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Abstract

With recent years’ leaps forward in the field of deep learning, including input masking at
training time, it is now easier for AI models to process incomplete data. In the field of remote
sensing, data is often discarded due to imperfections such as dead pixels. This results in wasting
collected information that could be used for training. The newest deep learning studies on
multispectral satellite imagery present findings that also apply under conditions of incomplete
data. Yet, using incomplete data as a central part of the model training procedure - in the
form of masking certain spectral bands - has not been studied in-depth.

This paper investigates the effects of masking one or multiple spectral bands of multispectral
satellite imagery. A contrastive learning fine-tuning method is proposed to infer the missing
information, by leveraging the learnt representations from a foundation model encoder. Then,
the effect of the proposed fine-tuning regime is evaluated on two downstream tasks: scene
classification and image segmentation. Results suggest that recovering information within the
masked spectral bands from the unmasked ones is possible. Scene classification performance
on incomplete input increases when using an encoder that was fine-tuned via the proposed
method. However, results have been inconclusive on the image segmentation task.
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Chapter 1

Introduction

In 1972, the field of remote sensing took a major step forward when the first satellite multi-
spectral images of Earth were captured by the Landsat-1 mission. The earliest image available
in this satellite’s archive is an aerial view of Dallas, USA, depicted in false color in Figure 1.1.
This image displays spectral bands outside the visible light spectrum, hence the name “false
color”. Forty years and tens of satellite missions later, multispectral imagery is still widely
used for tasks that require imagery from above. The technological advancements that have
been made since then have resulted in:

1. Higher resolution images - going from a spatial resolution of 60m per pixel to < 1m per
pixel in some modern satellites; [1]

2. Larger coverage of spectral bands - certain satellites can capture up to 200+ bands to
form multispectral and hyperspectral imagery [2];

3. An increase in advanced applications using these images - relying on improved computers,
new scientific findings, and more recently on artificial intelligence (AI).

Figure 1.1: Landsat-1 image of Dallas in false color, 25.07.1972

All of the listed points can benefit from the use of AI [3]. Several typical tasks for AI
have been applied to remote sensing, such as classification, image segmentation, and predicting

2



Figure 1.2: RGB view of four images sampled from the EuroSAT dataset, showcasing imper-
fections. From left to right: clouds, mislabeling, dead pixels, snow.

continuous numerical values. Figure 2.4 contains a number of images sampled from a bench-
mark remote sensing multispectral dataset used in this study, EuroSAT [4]. While EuroSAT
is commonly used for scene classification and other vision tasks, it also contains examples of a
commonly occurring element in Earth Observation: imperfections in the data. Scenes covered
by clouds, dead pixels, ice or snow, as illustrated in Figure 1.2, can significantly affect perfor-
mance on the intended task. In some cases, AI algorithms are able to bypass these imperfections
and carry out their tasks regardless, which is what the experiments presented in this project
focus on. However, many factors come into play here, including how imperfect the images are,
how much training data is available to the AI model, and the strengths and weaknesses of the
selected AI architecture. Although these conditions remain challenging, the ability of current
state-of-the-art AI models in remote sensing to deal with them is improving.

The current paradigm in artificial intelligence leans towards using encoder-decoder architec-
tures to solve tasks, for example: using Autoencoders [5] for input reconstruction, or training a
task-specific decoder on a foundation model. Foundation models are high-performing, general-
purpose architectures that achieve state-of-the-art on many benchmark prediction datasets [6].
When trained on large amounts of broad data, using carefully selected parameters and archi-
tectures, encoders from foundation models grow more generalisable and capable of facilitating
information to the decoder. Encoders from pre-trained foundation models can be used in com-
bination with various decoder architectures, thereby using the same model to effectively encode
input for multiple purposes [7]. The goal of this study is to increase the ability of AI models to
encode incomplete input, with emphasis placed on thoroughly studying and training encoders
on incomplete multispectral image data.

In computer vision, foundation models are often trained by using self-supervised learning,
which solely uses the unlabelled training data instead of relying on annotated datasets. Self-
supervised learning is commonly formulated by using either masked input tasks (resulting in the
masked autoencoder architecture [8] and masked image modelling framework [9]), or contrastive
learning [10], [11]. Contrastive self-supervised learning [12] can be used to train multimodal
models, which encode multiple modalities to the same embedding space, enabling processing
and associating information of multiple data modalities.

In the context of remote sensing, several pioneering foundation models have been developed
to process multispectral satellite imagery. Studies such as [13], [14], [15] employ the two afore-
mentioned self-supervised techniques to train their remote sensing foundation models. These
models can be used for multiple tasks pertaining to remote sensing, such as land cover segmen-
tation, remote sensing scene classification, and crop monitoring. Given their large number of
parameters, foundation models need large amounts of training data, and in certain cases have
been trained on 100.000 satellite images [14].

The problem at hand is that satellite imagery data is often discarded because of imperfec-
tions, such as cloud coverage or sensor malfunctions. Considering the large amounts of training

3



data required to optimize large models, it is a waste of resources to use the gathered data in
an ineffective manner. In other applications of computer vision, progress has been made in
utilising incomplete input data. [16]’s work in robotics has produced models that can adapt
to missing information at the level of certain sensors, providing evidence that imperfect data
does not necessarily need to be discarded. Recent remote sensing research shows their pro-
posed models also work on incomplete images [17], [18], [19]. However, processing incomplete
multispectral imagery has not yet been researched in sufficient depth.

In this paper, a potential solution to decreasing the amount of wasted data is investigated.
The centerpiece of this research is using multispectral satellite imagery and masking a portion
of the spectral bands. The masking technique is a way to simulate missing input data, which
could arise from atmospheric conditions covering key elements, dead pixels, or file corruption.
To this extent, this study proposes a fine-tuning method for encoders of multispectral satellite
imagery, where some of the spectral bands have been partly or completely masked. In this
paper, images that have had one or multiple bands masked shall be referred to as incomplete
images. By fine-tuning the encoder on the incomplete images, the goal is to make it less
vulnerable to gaps in the input data.

To fulfill this purpose, the main challenge lies in fine-tuning the encoder such that it produces
embeddings of incomplete images that are close to the embeddings produced from complete
images. A foundation model’s encoder is used to create embeddings of complete images. An
identical encoder if fine-tuned to produce similar embeddings from incomplete images, using
representation learning. The encoder is deemed capable to adapt to and infer the missing
information if it can produce these similar embeddings, following the proposed fine-tuning
method.

The performance of the fine-tuning method can be measured by comparing downstream
task results on complete and incomplete multispectral images, encoded using fine-tuned and
non-fine-tuned encoders. Since some information is removed by masking, downstream task
performance is expected to drop whether the encoder has been fine-tuned or not. Should the
fine-tuned encoder be able to mitigate the performance drop better than the non-fine-tuned
encoder, it can be argued that the fine-tuning method works.

For the remainder of this article, an encoder that underwent the proposed fine-tuning
method on incomplete multispectral satellite images shall be referred to as a fine-tuned en-
coder. When it was not fine-tuned as such, the encoder extracted from the foundation model
shall be referred to as a pre-trained encoder.

Main RQ: Can the fine-tuned encoder positively influence downstream task performance
and enable information extrapolation under incomplete input conditions of multispectral im-
agery?

RQ0: Is a fine-tuned encoder able to converge on the task of aligning its embeddings of
incomplete images to the embeddings of the corresponding complete images, sourced from a
pre-trained encoder?

RQ1: Under conditions of incomplete images, does a decoder’s performance on a down-
stream task increase when using a fine-tuned encoder, compared to using a pre-trained encoder?

RQ2: How does a decoder’s performance on incomplete images, encoded by the fine-tuned
encoder, compare to its performance on complete images, encoded by the pre-trained encoder?

RQ3: Does using the fine-tuned encoder on incomplete images affect a decoder’s learning
curve on a downstream task, compared to using the pre-trained encoder on complete images?
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Chapter 2

Literature Overview

This chapter lays out a description of the research landscape in remote sensing and defines the
gap this research aims to fill. Then, it dives into the theoretical side of techniques and resources
that are relevant for this project.

2.1 Background Setting

This section is divided into multiple parts, each of which introduces one key element of this
project: remote sensing, representation learning, and masked input. The greater context and
theoretical background are introduced, thereby building a foundation for the next section that
dives into the specific methods employed by this research.

2.1.1 Remote Sensing

Remote sensing started out with the need to examine objects using imagery captured from
above. The applications of remote sensing images were many, such as tracking agricultural
crops, water levels, meteorology, and mapping [20]. In the early 1970s, when the first stud-
ies within the domain of multispectral satellite imagery analysis were conducted [21], analog
technology imposed strong limitations. As technology progressed, analysis became increasingly
digital, advancing our research capabilities concerning remote sensing imagery. Acquiring in-
formation outside the visible light spectrum confers researchers the means to observe objects on
our planet from space, even when these objects reflect light outside the visible light spectrum.
A crucial step in the use of this information is choosing to examine the frequency bands that
are most relevant for the objects of interest.

Spectral Band Combinations

Remote sensing uses many different sensors to register various types and modalities of infor-
mation, ranging from visible light, to multi- or hyper-spectral images and LIDAR data. Due
to the amount of information received from this plethora of sensors, the collected data can and
should be processed in different ways, depending on the purpose it is used for. It is important
to focus on the part of the data that is relevant for the task at hand.

Many satellites orbiting the Earth record multispectral imagery, such as Sentinel-2, Quick-
Bird, and the Landsat missions [22]. Depending on the purpose for which a captured image is
used, certain bands are selected. The reason behind this is the spectral signature of objects,
which refers to the amount of light that an object reflects at different frequencies, and is par-
ticular to each type of object. For example, plants that perform photosynthesis do not reflect
much ultraviolet light due to absorbing it during photosynthesis; but they reflect more light in

5



the near-infrared (NIR) part of the light spectrum. As such, one can extract more information
about objects of interest by focusing on the spectral bands that typically offer key information
about these objects [23].

This paper focuses on crop & vegetation-related tasks, as described in the Selecting Masked
Bands paragraph of Section 3.1. Given the wide array of agricultural applications for multispec-
tral imagery, there is a strong incentive to improve the usability of satellite imagery containing
artifacts in the agriculture-related bands.

When using satellite imagery for monitoring vegetation, the near-infrared and red bands
are particularly useful [23]. Moreover, for agricultural tasks in general, the “Agricultural RGB”
index is commonly used. This is comprised of visible blue, NIR, and shortwave-infrared (SWIR).
According to [24], the normalized difference vegetation index (NDVI), commonly referred to as
the vegetation index, is also very useful for observing vegetation. These make use of the visible
red and near-infrared (VNIR) band, normalized using the visible red readings. Lastly, the Short
Wave Infrared Index is also important for agricultural tasks: it shows vegetation in various
shades of green and can reveal the density of vegetation [25]. The incomplete images used in
this paper are missing some or all of these bands, in order to improve the task performance in
vegetation-related tasks when the data is incomplete.

For visualization purposes, a combination of three bands within or outside the visible light
spectrum are selected as the three color channels of an image. Such images are commonly
referred to as false color images when they contain at least one band outside the visible light
spectrum. Common false color combinations are “Color Infrared” (visible green, visible red,
VNIR), “Short-Wave Infrared” (visible red, VNIR, SWIR), or Moisture Index (VNIR, SWIR).

Using AI in RS

Artificial intelligence (AI) was first used in remote sensing to support classification tasks [26,
Chapter 1.]. Nowadays, a good share of RS applications are carried out with Deep Learning-
based solutions[27]. Recent advancements enable tackling previously inaccessible, computation-
ally demanding tasks, while other tasks can now be completed with more precision or shorter
processing times.

In multispectral imagery, AI can be useful by extracting key features and information from
different bands of an image. As detailed in Subsection 2.1.2, models can learn associations
between different parts of an input, such as different channels. This can be seen in the work of
[13], [11]. These examples are versions of the masked autoencoder [8] and CLIP models [10],
trained on multispectral imagery.

2.1.2 Representation Learning and Foundation Models

As explained in Section 1, generalisable foundation models represent current state-of-the-art in
prediction, due to their increased capacity to extract meaningful information from the input
data. The field of representation learning focuses on identifying, interpreting, and potentially
making use of the relevant encoded information for subsequent learning tasks. According to
[6], representations in the latent space of foundation models are able to preserve relationships
present in the input space.

The CLIP model and loss function

CLIP (Contrastive Language-Image Pre-training) [10] is a recent impactful advancement in
representation learning that has been adopted in many domains. A non-exhaustive list of
examples is: speech processing [28], 3D vision [29], image generation through diffusion models
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L =
1

2N

[ N∑
i=1

Lcaption(ci, I1,...,N) +
N∑
i=1

Limage(Ii, c1,...,N)
]

Figure 2.1: CLIP loss formula. N is the number of elements in a batch, ci is the latent embedding
of caption i, Ii is the latent embedding of image i. L is the cross-entropy loss.

ln = − log
exp(cos(xn, yn))∑C
c=1 exp(cos(xn, yc))

Figure 2.2: Cross-entropy loss formula including softmax, between cosine similarity scores,
for element n of a batch. C is the batch size, xn is the embedding of element n, yn is the
embedding of the correctly matching element n in the batch, and yc are the embeddings of all
possible matching elements to element n of the batch.

[30], video-text retrieval [31]. In the domain of remote sensing, SatCLIP [14], Multimodal RS-
CLIP [32] and RemoteCLIP [11] all adopt this method. Of these examples, SatCLIP is used as
a pre-trained model within our study, because the authors have made the code and pre-trained
model available online.

The CLIP method was initially proposed by [10]. In their study, they propose a pre-training
method that incorporates contrastive learning to learn to match images to their corresponding
captions and vice versa. First, two different data modalities are encoded, and the latent features
from each modality are extracted. Then, trainable linear projections are used to map the
extracted features to a shared multimodal latent space. After the linear projection layer, cosine
similarity is used to measure the distance between pairs of embeddings from the visual and text
modalities, and cross-entropy loss is used to measure the amount of image-caption pairs that
have been correctly matched. Thus, a greater distance (lower similarity) between embeddings
of an image-caption pair results in an increased loss value.

What this accomplishes is the latent representations of associated elements, such as an image
and its caption, being pushed closer towards each other within the latent space. Due to the
contrastive aspect, the non-matching embeddings are simultaneously being pushed away from
each other. A well-structured latent space emerges from this method, due to the discrete nature
of the text modality [33]. The emerging structure of the latent space also enables zero-shot
transferring of the network to downstream tasks [10].

As can be observed in Equation 2.1 , the contrastive loss is split into two parts: the caption
and the image loss objectives. In the caption part of the loss, the embedding of each caption
is compared to all embeddings of images in the batch. In the image part, the embedding
of each image is compared with all embeddings of captions in the batch. To perform all of
these comparisons, the cosine similarity (Equation 2.3) is used as a similarity metric between
embeddings. This similarity is scaled by the temperature parameter τ , to help with scaling
in the loss computations. Then, cross-entropy loss is used on the similarity scores, using the
index of the corresponding element as the label. Equation 2.2 shows the cross-entropy formula,
and represents one single summand from the L elements of the CLIP Loss equation.

Using CLIP for downstream tasks

Starting from the study that introduced CLIP, this method’s potential to train a classifier was
also researched. [10] shows their ResNet50-based model can perform zero-shot classification.
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cos(embcaption, embimage) = τ · embcaption · embimage

||embcaption|| ||embimage||

Figure 2.3: Cosine similarity formula between embeddings of an image and a caption. τ
represents the learnable temperature parameter., · represents dot product.

They attribute this feat to the emergent structure within the latent space. Models that can also
act as unsupervised classifiers, aside from their main purpose, can arise by applying representa-
tion learning practices to latent spaces resulting from CLIP, as seen in [34]. Moreover, models
trained using CLIP have proved to be effective encoders, especially in cross-modal settings.
One such example would be in Text-Conditioned Diffusion Models, as explained by [30]. These
studies bring strong arguments for using CLIP during an encoder’s training procedure.

2.1.3 Masked and Incomplete Input

This research focuses on input masking. Requiring the model to predict masked parts of
the input is a common method to train current state-of-the-art architectures, such as the
masked autoencoder [8], Mask R-CNN [35], and in Natural Language Processing the Generative
Pretrained Transformer [36] and BERT language encoder [37]. Examples of vision transformer-
based architectures trained on multispectral RS data that support input masking are [13] and
[17].

Masking appears to provide multiple useful advantages to effectively train a neural network.
First, it is an accessible way of creating a self-supervised learning objective: without requiring
any labels, parts of the input can simply be masked to create an input reconstruction learning
objective. Thus, the network is forced to use the broader context from the input in order to
fill in the missing parts [8]. This reasoning determined the decision to adopt input masking in
this project by masking some of the color bands.

Second, it creates a non-trivial task for the network. Only allowing a model to observe parts
of the input should lead to the model learning associations between observed features. If the
complete input were available instead, such associations might not have been captured by the
model, due to being shadowed by other, more prominent features. This training objective, in
turn, should result in a network that models deeper connections between features of the input,
thereby becoming more precise at extracting and structuring information.

In order to implement masking, a number of decisions must be made, such as what to mask
and how to mask it. Masking can be accomplished by either removing the selected content
altogether, or replacing it with a mask value. According to [38], examples of basic masking
are the in-sequence prediction that occurs in “Image GPT” (iGPT) [39] and the random patch
masking in the Masked Autoencoder [8]. Once the input parts that should be masked have
been selected, together with how the masking is performed (removing the masked elements or
replacing them by a mask value), the input can be masked. After masking the appropriate
items, the masked input is fed to the model.

For the mask value, the choice stands between a special value to symbolize the mask, or a
valid input value that overwrites the masked information. In visual input, these two options
refer to replacing the masked areas with a non-valid pixel value (for example -1, as seen in
[40]), or with a value that could normally be encountered in the input, such as the mean pixel
value [41], [42], or 0 [43]. Choosing the shape and behaviour of the mask is equally important.
Many studies split the input image into equal-sized rectangular patches, and randomly select
a number of patches to mask, which stays constant during the entire training [8], [41]. Other

8



papers maintain the masked patches strategy, but may increase the masking ratio as training
progresses [42].

2.2 Related Work

The following subsections build on the theory that was discussed above. Each subsection covers
recent work that directly pertains to this project.

2.2.1 Used Pre-Trained Models

SatCLIP

A foundation model trained using a CLIP objective was used in this project. SatCLIP, a model
proposed in [14], has two components: a vision encoder and a location encoder. It was trained
using a CLIP-inspired objective to match pairs of coordinates and multispectral images from
the Sentinel-2 satellite. Multiple models were trained in the SatCLIP study, using different
vision and location encoder backbones. For the vision encoder, ResNet18, ResNet50 [44], and
ViT16 [45] are used. For the location encoders, the distinction is made by the number of
Legendre polynomials, which control the spatial smoothness of the location’s representation.
Section 3.2 elaborates on which model was selected for this study, and why.

ResNet50

ResNet50 is a widely used model in computer vision. Introduced by [44] in 2016, this archi-
tecture can still match the performance of newer models in some cases, such as [14]. It is,
therefore, still commonly used as a vision encoder backbone, as part of a task-specific model.
The main contribution of the ResNet architecture is tackling the problem of vanishing gradi-
ents, which were a common occurrence in deep architectures. By adding the input of a layer
to the output of the same layer, before the activation function, the layer is trained to learn
the residual function with respect to the layer’s input. The ResNet family of architectures
re-defined state-of-the-art performance on a plethora of vision tasks [44].

DeepLabV3

Introduced by [46], DeepLabV3 is a semantic segmentation architecture comprised of a vision
encoder, an atrous convolution (dilated convolution) component, and a CNN-based decoder.
The atrous convolution is used to extract the finer details from the vision encoder’s output.
The decoder uses the low-level features from the encoder, in order to process general spatial
information, together with the output from the atrous convolution.

Of these components, the atrous convolution is what sets this architecture apart. It requires
using wider convolutional kernels, and inserting zeroes into them such that only a subset of the
input pixels, which are not adjacent to each other, are used in the convolution. The number of
zeroes in the convolutional kernel is called rate, whereby normal convolution would use r = 1
and r = 2 means that every other pixel is involved.

This way, the network’s receptive field can be widened and therefore cover more spatial
context. Moreover, convolving every other pixel means that stacking multiple of these layers
results in acquiring a more densely populated feature map [47]. In the case of DeepLabV3, a
variant of atrous convolution called “atrous spatial pyramid pooling” (ASPP) is used instead.
This consists of convolving the input using multiple kernels of different sizes and rates, then
performing image pooling on the output of all these convolutions.
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Figure 2.4: Examples 64 × 64 pixel images from EuroSAT dataset, showing the 10 classes:
(a) Industrial buildings. (b) Residential buildings. (c) Annual crop. (d) Permanent crop. (e)
River. (f) Sea and lake. (g) Herbaceous vegetation. (h) Highway. (i) Pasture. (j) Forest.

The decoder’s output is an image of size (num classes× image size× image size). Each
image channel is associated with one class, and contains per-pixel logits representing the prob-
ability of that pixel belonging to that class. The output logits do not sum to 1, so applying an
additional softmax layer is required.

In this study, a DeepLabV3 model was employed. It was pre-trained on multispectral
satellite imagery using the DFC2020 dataset [48], which is a subset of the SEN12MS dataset
[49] used in this study. The model was implemented and trained by Lukas Liebel, all related
resources are available at this GitHub repository.

2.2.2 Benchmark Datasets and Downstream Tasks

The main contribution of this project is introducing a fine-tuning method to guide the represen-
tations of the incomplete images, in order to closely resemble the embeddings of their complete
counterparts. The efficacy of this method can be evaluated through the loss values, as well as
further testing on downstream tasks. The state-of-the-art benchmarks for these downstream
tasks and associated datasets must be discussed, as they represent the performance targets for
the training method that is introduced.

EuroSAT

EuroSAT is an image classification dataset comprised of 27000 labeled and geo-referenced multi-
spectral images. The Sentinel-2 satellite is the source of these images, and therefore this dataset
contains 13 spectral bands. The names, spatial resolutions, and central wavelengths of these
bands can be inspected in Table A.1, sourced from the EuroSAT dataset paper [4]. State-of-
the-art classification accuracy on this dataset is 99.17% [50], which was achieved using Wide
Residual Networks on RGB data. Using all 13 spectral bands, the state-of-the-art accuracy
was achieved by [51] with 98.78%, using a Convolutional Neural Network.

An overview of the classes in EuroSAT can be observed in Figure 2.4. Moreover, an example
of sub-optimal images can be found in Figure 2.5, which shows sampled images that exhibit a
color shift due to atmospheric images.

SEN12MS

SEN12MS is a multispectral dataset introduced by [49]. It contains patches of Sentinel-1,
Sentinel-2, Sentinel-2 cloudy, and Land Cover labels based on the MODIS system [52]. The
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Figure 2.5: Images sampled from EuroSAT that were affected by atmospheric conditions and
show a color tint.

name of this system stands for moderate resolution imaging spectroradiometer. These patches
are geo-referenced to showcase the same location across all data modalities.

The dataset is structured in nested folders, using the following criteria: first by meteoro-
logical season (annotated as seed value), then by region of interest (annotated as scenes), and
finally each scene is divided into several patches.

Due to computational limitations, this study only makes use of the spring season (seed 1158),
which is comprised of data captured between 1 March - 30 May 2017. Spring was selected to
keep a balanced level of snow and ice occurrence. They would not be a common characteristic
of the images, but would appear more than in the summer split. Furthermore, since this study
only uses Sentinel-2 multispectral data, and is not concerned with the cloud removal task, only
the “s2” and “lc” data modalities are used. This subset of SEN12MS contains a total of 40883
pairs of Sentinel-2 13-band 256× 256 images and MODIS land cover 256× 256 labels.

The MODIS images contain four channels, depicting four different land use-land cover clas-
sification schemes: IGBP, LCCS land cover, LCCS land use, LCCS surface hydrology. Only
the IGBP (International Geosphere-Biosphere Programme) [53] labels are used in this study,
because the DeepLabV3 pre-trained model that was used for the image segmentation task was
solely trained using this labeling scheme. Moreover, this pre-trained model was part of the
IEEE GRSS Data Fusion Contest 2020 [48], which made use of a simplified version of the
IGBP labels, reducing the number of classes from 17 to 10. An overview of the complete and
simplified classes can be observed in Table A.2. It should be mentioned that, while the Sentinel-
2 data involves a spatial resolution of 10-60m (depending on the spectral band - see Table A.1),
the MODIS labels only have a spatial resolution of 500m. Aside from the low resolution of the
labels, another aspect to keep in mind is that the IGBP label itself is imperfect; its accuracy is
estimated to be about 67%. [52].

11



Chapter 3

Method

The following sections describe the methodology used in this project: Section 3.1 describes
the used datasets, together with any pre-processing that was performed, as well as the band
masking procedure. Section 3.2 then elaborates on the employed models and the connection
to the task they were used for. Lastly, Section 3.3 dives into the tasks that the models were
deployed on, and explains the performance metrics used to measure and interpret each task.

3.1 Data

The data used in this research consists of multispectral images sourced from the Sentinel-2
satellite. Multispectral images contain more frequency channels than the “standard” RGB, by
including frequency bands outside of the visible light spectrum. Table A.1 in the Appendix
shows the names, spatial resolutions, and wavelengths of all the spectral bands captured by the
Sentinel-2 satellite.

The datasets were processed using the same series of augmentations, ensuring the data
distribution matches the one from the pre-training phase of the SatCLIP encoder. Thus, the
encoder would not need to adapt to a new data distribution. Instead, the fine-tuning enables
the encoder to adapt to the decreased amount of information present within the masked images.
After applying the augmentations to the images, every batch is masked as described in Section
3.1.2, then fed to the model.

3.1.1 Pre-Processing and Augmentations

The EuroSAT dataset was used for the baseline and scene classification experiments. The
images in this dataset are 64×64 pixels, and it contains all 13 spectral bands that the Sentinel-
2 satellite captures. To match the input dimension required by the used encoder (256 × 256
pixels), the dataset was upscaled by a factor of 4, using bilinear interpolation.

The same image augmentations as in the original SatCLIP project are used. Random
horizontal and vertical flipping are applied, followed by a Gaussian blur with kernel size = 3.
For the image segmentation experiments, only the Gaussian Blur was used.

3.1.2 Image Masking

The core idea of this project is to create a pipeline which can adapt to incomplete information,
emulating a sensor malfunction. The desired outcome is for the proposed method to be applica-
ble in any sensor fusion task, and not limited to multispectral imagery. The Sentinel-2 satellite
uses a single multispectral imager to capture all the spectral bands [54]. However, seeing as
the spectral bands capture different information, the decision was made to treat each spectral
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Figure 3.1: Visible RGB, Shortwave Infrared, Agricultural RGB Indexes Visualized.

band as a separate sensor. A sensor malfunction would mean that the information available in
one or multiple of these bands is not available to the model. Thus, some or all pixels in the
selected bands are masked, by overwriting them with a mask value.

The masking is performed in the dataloader, during the experiment run and not as a pre-
processing step. This means that the same images could be masked in different ways on
different epochs or experiment runs. The following settings determined the specifics of the
masking procedure at each experiment run:

Selecting Masked Bands

The selection of masked bands was influenced by the downstream tasks performed in this
project. Seeing as the majority of the classes from both downstream experiments are agri-
cultural categories, multiple sets of bands that are commonly used in combination to perform
agricultural tasks were selected. Figure 3.1 shows visualizations of the RGB, SWIR and Agri-
cultural RGB indexes used in this study. As explained in Section 2.1.1, the Agricultural RGB
Index is widely used for monitoring plant health. It is comprised of Sentinel-2’s bands B02
(blue), B08 (NIR), and B12 (SWIR-1).

Figures B.7, B.8, B.9, B.10, B.11 in the Appendix visualize all sets of masked bands used
in this study. Experiments were ran by masking combinations of one, two, and all three of
these bands. Aside from the Agricultural RGB index, bands that make up the NDVI index,
another commonly used index, were also included in the masked bands of the experiments:
B4 (visible red) and B8 (NIR). In the experiments involving more than three masked bands,
mixtures between these indexes and the visible light bands were selected for masking. The B4,
B8, B9, B11 and the B4, B8, B9, B13 combinations contain bands that are found within the
Agricultural RGB index (B2, B8, B12), the Short-Wave Infrared Index (B4, B9, B13), and the
NDVI (B4, B8). Lastly, the B8, B9, B10, B11, B12 combination is meant to mask a large
portion of the VNIR and SWIR bands. This severely limits access to the information found in
these spectral bands, all relevant for agriculture [23].

Masking Schedule & Ratio

The masking ratio is a value between 0 and 1, and represents the coefficient of total pixels
that should be masked in each band. The masking schedule refers to how masking progresses
throughout training. Three options were available: constant, gradual, and staircase. Constant
masking entails masking the same amount of pixels regardless of the training epoch. Gradual
masking refers to increasing the masking ratio at each new epoch. Staircase masking is a mix
of the previous two, where the masking ratio is increased every few epochs, and remains steady
until the next increase. Upon experimenting with the three options, it was decided to only
use constant masking in the main study. The other masking schedules achieved comparable
results, but the timeframe of this study did not allow for an extensive comparison between
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these masking schedules across all the experiments. The Appendix contains a brief analysis of
the masking schedules, which can be seen in Figure B.2 and Table A.5.

Mask Value

Lastly, the mask value refers to the pixel value used to overwrite the masked pixels. Multiple
options were researched: −1, 0, the mean pixel value across the entire dataset, and the mean-
per-band pixel value across the dataset. When the mean-per-band was used, pixels were masked
with the mean value specific to the band that is being masked e.g. pixels in band 2 would be
masked with band 2’s mean pixel value across the dataset.

Preliminary experiment runs with these mask values revealed the mean-across-dataset mask
value to perform best. Using −1 as the mask value, the model did not converge. If 0 was used,
the model would begin to converge but get stuck in a local minimum, compared to using one
of the mean values. In the final results provided in this study, the mean-across-dataset value
was used due to slightly superior performance compared to the mean-per-band.

3.2 Model Architecture

3.2.1 Encoder

SatCLIP

As encoder, the SatCLIP pre-trained model with a ResNet50 vision backbone, made available
by [14], was used. The location encoder within the pre-trained SatCLIP was not used in this
study, as it was not relevant for the performed experiments. The decision to use this encoder
was made for two reasons: it was pre-trained on multispectral data, and the latent space was
formed using a contrastive loss, therefore continuing to use a contrastive loss should not cause
major modifications to the structure of the latent space. The ResNet50 backbone with L = 40
Legendre polynomials was selected from the SatCLIP pre-trained models. This choice was made
due to the slight edge over the other models in the original experiments, and also due to the
smaller number of parameters within the vision encoder (compared to the Vision Transformer
backbone alternative).

The SatCLIP model was pre-trained on the S2-100k dataset, also curated by the same au-
thors as part of the same study [14]. This dataset contains 100000 Sentinel-2 image tiles of
13 × 256 × 256 pixels, together with location annotations. The datapoints were ”nearly uni-
formly distributed across global lands mass”. The authors argue this is a big improvement over
previous multispectral satellite imagery datasets, which tend to under-represent non-western
geographical areas.

SatCLIP [14] uses the CLIP objective to create a shared multimodal latent space between
the image and location embeddings. Both encoders found within SatCLIP can be used for
multiple downstream tasks, which is shown in the original study by outperforming similar
models on the majority of experiments. The latent space of SatCLIP was also inspected via
Principal Component Analysis, exhibiting a well-structured division between different principal
components, which can be associated with different biomes.

3.2.2 Decoders

MLP: Scene Classification Task

For the scene classification task, multi-layer perceptron (MLP) with a single hidden layer of 64
neurons was used. The input size is 256, in order to match the received embedding from the
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SatCLIP encoder. The output layer has one neuron per class, resulting in 10 neurons in total
to match the EuroSAT dataset. All layers use ReLU activation [55]. The MLP was trained
from scratch, with random initialization, using an Adam optimizer [56], for 20 epochs.

DeepLabV3: Land Use & Land Cover

The image segmentation task was carried out by using a pre-trained DeepLabV3 implementa-
tion. As the model had already been trained on Sentinel-2 images for this task, it is the perfect
candidate to measure the effect of the proposed encoder fine-tuning method. It removes the
need to first train the decoder from scratch on this type of data or downstream task.

The pre-trained model involved a ResNet-101 architecture as an encoder, which resulted in
a slight mismatch in input dimensions compared to the ResNet50 encoder used in this study.
In the DeepLabV3 pipeline, this ResNet101 provides two outputs. The first one is the output
of the first Bottleneck block of the architecture, and is a low-level features representation of
dimension (batch size × 256 × 64 × 64). The second output consists of a high-level feature
representation, and is the architecture’s output right before the final fully-connected layer.
The shape of this output is (batch size× 2048× 16× 16).

In order to swap out the encoder from the checkpoint with the SatCLIP fine-tuned encoder,
the intermediate features extracted from the encoder needed to have the shape required by the
rest of the DeepLabV3 architecture. The low-level features of both ResNet50 and ResNet101
have the same shape, but the high-level features of ResNet50 are of shape (batch size× 2048×
8 × 8). As such, bilinear interpolation was used to scale the output by a factor of 2 before
feeding it to the DeepLabV3 decoder.

Despite having trained their model on the simplified IGBP labels (see Table A.2, the pre-
trained model outputs 21 classes in order to match the full MODIS label system. Due to
using the simplified IGBP labeling in this study, the final convolutional layer of the pre-trained
DeepLabV3 model was also modified to output 10 channel images instead of 21.

3.3 Learning Objective

The conducted experiments can be split into the baseline and downstream experiments. The
learning objectives used throughout these runs are described in the following paragraphs.

3.3.1 Baseline Experiment

The baseline experiments consisted of a self-supervised learning task, in the form of aligning
the latent representations of the incomplete and complete images using a contrastive loss. The
main purpose of these experiments was to observe whether the model is able to converge on the
task of encoding incomplete images. Subsequently, the encoders trained in these experiments
were frozen and re-used in the downstream tasks.

A contrastive loss was used to align the representations of the masked images to those of the
complete images. To this extent, two separate instances of the pre-trained vision encoder from
SatCLIP were used. One model was fully frozen, and provided the latent space representations
of the complete images. The other encoder was fine-tuned using the contrastive loss. The
trainable encoder was fed the incomplete images, and contrastive learning was used to match
each incomplete image’s embedding to the embedding of the corresponding complete image
from the frozen encoder. Thus, the trainable encoder could learn to output latent embeddings
of incomplete images that correspond to the corresponding embeddings of the complete images,
and differ from the embeddings of the other complete images in each batch. Figure 3.2 visualizes
this training objective.
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Figure 3.2: Visualization of proposed encoder fine-tuning procedure: embeddings of the same
image sourced from different encoders must be matched.

The core idea behind this strategy is to facilitate learning to create embeddings of incomplete
images that are as similar as possible to those of complete images. Aligning the incomplete
and complete images’ embeddings would mean that the encoder is capable of adapting to the
lack of data. The distance between the two embeddings can be interpreted as a measurement
for how much of the removed information can be recovered by the fine-tuned encoder. If
this distance is very small, it means that almost all the information that would be stored in
the complete image’s embedding is still present in the latent representation of the incomplete
image. Conversely, a larger distance would mean that the fine-tuned encoder is not as capable
of inferring the missing information. If the distance is greater than the distance between the
complete image’s embedding and a pre-trained encoder’s latent embedding of the incomplete
image, then the fine-tuning method does not work as intended.

As explained in Section 2.1.2, the CLIP method uses cross-entropy loss on logits obtained
from cosine similarities is used as the learning objective. Lastly, the temperature parameter τ
within the cosine similarity was kept constant at τ = e2.8952996730804443. This value was obtained
during the original SatCLIP study, by training it as a parameter within the loss function [14].

3.3.2 Downstream Tasks

Both the scene classification and the image segmentation experiments involve the cross-entropy
loss, since both prediction tasks use given ground truth labels. The implemented cross-entropy
loss includes a softmax layer that computes logits from the network’s output.

The scene classification experiment is a single-label classification task. The cross-entropy
loss was used to train the MLP network during this experiment. Despite the slight class
imbalance within EuroSAT, which can be seen in Figure B.1, class weights were not used when
computing the cross-entropy loss.

During the LULC experiments, the softmax was computed across the channel dimension to
obtain an argmax of predictions at the level of each pixel in the image. The ’mean’ reduction
method was used to compute the final loss value, and once again class weighting was not used.
The LULC experiment also computed the average accuracy and mean intersection-over-union
metrics, which can be seen in Equations 3.3 and 3.4. Both metrics make use of a confusion
matrix, which keeps track of all the model’s correct and incorrect outputs by counting true
positives (TP ), false positives(FP ), true negatives(TN), and false negatives(FN) per each
class.
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Average Accuracy =

∑C
i CMii∑C

i

∑C
j CMij

Figure 3.3: Average accuracy calculated from a confusion matrix. CMij is element from row i,
column j of the confusion matrix. C is the total number of classes.

mIOU =
1

C

C∑
i

TPi

TPi + FPi + FNi

Figure 3.4: mIOU formula calculated from a confusion matrix. C is the number of classes.
TPi, FPi, FNi represent the number of true positives, false positives, and false negatives for
class i.
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Chapter 4

Experiments

This chapter provides further experimental setup details, together with the results of the base-
line and downstream experiments. A brief description of the results is included, together with
some intuition on how they can be interpreted. All experiments were run on either Nvidia RTX
4090 or RTX 3080-Ti GPUs.

4.1 Baseline Experiments

The baseline experiments aim to answer Research Question 0: Is a fine-tuned encoder able
to converge on the task of aligning its embeddings of incomplete images to the embeddings of
the corresponding complete images, sourced from a pre-trained encoder?

The encoder fine-tuning was performed on the EuroSAT dataset for 15 epochs. When
multiple bands were masked, the encoder was fine-tuned for 25 epochs instead. The batch
size was 64, and lr = 0.0001, the default learning rate from the SatCLIP study [14], was
used. Longer training runs were also attempted, with and without learning rate schedulers, but
overfitting would occur if training for more than 15 epochs in single-band experiments, or 25
epochs in multi-band experiments. Training for 15 epochs took between 15-20 minutes on the
aforementioned hardware.

Tables 4.1 and 4.2 feature validation loss values at different epochs of training, for various
combinations of masked bands. The models trained during these baseline runs were subse-
quently used as encoders in the downstream tasks. The best and worst loss values measured on
the test split, after 15 epochs of training (and 25 for the multi-band experiments) are highlighted
using green and red text.

4.2 Downstream Experiments

To assess the quality and applicability of the encoders’ embeddings of the incomplete images,
evaluating the performance on downstream tasks is required. This enables answering Research

Masked Band Val Loss Ep 1 ↓ Val Loss Ep 8 ↓ Val Loss Ep 15 ↓ Test Loss ↓
none 0.065 0.060 0.055 0.057

B2 0.167 0.151 0.134 0.132
B8 0.6449 0.4436 0.4107 0.4125
B11 0.277 0.201 0.218 0.211

Table 4.1: Baseline experiment runs for single masked bands. Lower values mean better per-
formance, as indicated by the arrows. Test loss was computed after 15 epochs of training.
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Masked Band Val Loss Ep 1 ↓ Val Loss Ep 13 ↓ Val Loss Ep 25 ↓ Test Loss ↓
none 0.065 0.060 0.055 0.057

B2 B11 0.254 0.207 0.186 0.178
B2 B8 0.727 0.522 0.475 0.469
B8 B11 0.855 0.577 0.537 0.533

B2 B3 B4 2.103 1.724 1.681 1.651
B2 B8 B11 0.897 0.564 0.530 0.532

B2 B4 B8 B11 2.105 1.784 1.709 1.722
B4 B8 B9 B13 2.212 1.911 1.818 1.801

B8 B9 B10 B11 B12 2.024 1.835 1.75 1.75

Table 4.2: Baseline experiment runs for multiple masked bands. Lower values mean better
performance, as indicated by the arrows. Test loss was computed after 25 epochs of training.
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Figure 4.1: Baseline experiment: validation loss for each band combination. The first 15 epochs
are depicted, in order to visualize the steeper initial decline in all experiment runs.
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Masked Band Pre-Trained Encoder Accuracy ↑ Fine-Tuned Encoder Accuracy ↑
none 96.53 ± 0.32 -

B2 95.96 ± 0.2 96.26 ± 0.35
B8 94.63 ± 0.15 95.52 ± 1.31
B11 95.6 ± 0.26 96.9 ± 0.1

B2 B11 95.16 ± 0.4 96.46 ± 0.32
B2 B8 94.76 ± 0.2 95.65 ± 1.37
B8 B11 94.46 ± 0.41 96 ± 0.2

B2 B3 B4 78.3 ± 2.22 95.76 ± 1.44
B2 B8 B11 94.6± 0.004 96.16 ± 0.2

B4 B8 B9 B13 69.44 ± 1.41 95.85 ± 0.63
B2 B4 B8 B11 67.52 ± 0.21 95.7 ± 0.28

B8 B9 B10 B11 B12 69.86 ± 3.21 96.91 ± 0.021

Table 4.3: Test Accuracy after 20 epochs of training on the Scene Classification task. Results
show mean and SD computed over three runs. Higher values mean better performance.

Questions 1, 2, 3 regarding the performance when only partial information is available. To
this extent, the models trained during the baseline experiments were frozen and re-used. Then,
the decoder networks described in Section 3 were deployed for each downstream task.

4.2.1 Scene Classification

Out of the two downstream tasks, scene classification is the easier one: only one prediction
must be made for an entire image. The results observed in Table 4.3 show the performance
of the MLP decoder with and without the fine-tuned encoder over 20 epochs of training, with
batch size = 64, and learning rate = 0.01. Training for 20 epochs took roughly 30-35 minutes.
The experiment was performed on the EuroSAT dataset. The results of this experiment offer
an extra measurement of the encoder’s ability to provide a useful input representation of the
incomplete image to the task-specific decoder. Besides that, the results of this experiment can
offer insight into which combinations of spectral bands play a more crucial role in classifying
the scenery. The results are also visualized in Figure 4.2.

4.2.2 Image Segmentation

In the LULC segmentation, having access to many spectral bands can make more of a difference
than in the scene classification task. Making the distinction between different regions within
the image could require information that is only available in particular spectral bands. If the
fine-tuned encoder can recover this information, it could significantly impact task performance.

After the modifications described in Section 3.2.2 were made to the DeepLabV3 architecture,
the model was trained for 20 epochs. One such experiment run took approximately one hour
on the hardware mentioned in the beginning of this chapter. Initial experimental runs revealed
that task performance could further improve by running for an extra 10 epochs for some band
combinations. However, the improvements were minimal and consisted of at most a 0.5− 1.5%
increase in the average accuracy metric.

The number of training epochs was set to 20, after preliminary runs with 30 epochs. The
DeepLabV3 model was able to converge on this experiment within 20 epochs. In the case of
some masked bands, improvements in the evaluated metrics might occur after the 20th epoch.
In other combinations of masked bands, the model would sometimes show signs of overfitting
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Masked Bands
Pre-Trained Encoder Fine-Tuned Encoder

Avg Acc (%) ↑ mIOU ↑ Avg Acc (%) ↑ mIOU ↑
none 74.17 ± 0.155 0.604 ± 0.002 - -

B2 72.34 ± 0.695 0.578 ± 0.008 72.47 ± 0.195 0.578 ± 0.005
B8 73.51 ± 0.802 0.593 ± 0.005 71.22 ± 0.135 0.568 ± 0.002
B11 79.18 ± 6.01 0.591 ± 0.005 72.34 ± 0.725 0.581 ± 0.004

B2 B11 73.33 ± 0.579 0.59 ±0.004 76.02 ± 5.81 0.574 ± 0
B2 B8 77.38 ± 6.151 0.581 ± 0.005 72.105 ± 0.53 0.572 ± 0.003
B8 B11 77.56 ± 5.74 0.589 ± 0.002 71.31 ± 0.41 0.57 ±0.002

B2 B3 B4 72.87 ± 0.261 0.587 ± 0.004 74.86 ± 6.43 0.56 ±0.002
B2 B8 B11 72.75 ± 0.19 0.586 ± 0.002 71.49 ± 0.014 0.569 ± 0.007

B4 B8 B9 B13 71.19 ± 0.94 0.561 ± 0.012 69.74 ± 0.537 0.549 ± 0.004
B2 B4 B8 B11 72.09 ± 0.926 0.572 ± 0.002 70.43 ± 0.622 0.56 ±0.004

B8 B9 B10 B11 B12 71.4 ±0.47 0.563 ± 0.003 68.98 ± 0.273 0.547 ± 0.005

Table 4.4: Test Accuracy and mIOU after 20 epochs of training on the Image Segmentation task.
Results show mean and SD computed over three runs. Higher values mean better performance.
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Figure 4.2: Validation accuracy of scene classification experiment, averaged across all experi-
ment runs, using pre-trained and fine-tuned encoders. The shaded region shows one standard
deviation above/below the mean.

past the 20 epoch. For this reason, together with the advantage of shortened training time, the
decision was made to limit training to 20 epochs.

The learning rate was set to lr = 0.01, the same value that was used during the pre-training
of the DeepLabV3 model. Cross-entropy loss was used as the training objective, as described in
Section 3.3.2. To measure model performance, the average accuracy (AA) and mean intersection
over union (mIOU) were computed. The formula of these metrics can be found in Equation
3.3 and 3.4. The performance results are displayed in Table 4.4. The results of this experiment
are also visualized in Figure 4.3 (Average Accuracy) and Figure 4.4 (mIOU). The Appendix
contains a number of visualized model outputs: Figures B.3, B.4, B.5, B.6.
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Figure 4.3: Validation average accuracy for land use-land cover experiment, averaged across
all experiment runs, using pre-trained and fine-tuned encoders. A control run with pre-trained
encoder and no masked bands is also depicted. The shaded region shows one standard deviation
above/below the mean.
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Figure 4.4: Validation mIOU values for land use-land cover experiment, averaged across all
experiment runs, using pre-trained and fine-tuned encoders. A control run with pre-trained
encoder and no masked bands is also depicted. The shaded region shows one standard deviation
above/below the mean.
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Chapter 5

Discussion

This chapter begins by interpreting the results from the experiments. First, different band
masking settings are compared in order to determine the relationship across different runs
of the same experiment. Then, each proposed research question is discussed by analyzing the
experimental results. Lastly, limitations of this project are discussed, as well as potential future
extensions.

5.1 Analysis of Results

5.1.1 Comparison between different sets of masked bands

Before interpreting results of experiment runs with different masked bands, it is important to
take into consideration how the selected set of masked bands can affect the outcome. The
following paragraphs discuss the impact of removing certain spectral bands in the context of
each experiment.

Baseline Experiments

The loss values in the initial epoch can offer an approximate measurement of the extent to
which each set of masked bands influences the output embedding. At this stage, the trainable
parameters have gone through a single epoch of training. The absence of the masked bands
strongly influences the loss values, since model convergence has not yet been reached. The
loss values represent the distance between the complete and incomplete embeddings within the
latent space. The control run of the baseline experiment, where no bands are masked, serves
the purpose of contextualizing this measurement and the degree of stochasticity present in the
results.

As Table 4.2 shows, the lowest loss values are reached, across all epochs, during the ex-
periment with B2 (visible blue) masked. This suggests removing this band generates a small
dissimilarity between the embeddings of the complete and corresponding incomplete images.
One can interpret this as proof that B2 is not as important as other bands in the latent represen-
tation, meaning that it was not as crucial during SatCLIP’s initial training regime. Conversely,
B8 (Near-Infrared) seems to be the most important one out of the three bands included in the
single-band baseline experiments, because masking it results in the largest loss values. Another
important aspect to notice is how the loss value progresses through the training epochs. Even
though the B8 experiment scores the highest loss values, it also shows the steepest decrease.
This would also suggest an ability to adapt to the absence of this band.

The multi-band baseline experiments shown in Table 4.2 provide the same type of insight
for combinations of masked bands. In line with the previous conclusion about each band’s
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importance, the experiment where the less influential bands are missing (B2 and B11) reach
the lowest loss values. A surprising result is that masking B8 and B11 results in almost identical
loss values and convergence as masking B2, B8 and B11. This would point to either B2 having
little to no influence over the latent representation, or to the information found within B2
being inferable from other spectral bands. This can also be noticed from Figure 4.1b, which
noticeably groups the experiment runs in three clusters. The bottom cluster contains B2, B2
B11, and B11. The middle cluster contains B8, B2 B8 B11, B2 B8, and B8 B11.

The visible light bands (B2 B3 B4) appear to be important based on the loss values, seeing
as the other experiment run with three masked bands scores much lower loss values. Masking
B4, B8, B9, B13 results in the most difficult embedding alignment task: this experiment run
scores the worst loss values across all stages of training.

Downstream Tasks

As previously established, removing band B2, and to a lesser extent B11, does not impact the
embeddings as much as removing band B8. Consequently, masking these bands also results
in the best performance in the downstream tasks. As seen in Tables 4.3, 4.4, both in the
single- and multi-band experiments, the runs that achieve the best accuracy are those where
band B2, and bands B2 and B11 for multi-band, are masked. The conclusions drawn from the
baseline experiments about each band’s importance are in-line with the conclusions drawn in
the downstream tasks, which confirms the provided interpretation is not experiment-dependent.

Once again, it is important to note that the performance on the other experiment runs is
not far from the best performance. This shows that enough information to achieve good results
is still present within the image, regardless of the selection of masked bands. Similarly to the
baseline experiments, the performance starts off worse (1-2% less accurate at epoch 1) when
masking bands that appear to have more impact over performance. However, it does converge
towards a value that is comparable to the best performing runs (within 0.5% accuracy across
all runs).

As expected, the experiments where many bands are removed do not perform as well as
the experiments where more information is available, but the difference in accuracy is small.
Despite removing more information, most multi-band experiments converge to accuracy values
comparable to the single-band experiments. In the well-performing multi-band experiments,
both the test accuracy and the validation accuracy at different training stages show accuracy
values within 0.5% of the best performing runs.

Two band combinations where performance is significantly worse when not using the fine-
tuned encoder are the B2,B4,B8,B11 and the B8, B9, B10, B11, B12. In contrast to all other
runs, which reach an accuracy above 90%, these two experiment runs score approximately 67%
accuracy while using the pre-trained encoder. This shows that there is information relevant for
the scene classification task within these bands.

5.1.2 Answering the research questions

Research Question 0

The main takeaway from the baseline experiment is that adapting to missing information is
possible. All baseline experiments show a convergent trend of the loss value, which can be
interpreted as the model being capable of (partly) adapting to a lack of information in all the
bands included in the experiments. The fine-tuned encoder can converge on the task of aligning
its embeddings to the embeddings of the complete images.
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Research Question 1

This research question can be answered by comparing corresponding rows from the pre-trained
and fine-tuned encoder, in both downstream experiments. In the scene classification experiment
(Table 4.3), it can be noticed that the accuracy values are higher when using the fine-tuned
encoder. Comparing Tables A.3 and A.4 from the appendix shows the fine-tuned encoder
enables scoring higher accuracy values both before and after training the decoder. The single-
band experiments only showing a slight difference between the encoders, of 0.3−0.5% accuracy,
but there is a significantly larger difference in the multi-band experiments. When masking two
bands, the test accuracy in the experiments with the fine-tuned encoder are 1.1− 1.6% higher.
If three or more bands are masked, the fine-tuned encoder manages to boost the accuracy levels
by 3− 6%. Figure 4.2 shows that the spread (standard deviation) of the results using the two
encoders are very different, and proves that the fine-tuned encoder offers a robust method of
adapting to missing information regardless of which bands are masked.

Whilst the experiments that do not use the fine-tuned encoder still obtain high accuracy
levels of above 90%, it is important to keep in mind that the ResNet50 architecture is a well-
performing image encoder for classification tasks [57]. It still has access to the majority of
the spectral bands in their entirety, thus it does not come as a surprise that the produced
embeddings still contain enough information to differentiate between the classes. Moreover,
the EuroSAT dataset is not considered a difficult classification task, because the classes are
quite distinctive. [58].

The accuracy scores from the first epoch can also be used to compare the two encoders.
While the fine-tuned encoder allows the decoder to consistently score above 93% regardless of
masked band, the first epoch’s accuracy scores using the pre-trained encoder are below 90%,
with the values being as low as 23% when bands B2, B4, B8, B11 are masked. As seen in row
11 of Table 4.3, this set of masked bands also scores the largest difference between using the
fine-tuned and the pre-trained encoder. By the end of training, the test accuracy increases by
28% through the use of the fine-tuned encoder in this experiment run.

In the land use & land cover segmentation experiment, the effect of the fine-tuned encoder
is not as visible. In fact, the results of this experiment are inconclusive, seeing as neither the
pre-trained nor the fine-tuned encoder consistently outperforms the other. Out of 11 different
band masking combinations, the pre-trained encoder outperforms the fine-tuned encoder in
8. Regardless of which encoder performs better, the difference in accuracy is at most 6.8%,
with mean 2.93% and median 2.29%. The number of masked bands also does not appear to
determine which encoder performs best.

One possible explanation for the inconclusive results of the image segmentation experiments
could come from how the encoders were fine-tuned. The embedding alignment was performed
using the final layer’s output, which is the input to the MLP decoder of the scene classification
task. However, the image segmentation decoder does not use this as input, but two intermediate
layer outputs of the network as explained in Section 3.2.2. It is possible that these intermediate
features were not as strongly affected by the proposed fine-tuning method as the final layer’s
output was. This could mean that the fine-tuned encoder would not be able to recover as much
of the missing information within these intermediate outputs.

Another interpretation of the image segmentation results could be that this task requires
too much information from the input to be able to mask some of it. It could be the case that
the fine-tuned encoder does recover some missing information, but not enough to fulfill the
requirements of the decoder and make a difference in the tracked performance metrics.

The fact that some of the scene classification experiment runs start off with a poor accuracy
under the pre-trained encoder, but shrink the gap to the fine-tuned encoder runs, also requires
further explanation. One possible explanation is that the fine-tuned encoder readily provides
enough information to make the distinction between the classes, more so than the pre-trained
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encoder. While using the latter, the decoder must instead adapt to the missing information
within the input, as provided by the pre-trained encoder’s embeddings. Between having the
fine-tuned encoder adapt to the missing information via the proposed method, and having the
downstream task decoder adapt to the missing information that is encoded by a pre-trained
encoder, there is a performance advantage in using the proposed fine-tuning method.

Research Question 2

The answer to this research question can be extracted by comparing the experiment runs that
use the fine-tuned encoder to the control runs, where a decoder is trained on complete input
using embeddings sourced from the pre-trained encoder. In the scene classification experiment,
masking 1-2 bands gives inconclusive results compared to the control group: some experiment
runs, such as masking B8 or masking B2 and B11, score lower accuracy values, but are still
within 0.5% of the control group. The biggest performance difference is on the runs that mask
B2, B4, B8, and B11: there is a 1% lower accuracy than the control group. Other runs,
such as masking B11 or the visible light bands (B2,B3,B4), end up surpassing the control run
performance by as much as 0.5%. Given that the state-of-the-art performance on the EuroSAT
dataset, 99.17%, was reached using solely the visible light bands [50], this is an unexpected
result. The best performance in the scene classification task is at 96.91% with bands B8 B9
B10 B11 B12 masked. This score is < 2% within state-of-the-art accuracy on all 13 spectral
bands, and 0.4% higher than the control run of this experiment with no masked bands. It is
possible that some of the spectral bands might increase task difficulty, which would also explain
why the literature scene classification state-of-the-art is higher on RGB than on multispectral
imagery.

All test accuracy scores are within 1% of each other, whether the number of masked bands is
0, 1, or even 5. It is therefore difficult to state whether there is a difference between a decoder’s
performance on incomplete images, encoded by the fine-tuned encoder, and the decoder’s per-
formance on complete images, encoded by the pre-trained encoder. This conclusion contradicts
the hypothesized outcome, which was that the pre-trained encoder that uses the entire range of
available information would enable scoring the highest accuracy score. As mentioned under the
Research Question 1 discussion in this section, a possible explanation of this outcome would
be that the intermediate outputs of the network have not been directly trained to infer miss-
ing information. Instead, the back-propagation steps of the baseline experiments would have
needed to cause this low-level feature alignment.

In the image segmentation experiment, the same inconclusive outcome occurred: when
masking some of the bands, a lower accuracy than the control group is reached using the fine-
tuned encoder. In other experiment runs, the fine-tuned encoder allows the model to surpass
the control run’s accuracy. This information would suggest no conclusive answer to RQ2 can
be obtained. An unexpected outcome is that the pre-trained encoder also achieves an accuracy
above the control run on three of the experiments: B11, B2 B8, B8 B11. The large standard
deviation of the accuracy in these experiments might suggest that these are not reliable results.
Another possible explanation could be that some of the information within the 13 spectral
bands can hurt performance, and removing some of it is beneficial.

Research Question 3

Figures 4.2, 4.4, and 4.3 depict the progression of the recorded metrics. By analyzing these
trends, one can identify how the learning curve of a decoder behaves based on the selected
encoder and the amount of masked bands. In the scene classification experiment, the learning
curve is visibly influenced by the encoder choice. The decoder converges within the first 5
epochs when using the fine-tuned encoder, and scores > 90% accuracy after the first epoch.
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Using the pre-trained encoder instead does not prevent the decoder from converging, but it
does slow its rate of convergence. After converging, the decoder appears to remain on a lower
plateau compared to the performance reached using the fine-tuned encoder.

In the image segmentation tasks, the encoder choice appears to have close to no impact
on the convergence rate. In the average accuracy metric, the convergence rate appears to be
identical regardless of encoder choice. In the mIOU graph, however, the fine-tuned encoder
appears to cause a slightly quicker increase in the metric. In general, the decoders do exhibit
very similar learning curves regardless of which encoder was used.

Main Research Question

Addressing the research questions offers an insight into the overall advantages of using the
fine-tuned encoder. The experiments that were carried out in this study show that the fine-
tuned encoder can positively influence downstream task performance. To a certain extent,
information extrapolation under incomplete input conditions is possible using the proposed
fine-tuning method. However, the encoder’s influence on downstream task performance is
largely dependent on the experiment setup.

5.2 Limitations

The potential improvements to this research must be acknowledged, in order to provide an ob-
jective context for the aforementioned results and takeaways. This section describes limitations
of the presented research.

5.2.1 Proposed Method

Adjusting to the Downstream Task

As explained in Section 5.1.2, the proposed fine-tuning method might have been less effective
in the image segmentation experiment due to only aligning the final layer’s output. If the inter-
mediate outputs that are fed to the DeepLabV3 decoder had also followed the same alignment
procedure, one can hypothesize that the encoder could have also improved the downstream
task performance on the image segmentation task.

Generalisability of the Proposed Method

This research was initially aimed at presenting a generalisable method for fine-tuning on in-
complete multi-sensor data. However, due to time constraints imposed by the thesis duration,
only the SatCLIP model was researched as an encoder, and only multispectral satellite imagery
was used. It is therefore not possible to assess how generalisable the proposed method is to
other architectures or domains. None of the proposed method’s components are particular only
to this architecture and domain, and related works presented in Section 2.1.3 suggest similar
studies can be carried out using other architectures and training data. In spite of these aspects,
it is not possible to claim the method is generalisable solely based on the results presented in
this article.

5.2.2 Band Combinations

The choice of selected band combinations is explained in Section 3.1.2, and an analysis of the
impact of masking particular bands is presented in Section 5.1.1. However, a more in-depth
analysis of the effect of each individual band on the outcome of the experiment could have been
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provided if more experiments, exploring more sub-sets of the used band combinations, were
carried out. To be able to fully explain the effects of masking a certain set of bands, experiment
runs with all sub-sets of band combinations should have been performed and discussed.

5.2.3 Dataset Shortcomings

EuroSAT

The dataset used during the baseline experiments to obtain the fine-tuned encoders, as well
as during the scene classification task, presents a number of issues that may have affected the
results of this research. First, EuroSAT is quite a small dataset, containing 27, 000 images.
These images are 64 × 64 pixels, meaning the input data had to be upscaled by a factor of 4
to match the image dimension required by the employed encoders, 256 × 256. While bilinear
interpolation provides a reasonable solution to upscale the images, using a higher-resolution
set of images could have potentially improved the performance of the presented models. The
number of epochs for the baseline and scene classification experiments was also influenced by
the dataset size, because further increasing the number of training steps resulted in overfitting.
A larger dataset could have offered more opportunities for the models to learn to align the
latent embeddings of the incomplete images to those of the complete images.

SEN12MS

Dataset size is not an issue in the case of SEN12MS. In fact, only a small subset (roughly 10%)
of this dataset was used for the image segmentation task. However, the problematic part of
this dataset are the MODIS labels. The spatial resolution of these labels is very low, 500m.
Moreover, as mentioned in 2.2.2, these labels are only 67% accurate.

The DeepLabV3 model that was used has previously been trained on higher-resolution
labels, which resulted in the network’s output often being more detailed than the ground truth
of the SEN12MS dataset. An argument can be made, therefore, that the performance metrics
presented in 4.4 are also inaccurate due to being computed using partly inaccurate labels as
the absolute truth. As can be seen in Figure B.3, it has happened that the model’s output
appeared to be closer to the truth than the label.

5.3 Future Work

This section discusses how future research could build on top of the methods and findings
presented in this study. It starts from adjustments that would improve the quality of the
research, then pans out towards broader ideas to extend this study.

5.3.1 Alternative Hypermarameters

The most accessible improvement is to attempt further hyperparameter tuning. The following
hyperparameter settings might bring improvements:

Masking ratio

The baseline experiments were performed using multiple values for the masking ratio, before
selecting 0.9. Attempts using the following values were made: {0.1, 0.2, 0.5, 0.8, 0.9, 1.0}. The
values below 0.9, which was ultimately used across all the presented experiments, did not seem
to provide a difficult learning task. Within 7 epochs, the model was able to achieve loss values
as close to 0 as the control runs from the experiments, where no bands are masked.
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Using 1.0 as the masking ratio resulted in very low training loss, approximately 10 times
smaller than the corresponding validation loss. As an unexpected outcome, the hypothesized
explanation was that fully masking the band(s) caused the model to overfit on the training data.
For a lack of arguments to back this explanation, as well as a general lack of understanding
of this phenomenon, the experiments using mask ratio = 1 were omitted from this research.
Looking further into this aspect would strengthen this study.

Masking schedule

As described in Section 3.1.2, gradual and staircase masking were also used as part of addi-
tional experiments. They entail changing the masking ratio as training progresses, and showed
comparable results to the constant masking that was used during the experiments from this
paper. Despite ultimately being excluded from the scope of this study, increasing the masking
ratio as training progresses has shown potential, as can be seen in Table A.5 and Figure B.2.
By starting with constant masking of some bands, and gradually increasing the masking ratio
of additional bands, it could be possible to fine-tune an encoder on more missing bands than
the experiments from this study.

Training Hyperparameters

While the learning rate for each task was selected by experimenting with multiple values, the
other hyperparameters - weight decay, momentum, batch size - have not been fine-tuned. Im-
proved task performance might be reached by fine-tuning these hyperparameters. Furthermore,
alternatives to the used optimizers and schedulers were also not investigated.

5.3.2 Improving the Experiments

There are a few points of improvement to both the baseline and downstream experiments, which
are covered in the following paragraphs.

Baseline Experiment

The presented experimental setup involves having one positive match for each element of the
input batch. Research on contrastive learning objectives include variants of the contrastive
loss that use multiple positive pairs per batch. Examples are the NTXent [59] and SimCLR
loss [60]. In the context of this research, creating multiple positive pairs could be obtained
by masking different band combinations of the same image. This might allow fine-tuning one
encoder for multiple combinations of masked bands.

Scene Classification

As previously mentioned, the EuroSAT dataset is considered trivial for scene classification
tasks [58]. Instead, a larger dataset with classes that are more difficult to differentiate, could
be used. Moreover, using a dataset with a better resolution might be beneficial for both the
encoder fine-tuning and the downstream task experiment.

Image Segmentation

The first point of improvement could be to make use of all available labels from the MODIS
system. By using the full IGBP classification scheme, there is a potential to uncover weaknesses
of the architecture at the level of specific classes. Using the other three classification systems
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that are included within the MODIS labels of SEN12MS would make an even stronger argument
for the performance that the segmentation decoder achieves.

However, a more important improvement in this task would be acquiring higher-resolution
labels. Running this experiment with labels of a better quality would remove any doubt over
the legitimacy of the results, and allow for a clearer evaluation of the proposed method based
on the performance on this task.

Additional Experiment: Input Reconstruction

Another assessment of how much information can be extrapolated by the fine-tuned encoder
would be to perform an input reconstruction task. This would provide a visual method to
observe which masked elements could be recovered by the encoder, and which could not. Fur-
thermore, this experiment would pave the way towards a faulty sensor detection task.

Assuming the model resulting from this experiment can reliably predict missing values in
the input, it could then be re-used to detect faulty sensors. By comparing the image predicted
by the model to the image captured by one of the spectral imaging sensors, it would be possible
to detect whether a spectral imaging sensor is malfunctioning. While this method would be
vulnerable to the error rate of the model, it could prove to be useful in a scenario where the
operating condition of the sensors needs to be automatically monitored.
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Chapter 6

Conclusion

In this paper, a fine-tuning method has been proposed for creating a vision encoder that can
operate on multispectral imagery with some masked spectral bands. A sub-set of the attempted
experiments show this task is achievable. Under particular conditions, the proposed method
can result in downstream task performance above the performance on complete input.

When the embedding alignment occurs directly on the encoder’s output to be used in the
downstream task, the method works as intended. However, downstream task performance can
also remain unchanged or potentially decrease upon using the method. When an intermediate
output that was not directly involved in the encoder fine-tuning process is used, the performance
is less robust. Relying on back-propagation to shape an intermediate output did not offer a
strong enough embedding alignment procedure. In light of these conclusions, the aspect to keep
in mind when extending this research would be to carefully design the representation learning
methodology.
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Appendix A

Extra Tables

Band Name Spatial Resolution Central Wavelength
(m) (nm)

B01 - Aerosols 60 443
B02 - Blue 10 490
B03 - Green 10 560
B04 - Red 10 665
B05 - Red edge 1 20 705
B06 - Red edge 2 20 740
B07 - Red edge 3 20 783
B08 - NIR 10 842
B09 - Red edge 4 20 865
B10 - Water vapor 60 945
B11 - Cirrus 60 1375
B12 - SWIR 1 20 1610
B13 - SWIR 2 20 2190

Table A.1: The 13 spectral bands featured in the EuroSAT and SEN12MS datasets, sourced
from the Sentinel 2 satellite. In some literature, B9 is known as B08A, which causes B10-13 to
be indexed as B9-12.
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IGBP Class Name Simplified IGBP Notes

1
Evergreen needleleaf

forests

Forest
All forest types share
one category in the

simplified IGBP scheme.
2

Evergreen broadleaf
forests

3
Deciduous needleleaf

forests

4
Deciduous broadleaf

forests
5 Mixed forests
6 Closed Shrublands

Shrublands
7 Closed Shrublands
8 Woody savannas

Unused
Classes discarded

due to low presence.9 Savannas
10 Grasslands Grasslands
11 Permanent wetlands Permanent Wetlands
12 Croplands

Croplands
No distinction is made between
different types of croplands

in the simplified IGBP scheme.
14

Cropland/natural
vegetation mosaics

13 Urban and built-up lands Urban and built-up lands
15 Snow and ice Snow and ice
16 Barren Barren
17 Water bodies Water Bodies

Table A.2: Overview of complete and simplified IGBP classification scheme

Masked Band Val Acc Ep 1 ↑ Val Acc Ep 10 ↑ Val Acc Ep 20 ↑ Test Acc ↑
none 0.918± 0.008 0.953± 0.006 0.96± 0.005 0.965± 0.003

B2 94.29 97.02 97.73 96.62
B8 93.6 96.2 96.49 96
B11 94 96.24 97.02 96.11

B2 B11 94.19 96.89 97.28 96.81
B2 B8 93.26 95.91 96.39 96.70
B8 B11 93.2 95.72 96.18 96.07

B2 B3 B4 95.07 96.89 97.41 96.7
B2 B8 B11 93.71 96.18 96.71 96.81

B4 B8 B9 B13 94.05 95.8 96.47 95.14
B2 B4 B8 B11 94.23 96.09 96.43 95.14

B8 B9 B10 B11 B12 94.56 96.55 97.85 97.51

Table A.3: Scene classification accuracy at different training stages, using a fine-tuned encoder.
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Masked Band Val Acc Ep 1 ↑ Val Acc Ep 10 ↑ Val Acc Ep 20 ↑ Test Acc ↑
none 91.82 95.35 96.1 96.51

B2 91.18 95.5 96.15 95.99
B8 91.55 93.91 95.08 94.6
B11 90.92 95.14 95.31 95.59

B2 B11 28.48 62.17 70.95 71.51
B2 B8 89.4 94.18 94.93 94.51
B8 B11 88.6 93.5 94.25 94.48

B2 B8 B11 88.24 93.53 94.36 93.74
B2 B3 B4 34.93 72.6 78.39 77.18

B4 B8 B9 B13 80.15 89.7 91.07 91.51
B2 B4 B8 B11 23.12 57.2 65.45 67.37

B8 B9 B10 B11 B12 83.63 91.58 92.92 92.07

Table A.4: Scene classification accuracy at different training stages, using a non-fine-tuned
encoder.

M. Band Mask Strategy Val Loss Ep 0 Val Loss Ep 8 Val Loss Ep 14 Test Loss
none none 0.065 0.060 0.055 0.057
B2 constant, 0.9 0.167 0.151 0.134 0.132
B2 gradual, 0.2-0.8 0.163 0.16 0.132 0.134
B2 staircase, 0.2-0.8 0.193 0.142 0.162 0.155
B8 constant, 0.9 0.6449 0.4436 0.4107 0.4125
B8 gradual, 0.2-0.8 0.449 0.4289 0.4471 0.447
B8 staircase, 0.2-0.8 0.435 0.441 0.418 0.417

Table A.5: Comparison of implemented masking schedules. Mask Strategy column specifies
masking schedule, together with mask ratio (initial and final mask ratios are specified in the
case of gradual and staircase schedules).

M. Band Mask Ratio Val Loss Ep 0 Val Loss Mid-Training Val Loss Post-Training Test Loss
B8 1.0 0.365 0.257 (ep8) 0.238 0.245
B8 0.99 0.532 0.366 (ep8) 0.341 0.347
B8 0.6 0.636 0.442 (ep8) 0.408 0.408
B11 0.9 0.277 0.201 (ep8) 0.218 0.211

B8 B11 0.9 0.855 0.577 (ep8) 0.537 0.533
B2 B8 0.9 0.727 0.522 (ep8) 0.475 0.469

B2 B8 B11 0.9 0.905 0.612 (ep8) 0.575 0.577
B2 B8 B11 0.9 0.897 0.564 (ep13) 0.530 (ep25) 0.532
B2 B11 0.9 0.254 0.207 (ep13) 0.186 (ep25) 0.178

B2 B8 B11 1.0 0.571 0.360 (ep13) 0.308 (ep25) 0.323

Table A.6: Additional experiment runs with various mask ratios and numbers of epochs.
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Appendix B

Extra Figures

Figure B.1: Number of images per class in EuroSAT-MS dataset.
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Figure B.2: Comparison of constant, gradual and staircase masking schedules. The vertical
lines show when the staircase method increases the mask ratio. Constant masking appears to
offer the best result; The other two schedules yield a similar final result despite their different
convergence trends. Gradual and staircase masking show promising results, within a small
margin of constant masking. This suggests that, using certain hyperparamters, it might be
possible to achieve better results than the constant masking.

Unused/Invalid Label Forest Shrublands Grasslands Permanent
Wetlands Croplands Urban and

Built-Up Lands Snow and Ice Barren Water Bodies

Figure B.3: Two examples where the DeepLabV3 model appears to produce a better output
than the provided MODIS ground truth. In the top image, a number of elements occupying
less space than one pixel of the MODIS label are present. The barren terrain in the left side of
the image is segmented better by the model, and so is the top-right urban settlement. In the
bottom image, a similar scenario occurs for barren terrain. Moreover, the shape of the detected
wetland is more faithful to reality, which can be seen by the shape of the river in the image.
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Unused/Invalid Label Forest Shrublands Grasslands Permanent
Wetlands Croplands Urban and

Built-Up Lands Snow and Ice Barren Water Bodies

Figure B.4: Example segmentations when B8 is masked before passing the image to the pre-
trained (top) and fine-tuned (bottom) encoder. Agricultural RGB view of image included,
where the B8 masking adds artifacts that appear as green pixels.

Unused/Invalid Label Forest Shrublands Grasslands Permanent
Wetlands Croplands Urban and

Built-Up Lands Snow and Ice Barren Water Bodies

Figure B.5: Example segmentations when B2, B3, B4 are masked before passing the image to
the pre-trained (top) and fine-tuned (bottom) encoder. Visible RGB view of image included,
where all bands are 90% masked.
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Unused/Invalid Label Forest Shrublands Grasslands Permanent
Wetlands Croplands Urban and

Built-Up Lands Snow and Ice Barren Water Bodies

Figure B.6: Example segmentations when bands B8-12 are masked before passing the image
to the pre-trained (top) and fine-tuned (bottom) encoder. Agricultural RGB view of image
included.

Figure B.7: Visualizing all bands of an image where bands B2, B3, B4 (visible RGB) were
masked

Figure B.8: Visualizing all bands of an image where bands B2, B8, B11 (Agricultural RGB)
were masked
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Figure B.9: Visualizing all bands of an image where bands B4, B8, B9, B13 were masked

Figure B.10: Visualizing all bands of an image where bands B2, B4, B8, B11 were masked

Figure B.11: Visualizing all bands of an image where bands B8, B9, B10, B11, B12 were masked

39



Bibliography

[1] Lingli Zhu, Juha Suomalainen, Jingbin Liu, Juha Hyyppä, Harri Kaartinen, Henrik Hag-
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