markup applications on the Internet. XML is a dialect of SGML
that is designed to enable ’generic SGML’ to be served, received, and processed
on the World Wide Web.

XML has several characteristics that make it a powerful and flexible lan-
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guage. It separates the content (within XML) from the structure (schema) and
from the presentation (eXtensible Stylesheet Language - XSL).

XML Schemas describe the structure and meaning of the information within
an XML document. The schema determines the permissible tags for the docu-
ment as well as defining what type of data they can contain. XML Schemas are
described in Document Type Definition documents (DTDs) or XML Schema -
Data Reduced documents (XDRs). DTDs are the older way of describing the
structure and meaning of an XML document. Because the syntax for DTD’s
was difficult to comprehend and limited, XDR, a new, more flexible mechanism,
was developed.

Using an XSL document you can transform the look of an XML document from
one format into another. One of the key uses of this approach is to transform
an XML document into an HTML document.

Because the structure and meaning of XML document content are known, a
semantic search is possible. This means that not only the content data can
be searched, but also the tag names and tag attributes, which makes it more
accurate than regular (data content-only) searches.

XML is an open standard. Because it separates the content from the presenta-
tion, it is ideal for the interchange of documents between users and applications.
Each person or program can choose its own output format, such as HTML, PDF
or PS, while the exchange of the document(s) takes place in XML-form.

The X in XML stands for “extensible”. This means that the person writing the
XML-document can create new tags. The generic framework of XML makes it
very flexible, everybody can modify and extend documents to their own needs.
XML handles relatively sparse data compactly. In contrast to for instance re-
lational databases, where every row must contain data and where non-existent
data is noted by a “null”’-value, this tag can just be omitted in XML.

Figure 5.2: The relationship between XML, XSL and the schema

Earlier we stated one of the conditions to make sure that the Grid can operate
correctly and fluently: a set of common languages and protocols. XML and
derived protocols such as SOAP perform a key role in this area, because they
make data portable. SOAP (”Simple Object Access Protocol”) is a lightweight
protocol for exchange of information in a decentralized, distributed environment
[28]. It is an XML based protocol that consists of three parts: an envelope that
defines a framework for describing what is in a message and how to process it, a
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set, of encoding rules for expressing instances of application-defined datatypes,
and a convention for representing remote procedure calls and responses. SOAP
is an example of a standard that is able to send XML over HTTP.

All communication in VLAM-G is performed using XML. Topologies of exper-
iments are for instance fetched from the VIMCO database, converted to XML
and sent over HTTP to the RTS. Because all of the communication takes place
in the form of XML, this offers the opportunity to interface other applications
with (parts of) VLAM-G, as long as they comply with the definitions that are
specified for VLAM-G.

5.6 Summary

We have given background information on MatLab, which provides analysis,
visualization modelling and simulation possibilities. MatLab however is an ap-
plication that is still based on a single processor. For complex problems we
would like to use distributed computing. We identified four general approaches
to providing parallel functionalities to Matlab. For the Virtual Traffic Lab and
VLAM-G we want to combine the ease of use of MatLab with the computational
power that is provided by the Grid.

Simulink, MatLab’s modelling and simulation environment, offers the possibility
to create custom blocks. We believe we can use this functionality for creating
our interface with VLAM-G. Simulink models are stored in the MDL format.
An example of a generic language that could be used instead of MDL is XML.
XML is also used in VLAM-G for the communication between subsystems.
Based on these elements, we can create and describe some interfaces for the
Virtual Lab.

42



Chapter 6

MatLab-VLAM interfaces

6.1 Introduction

In this chapter we show several inter-
faces we have built, for the prototype
of the Virtual Lab and for the actual
implementation of VLAM-G. We will
evaluate the pros and cons of these in-
terfaces. The experience and tools gath-
ered by us during this process can be

Applications

interfaces | matlab-vlab

Virtual used as input for the (future) devel-

VLAM-G Traffic opment of the Virtual Traffic Labora-
Lab tory.

GRID In order to understand the interfaces

and the way the Virtual Lab is imple-
mented, we will first describe an exper-
iment which demonstrates the basic elements. This case will be used through
out this chapter.

6.2 CASE: histogram experiment

An experiment is composed of a number of modules, coupled by streams. As
an example, the RTS prototype demonstrated an histogram experiment. This
experiment consists of three modules:

modrand e modhist e moddisp

ml m2 m3

Figure 6.1: Topology of the histogram experiment

m1 modrand generates random numbers and sends these through its output
port.

m2 modhist moves the numbers supplied at its input port into predefined
databins. The bins are published on the output port.
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m3 moddisp counts the numbers in the bins, and when reaching a predefined
threshold, send it to the display.

A prototype of the RTS was build, with an interface to Tcl [6]. Building the
experiment in Tcl looks like this:

# Loading all modules...

vlab load modrand.so mod_rand
vlab load modhist.so mod_hist
vlab load moddisp.so mod_disp

proc create {} {
global range
# Creating experiment...
vlab create e
Adding modules...
add ml rand
add m2 hist
add m3 disp
Setting modules...
ml set range $range
m2 set range $range
m3 set range $range
# Connecting modules..
e connect ml out m2 in
e connect m2 out m3 in

# 0 ©0 0 #

}

proc start () {
e start

}

proc quit () {
destroy .

}

Added to this code are some lines that create a simple GUI that is capable
of creating, starting and modifying the experiment.The result of this simple
example is a running histogram, for the RTS prototype visualised in the TCL-
environment. Figure 6.2 shows a screenshot of the histogram. The height of
each of the bars is updated multiple times per second. The maximum height
can be controlled using the slider, which sets this parameter of the mod_hist
module.

6.3 Implementation method

In the previous chapter we described two possible ways of implementing the
MatLab-VLAM-interface: creating a standalone application based on MatLab-
files, or executing external C-code from the MatLab prompt (from now called
the MEX approach).
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Figure 6.2: The histogram experiment executed by the prototype RTS

The standalone approach offers more advantages than the MEX approach, be-
cause of several reasons. First, it offers the analytical and visualization capa-
bilities of MatLab without requiring an installation of MatLab. The standalone
approach bundles the necessary MatLab routines together with the application
code that needs to be ported from MatLab to C or C++. Because MatLab
is not required in order for these “MatLab” modules to run, the threshold for
potential other scientists to use the Virtual Traffic Lab is lowered.

Second, the MatLab code that has been written for the application needs little
or no modification. In order for the code to work as a module in VLAM-G, it
has to comply with the concept of input and output ports. If the MatLab code
expects several inputs and produces several outputs, then the application can
be seamlessly integrated into a VLAM-G module.

This approach can provide much added value to VLAM-G, the module reposi-
tory can be greatly extended using these standalone MatLab applications.

The MEX approach works the other way around. Using this MEX construction,
we want to call VLAM-G from MatLab. The idea is to utilize the Grid through
VLAM-G for heavy processing (e.g. Fast Fourier Transformations). The result-
ing data will then be returned to MatLab where the final visualization can take
place. Of course, if the visualization has to occur immediately, this method
requires a continuously running MatLab while performing the experiment. An-
other option is to temporarily store the results, so the scientist can choose the
moment and way of visualization in MatLab.

Downside to this approach is the fact that the GUI of VLAM-G cannot be used,
MatLab will use a direct interface to the RTS of VLAM-G to be able to access
the Grid.

Because the standalone approach seemed more promising, we tried to convert
some of our code to C using the MatLab compiler, and compiled this code to a
standalone executable. While this was succesful, the actual execution was not.
The conversion and compilation of several MatLab scripts had unwanted side
effects which prevented a correct execution. We ran into fundamental limits of
the compiler, which can not cope with nested functions.

Due to these problems, we decided to persue the other implementation method:
the MEX approach. The first part of this chapter is based on this approach.
In the second part, we will describe an alternative GUI in MatLab to create
experiments and to interface with the RTS of VLAM-G.
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6.4 Prototype interface

The functionality of the interface to the RTS prototype is based on the API of
the prototype Virtual Lab [5]. This API specifies the operators which are valid
in the prototype Virtual Lab. The user creates an experiment in the Virtual
Lab. Every experiment consists of a number of modules with one or more input-
and output ports. These modules are shared libraries which are added to the
experiment. The output ports of a module are connected to the input ports
of the following module through a pipe (stream). When the creation of the
experiment is completed, it can be started. One can give commands to each
module. set is used to set the value of a certain argument before the experiment
is started. get is used to retrieve the state of a certain argument. The operator
put is used to set the value of an argument while the experiment is running. In
the end an experiment can be stopped as well. The interface between MatLab
and vlab must support all these operators.

6.4.1 MEX interface

We have coupled a prototype of the Run Time System with the Matlab environ-
ment. Here the RTS is used for the heavy computational tasks, while the Matlab
environment is used for analysis and visualization of the results. To be able to
demonstrate the possibilities of Matlab as front-end, we have implemented a
gateway routine as described in paragraph 5.2. Our interface between the RTS
prototype and MatLab utilizes this gateway routine. The C subroutine that is
run consists of the main function vleb which is based on the API-description as
described above.

This gateway routine allows the user to access the Virtual Lab prototype from
MatLab: he can load modules from the commandline, couple them, configure
these modules and start the experiment. Our histogram experiment can be
created from the command line using the following statements:

\% Loading all modules...

vlab(’load’, ’modrand.so’,’mod_rand’);
vlab(’load’,’modhist.so’,’mod_hist’);
vlab(’load’,’moddisp.so’,’mod_disp’);
\% Creating experiment...
vlab(’create’,’e’);

\% Adding modules. ..

vlab(’e.add’,’ml’, ’rand’);
vlab(’e.add’,’m2’, ’hist’);
vlab(’e.add’,’m3’,’disp’);

\% Setting modules...
vlab(’e.ml.set’,’range’,’10);
vlab(’e.m2.set’,’range’,’20’);
vlab(’e.m3.set’,’range’,’30);

\% Connecting modules...
vlab(’e.connect’,’ml’,’out’,’m2’,’in’);
vlab(’e.connect’,’m2’,’out’,’m3’,’in’);

Although a powerful approach, such a commandline interface is not that attrac-
tive for unexperienced users. We therefore adapted our interface and made it
more user friendly.
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6.4.2 Simulink interface

Here the power of using a commercial analysis and visualisation environment
as Matlab pops up. We have hidden our gateway routine inside a user-defined
block of Simulink. Figure 6.3a shows an example of three graphical block dia-
grams. The first block generates random numbers, as module modrand. The
last block displays the generated bins when triggered that the bins are full. The
middle block represents a experiment that is sent to the RTS. The details of
this experiment can be seen in 6.3b.
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Figure 6.3: The histogram experiment in Simulink

Note at the bottom level that there is no line between the block sfun_input and
sfun_hist. The connection between those two modules is made by the run time
system RTS. The block sfun_input is a general utility to convert the informa-
tion flowing over the line to the input port of a VLAM-G module. The block
sfun_disp does the reverse, it converts the information flowing out of a port of
a VLAM-G module to a line.

6.4.3 Evaluation

We have shown three different ways to access the prototype RTS. We will shortly
review each of these and describe the different interaction levels.

Tcl prototype

We have extended Tcl so that you can give Virtual Lab commands on the Tcl-
prompt. With Tecl, you can easily develop user interfaces. Yet, you have to
implement the actual drawing routines for each user interface. This gives you
low level control, but standard visualisation routines have to be developed from
scratch.

Matlab command prompt

We have coupled a prototype of the RTS with the Matlab environment. A
user can give arbitrary Virtual Lab commands on the Matlab prompt. Besides
proving the basic functionality of the Virtual Lab, the coupling with MatLab
gives the scientist the possibility for extensive analysis and visualization by
using the predefined tools that Matlab provides. In our example the data that
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is produced by the third module moddisp, is sent to Matlab which calls its bar-
function to display the output. This shows the strenght of our Matlab interface:
we could just as well have chosen another way of displaying the data by using
another visualization function of Matlab, or by inserting it into a database.

Simulink

Simulink is a part of the Matlab suite. It uses graphical block diagrams which are
created by selecting components from an extensive library of predefined blocks.
The user can also define its own blocks that can incorporate existing C, Ada,
MATLAB, and Fortran code. The Virtual Lab concept of re-usable modules
can be fulfilled by using the extensive library of functions that Simulink has to
offer.

In our example we used Simulinks standard uniform random generator as
the the first block and used a threshold function for the last block, replacing
the custom made modules of the virtual laboratory. When the standalone ap-
proach is operational, we can also convert the standard blocks from Simulink to
standalone modules, thereby extending the module repository of VLAM-G.

Comparison of interaction levels

The RTS makes the actual execution of the experiment possible. The way of
operating and the flexibility (or lack thereof) makes this interface difficult to
use for inexperienced users. The Matlab command prompt interface is more
flexible because Matlab provides the user with predefined functions for analysis,
visualization and storage. While the possibilities are extensive, the user inter-
face is still text-based and limited.

The Simulink interface offers a graphical user interface and at the same time a
large repository of components.

While we were experimenting with the prototype, interfacing it with Matlab
and Simulink, the VLAM-G group put their efforts into the Gridbased VLAM.
This VLAM-G includes a Run Time System that accepts XML-files as input
and spawns Grid-jobs.

The experiences gathered in creating the different interfaces to the RTL proto-
type helped us in creating a new interface for the RTS of VLAM-G.

6.5 RTS interface

Since the standalone approach is not (yet) working, we want to call VLAM-
G from MatLab. The execution of an experiment in VLAM-G is handled by
the Run Time System, which expects and accepts an experiment (and module)
description in XML. This means that we have to arrange a way to create these
descriptions in MatLab, so we can call VLAM-G.

One option could be a command line program which asks for several things:
the number of modules, the name of every module, the number of input and
output ports, the associated datatype, etcetera. This is not a very userfriendly
approach and possible typing errors would require the input process to start all
over again.

The other option is to use an environment within MatLab that is able to create
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process flows and that allows click, drag & drop operations on components.
Earlier we described Simulink, which matches these requirements. If we want
to use Simulink as a modelling environment for VLAM-G in MatLab, we need
to realize two steps:

e Create one or more Simulink blocks that represent a VLAM-G module
e Create a convertor that translates MDL to XML

Before we can translate the experiment to XML, we first need the ability to
create this experiment in Simulink. We designed a Simulink block to make this
possible.

6.5.1 VLAM-G module in Simulink

We used one of Simulinks predefined blocks called “S-Function” to create an
outline for a VLAM-G module. We used Simulinks masking capability to create
custom parameters for this module. Appendix D.2 displays the generic XML
description of an experiment, a module and the connection between the mod-
ules. We added all the necessary parameters that are mentioned in the XML
module description to the masked system, so we can map these parameters later
on to their appropriate location in the XML file.

The module that we have created is a basic one, containing one input and one
output port. Several different experiment setups can be thought of that require
modules that have multiple input and/or output ports. Our VLAM module will
not suffice in those situations. To solve this issue, we have developed a different
kind of VLAM module.

One of the basic building blocks of Simulink are input and output ports. These
ports do not perform any operation, their function is to offer the opportunity to
connect. When two or more of these ports are selected, they can be grouped into
a subsystem. This subsystem can then be masked just like we have previously
done with the S-function block. Added to this mask are the necessary param-
eters for the module. Using this approach we have created a VLAM module
consisting of zero input and two output ports, called “2out”. Appendix C de-
scribes how a custom VLAM module can be created, with an arbitrary number
of parameters or input/output ports. As long as the module contains the re-
quired module parameters, i.e. specifies ports, the platform, datatype, etcetera,
it will work as a VLAM module.

This generic VLAM module design offers several advantages. First of all, every
possible port configuration can be made for a module, whether it has zero or
ten input or output ports. Second, if the module definition of VLAM-G ever
changes, we just need to add or edit this parameter to the masked module, and
add this parameter to the list that has to be converted to XML (more about
this in the next paragraph).

We added the (dummy) VLAM module based on the S-function and the 2out-
module to a custom Simulink library 6.4(a).
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Figure 6.4: The module library and an experiment based on this library

When a user wants to create an experiment in MatLab, all he has to do is start
Simulink, open our custom Simulink library which contains the VLAM modules,
and drag multiple instances of this module to a new model. He can connect the
modules by dragging a line from the input to the output ports, and can specify
the necessary parameters of each module. The masked modules present a simple
screen which the user has to fill in (see figure 6.5).
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Figure 6.5: The parameter screen of a masked module

The finished experiment now exists in Simulink and is stored in MDL. In order
to execute the experiment, this description has to be converted to XML.

6.5.2 MDL2XML

We first performed a survey to determine whether there exists a tool that can
convert MDL to XML, to prevent re-inventing the wheel. We discovered that
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the Vanderbilt University in Nashville just recently released a MDL2XML tool
as part of a framework called Unified Data Model, that will be capable of gen-
erating automatic semantic translators given the data model of the source and
destination tools, and the translation/mapping specifications [37]. They have
described the data models of Simulink and Stateflow as an UML Class diagram,
accompanied by a description of the classes, attributes and relationships used.
The UML diagram is converted by their framework into a Document Type Def-
inition (DTD) of Simulink and Stateflow models. The DTD is used to validate
XML that is generated by their MDL2XML tool.

Although their tool is not so much aimed at the result of the translation but at
the actual translator(s) itself, the result looks promising. A generic XML file is
created that contains the blocks, lines and parameters of the Simulink model.
We use Simulink for a specific purpose, i.e. to compose an experiment that can
be handed over to the RTS of VLAM-G. We could therefore choose to use their
tool, but would then have to create a convertor which transforms the generic
XML description of the experiment to an XML definition that complies with
the DTD of VLAM-G. Because it is relatively easy to retrieve the Simulink
model parameters in MatLab, we decided to create our own MDL2XML, which
translates the MDL directly to the XML description of VLAM-G.

We have developed a set of functions which each write a part of the XML
file that describes the experiment topology. These functions write the header,
modules, ports, instances and connections to a file. Each of these functions is
called one or multiple times using the values which have been filled in by the
user and which are extracted using the following MatLab commands:

blks = find_system(gcs, ’Type’, ’block’);
moduleNames = get_param(blks, ’moduleName’);
modulelds = get_param(blks, ’moduleId’);
platforms = get_param(blks, ’platform’);

locations = get_param(blks, ’proglocation’);
datatypes = get_param(blks, ’datatype’);
directions = get_param(blks, ’direction’);
replications = get_param(blks, ’replication’);
hosts = get_param(blks, ’host’);

dns = get_param(blks, ’dn’);

find_system access the currently opened experiment model in Simulink, and
finds the blocks. The model (experiment) consists of blocks (modules), so every
module is added to the blks-list. For every module in this list the module
parameters are requested using get_param. These values can be passed directly
to the functions which write parts of the XML file.

For determining which module has which input and output ports, which name
is coupled to these ports and to which other module this module is connected,
some counting and calculating has to be done. The name of each port can be
retrieved the same way as the other parameter values, by using get_param.
Modules that have more than one input and/or output port are subsystems,
based on multiple in and out ports. This feature is used to detect the difference
between a module that only has one input and output port, and a module that
has multiple input and output ports.
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blocktypes = get_param(blks, ’BlockType’);
if findstr( cell2mat(blocktypes(i)), ’SubSystem’)

For these subsystem modules each of the portnames is retrieved instead of just
one portname. The portnames are stored in a matrix together with the corre-
sponding moduleName and instancelID.

We now know the portnames, but we do not know which name corresponds to
which port, and to which other port this module is connected. We use the lines
that connect the modules to determine this information. Lines connect the out-
put ports of modules to input ports of other modules. We retrieve all the line
information, and determine for the start (source) and for the end (destination)
of each line the name of the module it is connected to, and the portnumber that
is used in Simulink.

lines = get_param(gcs, ’Lines’);

j=1;

for i = 1:length(lines)
sources{j} = get_param(lines(i).SrcBlock, ’Name’);
destinations{j} = get_param(lines(i).DstBlock, ’Name’);
J=j+1;
sources{j} = lines(i).SrcPort;
destinations{j} = lines(i).DstPort;
j=j+1;

end

The information about the ports is now extracted, we just need to combine
it. To determine the mapping of a portname with the (internal) portnum-
ber, we combine two corresponding matrices. For the output ports we com-
bine the matrix outputports which contains the combinations of portname,
moduleName, instancelD, and the matrix sources which contains the combi-
nations of moduleName, srcPortNumber.

For the input ports we combine the matrix inputports which contains the com-
binations of portname, moduleName, instanceID, and the matrix destinations
which contains the combinations of moduleName, dstPortNumber.

We have written a function portnr2portname which performs this combination
for a given portnumber and returns the corresponding portname. This function
is called when the connection between modules is written to XML .

We refer to appendix D.3 for the complete source code of the MDL2XML im-
plementation.

6.5.3 Evaluation

We have created two VLAM modules for Simulink. The most common one
consists of one input and one output port. The other is a subsystem based
on two output ports. Both contain the required parameters to function as a
VLAM module. We have written a manual which describes how to create a
custom VLAM module, consisting of an arbitrary number of input and output
ports. This manual can be found in appendix C.

During the design and implementation of MDL2XML, we have given attention
to the fact that the XML description of a port, module or experiment might
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change. After all, VLAM-G is still in development so changes in the description
can not be ruled out. To minimize the impact of a possible change, we created
modularized functions which write XML parts. Only the relevant XML function
would have to be changed, editing or adding one extra line to this function would
suffice.

If a module parameter has to be added, a small number of steps have to be
taken to integrate this parameter into MDL2XML.

1. Add the parameter as a variable to the mask of the VLAM module sub-
system.

2. Edit MDL2XML.M to retrieve the parameter and parameter value using
get_param .

3. Edit MDL2XML.M to add the parameter to the appropriate XML func-
tion, which will write the new parameter to the XML file.

After completing these steps, the new parameter is found and converted to the
XML file generated by MDL2XML.

6.6 Summary

We have created several interfaces to the Virtual Lab. First we interfaced Mat-
Lab with a prototype of the RTS, we made it accessible from the MatLab prompt
and from Simulink. The Matlab command prompt interface provides the user
with predefined functions for analysis, visualization and storage. While the
possibilities are extensive, the user interface is still text-based and limited. The
Simulink interface offers a graphical user interface and at the same time a large
repository of components.

For the RTS of VLAM-G we created a VLAM module library in Simulink, which
enables the user to create experiments. We also created the utility MDL2XML,
which can be used to convert the experiment from MDL to XML. During the
design and implementation we have given attention to the fact that both tools
have to be easily adaptable and extensible, and have to be generic.

The required interface between MatLab and the Virtual Lab is now available.
This interface can be used during the development of applications for the Virtual
Traffic Lab. In the next chapter, we will describe an example application.
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Chapter 7

Application: ADSSIM

7.1 Introduction

We reach the highest level of abstraction on top of the Grid in this chapter, and
discuss a traffic application for the Virtual Traffic Lab.

The Grid is already being used to solve
specific type of problems that require
large processing power and can be de-
composed into smaller sub problems,
such as Monte Carlo simulations and
parameter sweep applications. Several
initiatives have emerged to bridge the

Applications

interfaces | matlab-vlab

Virtual gap between the power and possibil-

VLAM-G Traffic ities of the Grid and the ease of use
Lab of current applications. Examples of

GRID these initiatives are the European Data

Grid! and the Particle Physics Data
Grid?, which both aim to develop and
provide end to end integration and deployment of experiment applications using
existing and emerging Grid services.

We stated earlier on in paragraph 2.3 about the Grid that most of the applica-
tions are designed for users with a background in computer science. We have
designed and partially developed a traffic application that is more user oriented
and aligns with the philosophy of VLAM-G.

7.2 Selection of the traffic application

We have specified a set of requirements for the Virtual Traffic Lab in para-
graph 4.3.3. Based on these requirements several modules can be developed for
VLAM-G. Not of all the desired modules consume huge amounts of computa-
tional power, such as TECH(9 which creates a scriptfile for the VideoRecorder
Tool. To (fully) demonstrate the functionality of the Virtual Traffic Lab a
resource intensive application (i.e. set of modules) has to be selected. Two
applications fit into this category: camera calibration (part of the OBU local-
isation tool from 4.3.2), and traffic simulations. Initially we decided to select

L hitp://web.datagrid.cnr.it
2 hitp://www.ppdg.net

54



the camera calibration application because we already have an implementation
in MatLab to solve this problem. This implementation involves (amongst other
steps) performing a parameter sweep which requires considerable computational
resources [7]. However, since the standalone version of MatLab is not opera-
tional yet, we do not have the possibility to convert these scripts to an executable
that can be wrapped into a VLAM module. Because ADSSIM can be called
from a module, we have chosen to integrate ADSSIM into the Virtual Traffic
Lab.

The scientist that starts a simulation is normally interested in (re)viewing
multiple scenarios. Right now the execution of simulation runs happens sequen-
tially, which can take a lot of time. The execution of one simulation run by
ADSSIM on a standard configuration ( Ultra Sparc 250 MHz / Solaris 5.6-5.8 )
for example takes between 3 minutes for a simple model, and over 5 hours for a
complex one. Roughly speaking it takes one minute to simulate one thousand
cars using a model of average complexity. The use of distributed computing to
reduce the execution time of simulating multiple scenarios is an obvious but not
a simple solution. Although significant amounts of time will be saved during
the execution of the simulation runs, the scientist still wastes time adapting his
simulation setup for the distributed environment, and still has to prepare each
of the individual simulation runs manually. These two tasks will have to be
performed all over again if the scientists wants to perform a different type of
simulation. It would be a great advantage for the scientist if he would not have
to set up the distributed environment and all of the simulation runs each time he
wants to analyze certain aspects using a simulator. Ideally, the scientist would
only have to specify the necessary input parameters and the desired output or
desired way of displaying the output. This exactly resembles the philosophy of
VLAM-G.

We will use a real example of a topic that is investigated by traffic scientists
at the University of Amsterdam to demonstrate the benefits from the integration
of ADSSIM into the Virtual Traffic Lab, and to show how we want to realize
this implementation.

7.3 CASE: influence of heavy traffic on average
speed distribution

Driving behaviour can be investigated by looking at the intensity of the traffic
and by looking at their interactions. One of the indicators for the intensity is
the average speed distribution. Given a certain capacity of the road, the traffic
reaches a certain average speed based on the current traffic intensity. The term
“traffic” in this case denotes both passenger cars as heavy traffic, i.e. trucks.
This relation can be expressed as (heavy) traffic = I / C . Practically speaking
this assumption states that 1% more (heavy) traffic leads to 1% less road capac-
ity. Traffic simulators such as ADSSIM have these kinds of relationships built
in. The scientist in our example has doubts about the scalability this relation-
ship, based on the fact that 100 % heavy traffic does not mean 0 % capacity,
and based on the fact that the length of heavy traffic compared to passenger
cars is roughly 3:1, which should result in a lower limit of the inverse capacity
(i.e. at one third of the current estimate).
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To investigate this relationship, the scientist wants to visualize low, medium and
high amounts of heavy traffic (as a percentage of the total amount of vehicles
on the road) on one axis and the intensity of the road that is being used (as
a percentage of the maximum theoretical intensity) on another axis, with the
average speed on the road as a result. Before the scientist starts the experiment,
he has an expectation about the way the plot will look. The expected results
can be seen in figure 7.1.

100

O ANSUDILI

100

heavy traffic %

Figure 7.1: The expected relationship between the heavy traffic%, intensity%
and the resulting speed distribution. Blue denotes slow speed (80 km/h), green
denotes medium speed (100 km/h) and red denotes high speeds (120 km/h).

The scientist expects a plot which will show areas of the same average speed
which we will call “isovelocities”. The distance between the isovelocities will
increase when the amount of heavy traffic increases. The lower left corner will
show high average speeds due to little heavy traffic and an almost empty road,
while the plot will show low average speeds where there are lots of trucks and
the road is crowded. In reality it rarely happens that three lanes are filled with
trucks, that is why the upper right corner is empty; this situation does not oc-
cur.
The scientist has to specify the (relative) amounts of heavy traffic and traffic
intensity. Depending on the required granularity of the simulation this could
result in tens (e.g. 5 heavy traffic percentages vs. 5 intensity percentages),
hundreds (e.g. 10 x 10) or even thousands (e.g. 50 x 50) of simulation runs.
Using this case, we can describe the kind of information the scientist has to
supply ADSSIM in order to perform the simulations.

7.4 ADSSIM-VLAM

Ideally we would like to offer the scientist an ADSSIM-module. He can specify
the number of simulation runs that ADSSIM has to perform, and the parameter
ranges that have to be simulated. When the user has specified the start, end and
step values for every parameter, he will select a storage or visualization module.
VLAM-G checks whether the selected number of parameters and the required
inputs for the storage or visualization module correspond, and will suggest a
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different module if the selected one is incompatible.

In our example the scientist specifies a heavy traffic range between 0 and 60%
with a step value of 2%, and an intensity volume between 0 and 100% with a
step value of 2%. He selects a visualization module which displays a 2D-plot,
with the heavy traffic on the x-axis and the intensity volume on the y-axis. The
blocks in the plot will represent the average speed, ranging from low speed (80
km/h - dark blue) to high speed (120 km/h - dark red). These two modules
will suffice in order to run the simulation. The resulting plot is shown in figure
7.2.  Several things can be seen in this plot. Low amounts of heavy traffic
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Figure 7.2: Average speed on the road for flowing traffic

generally lead to a high average speed, shown by the (dark) reds near the left
hand side of the plot. The edges on right hand side show a drop in the average
speed (the green colours) when the amount of heavy traffic increases. When the
capacity of the road is almost fully utilized (top of the plot), the average speed
is significantly lower (denoted by the blue squares). It’s up to the scientist to
analyze the outcome of the plot and to come up with possible explanations, it
is outside the scope of this thesis and this particular example to elaborate on
this subject.

If the scientist thinks the current visualization does not offer the insight he
would have expected, he can choose to select a different type of visualization.
He could for instance select a 3D-plot instead of a 2D, because the 3D-plot will
nicely show gaps where sudden changes in average speed occur. He can also
decide that the results of the ADSSIM-module will first be stored in a database
and then be visualized. Advantage of this approach is the fact that he will
only have to execute the simulation runs once, and can choose the appropriate
visualization later (and can experiment as much as he wants to).
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We have charted the process flow of this application.

""""""""""""" | AGGREGATED
USER INPUT: 3 ADSSIM

REQUIRED TRAFFIC \ MODULE
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PROCESS DATA
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FOR SIMULATION

SIMULATION RUN-
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EXECUTE SIMULATION
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FINAL RESULTS

L]

VISUALIZATION

Figure 7.3: Process flow of the ADSSIM-VLAM-application

The majority of the processing occurs within the ADSSIM module, which is in
fact an aggregated module of several other modules. The process flow for this
application is shown in figure 7.3. Proces steps are indicated by ovals, data
storages are indicated by rectangular boxes.

The process flow starts with the user who supplies the required traffic condi-

tions (e.g. heavy traffic% and intensity%) and their start, end and step values.
The traffic conditions are mapped to the corresponding time periods where they
occurred using the A12 database. The relevant data is first processed and then
stored in several datastorage files which will be used by ADSSIM. This inter-
mediate step is important, because the traffic scientist might want to view the
datastorage files that have been created after the experiment has completed, in
order to find the cause of unexplainable anomalies.
The files are supplied as input for the (distributed) execution of the simulation
by ADSSIM. The results are stored in temporary files, or in a file or database
if the user wants to keep the results. The final step is visualization, using one
of the predefined visualization modules in the repository of VLAM-G.

We have partially implemented these steps. Because our first focus was on
enabling the Grid for multiple concurrent simulation runs, we did not imple-
ment the process of asking the user for the required traffic conditions. We used
the parameters of the CASE example for our simulation and manually extracted
the corresponding periods and data from the A12 database.

Two modules have been created, one module generates several ADSSIM files
based data from the A12 database, the other module executes ADSSIM based
on these files.
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The visualization modules of VLAM-G have been developed but have not yet
been integrated into the module repository, so we used MatLab to visualize
the results of the simulations. We used MDL2XML to generate the XML file
which is passed to the RTS of VLAM-G. This XML file contains the module
descriptions of the two developed modules.

7.5 Evaluation

As stated before, we want to prove the functionality of the Virtual Traffic Lab
and want to show possible applications. Although the design and the actual
implementation of our ADSSIM-VLAM application clearly show the gap be-
tween how we ideally would want to use an application such as ADSSIM in our
Virtual Traffic Lab, and the reality where the user still has to cope with low
level details, we have shown several things.

Our application fits the VLAM philosophy of harnessing the power of the Grid
and providing it to end users. The design of ADSSIM VLAM is very user ori-
ented, it provides a simple and intuitive interface to a traffic simulator, and
hides the low level details within an aggregated module. The implementation
shows that the decomposition that was made during the design is correct, the
implementation works and generates the expected results.

It has also become clear that the role of module developer, that we fulfilled
for this application, is not just a matter of wrapping a current application into
a VLAM module specification. Because process steps have to be converted to
modules, one application might have to be split up into several parts. This
requires a thorough understanding of the application and the ability to make a
logical decomposition.

Although VLAM-G promises to be of use for non-computer scientists, the real-
ity for now is that there is still a considerable amount of implementation details
that are revealed to the user. This is partly due to the fact that VLAM-G is still
under development, eventually these implementation details will be hidden by
the only part of VLAM-G that the user interacts with, i.e. the GUL. Another
reason is the fact that ADSSIM is not a trivial application to integrate into
VLAM-G. Considerable (manual) preparation has to be performed before the
actual simulation can be run. The fact that some implementation details are
shown is therefore also partly due to the nature of ADSSIM.

7.6 Summary

We have created the prototype application ADSSIM-VLAM for the Virtual
Traffic Lab. Based on a case example of the influence of heavy traffic on the
average speed distribution, we have described the process flow for this applica-
tion. We have partially implemented these steps. Because our first focus was
on enabling the Grid for multiple concurrent simulation runs, we created two
traffic modules. One module generates several ADSSIM files based data from
the A12 database, the other module executes ADSSIM based on these files.

The design and implementation of our ADSSIM-VLAM application show the
gap between how we ideally would want to use an application such as ADSSIM
in our Virtual Traffic Lab, and the reality where the user still has to cope with
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low level details. This is partly due to the fact that VLAM-G is still under
development, but has also to do with ADSSIM itself which does not hide every
implementation detail.
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Chapter 8

Conclusion

We will now summarize our findings and the possible implications of these find-
ings, and we identify topics that require further study or analysis.

8.1 Conclusions

We have explored the possibilities of an environment in which scientists can
experiment with traffic applications. We set out to give insight into a Virtual
Traffic Laboratory. We wanted to give this insight by describing the function-
ality such a Virtual Traffic Laboratory should possess, and by describing our
hands-on experience during the design and implementation of a prototype of a
traffic application.

In the requirements determination we concluded that traffic scientists have
to cope with several problems that have to do with traffic simulators, and with
data generated by these simulators or by real traffic flows. While most of these
problems can be solved right now with the current tools, the expectation is
that VLAM-G will offer (besides the distributed computational resources) more
flexibility and re-usability through its module repository.

We have described the functional and technical requirements for the Virtual
Traffic Lab based on the current traffic tools. The complete specification can
be found in paragraph 4.3.3. This specification can form the starting point for
the (future) development of the required traffic modules.

We have designed and implemented two of these modules as part of our pro-
totype ADSSIM-VLAM application. This prototype can execute a distributed
traffic simulation based on user supplied parameters. The experiment topology
of this application is created using the generic VLAM modules we developed
in Simulink. The MDL2XML utility which we developed is able to convert the
experiment topology created in Simulink to a XML description that is passed
to the RTS of VLAM-G to execute the experiment.

The majority of the current traffic tools are MatLab based. Initially we
wanted to convert these tools to standalone applications using the MatLab
compiler, but we have not (yet) succeeded in realizing the conversion using
this approach.
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The design and implementation of the ADSSIM-VLAM application show the
gap between how we ideally would want to use an application such as ADSSIM
in our Virtual Traffic Lab, and the reality where the user still has to cope with
low level details. This is partly due to the fact that VLAM-G is still under
development, but has also to do with ADSSIM itself which does not hide every
implementation detail.

8.2 Future Research

We can identify several topics that require further analysis and study. We
have split these issues into future research for the Virtual Traffic Lab and for
VLAM-G.

8.2.1 Virtual Traffic Lab

Implementing the standalone MatLab approach would be a huge step forward
for realizing the Virtual Traffic Lab. We expect that the majority of the cur-
rent traffic tools can be ported without much adaptation. The traffic module
repository would be greatly extended. It would also open up the possibility of
porting generic MatLab routines to VLAM-G, which would increase the diver-
sity of modules and thereby the possible experiment configurations. Of course
other users would also benefit from these MatLab modules.

Earlier we mentioned an application that would be very suitable for the Vir-
tual Traffic Lab: camera calibration. Overview cameras are typically equipped
with wide-angle lens, to have a large field of view. A camera always gives a
certain distortion, but for this type of lenses the distortion is clearly visible.
This distortion can be calibrated when known objects are placed in the field of
view of the camera. It is more important that there are many images of objects
in all corners of the field of view, than that the model of the known object is
very accurate. This makes it possible to use the passing vehicles to calibrate an
overview camera. In order to calibrate the camera, specific points in the image
are fitted to their known location in the real world. This sort of fits can use
quite some computing resources and therefore this application would be perfect
for the Virtual Traffic Lab.

We created our own MDL2XML. It would be interesting to use the MDL2XML
utility of the Vanderbilt University [37] to convert an experiment topology to
generic XML, and to use XSLT! - a language for transforming XML documents
into other XML documents - to create a XML description for VLAM-G. This
would be particularly interesting when a new VLAM module has to be created
in Simulink, with a port configuration that does not exist yet. In our current
implementation of MDL2XML the source code would have to be edited in order
to be able to convert this port configuration from MDL to XML. Editing the
XSLT would probably require less effort.

L http://www.w3.0rg/ TR /zslt/
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8.2.2 VLAM-G

The first release of VLAM-G is imminent, but so far there has been little in-
teraction between the developers and (potential) end users from for instance
biology and chemistry. This has lead to the situation where the developers do
not exactly know what the end users expect from VLAM-G, and the end users
do not have a clear picture about the (im)possibilities of VLAM-G. Topics that
require clarification are the exact functionality of VLAM-G, but also Human
Computer Interaction; how would the users like to interact with VLAM-G? Do
they want fine-grained control like the traffic scientists, or will a few buttons
which can load and start an experiment suffice?

If VLAM-G (or derivatives) ever wants to be used as a commercial applica-
tion, attention will have to be given to aspects that are related to expressing
tasks and experiments in terms of money. First a generic study could be per-
formed to analyze methods which can be used to calculate the price of one CPU
year. This could be used as the basic unit for expressing the costs of performing
an experiment.

In the far future analyses could be performed on VLAM-G databases to gather
usage statistics of modules and experiments. This information could be used to
determine a price for a module or experiment. Different economic models could
be studied and possibly applied to VLAM-G, for instance a licensing model
for modules or experiments. Supply and demand models for computing capac-
ity could be studied, and could be coupled with scenarios that offer different
price-quality and price-speed ratings.
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Appendix A

Interview Adam Belloum
31-05-2002

May 31st, 2002, we interviewed Adam Belloum, member of the Virtual Lab
team.

INTRODUCTION

Purpose & duration of the interview

Can you give a short description about yourself and about your relationship to
the Virtual Lab-project?

Could you give me an overview of what you do?

Adam Belloum, 31 years old, postdoc at the University of Amsterdam. For the
last two years he has been working as one of the designers (together with David
Groep) of the Virtual Lab. He’s been doing work on the GUI and the RTS,
the heart of the Virtual Lab. The last few months he’s also been doing some
implementation because of the lack of manpower and time.

GENERAL QUESTIONS

Can you describe the Virtual Lab?

Adam uses the tagline “The easy way to go to the Grid” to explain the Virtual
Lab to people who aren’t familiar with it. It’s an environment which enables
non-scientists to perform experiments, while they don’t have to worry about
resources.

The Virtual Lab is created for doing research. It’s more than a proof-of-concept,
it should work without major deficiencies. On the other hand, there won’t be a
phase of six months of extensive testing which is a normal step in commercial
systems development.

Can you tell something about the history of the Virtual Lab?
In september 2001 it was decided that there were several objectives that had to
be met, in chronological order:

1. run jobs on the Grid using the Virtual Lab (DONE)
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2. provide APT’s for each component of the Virtual Lab (DONE)
3. make the Virtual Lab secure (almost done*)

4. TO DO: collaborational aspects; when the Virtual Lab works for one
person, it has to work so that multiple persons can work together on
experiments

* this issue is treated later on, when discussing essential elements of the Virtual
Lab.

What’s “virtual” about it?

The allocation of resources is invisible for the user, when the user performs an
experiment it looks as if it runs on one virtual supercomputer.

When the collaborational aspects are built into the Virtual Lab, it can actually
be a Virtual Lab, i.e. scientists that are geographically dispersed can work to-
gether on experiments as if they were in the same laboratory.

Are you familiar with other Virtual Lab-projects, such as Monash University
Australia ”Molecular Modelling for Drug Design”, Oak Ridge National Lab-
oratory’s and FernUniversitit Hagen’s (Germany) Virtual Lab? (see printed
summaries)

If so, what are the difference (and hopefully the advantages) of VLAM-G as
opposed to those other projects called ”Virtual Lab”?

Adam is not familiar with these specific Virtual Labs. Of course he is aware of
the general fact that there are related projects at other universities. He points
out that there is an important difference between these projects and the Virtual
Lab; the other projects focus on a specific (sub) domain, for instance molecular
modelling in chemistry. The explicit starting point of the Virtual Lab is its
generic infrastructure. Domain specific knowledge is put into (reusable) mod-
ules, but not into the Virtual Lab itself. This way the Virtual Lab can (in
theory) be used as a laboratory for every imaginable domain.

One of the current problems are the databases, which are still designed and
filled per domain. People are trying to achieve a generic data model that can
be used for every experiment and every domain, which is not trivial because
there exist major differences between application domains (for instance physics
or chemistry).

ANALYSIS OF TASKS

Which tasks do you think are suitable for the Virtual Lab?

Any setup that can be put in the form of modules that are connected to each
other by their input and output ports using streams, is suitable for the Virtual
Lab. What goes on inside the modules is not really important for the Virtual
Lab, as long as the datatypes between the modules match the data can be trans-
ferred from one module to another.

Do specific requirements exist for the input and/or intermediate data?
As said above, the datatypes between modules and ports have to match. This
is specified by the user, but an agent that supports the user when supplying the
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data can inform the user about a mismatch before he starts the experiment.

Is there a difference if more people are involved in an experiment? Can you tell
something about the differences or commonalities?

Since the collaboration aspects of the Virtual Lab are not realized yet, it is diffi-
cult to say something about this subject. What can be said about the different
users, is that there is almost no knowledge about (the wishes of) the actual
(or potential) end users. Generally speaking the project group sees two types
of users, the module developers and the end users. The module developers are
computer scientists which have for instance some C-code which they want to
run. Examples are Arnoud Visser who has a computer science background and
Gert Eijkel from AMOLF. Input from novice user without a computer science
background is not available right now.

Which tools are available at this moment to perform these tasks?

“Regular” supercomputers are available as a means for High Performance Com-
puting. These tools are provided by universities but also by commercial provi-
ders such as IBM. They are heavily investing into Grid-applications and Grid-
services at this moment and offer multiple options at different prices (“Pay more,
get more”).

EVALUATION

(The answers to the following question and the next have been grouped because
they are closely related.)

Where is the trade-off between executing an experiment locally in some environ-
ment or using the Virtual Lab?

Does the Virtual Lab offer added value?

- If so, can you specify this added value?

- If not, how do you perceive the Virtual Lab?

For somebody with a desktop application there is no real use of the Virtual Lab.
A demanding application which needs lots of computational power has to be ex-
ecuted on a powerful system. One option is for instance to use SARA!. In that
case, the user has to setup (software) connections to SARA, send and receive
data, monitor the progress, etc etc. This is unnecessary and time-consuming
work from the point of view of the user, who just wants to get his work done and
see the results. The alternative which saves him this extra work is the Virtual
Lab.

Besides those advantages, the Virtual Lab offers a set of predefined modules, for
instance three hundred different visualization modules that can display a vector,
display 3D-data, rotate 3D-data, ... This offers the scientist options that were
previously unavailable.

Another option is to go to CERN in Switzerland to perform some physics ex-
periment. The use of the Virtual Lab saves time that otherwise would be spent
on travelling and on adapting the software to prepare it for execution at CERN.

ISARA Computing and Networking Services supplies a complete package of High Perfor-
mance Computing- and infrastructure services, based on state-of-the-art information technol-
ogy, and is located at the Wetenschap & Technologie Centrum Watergraafsmeer (WTCW)
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During the design and implementation of the Virtual Lab the role of expressing
tasks in terms of money was ignored. How much it costs (or pays) for the end
user to re-use a developed module is unknown. It is also unknown how much it
costs to perform an entire experiment, or if there exist several options to execute
the experiment. One could imagine the user should have the option to choose
between performing the experiment in one day for $10,000 , in three days for
$2,500 or in one week for $1,000. It is also not clear if there is any (financial)
benefit in sharing computer capacity.

To summarize:
The Virtual Lab saves...

1. time, because. ..

(a) modules can be re-used and don’t have to be (re) developed.

(b) software doesn’t have to be adapted to the specific setup of a partic-
ular supercomputer.

(c) there is no necessity for travelling to the location where the experi-
ment is executed.

2. money, because of the reasons that are given above.

Which elements of the Virtual Lab are essential for you?

Security is important, especially for the industry. If they ever consider adapting
the Virtual Lab, it has to be secure. By “secure” Adam means that the system is
hackerproof and fault tolerant. The following example explains fault tolerance
in the Virtual Lab. It is possible that an experiment that takes three weeks to
execute will stop after two weeks and two days because of a malfunction of one
of the computers that is used to perform the experiment. The Virtual Lab has
to address this issue and has to migrate the process from the malfunctioning
computer to another computer so that the experiment can keep on running.

Where is VLAM-G positioned right now and what’s in store for the future?
The first official release (alpha or beta) is imminent, it should be ready in the
first week of June 2002. This release of the Virtual Lab is capable of running
jobs on the Grid. It contains a Java-based GUI which enables the user to create
experiments. The structure and data of the experiment is stored in a database.
This data is given to the RTS in XML-form.

Companies such as Unilever (research in molecules) and telecom providers (GPS-
applications with large amounts of data) have shown their interest in the Virtual
Lab.

What will the cooperation between a scientist and VLAM-G look like in (say)
2010¢

Adam takes this question as the opportunity to formulate some thoughts about
the ideal Virtual Lab.

1. The GUI has to get better
The GUI has to look different for each user (or each domain). ”A lab
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is a lab for every scientist. It has four walls, a door and a table. The
difference is what is on the table; a chemist has liquids, test tubes, etc.
A physicist on the other hand has computers, sensors, etc.” This analogy
also has to be applied to the GUI, it has to suite the needs of the user.
Right now the GUI is made so that it works. It is build using the logic
of computer scientists, which is (probably) not equal to the logic of other
(non-computer) scientists.

2. The credentials-system has to get better
Right now the credentials for the Grid are stored locally on each computer.
A much more elegant solution would be something like a chipcard reader
and a PIN-code as an authentication method. The same ease of use should
be available for the Virtual Lab.

3. Make the Virtual Lab accessible everywhere
Access to the Virtual Lab shouldn’t have to be narrowed down to a com-
puter on a desk. Wireless access on all sorts of devices should be available.

4. Before 2010, the issue of fault tolerance has to be solved.

What are questions that you would like to have answered by possible end users?
(for instance in the biology or chemistry domain)

Right now there are misunderstandings by these users about what the Virtual
Lab is, what it can or cannot do. Interesting questions would then be:

What are you expecting of the Virtual Lab?

How would the GUI look like so that it would be easy for you to use?

How would you like to interact with the Virtual Lab? If we exaggerate, do you
want a button “Run it” and don’t care how it is run, or do you want to see
which machines are available to perform your experiment? Or do you want a
proposal which machines are automatically selected to perform the experiment?
Or do you want a breakdown of the costs of executing the experiment in several
time-frames at different costs?

72



Appendix B

ComVis example
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Figure B.1: Example of plots made by ComVis
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Appendix C

How to create a custom
VLAM module in Simulink

In this appendix we describe how to create a custom VLAM module. We will
construct a “2in2out” module as an example, which consists of two input and
two output ports. Based on this example one should be able to create any
type of VLAM module, no matter the amount of input or output ports, or the
number of parameters.

Start MatLab and run Simulink:
>> simulink

(we used MatLab Version 5.3.1.29215a (R11.1), Oct 6 1999, and Simulink
version 3.0 to create our modules)

Click on “Signals & Systems”:

Bt Yoo formt J

b~ [
Siarals

nnnnnn Funetions  Norinear
& Tabies & Systems

Blocksets & Sk Block Library 30 &
Toolbe <es Capyright (c) 1930 - 1998 by The MathWarks, Inc —

The components we will use are the in and out port.

Fle Edt View Format |

@ D @ [F

Int ut1 Erable Trigger

b YL " b
lerge
Muz Bus

Demux  Selector Merge
Selector

Create a new model (File = New — model). Drag two in ports and two out
ports to this new model. Note that the out ports are placed on the left and the
in ports on the right. The symbols attached to the ports show why: the out
ports that are placed on the left will receive data, the in ports will send.
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Now select all ports by dragging a square around the four ports using the mouse!.

We are going to create a subsystem: Edit — Create subsystem (CTRL-G). The
result looks pretty messed up:

We will now remove the unnecessary and duplicate elements. Remove all the
lines and remove the original in and out ports. We now see the clean subsystem.
Click once somewhere on the subsystem and enlarge the subsystem by dragging
one of the corners. Finally, we change the name from “Subsystem” to “2in2out”:

File Edit Yiew Simulation Forrmt

It Oout
N2 Out2
Zinzout

The basic building block is now ready. Because we want to use this block
as a VLAM-G module, we have to mask the system and supply the required
parameters. Edit — Mask subsystem (CTRL-M). The Mask Editor opens,
showing three tabs: Icon, Initialization and Documentation. We start by filling
in this last tab:

1 Apparently there exists a difference between selecting all components by dragging a square
around them, and using “Select all” (CTRL-A) or clicking on each component. The last two
operations select all components, but Simulink does not offer the option to create a subsystem.
This option is available when using the first “dragging” method.
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lcon Initialization | Documentation

Mask type: |

Black description:

[This \Is 2 VLAM-G module consisting of Z input and 2 output
ports

Block help:

Please supply the necessary parameter values for the module
Check hittpwav. dutcharid.nl/YLAM- G/ for documentation and
speciications

OK | Cancel | Unmask |  Help | apply |

We move to the Initialization tab for the implementation of the mask. The
Mask Editor allows us to add parameters. For each parameter we can specify
the prompt (the text the user will see), the control type (whether the user sees
a form, a checkbox or a list box), the variable name and in case of a listbox the
popup strings (more about this option in a moment).

Because we want the user to supply the values for a VLAM-G module, we have
to add the required parameters to the mask. Our MDL2XML tool converts the
MDL description to XML, and searches for these parameters. It is therefore
compulsory to follow the naming convention that is displayed in this table.

Required variable names for MDL2XML

variable name | type

moduleName | edit

moduleld edit

platform popup (solaris|linux)
proglocation | edit

outportl edit

outport2 edit

datatype popup (double|integer)
direction popup (input|output)
replication popup (false|true)
host edit

dn edit

We have added the moduleName, moduleld and platform to the mask. The
platform variable shows how a listbox can be created; the control type “popup”
is selected, the values that need to be in the popup or listbox are specified in
the “popup strings” field. The values are separated by a pipeline ( | ). The ad-
vantage of using a popup is the fact that the input can be controlled. Free text
fields are sensitive to errors, which can be prevented using the popup box. The
screenshot on the next page shows the Initialization tab with a popup variable
selected.
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When all of the necessary parameters are defined in the mask, the module is
complete. The designer of the module can choose if he wants to predefine a
value for certain parameters. If he chooses to do so, he can double click the
2in2out module to open the window that will also be presented to the end user
when he uses the module. Values that are entered in the 2in2out module before
the module is saved in a (VLAM module) library are stored as the default values
for the parameters. An example is shown in the figure below.

Block Parameters: 2inZout
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Our 2in2out module can now be used as part of an experiment. An example of
such an experiment is shown below, this of course just an example to show the
possibilities of our new module.

Data gererator 1 Fiter 2

Aggregator

system

Data gererator 2

temp_resats mat

Tor i

This concludes our HOWTO for the creation of a custom VLAM-G module.
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Appendix D

Source code

D.1 Interface to prototype RTS

D.1.1 MEX interface
vlab.h

#ifndef _VLAB_H
#define _VLAB_H
/ /

#define VLAB_OK 0 /* unknown or no error */

#define VLAB_ENOTIMPL (-1) /* function not implemented */
#define VLAB_ENOTAVAIL (-2) /* resource not available */
#define VLAB_ENOTDEF (-3) /* named entity not defined */
#define VLAB_EBADTYPE (-4) /* bad datatype as parameter */
#define VLAB_ENOTSET (-5) /* required attribute not set */

typedef struct module *vlab_module_t;
typedef struct buffer *vlab_buffer_t;
typedef struct port *vlab_port_t;

typedef struct parameter *vlab_parameter_t;
typedef struct state *vlab_state_t;

typedef struct datatype *vlab_datatype_t;
typedef struct datafield *vlab_datafield_t;

extern int vlab_type_char (vlab_module_t, vlab_datatype_t *);

extern int vlab_type_unsigned_char (vlab_module_t, vlab_datatype_t *);
extern int vlab_type_byte (vlab_module_t, vlab_datatype_t *);

extern int vlab_type_short (vlab_module_t, vlab_datatype_t *);

extern int vlab_type_unsigned_short (vlab_module_t, vlab_datatype_t *);
extern int vlab_type_int (vlab_module_t, vlab_datatype_t *);

extern int vlab_type_unsigned (vlab_module_t, vlab_datatype_t *);
extern int vlab_type_long (vlab_module_t, vlab_datatype_t *);

extern int vlab_type_unsigned_long (vlab_module_t, vlab_datatype_t *);
extern int vlab_type_float (vlab_module_t, vlab_datatype_t *);

extern int vlab_type_double (vlab_module_t, vlab_datatype_t *);

extern int vlab_type_long double (vlab_module_t, vlab_datatype_t *);
extern int vlab_type_long_long_int (vlab_module_t, vlab_datatype_t *);

extern int vlab_type_struct (vlab_module_t, vlab_datatype_t *);
extern int vlab_type_array (vlab_module_t, vlab_datatype_t *,
int size);
extern int vlab_type_vararray (vlab_module_t, vlab_datatype_t *,
vlab_datafield_t size);
extern int vlab_type_add (vlab_datafield_t #*,

vlab_datatype_t composed,

vlab_datatype_t subtype);
extern int vlab_type_addnamed (vlab_datafield_t *,
vlab_datatype_t composed,

char *name,

vlab_datatype_t subtype);

extern int vlab_type_commit (vlab_module_t, char *name,
vlab_datatype_t type);

extern int vlab_type_named (vlab_module_t, vlab_datatype_t *t,
char *name);

extern vlab_datatype_t vlab_gettype(vlab_module_t, char *type)
extern void vlab_setsize(vlab_datafield_t field, int value);

extern char #*vlab_strerror(int code);

79



extern int vlab_input(vlab_module_t, char#, vlab_datatype_t, vlab_port_t #);
extern int vlab_output(vlab_module_t, char#, vlab_datatype_t, vlab_port_t *);

extern void *vlab_getArgument(vlab_module_t, char *, vlab_datatype_t);
extern void *vlab_declareState(vlab_module_t, char *, vlab_datatype_t,
vlab_state_t *);
extern void *vlab_declareParameter(vlab_module_t, char *, vlab_datatype_t,
vlab_parameter_t *);
extern void vlab_updateState(vlab_state_t);
extern void vlab_updateParameter(vlab_parameter_t);

extern int vlab_updateparameter (vlab_parameter_t) ;

extern void *vlab_read(vlab_port_t, vlab_buffer_t *, long);
extern void *vlab_prepare(vlab_port_t, vlab_buffer_t *, long);
extern int vlab_write(vlab_buffer_t);

extern int vlab_release(vlab_buffer_t);

struct vlab_specification {
int version;
char *name;
void #(*ini) (vlab_module_t);
void (*run)(vlab_module_t, void *);

¥

/* internal use for runtime system */
extern int vlab_initialize(void);
extern int vlab_finalize(void);

/
#endif
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vlab.c

VLAB .MEX Vlab running under MatLab, using the MEX-construction.

* % % *

Created by Joost Zoetebier. Last update: 07-03-2001.

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <strings.h>
#include <thread.h>
#include <pthread.h>
#include <synch.h>
#include <dlfcn.h>
#include "control.h"
#include "vlabint.h"
#include "packing.h"

/% included on 22-11-2000 for MEX */
#include "mex.h"

#define _OK 0 /* Command completed normally */

#define _ERROR 1 /% The command couldn’t be completed successfully /

#define _RETURN 2 /* The command requests that the current procedure returns */
#define _BREAK 3/ The command requests that the innermost loop be exited */
#define _CONTINUE 4 /* Go on to the next iteration of the current loop */

#define maxargs 6 /* max. number of arguments accepted by the vlabprompt
Max = 6 for " e connect mi out ni in ". */

extern struct moduledefs *defs; /* control.c */
int values[1024];

struct moduledesc;
struct experimentdesc;
struct streamdesc;
struct argumentdesc;
struct streamdesc {
struct moduledesc *producer;
char *outputport;
struct moduledesc *consumer;
char *inputport;
struct streamdesc *next;
struct queue *impl;
};
struct argumentdesc {
char *name;
int value;
struct argumentdesc *next;
};
struct moduledesc {
int ident;
char #*name;
char *type;
struct argumentdesc *arguments;
struct moduledesc *next;
vlab_module_t impl;
};
struct experimentdesc {
int counter;
char *name;
struct moduledesc *modules;
struct streamdesc *streams;

}

#if 0
static
#endif
void *
start(void *arg)

vlab_module_t module = (vlab_module_t) arg;
module->func(module, module->user);
return NULL;

¥

sigset_t new;

static void
run(struct experimentdesc *edesc)

vlab_datatype_t inttype;
struct moduledesc *mdesc;
struct streamdesc *sdesc;
struct argumentdesc *adesc;
vlab_module_t module;
vlab_port_t port;

struct queue *queue;
struct moduledefs *ptr;

int i;

sigemptyset (&new) ;
#if 0
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sigaddset(&new, SIGQUIT);
pthread_sigsetmask(SIG_BLOCK, &new, NULL);
/* let the children catch the QUIT signal */
#endif
for(sdesc=edesc->streams; sdesc; sdesc=sdesc->next) {
sdesc->impl = queue = malloc(sizeof (struct queue));
queue->type = NULL;
queue->first = queue->last = NULL;
queue->size = 0;
mutex_init(&queue->mutex, USYNC_THREAD, 0);
sema_init (Zqueue->queuesize, 0, USYNC_THREAD, 0);
sema_init (#queue->queuefree, 1, USYNC_THREAD, 0);
¥
for(ndesc=edesc->modules; mdesc; mdesc=mdesc->next) {
mdesc->impl = module = malloc(sizeof(struct module));
for(ptr=defs; ptr; ptr=ptr->next) {
if (!strcmp(ptr->name, mdesc->type))

break;
}
if(!ptr) {
fprintf (stderr,"module %s does not exist\n",mdesc->type);
abort () ;
}
module->parent = edesc;

module->arguments = NULL;

module->parameters = NULL;

module->namedtypes = NULL;

module->states = NULL;

module->ports = NULL;

vlab_type_int(module, &inttype);

for(adesc=mdesc->arguments; adesc; adesc=adesc->next) {
fprintf (stderr, "’¥%s’: set argument ’%s’ to value %d\n",

mdesc->name, adesc->name, adesc->value);

vlab_setArgument(module, adesc->name, inttype, &adesc->value);

module->func = ptr->run;
module->user = ptr->ini(module);

if (pthread_create(&module->thread, NULL, &start, module)) {
perror("pthread_create failed");

abort () ;
¥
else {
fprintf (stderr, "Thread ‘%d’created.\n", module->thread);
¥
for( les; mdesc; next) {
module = mdesc—>impl;
for(port=module->ports; port; port=port->next) {
if (port=>type == NULL)
port->type = port->queue->type;
}
¥
#if 0

for(mdesc=edesc->modules; mdesc; mdesc=mdesc->next) {
module = mdesc->impl;
thr_continue(module->thread) ;

#endif

static void
kill(struct experimentdesc *edesc.

struct moduledesc *mdesc
vlab_module_t module;
thread_t main_thr;

for(mdesc=edesc->modules; mdesc; mdesc=mdesc->next) {
fprintf(stderr, "Trying to kill thread '%s’...\t", mdesc->type);
/*fprintf(stderr, "%d\n", module->thread);*/
module = mdesc->impl;
if ( pthread_cancel (module->thread) )
fprintf(stderr, "Cancelling thread failed.\n");
else
fprintf(stderr, "Thread successfully cancelled.\n");
i3
fprintf(stderr, "End of killing threads.\n");

static void showState(struct experimentdesc *edesc)
{

struct moduledesc *mdesc;

struct streamdesc *sdesc;

struct argumentdesc *adesc;

int i;

fprintf(stderr, "\n+ + + + + CURRENT STATE + + + + + + + +\n");
fprintf(stderr, "+ Experiment: %s\t\t\t\t+\n", edesc->name);

for( les; mdesc; t) {
fprintf(stderr, "+ Module: ’%s’\t\t\t\t+\n", mdesc->name);
for(adesc=mdesc->arguments; adesc; adesc=adesc->next) {
fprintf (stderr, "+\tArguments: ’%s’\t= %d\t+\n",
ndesc->arguments->name, mdesc->arguments->value);

}
sdesc = edesc->streans;
if (sdesc != NULL)
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fprintf (stderr, "+ Stream: from ’%s’ to '%s’\t\t+\n",
sdesc->inputport, sdesc->outputport);
¥
fprintf(stderr, "+ + + + + END OF CURRENT STATE + + + +\n\n");

int vlab(char *argv[]l, int argc ) {
struct vlab_specification *spec;
struct experimentdesc *experiment;
void *handle;
int i, j, k, found = 0;
char buffer[80];
char *token, character;
FILE *fp;
struct moduledesc *module;
struct streamdesc *stream;
int rv; /% for reading the TXT-file */

/* used for modules */

struct argumentdesc *argument;
int count, ds_index;

char ds[256];

char aux[30];

struct moduledesc *tmp; /* 25-10-2000 - for determining modules in add */

char temparg[80], temparg2[80], temparg3[80], lastargl[80],

columni[80], column2[80], column3[80], column4[80], column5[80];
int foundFirstDot = 0, foundSecondDot = 0, column;
long temp;

vlab_module_t mod; /* 15-03-2001 - threads */

[¥xkdxkdxxkkdk fetching current state ¥kkkksdkkkkkkkkkikskk/
for (i=0; i < 80; i++) {
columni[i] = column2[i] = column3[i] =
column4[i] = column5[i] = temparg[i] = temparg2[i] = NULL;
¥

/* finding the right experiment */
f£p = fopen("state", "r");
if (fp == NULL) fprintf(stderr, "’state’ not found!\n"
else {
while (fgets(buffer, sizeof(buffer), £p)) {
for (i=0; i < 80; i++)
columni[i] = column2[i] = column3[i] = column4[i] = column5[i] = NULL;

j=0;

column = 1;

for (i=0; i < strlen(buffer); i++) {

while(buffer[i] != ’\t’ &% buffer[il] != ’\0’ & buffer[il != '\n’) {
switch(column) {

case 1: columni[j++] buffer[i++]; break;
case 2: column2[j++] = buffer[i++]; break;
case 3: column3[j++] = buffer[i++]; break;
case 4: column4[j++] = buffer[i++]; break;
case 5: column5[j++] = buffer[i++]; break;

i
}
column++;
if (buffer[i] \0’)  j =05
/#if (buffer[i] == NULL || buffer[il == ’\n’) i = sizeof(buffer); */

¥

if (!strcmp(columni, "experiment")) {
/* a pointer is a long, so convert the string to a long using atol */
temp = atol(column3);
experiment = (struct experimentdesc ¥) temp;
rv = sscanf (column3, "Y%p",&experiment);

}

else if (!strcmp(columni, "module")) {
temp = atol(column4);
module = (struct moduledesc *) temp;
rv = sscanf (columnd, "Y%p",&module);

else if (!stremp(columni, “argument")) {
temp = atol(columnS);
argument = (struct argumentdesc *) temp;
rv = sscanf (column5, "Yp",%argument);

}

else if (!strcmp(columni, "stream")) {
temp = atol(column2);
stream = (struct streamdesc *) temp;
rv = sscanf (column2, "%p",&stream);

¥
} /% end of ’while’ */
fclose(fp);
} /% end of ’else’ */

/***%¥xxx parsing command with dots in it xkxxs*
* Only argv[0] can contain and has to be split if there are any dots present.
* Examples of valid argv[0]’s

* e.add
* e.ml.set
*/

83



j=k=0;
for (i=0; i < 80; i++)
temparg[i] = temparg2[i] = temparg3[i] = lastarg[il = NULL;
for (i=0; i < strlen(argv[0]); i++) {
if (argv[0][i] == >.?) {
if (foundFirstDot)
foundSecondDot = 1;
else
foundFirstDot = 1;
}
else {
/* 30-11-2000 - copy each character to tempargll,
* and copy argv[0] partly to argv[il, shift argv[1] to argv[2], etc. */
if (!foundFirstDot)
temparg[il = argv[0][il; /* name of experiment */
else if (!foundSecondDot)
temparg2[j++] = argv[0][i]; /* ’add’ or modulename */
else
temparg3[k++] = argv[0][i]l; /* ’set’ x*/

}

if (foundFirstDot && !foundSecondDot) {
for (i=0; i < strlen(argv[0]) ; i++) {
if (i <= strlen(temparg2) )
argv[0][i] = temparg2[il; /* rewrite 'e.add’ to ’add’ */
else
argv[0][i] = NULL;

}
if (foundSecondDot) {
strcpy(lastarg, argv[2]);
strcpy(argvl2], argvlil);
for (i=0; i < strlen(argv[0]) ; i++) {
if (i <= strlen(temparg3) )
argv[0]1[i] = temparg3[il; /* rewrite ’e.mi.set’ to ’set’ */
else
argv[0][i] = NULL;
¥

for (i=0; i < strlen(argv[1]) ; i++) {
if (i <= strlen(temparg2) )
argv[11[i] = temparg2[il; /* rewrite ’range’ to ’mi’ */
else

argv[11[i] = NULL;

}
¥

/#**x%xx% end of parsing of dots **xxxxsx/

if (!stremp(argv[0],"create)) {
experiment = malloc(sizeof (struct experimentdesc));
experiment->name = strdup(argv[il);
experiment->counter = 0;
experiment->modules = NULL;
experiment->streams = NULL;

fp = fopen("state", "w");
if (fp != NULL) {
fputs(“experiment\t", £p);
fputs(experiment->name, fp);
fputs("\t", fp);
fprintf(fp, "%p", experiment);
fputs("\n", £p);
fclose(fp);
¥
else {
fprintf (stderr, "Error writing file ’state’.\n");
/* showState (experiment) ; %/ /* DEBUG: 15-02-2001 */
}

} else if (!strcmp(argv[0],"load")) {
if((handle = dlopen(argv[1],RTLD_LAZY | RTLD_GLOBAL)) == NULL) {
fprintf (stderr, dlerror() );
return _ERROR;
¥
fprintf(stdout, "%s succesfully loaded.\n", argv[i] );
for(i=0; 2+i<arge; i++) {
if ((spec = dlsym(handle, argv[2+i])) == NULL) {
dlclose(handle);
fprintf(stderr, "module specification in object not found\n");
return _ERROR;
} else if(spec->version != 1) {
dlclose(handle);
fprintf(stderr, "module of incompatible specification\n");
return _ERROR;

vlab__insmod (spec) ;

} else if(!strcmp(argv[0],"exit™)) {
fprintf(stderr, "Quitting vlab...\n");
fprintf(stderr, "Start killing threads.\n");
kill(experiment) ; /* kill all active threads */
pthread_testcancel();
fprintf(stderr, "Finished killing threads.\n");
return _OK;
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/%

* experiment-block

*/

else if(!stremp(argv[0],"add"™)) {
fprintf(stderr, "adding module...\n");

if(arge != 3) {
fprintf (stderr, "arguments mismatch: add moduleName moduleType\n");
return _ERROR;

}

module = malloc(sizeof (struct moduledesc));
module->name = strdup(argv[i]);
module->type = strdup(argv[2]);

module->ident
module->next

experiment->counter++;
experiment->modules;

module->arguments = NULL;

experiment->modules = module;

tmp = experiment->modules; /* 26-10-2000 added to get ’set’-routine to work properly
fprintf(stderr, "module->name = %s\n", module->name);

fp = fopen("state", "a+");
if (fp != NULL) {
fputs("module\t", £p);
fputs(module->name, £p);
fputs("\t", fp);
fputs(module->type, £p);
fputs("\t", fp);
fprintf (fp, "¥p", module);
fputs("\n", fp);
fclose(fp);
}
else {
fprintf (stderr, "Error writing file ’state’.\n");
/* showState(experiment) ;*/ /% DEBUG: 15-02-2001 */

} else if (!strcmp(argvl[0],"connect™)) {
fprintf(stderr, "connecting modules...\n");
if(arge != 5) {
fprintf (stderr, "arguments mismatch: connect producerModule "
"producerPort consumerModule consumerPort\n");
return _ERROR;

}
stream = malloc(sizeof (struct streamdesc));
found = 0;

for(module=experiment->modules; module; module=module->next) {
if (!strcmp(argvl1] ,module->name)) {
found = 1;
break;
}

if (found) {
stream->producer = module;
stream->outputport = strdup(argv[2]);
fprintf (stderr, "outputport conmnected...\n");
found = 0;
for (module=experiment->modules; module; module=module->next) {
if (!strcmp(argv[3] ,module->name)) {
found = 1;
break;

if (found) {

stream->consumer = module;
stream->inputport = strdup(argv[41);
fprintf(stderr, "inputport comnected...\n");
stream->next = experiment->streams;
experiment->streams = stream;
/*fprintf(stderr, "writing stream-state...\n");*/
fp = fopen("state", "a+");
if (fp !'= NULL) {

fputs("stream\t", fp);

fprintf(fp, "¥p", stream);

fputs("\n", £fp);

fclose( fp);

}
else {
fprintf(stderr, "Error writing file ’state’.\n");
¥
else {
fprintf(stderr, "Couldn’t find the second module *%s’ ", argv[3] );
fprintf(stderr, "so I can’t connect the modules.\n");
}
else {

fprintf(stderr, "Couldn’t find the first module ’%s’ ", argv[il );
fprintf (stderr, "so I can’t connect the modules.\n");

/* showState(experiment) ;*/ /% DEBUG: 15-02-2001 */

} else if(!strcmp(argv[0],”start™)) {
fprintf(stderr, "Starting experiment...\n");
showState (experiment) ;
run(experiment) ;

i3

/%

* module-block
*/
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else if(!strcmp(argv[0],"set")) {
found = 0;
for(module=experiment->modules; module; module=module->next) {
if (!strcmp(argv[1],module->name)) {
found = 1;
break;
i

if (found) {
fprintf (stderr, "Setting argument...%s %s\n", argv[2], lastarg );
argument = malloc(sizeof (struct argumentdesc));

argument->name = strdup(argv[2]);
argument->value = atoi(lastarg); /* lastarg == argv[3] */
argument->next = experiment->modules->arguments;

module->arguments = argument;

/*fprintf(stderr, "writing argument-state...\n");*/

fp = fopen("state", "a+");

if (fp != NULL) {
fputs("argument\t", fp);
fprintf(£fp, "%s\t¥s\t%s\t", argv[2], lastarg, argv[il);
fprintf(fp, "%p\n", argument);

fclose(fp);
3
else {
fprintf(stderr, "Error writing file ’state’.\n");
/% showState(experiment);*/  /* DEBUG: 15-02-2001 */
¥
else {
fprintf (stderr, "Couldn’t find module ’%s’ ", argv[1] );
fprintf(stderr, "so I can’t set the requested argument ’%s’.\n", argv[2] );
¥

} else if (!strcmp(argvlol,"get™)) {

for(module=experiment->modules; module; module=module->next) {
if (!strcmp(argvli],module->name)) {

vlab_getState (module->impl, argv[2], values); /# ’get m3 values 10’ */

/%

fprintf(stderr, "Thread ’%d’ active.\n", pthread_self() );

mod = module->impl;

if (mod->thread != pthread_self() ) {
fprintf(stderr, "mod->thread = %d,\t", mod->thread );
fprintf(stderr, "pthread_self() = %d\n", pthread_self() );

*/
count = atoi(argv[3]);
fprintf (stderr, "count = *%d’\n", count );
ds_index = 0;
fprintf(stderr, "\nResult get: ");
for(i=0; i<count; i++) {
sprintf (aux,"%d",values[il);
fprintf (stderr, "%d ", values[i] );

fprintf (stderr, "\n");
¥
} else if(!stremp(argv[0],"put™)) {
for(module=experiment->modules; module; module=module->next) {
if (!stremp(argv1],module->name)) {
values[0] = atoi(argv[3]);

vlab_setParameter(module->impl, argv[2], values);
fprintf(stderr, "Putting ’%s’ at %d\n", argv[2], values[01);

i
}
}
else if (!
( t(strcmp(argv[0],"create™)) || !(strcmp(argv[0],"load"))
Il !(stremp(argv[0],"add")) || !(strcmp(argv[0],"connect"))
11 t(stremp(argv[0],"start™)) || !(strcmp(argvl0],"set"))
11 t(stremp(argv[0l,"get™)) || !(stremp(argv[0]l,"put™) ) ) {
fprintf(stderr, "’%s’ is not a valid argument.\n", argv[0]);
i3
return _OK;
¥

void mexFunction( int nlhs, mxArray #*plhs[], int nrhs, const mxArray#*prhs[]

int status, buflen, i, mrows, ncols;

char *input_buf [maxargs], *args[maxargs];
char *result;

double *y;

/* Check for proper number of arguments */
if (nrhs != 3) {

mexErrMsgTxt("Three input arguments required.");
} else if (nlhs > 1) {

nexErrMsgTxt("Too many output arguments.");

i
/* Input must be strings */

if (mxIsChar(prhs[01) != 1)
mexErrMsgTxt("Argument 1 must be a string");
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if (mxIsChar(prhs[1]) != 1)
mexErrMsgTxt("Argument 2 must be a string");

if (mxIsChar(prhs[2]) != 1)
mexErrMsgTxt("Argument 3 must be a string");

for (i=0; i < nrhs; i++) {
if (prhs[i] != NULL) {
buflen = (mxGetM(prhs[i]) * mxGetN(prhs[il)) + 1;
args[i] = mxCalloc(buflen, sizeof(char));
status = mxGetString(prhs[i], args[il, buflen);

}
0
if (status != 0)

mexWarnMsgTxt ("Not enough space creating imput string. String

#endif

*/

*/

mexWarnMsgTxt ("Starting vlab...");
status = vlab(args, nrhs);

switch(status) {

case 0: result = "_OK"; break;
_ERROR"; break;
RETURN"; break;
BREAK"; break;
CONTINUE"; break;
_OK";

case 1: result

case 2: result

case 3: result
case 4: result =
default: result =

/* for returning the "get"-value to MatLab #*/
if (!strcmp(args[0],"get™)) {
mrows = 1;

is truncated.");

ncols = atoi( args[3] ); /* number of requested values */

plhs[0] = mxCreateDoubleMatrix(mrows, ncols, mxREAL);
y = mxGetPr( plhs[0] );
for (i = 0; i < ncols; i++) {

yIil = values[il;

/*fprintf (stderr, "y[%d]l = *%f’\n", i, y[il);*/

¥

fprintf(stderr, "\nFinished copying values.\n");
i3
else {

plhs[0] = mxCreateString(result);
return;
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vlab_gui.m

function vlab_gui(option)

if nargin == 0 % set up
hndl=figure(1) ;
if ~get(hndl,’userdata’)
close(hndl)
return
end

set(hndl,’menu’, ’none’, ’pos’, [500 500 300 3001);

% Set up uicontrols; 'Tag’ them as belonging to a group
uicontrol(’Style’, ’slider’, ’Position’,

[20 40 200 20], ’Tag’, '#1’, ’min’, O

‘max’, 100, ...

Callback’, ’vlab_gui set’);

% Set up text uicontrols; ’'Tag’ them as belonging
% to a group

uicontrol(’Style’, ’text’, ’String’, num2str(0), ...
’Tag’, ’#1’, ’Position’, [230 40 40 151);

% Set up push button control
uicontrol(’Position’, [20 10 60 20], ’String’, ...
’Create’, ’Callback’, ’vlab_gui create’);
uicontrol(’Position’, [120 10 60 20], ’String’, ...
’Start’, ’Callback’, ’vlab_gui start’);
uicontrol(’Position’, [220 10 60 201, ’String’, ...
Quit’, ’Callback’, ’vlab_gui quit’);
set(gca, 'unit’, ’pixel’, ’position’,[20 65 250 2001)
drawnow

elseif strcmp(option, ’set’)
% Set the text above the slider to reflect the string
% value. Get handle to accompanying text uicontrol -—
% i.e., find matching ’Tag’

% TODO: Eerst controleren of de modules wel aangemaakt zijn, door boolean?
% --> checken of create == true en

£ (created 1 & started == 1)
txthndl = findobj(gef, 'Style’, ’text’,
‘Tag’, get(gco, ’Tag’));

% Set value to current value of slider

%set (txthndl, ’String’, num2str(get(gco, ’value’)));
threshold = num2str(get(gco, ’value’));
set(txthndl, ’String’, threshold );
vlab(’put’,’m2’,’threshold’, threshold );

%else

% fprintf ("First click on [create]l, then on [start]l...\n’);

%end

elseif stremp(option, ’create’)
% Prepare vlab
vlab(’load’,’/home/jgztbier/vlab/matlab/modrand.so’, mod_rand’);
vlab(’load’,’/home/jgztbier/vlab/matlab/modhist.so’, mod_hist’);
vlab(’load’,’/home/jgztbier/vlab/matlab/moddisp.so’, mod_disp’);
%fprintf(’Creating experiment...\n’);
vlab(’create’,’e’);
Yfprintf (’Adding modules...\n’);
vlab(’e.add’,’mi’,’rand’);
vlab(’e.add’,’m2’,’hist?);
vlab(’e.add’,’m3’,’disp’);
%fprintf(’Setting modules...\n’);
vlab(’e.mi.set’,’range’,’10°);
vlab(’e.m2.set’,’range’,’20°);
vlab(’e.m3.set’, ’range’,’30°);
%£printf(’Connecting modules...\n’);
vlab(’e.connect’,’mi’,’out’, ’m2’,’in’);
vlab(’e.connect’,’m2’,’out’,’m3’,’in’);
Ycreated = 1;

elseif stremp(option, ’start’)
vlab(’start’);
fprintf (’Starting bar-graph...\n’);
counter = 0
figure(1)
set( 1, ’userdata’,1
while findobj (’String’,’Start’)
%fprintf(’Counter = %d\n’, counter);
y = vlab(’get’,’n3’,’values’,’10°)
bar(1:10,y)
drawnow
end

elseif stremp(option, ’quit’)
vlab(’exit’);
fprintf (’Closing window...\n’);
set(1 , ’userdata’, 0 )
close
return
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D.1.2 Simulink interface
sfun_input.m

function [sys,x0,str,ts] = sfun_input(t,x,u,flag,P1)

%SFUNTMPL General M-file S-function template

With M-file S-functions, you can define you own ordinary differential
equations (ODEs), discrete system equations, and/or just about

any type of algorithm to be used within a Simulink block diagram.

The general form of an M-File S-function syntax is:
[SYS,X0,STR,TS] = SFUNC(T,X,U,FLAG,P1,...,Pn)

What is returned by SFUNC at a given point in time, T, depends on the
value of the FLAG, the current state vector, X, and the current
input vector, U.

FLAG RESULT DESCRIPTION

] [SIZES,X0,STR,TS] Initialization, return system sizes in SYS,
initial state in X0, state ordering strings
in STR, and sample times in TS.

1 DX Return continuous state derivatives in SYS.

2 DS Update discrete states SYS = X(n+1

3 Y Return outputs in SYS.

4 TNEXT Return next time hit for variable step sample

time in SYS.
Reserved for future (root finding).
9 u} Termination, perform any cleanup SYS=[].

o

The state vectors, X and X0 consists of continuous states followed
by discrete states.

Optional parameters, Pi,...,Pn can be provided to the S—function and
used during any FLAG operation.

When SFUNC is called with FLAG = 0, the following information
should be returned:

SYS(1) = Number of continuous states.

SYS(2) = Number of discrete states.

SYS(3) = Number of outputs.

SYS(4) = Number of inputs.

Any of the first four elements in SYS can be specified
as -1 indicating that they are dynamically sized. The
actual length for all other flags will be equal to the
length of the inmput, U.

SYS(5) = Reserved for root finding. Must be zero.

SYS(6) = Direct feedthrough flag (i=yes, 0=no). The s-function
has direct feedthrough if U is used during the FLAG=3
call. Setting this to O is akin to making a promise that
U will not be used during FLAG=3. If you break the promise
then unpredictable results will occur.

SYS(7) = Number of sample times. This is the number of rows in TS.

X0 = Initial state conditions or [] if no states.
STR = State ordering strings which is generally specified as [].
TS = An m-by-2 matrix containing the sample time

(period, offset) information. Where m = number of sample
times. The ordering of the sample times must be:

TS = [0 0, : Continuous sample time.
0 1, : Continuous, but fixed in minor step
sample time.
PERIOD OFFSET, : Discrete sample time where
PERIOD > O & OFFSET < PERIOD.

-2 0l; : Variable step discrete sample time
where FLAG=4 is used to get time of
next hit.

There can be more than one sample time providing
they are ordered such that they are monotonically
increasing. Only the needed sample times should be
specified in TS. When specifying than one
sample time, you must check for sample hits explicitly by
seeing if

abs (round ((T-OFFSET) /PERIOD) - (T-OFFSET)/PERIOD)
is within a specified tolerance, generally le-8. This
tolerance is dependent upon your model’s sampling times
and simulation time.

You can also specify that the sample time of the S—function
is inherited from the driving block. For functioms which
change during minor steps, this is dome by

specifying SYS(7) = 1 and TS = [-1 0]. For functions which
are held during minor steps, this is done by specifying
SYS(7) = 1 and TS = [-1 -1].

% Copyright (c) 1990-1998 by The MathWorks, Inc. All Rights Reserved.
%  $Revision: 1.12 §
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% The following outlines the general structure of an S-function.
%

switch flag,

Wh
case 1,
sys=md1Derivatives(t,x,u,P1);

case 2,
sys=md1lUpdate(t,x,u, P1);

YAYAAANANAAA
% Outputs %
KAASASAANNY,
case 3,

sys=md10utputs(t,x,u);

W

case 4,
sys=md1GetTimeOfNextVarHit (t,x,u);

W A

% Terminate %

WRRRARALLALA T,

case 9,
sys=mdlTerminate(t,x,u) ;

WARKIAA Wh
Unexpected flags %

otherwise
error([’Unhandled flag = ’,num2str(flag)l);

end
% end sfuntmpl
prev_t = 0;

%

% mdlInitializeSizes
% Return the sizes, initial conditions, and sample times for the S-function.

%
function [sys,x0,str,ts]=mdlInitializeSizes(t,P1)

% call simsizes for a sizes structure, fill it in and convert it to a
% sizes array.

% Note that in this example, the values are hard coded. This is mnot a
% recommended practice as the characteristics of the block are typically
% defined by the S-function parameters

sizes = simsizes;

sizes.NumContStates
sizes.NumDiscStates
sizes.NumOutputs
sizes.NumInputs
sizes.DirFeedthrough
sizes.NumSampleTimes

% at least one sample time is needed
sys = simsizes(sizes);

%

% initialize the initial conditions
y

x0 = zeros(1,1);

%

% str is always an empty matrix
%

str = [1;

%

% initialize the array of sample times
%

ts = [0 0];

prev_t = t;
%

% initialize vlab-modules

%
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vlab(’load’,’/home/jgztbier/vlab/matlab/simulink/modinput.so’,
‘mod_input’) ;
vlab(’e.add’,’mi’,’input’);
vlab(’e.mi.set’,’range’,’10’);
% end mdlInitializeSizes

% mdlDerivatives
% Return the derivatives for the continuous states.

function sys=mdlDerivatives(t,x,u,P1)

%dx = zeros(size(x));
%
%1 = floor (u)

£1>0¢&1< size(x,1)
dx(1+1)=1./dt;

end mdlDerivatives

% mdlUpdate
% Handle discrete state updates, sample time hits, and major time step
% requirements.

%
function sys=mdlUpdate(t,x,u, P1)

%pause(0.01) ;
vlab(’put’,’mi’,’value’,num2str(u));
% sprintf(’input@%f: %f -> "%s"\n’, t, u, num2str(u))

sys = u;

% end mdlUpdate

% mdlOutputs
% Return the block outputs.

function sys=md1lOutputs(t,x,u)

sys = [1;

end mdlOutputs

mdlGetTimeOfNextVarHit

Return the time of the next hit for this block. Note that the result is
absolute time. Note that this function is only used when you specify a
variable discrete-time sample time [-2 0] in the sample time array in
mdlInitializeSizes.

function sys=md1GetTimeOfNextVarHit(t,x,u)

sampleTime = 1; % Example, set the mext hit to be onme second later.
sys = t + sampleTime;

end mdlGetTimeOfNextVarHit

% mdlTerminate
% Perform any end of simulation tasks.

%

function sys=mdlTerminate(t,x,u)
sys = [1;

% end mdlTerminate
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sfun_hist.m

function [sys,x0,str,ts] = sfun_hist(t,x,u,flag,P1)

%

% The following outlines the general structure of an S-function.
%

switch flag,

Wh

case 0,
[sys,x0,str,ts]=ndlInitializeSizes(t,P1);

At
case 1,
sys=md1Derivatives(t,x,u,P1);

case 2,
sys=mdlUpdate(t,x,u, P1);

case 3,
sys=md10utputs(t,x,u,P1);

%

case 4,
sys=md1GetTimeOfNextVarHit(t,x,u);

Terminate %
case 9,
sys=md1Terminate(t,x,u) ;

otherwise
error([’Unhandled flag = ’,num2str(flag)]);

end
% end sfuntmpl
prev_t = 0;

%

% mdlInitializeSizes
% Return the sizes, initial conditions, and sample times for the S-function.

%
function [sys,x0,str,ts]=ndlInitializeSizes(t,P1)

%
% call simsizes for a sizes structure, fill it in and convert it to a
% sizes array.

% Note that in this example, the values are hard coded. This is not a
% recommended practice as the characteristics of the block are typically
% defined by the S-function parameters

%

sizes = simsizes;

sizes.NumContStates
sizes.NumDiscStates
sizes.NumOutputs
sizes.NumInputs
sizes.DirFeedthrough
sizes.NumSampleTimes

% at least one sample time is needed
sys = simsizes(sizes);

%

% initialize the initial conditions

% str is always an empty matrix
%
str = [1;

%

% initialize the array of sample times
%

ts = [0 0];
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prev_t = t;

% initialize vlab-modules

vlab(’load’,’/home/jgztbier/vlab/matlab/simulink/modhist.so0’, ...
"mod_hist’);
vlab(’e.add’,’m2’,’hist’);
vlab(’e.m2.set’,’range’,’10°);
vlab(’e.connect’,’mi’,’out’,’m2’,’in’);
end mdllInitializeSizes

% mdlDerivatives
% Return the derivatives for the continuous states.

function sys=mdlDerivatives(t,x,u,P1)

%dx = zeros(size(x));
%

%1 = floor (u)

%

£1>0¢&1< size(x,1)
dx(1+1)=1./dt;

hend
%

Y% sys = dx;
sys = [1;

end mdlDerivatives

% mdlUpdate
% Handle discrete state updates, sample time hits, and major time step
% requirements.

%
function sys=mdlUpdate(t,x,u, P1)

if (t<0.2)
vlab(’put’,’m2’,’threshold’, num2str(P1));
end
x = vlab(’get’,’m2’,’count’,’1’);
sys = x;
% end mdlUpdate

%

% mdlOutputs
% Return the block outputs.

%
function sys=mdlOutputs(t,x,u,P1)

end ndl0utputs

% mdlGetTimeOfNextVarHit

% Return the time of the mext hit for this block. Note that the result is
% absolute time. Note that this function is only used when you specify a
% variable discrete-time sample time [-2 0] in the sample time array in

% mdlInitializeSizes.

function sys=mdlGetTimeOfNextVarHit(t,x,u)

sampleTime = 1; Y% Example, set the next hit to be one second later.
sys = t + sampleTime;

end mdlGetTimeOfNextVarHit

% mdlTerminate
% Perform any end of simulation tasks.

%

function sys=mdlTerminate(t,x,u)
sys = [1;

% end mdlTerminate
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sfun_disp.m

function [sys,x0,str,ts] = sfun_disp(t,x,u,flag,P1)

%

% The following outlines the general structure of an S-function.
%

switch flag,

Initialization
Wh
case 0,
[sys,x0,str,ts]=ndlInitializeSizes(t,P1);

case 1,
sys=mdlDerivatives(t,x,u,P1);

WRRRRLALLT,
Update
WRRRRLALDT,

case 2,
sys=mdlUpdate(t,x,u, P1);

case 3,
sys=nd10utputs (t,x,u);

Wh

Wh
case 4,
sys=md1GetTimeOfNextVarHit(t,x,u);

Wh Akl

i Terminate %

WARRRLALAN DN

case 9,
sys=md1Terminate(t,x,u) ;

WARRIAA
% Unexpected flags %
WRRRRRALRARADDA DA DN
otherwise
error([’Unhandled flag = ’,num2str(flag)]);

end
% end sfuntmpl

prev_t = 0;

% mdlInitializeSizes
% Return the sizes, initial conditions, and sample times for the S-function.

function [sys,x0,str,ts]=ndlInitializeSizes(t,P1)

%

% call simsizes for a sizes structure, fill it in and convert it to a

% sizes array.

%

% Note that in this example, the values are hard coded. This is not a
% recommended practice as the characteristics of the block are typically
% defined by the S-function parameters

%

sizes = simsizes;

sizes.NumContStates
sizes.NumDiscStates
sizes.NumOutputs
sizes.NumInputs
sizes.DirFeedthrough
sizes.NumSampleTimes

1; % at least one sample time is needed
sys = simsizes(sizes);

%
% initialize the initial conditions
%

x0 = zeros (1,10);

%

% str is always an empty matrix
%

str = [1;

%

% initialize the array of sample times

%
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ts = [-1 0];

prev_t = t;

% initialize vlab-modules

vlab(’load’,’ /home/jgztbier/vlab/matlab/moddisp.so’, 'mod_disp’);
vlab(’e.add’,’m3’,’disp’);
vlab(’e.m3.set’,’range’,’10°);
vlab(’e.connect’,’m2’,’out’,’m3’,’in’);

end mdllInitializeSizes

% mdlDerivatives
% Return the derivatives for the continuous states.

function sys=mdlDerivatives(t,x,u,P1)

%dx = zeros(size(x));
%

%1 = floor (u)

%

£1>0¢&1< size(x,1)
dx(1+1)=1./dt;

hend
%

Y% sys = dx;
sys = [1;

end mdlDerivatives

% mdlUpdate
% Handle discrete state updates, sample time hits, and major time step
% requirements.

%
function sys=mdlUpdate(t,x,u, P1)

y = vlab(’get’,’n3’,’values’,’10°);
if (y == x?)
pause(0.00001) ;
end
sys = y;
% end mdlUpdate

%

% mdlOutputs
% Return the block outputs.

%
function sys=mdlOutputs(t,x,u)

sys = x;

end mdlOutputs

mdlGetTimeOfNextVarHit

Return the time of the next hit for this block. Note that the result
absolute time. Note that this function is only used when you specify
variable discrete-time sample time [-2 0] in the sample time array in
mdlInitializeSizes.

function sys=mdlGetTimeOfNextVarHit(t,x,u)

sampleTime = 1; % Example, set the mext hit to be one second later.
sys = t + sampleTime;

end mdlGetTimeOfNextVarHit

% mdlTerminate
% Perform any end of simulation tasks.

%
function sys=mdlTerminate(t,x,u)

sys = [1;

% end mdlTerminate
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simulink2vlab.mdl

Model {
Name "simulink2vlab"
Version 3.00
SimParamPage "Solver"
SampleTimeColors off
InvariantConstants off
WideVectorLines off
ShowLineWidths off
ShowPortDataTypes  off
StartTime "0.0"
StopTime "300.0"
SolverMode "Auto"
Solver "FixedStepDiscrete"
RelTol "le=-3"
AbsTol "auto"
Refine "
MaxStep "auto"
InitialStep "auto"
FixedStep "0.2"
MaxOrder &
OutputOption "RefineOutputTimes"
OutputTimes “[1"
LoadExternallnput off
Externallnput  "[t, ul"
SaveTime on

TimeSaveName "tout"
SaveState off
StateSaveName "xout"

SaveOutput  onm
OutputSaveName  “yout"
LoadInitialState off
InitialState “xInitial"
SaveFinalState off
FinalStateName "xFinal"
SaveFormat "Matrix"
LimitMaxRows off
MaxRows "1000"

Decimation  "1"
AlgebraicLoopMsg  "warning"
MinStepSizeMsg  "warning"
UnconnectedInputMsg  "warning"
UnconnectedOutputMsg  "warning"
UnconnectedLineMsg  "warning"
InheritedTsInSrcMsg  "warning"
IntegerOverflowMsg "warning"

UnnecessaryDatatypeConvMsg "none"
Int32ToFloatConvMsg "warning"
SignalLabelMismatchMsg "none"
ConsistencyChecking  "off"
ZeroCross  on

SimulationMode  “normal"
BlockDataTips on
BlockParametersDataTip on
BlockAttributesDataTip off
BlockPortWidthsDataTip off
BlockDescriptionStringDataTip off
BlockMaskParametersDataTip off
ToolBar on

StatusBar on
BrowserShowLibraryLinks off
BrowserLookUnderMasks off
OptimizeBlockIOStorage on
BufferReuse on
BooleanDataType  off
RTWSystemTargetFile "grt.tlc"
RTWInlineParameters of f
RTWRetainRTWFile off
RTWTemplateMakefile "grt_default_tmf"
RTWMakeCommand "make_rtw"
RTWGenerateCodeOnly of f
ExtModeMexFile "ext_comm"
ExtModeBatchMode  off
ExtModeTrigType "manual"
ExtModeTrigMode "oneshot"
ExtModeTrigPort "
ExtModeTrigElement "any"
ExtModeTrigDuration 1000
ExtModeTrigHoldOf f o
ExtModeTrigDelay 0
ExtModeTrigDirection ‘“rising"
ExtModeTrigLevel 0
ExtModeArchiveMode "off"
ExtModeAutoIncOneShot off
ExtModeIncDirWhenArm  off
ExtModeAddSuffixToVar off
ExtModeWriteAllDataToWs off
ExtModeArmWhenConnect off
StartFen  "vlab(’start’);"
StopFen  "vlab(’exit’);"
Created ue Mar 20 16:27:40 2001"
Creator  "jgztbier"
UpdateHistory "UpdateHistoryNever"
ModifiedByFormat  "%<Autod"
LastModifiedBy "jgztbier"
ModifiedDateFormat "Y%<Autod"




LastModifiedDate "Thu Mar 29 15:

:45 2001"

ModelVersionFormat "1_%<AutoIncrement:50>"
ConfigurationManager  "none"
BlockDefaults {
Orientation "right"
ForegroundColor "black"
BackgroundColor "white"
DropShadow off
NamePlacement "normal"
FontName "Helvetica"
FontSize 10
FontWeight "normal"
FontAngle "normal
ShowName on

}

AnnotationDefaults {
HorizontalAlignment "center"
VerticalAlignment "middle"
ForegroundColor "black"
BackgroundColor "white"
DropShadow off
FontName "Helvetica"
FontSize 10
FontWeight "normal"
FontAngle "normal"

¥

LineDefaults {

FontName "Helvetica"
FontSize 9
FontWeight "normal"
FontAngle "normal"
System {
Name "simulink2vlab"
Location [338, 573, 838, 833]
Open on
ModelBrowserVisibility off
ModelBrowserWidth 200
ScreenColor "white"
PaperOrientation "landscape"
PaperPositionMode "auto"
PaperType "usletter"
PaperUnits "inches"
ZoomFactor 100"
AutoZoom of f
ReportName "simulink-default.rpt"
Block {
BlockType SubSystem
Name "Experiment"
Description "vlab"
Ports [1, 2, 0, 0, 0]
Position [170, 96, 230, 169]
InitFcn "vlab(’create’,’e’) ;"
ShowPortLabels on
System {

Name "Experiment"

Location [463, 337, 914, 479]
Open on
ModelBrowserVisibility off
ModelBrowserWidth 200
ScreenColor "white"
PaperOrientation "landscape"
PaperPositionMode "auto"
PaperType "usletter"
PaperUnits "inches"
ZoomFactor "100"

AutoZoom on

Block {
BlockType Inport
Name "In"
Position [25, 33, 55, 47]
Port  "1"
PortWidth  "-1"
SampleTime  "-1"
DataType "auto"

SignalType "auto"
Interpolate  on

¥

Block {
BlockType "S-Function"
Name "m1"
Ports [1, 0, 0, 0, 0]
Position [80, 25, 140, 55]
FunctionName "sfun_input"
Parameters 10"
PortCounts -
SFunctionModules o

¥

Block {
BlockType "S-Function"
Name  "m2"

Ports [0, 1, 0, 0, 0]
Position  [195, 25, 255, 55]

FunctionName  “sfun_hist"

Parameters 20"

PortCounts “[1"

SFunctionModules "’!"
Block {
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BlockType "S-Function"

Name  "m3"

Ports [0, 1, 0, 0, 0]
Position  [285, 70, 345, 100]

FunctionName “sfun_disp"
Parameters  "30"
PortCounts o-
SFunctionModules "’'"

MaskIconFrame on
MaskIconOpaque on

MaskIconRotate "none"
MaskIconUnits "autoscale"
¥
Block {

BlockType Outport
Name  "full"
Position  [400, 33, 430, 47]

Port  "1"
OutputWhenDisabled  "held"
InitialOutput "[I"

Block {

BlockType Outport
Name  "Values"
Position  [400, 78, 430, 92]
Port  "2"
OutputWhenDisabled  "held"
InitialOutput "[]"
Line {
SrcBlock  "In"
SrcPort 1
DstBlock "mi"
DstPort 1
Line {

SrcBlock  "m2"
SrcPort 1
DstBlock "full"
DstPort 1

Line {
SrcBlock
SrcPort
DstBlock
DstPort

}

}

Block {
BlockType UniformRandomNumber
Name "Uniform Random\nNumber"
Position [40, 119, 70, 151]
Minimum "o"
Maximum 9.99999999"
Seed
SampleTime "o"

Block {
BlockType SubSystem
Name "bar"
Ports [1, 0, 0, 1, 0]
Position [320, 134, 360, 166]
ShowPortLabels on
System {
Name "bar"
Location [97, 410, 595, 710]
Open off
ModelBrowserVisibility off
ModelBrowserWidth 200
ScreenColor "white"
PaperOrientation "landscape"
PaperPositionMode "auto"
PaperType "usletter"
PaperUnits "inches"
ZoomFactor "100"
AutoZoom on
Block {
BlockType Inmport
Name "y"
Position [65, 118, 95, 132]
Port "
PortWidth
SampleTime -1
DataType "auto"
SignalType "auto"
Interpolate on

¥
Block {
BlockType TriggerPort
Name "Trigger"
Ports [0, 0, 0, 0, 0]
Position  [205, 75, 225, 95]
TriggerType “either"
ShowOutputPort off
OutputDataType “auto™
Block {

BlockType MATLABFcn



Name "MATLAB Fen"
Position [185, 160, 245, 190]

MATLABFcn
OutputWidth

OutputSignalType

¥

Line {
SrcBlock
SrcPort 1

Points [70, o]

"bar (u)"

nauto"

DstBlock "MATLAB Fcn"

DstPort 1

}

}

Line {
SrcBlock
SrcPort
DstBlock
DstPort

Line {
SrcBlock
SrcPort
DstBlock
DstPort

}

Line {
SrcBlock
SrcPort
Points
DstBlock
DstPort

"Uniform Random\nNumber"
1

"Experiment"
1

“Experiment"
2

“bar"
1

“Experiment"
1
[105, 0]

"bar"
trigger
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D.2 XML experiment description VLAM-G
XML header

<7xml version="1.0" standalone="yes"?>
<!-- This file describes an experiment topology -->

<!-- This file is generated by the Front-End -->

<!-- DO NOT edit this file manually! -->

<!-- Version V1ReadTopologyFromDatabase: \$Revision: 1.1 \§ -->

XML body

<topology>
<module definition 1>
<module definition 2>
<module definition 3>

<module definition n>

<instance definition 1>
<instance definition 2>
<instance definition 3>

<instance definition n>

<comnection definitions 1>
<connection definitions 2>

<connection definitions (n-1)>
</topology>

XML module definition

<module name="moduleName" moduleId="moduleId">
<cpuTimeRequest>value (double)</cpuTimeRequest>
<memoryRequest>value (double)</memoryRequest>
<storageDemand>value (double)</storageDemand>
<executable>
<platform>platformName</platform>
<location>pathname/executable</location>
</executable>
<port name="portName">
<dataType>integer/double/...</dataType>
<direction>input/output</direction>
<replication>true/false</replication>
</port>
</module>

XML instance definition

<instance instanceId="Id" moduleId="moduleId">
<host>hostname</host>
<dn>GRID certificate</dn>
<position x="value (int)" y="value (int)"/>
</instance>

XML connection definition

connectionName">

<comnection nam
<output port="portName" instanceId="value (int)" />
<input port="portName" instanceId="value (int)" />
<!-- Data to draw this connection -->
<point value (int)" value (int)" />
<point x="value (int)" y="value (int)" />
</connection>
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D.3 MDL2XML

function md12xml(mdlfile, xmlfile)
% md12xml - converts a Simulink .MDL-file to a VLAM-G .xml-file

if nargin < 2
error(’Not enough input arguments. Usage: mdl2xml(mdlfile, xmlfile) *);
end

blks = find_system(gcs, ’Type’, ’block’);
moduleNames = get_param(blks, ’moduleName’);
modulelds = get_param(blks, ’moduleId’);
platforms = get_param(blks, ’platform’);
locations = get_param(blks, ’proglocation’);
datatypes = get_param(blks, ’datatype’);
directions = get_param(blks, ’direction’);
replications = get_param(blks, ’replication’);
hosts = get_param(blks, ’host’);

dns = get_param(blks, ’dn’);

% determine portnames and put them in a table with the corresponding moduleName and instanceID
j=1; k=1;
blocktypes = get_param(blks, ’BlockType’);
for i=1:length(blocktypes)
if findstr( cell2mat(blocktypes(i)), ’SubSystem’)
outports(j,:) = [ moduleNames(i) ( get_param(blks(i), ’outporti’) ) {i-1} 1;
j=i+1;
outports(j,:) = [ moduleNames(i) ( get_param(blks(i), ’outport2’) ) {i-1} 1;
j=i+;
else
portname = get_param(blks(i), ’inporti’);
if (“isempty(cell2mat(portname)))
inports(k,:) = [ moduleNames(i) ( portname ) {i-1} 1;
k=k+1;
end
portname = get_param(blks(i), ’outporti’);
if (“isempty(cell2mat(portname)))
outports(j,:) = [ moduleNames(i) ( portname ) {i-1} 1;
j=i+1;

% DEBUG

= size(inports);

%[rows, cols] = size(outports); % DEBUG

lines = get_param(gcs, ’Lines’);

i=1

for i = 1:length(lines)
sources{j} = get_param(lines(i).SrcBlock, ’Name’);
destinations{j} = get_param(lines(i).DstBlock, ’Name’);
J=i+
sources{j} = lines(i).SrcPort;
destinations{j} = lines(i).DstPort;

J=i+;
end
Y%sources % DEBUG
Ydestinations % DEBUG

% start writing the xmlfile by using the writeXML-functions
fprintf (CWriting %s...\n’, mmlfile);

writeXMLheader (xnlfile);

elements = size(moduleNames, 1);

for i = 1:elements
writeXMLmodule(xmlfile, cell2mat( moduleNames(i) ), cell2mat( modulelds(i) ), cell2mat( platforms(i) ),
cell2mat( locations(i) ), sources, destinations, inports, outports, cell2mat( datatypes(i) ),
cell2mat( directions(i) ), cell2mat( replications(i) ) );
end

for i = 1:elements
writeXMLinstance(xmlfile, (i-1), cell2mat( moduleIds(i) ), cell2mat( hosts(i) ), cell2mat( dns(i) ) );
end

% writing connections
connectionName = ’Exp_Top_’;
for i = 1:elements
connectionName = strcat(connectionName, int2str(i));
end
connectionName = strcat(connectionName, ’_’);
for i = 1 : length(lines)

% find modulename for the beginning of this connection
for j=1:elements
if ( findstr( cell2mat(moduleNames(j)), cell2mat(sources((2¥i)-1)) ) )
outputportID = (j-1);
break;

end
% find modulename for the ending of this connection
for j=1i:elements
if ( findstr( cell2mat(moduleNames(j)), cell2mat(destinations((2%i)-1)) ) )
inputportID = (j-1);
break;
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end

end

connectionNr = strcat(connectionName, int2str(i-1) );

writeXMLconnection(xmlfile, connectionNr, cell2mat( sources(2#i) ), outputportID, cell2mat( destinations(2%i) ),
inputportID, cell2mat(sources((2%i)-1)), cell2mat(destinations((2%i)-1)), inports, outports )

fprintf(’Done.\n’);

function writeXMLheader(filename) % Subfunction

% write XML-header to file

fid = fopen(filename, ’w’);

fprintf(fid, ’<7xml version=\"1.0\" standalone=\"yes\"7>\n’);
fprintf(fid, ’\n’);

fprintf(fid, ’<!-- This file describes an experiment topology -->\n’);

fprintf(fid, ’<!-- This file is generated by the Front-End -->\n’);
fprintf(fid, DO NOT edit this file manually! -->\n’);
fprintf(fid, Version VlReadTopologyFromDatabase: $Revision: 1.1 $ —->\n’);

fprintf(fid, ’\n’);
fprintf(fid, ’<topology>\n’);
fclose(fid);

function writeXMLmodule(filename, moduleName, moduleld, platform, location, source, dest, inputports, outputports,
dataType, direction, replication ) % Subfunction

Y% write XML-specification of a module to file

fid = fopen(filename, ’a’);

fprintf(fid, ’ <module name=\"%s\" moduleId=\"%s\">\n’, moduleName, moduleId);
fprintf(fid, ’ <cpuTimeRequest>10.0</cpuTimeRequest>\n’) ;

fprintf(fid, ’ memoryReq .5</memoryRequest>\n’) ;

fprintf(fid, ’ <storag .5</storag >\n’);

fprintf(fid, * <executable>\n’);

fprintf (fid, °’ <platform>%s</platform>\n’, platform);

fprintf(fid, ’ <location>Y%s</location>\n’, location);

fprintf(fid, ’ </executable>\n’);

fclose(fid);
for i=1 : 2 : length(source)
if (findstr( cell2mat(source(i)), moduleName))
writeXMLport(filename, moduleName, cell2mat(source(i+1) ), inputports, outputports, dataType, ’output’, replication);
end
end
for i=1 : 2 : length(dest)
if (findstr( cell2mat(dest(i)), moduleName))
writeXMLport(filename, moduleName, cell2mat( dest(i+1) ), inputports, outputports, dataType, ’input’, replication);
end
end
fid = fopen(filename, ’a’);
fprintf(fid, ’ </module>\n\n’);
fclose(fid);

added extra white line for clearity

function writeXMLport(filename, modName, portNr, inputports, outputports, dataType, direction, replication) % Subfunction
% write XML-specification of a port to file - subfunction of writeXMLmodule

fid = fopen(filename, ’a’);

name = portnr2portname(portNr, direction, modName, inputports, outputports);

fprintf(fid, ’ <port name=\"%s\">\n’, name);

fprintf (fid, °’ <dataType>Ys</dataType>\n’, dataType);

fprintf (fid, °’ <direction>%s</direction>\n’, direction);
fprintf(fid, °’ <replication>%s</replication>\n’, replication);
fprintf(fid, °’ </port>\n’);

fclose(fid);

function writeXMLinstance(filename, instanceID, moduleId, host, dn ) Subfunction
% write XML-specification of an instance of a module to file

fid = fopen(filename, ’a’);

fprintf(fid, ’ <instance instanceId=\"%d\" moduleId=\
fprintf (fid, °’ <host>%s</host>\n’, host) ;

fprintf (fid, ’ <dn>%s</dn>\n’, dn);

% x and y-coordinates are not parsed and used in the RTS

% fprintf(fid, <position x=\"%d\" y=\"%4d\"/>\n’ , positionX, positionY);
fprintf(fid, ’ </instance>\n\n’); % added extra white line for clearity
fclose(fid);

s\">\n’, instanceID, moduleId);

function writeXMLconnection(filename, connectionName, oppNr, oppID, ippNr, ippID, sr s , inputports, putp
% write XML-specification of a connection between two modules to file

% oppNr = number of outputport

i oppID = ID of outputport

% ippNr = number of inputport

% ippID = ID of inputport

oppName = portnr2portname(oppNr, ’output’, srcModName, inputports, outputports);

ippName = portnr2portname (ippNr, ’input’, dstModName, inputports, outputports);

fid = fopen(filename, ’a’);

fprintf(fid, ’ <connection name=\"%s\">\n’, connectionName);

fprintf(fid, * 4d\" />\n’, oppName, oppID);

fprintf(fid, * <input port=\"%s\" instanceId=\"%d\" />\n’, ippName, ippID);

fprintf(fid, ’ </connection>\n’);

fclose(fid);

function portname = portnr2portname(portnumber, direction, modName, inputports, outputports) % Subfunction
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% convert a given portnumber (from a Simulinkmodule) to the associated masked portname
% direction must be ’'input’ or ’output’, denoting the direction of the port.
if (“isnumeric(portnumber))
portNr = str2num(portnumber);
else
portNr = portnumber;
end
if (findstr(’output’, direction ))
counter = 0;
[rows, cols] = size(outputports);
for i = l:rows
if (findstr( cell2mat( outputports(i,1) ), modName))
counter = counter + 1;
if (counter == portNr)
portname = cell2mat( outputports(i,2) );

else

counter = 0;

[rows, cols] = size(inputports);

for i = 1:rows

if (findstr( cell2mat( inputports(i,1) ), modName))
counter = counter + 1;

portNr)
cell2mat( inputports(i,2) );

if (counter
portname

The function below is NOT used in the current implementation of MDL2XML,
which is based on requesting parameters from the Simulink environment.
The getMDLparameter-function directly accesses the .MDL-file to retrieve
the requested parameter. It is kept in this code for educational
purposes to show another approach to solve this problem.

[—

function [varargout] = getMDLparameter(filename, parameterName) % Subfunction
% retrieve the requested parameter from the .mdl-file

fid = fopen(filename, ’r’);

Y%frewind(fid); % to be sure that we start at the beginning of the file

i=1;

while ( ~feof(fid))

% read line

line = fgetl(fid); Y% discard newline character

%line = fgets(fid); Y% keep newline character

if findstr(line, parameterName) Yicheck for existence of specified tag

=1:(length(line))

(line(i) == ’"?)

%fprintf (’DEBUG: found quote mark at position %d\n’, i);
quote(k,:) = i;

k=k+1;

end
i=itl;

end
varargout{j} = line(quote(1)+1:quote(2)-1)
j=i+;

end
fclose(fid);
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