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Chapter 1

Introduction

Artificial intelligence is the branch of computer science that aims to create or simulate
intelligence in machines. The range of methods to attempt this is endless. One of the
many sub-fields in AI is aimed at reproducing human behavior. The problem of recreating
human behavior can be tackled from many different perspectives. For example, one could
attempt to get an understanding of the workings of the human mind, and try to imitate
this in a computer program.
Another approach would be to treat the human brain as a black box, and mainly focus
on recreating external behavior. In this approach it does not matter whether the inner
workings of this computer program are simular to that of an actual human being. The
disadvantage of this approach is that it does not help you learn how the human mind
works. However, when used for practical purposes, approaching the problem like this is
favorable, since it is more likely to run real-time and take up less resources.
In our research, we are attempting to recreate a specific kind of human behavior. Namely,
the kind of behavior that pedestrians would show in a public environment like an airport,
where it is very important to not lose sight of time.
For the last decade or so, there has been an increased interest in reinforcing security in

Figure 1.1: People going about their everyday business

public environments. The recent advances in technology have increased the feasibility of
many different methods. An important approach in this area of interest is the automatic
detection of suspicious behavior from camera images. The approaches in this area can
vary, but one important aspect that they have in common, is the necessity of camera
footage to be able to test the approaches. Since it can be extremely tedious to collect and
annotate this data it would be very rewarding to be able to generate annotated testing

1
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Figure 1.2: The main hall of Rotterdam Airport.

data automatically. We would like to focus on the behavior of non-suspicious people, be-
cause we assume these usually greatly outnumber terrorists or other suspicious individuals.
People with suspicious behavior could then later be scripted and added in by hand. In
other words, we would like to be able to quickly generate crowds of people doing normal,
everyday behavior.
Research focussing on simulating pedestrians can tackle the problem from different angles.
For some purposes such as simulating panic situations, it is important to view the pedes-
trians as a large crowd. These types of simulations are mainly concerned with with how
people find the exit out of a building and how they move through doors and other open-
ings. Other researches focus more on treating the pedestrians as individuals, and crafting
a specific behavior for every individual. In between these methods there is a whole spec-
trum of approaches, some of which focus on larger groups of people and general movement,
others focus more on smaller groups or individuals and treat more sophisticated behavior.

TNO & SIMOBS
This research was done as part of an internship at TNO, the Netherlands Organisa-
tion for Applied Scientific Research. TNO is an independent organization founded
to enable business and government to apply knowledge. More information can be
found at http://www.tno.nl.

SIMOBS is a plugin for the military simulation toolkit VR-forces (http:
//www.mak.com/products/simulate/vr-forces.html which is a tool for generat-
ing and executing battlefield scenarios. SIMOBS is developed by Philip Kerbusch
at the Modelling, Simulation and Gaming department at TNO to quickly generate
inhabitants of scenario to add realism to the otherwise mostly empty simulated
areas. SIMOBS allows users to quickly draw residential areas on a map to indicate
where the simulated people should live. It is also possible to indicate where these
people should go to work. The behavior of these inhabitants is determined by Daily
Motion Patterns, which specify where certain types of inhabitants need to go at
specified times. SIMOBS formed the starting point of our research.

Our research is intended to help inhabit simulated scenarios developed at the Mod-
elling, Simulation and Gaming department at TNO and is an extension of their SIMOBS
(simulated observables) project. The department Intelligent Imaging has been so kind to

http://www.tno.nl
http://www.mak.com/products/simulate/vr-forces.html
http://www.mak.com/products/simulate/vr-forces.html
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provide both camera footage and manually tracked locations of pedestrians at the main
hall at Rotterdam airport (pictured in figure 1.2). This footage has also been used to
research how to automatically spot suspicious behavior. That is why we attempt to find
an approach to suit an airport type scenario. Our results can then be compared to the
available footage.
Because of the nature of this footage and the desire of TNO to quickly generate large quan-
tities of non-suspicious people in everyday environments, we desire to tackle the problem of
pedestrian simulation with an approach that lies somewhere in the middle of the spectrum
of approaches. The behavior of the simulated people should not be designed individually
per person, but our approach should result in more varied behavior than only the general
movement of crowds through openings. We would like to be able to specify behaviors
by indicating them in the environment, instead of specifying them per individual. For
example, when a food stand is present in the area, we would like to be able to indicate
that the agents that are placed in the neighborhood of that stand are able to do certain
food-buying behavior. In our research, we specified a toilet behavior, that causes two
agents to go to the area near the toilets, where then one person enters the bathroom and
the other one waits until the first one comes back again.
An additional requirement is that we would like to indicate a certain deadline for an agent
which is the time at which its goal is not reachable any more. This deadline-drivenness
should result in roughly two types of behavior, hurried and relaxed. When the deadline
approaches, less and less actions are likely to be done, since actions that take much time
would result in not reaching the goal in time.
Keeping these requirements in mind we created a system where we design what we call
situations in an environment. These are areas where certain behavior is appropriate. The
design of the behavior is facilitated by our choice to model them in Petri nets, which is a
mathematical modelling language used to model distributed systems. Moreover, the choice
of the pedestrians to execute certain behaviors should be weighted by how much time they
still have left to reach their goal, which is to check in, in our airport-type scenario.
We will mimic behaviors that we found at Rotterdam airport, and then validate them
using the real-life footage. We will also show that Petri nets are particularly suitable
for designing the type of human behavior we need, especially when a situation requires
interaction between multiple individuals.

1.1 Research Question

The question we are going to base this research around is the following:

How can an intelligent virtual environment for simulated pedestrians be ex-
tended to deal with time-restricted destinations?

Some of these terms may need some clarification:

• Intelligent Virtual Environment :
IVE is a broad term, but in this particular case we mean that a large portion of the
intelligence needed for the pedestrians to walk around is placed in the environment,
instead of in the pedestrians walking in it. For example, the information about
interacting with a food stand could be placed in the design of a certain ”food stand
object” that is placed somewhere in the environment, instead of in the design of the
pedestrians. There are different ways to construct an IVE, which is something we
have to look at as well.
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• Time-restricted destinations:
We would like to create a framework that is able to deal with departure hall-like
situations. That means that pedestrians will have a destination (e.g. a train, or an
airplane, etc.) that will be available for a limited amount of time (until it departs).
It can also be used to create simulations with a pattern that is more realistic when
run for a long period of time (such as a whole day). Furthermore, in many situations,
only the time is known when the person has to arrive at his destination. In those
cases it is more intuitive to define the time of arrival, instead of determining at what
time someone has to leave his starting point. In the rest of the article, we will refer
to these time restrictions as deadlines.

We are going to solve this question by trying to answer the following subquestions:

• To what extent can pedestrians be simulated realistically?
If it were feasible to model the complete human brain, we would probably get the
most lifelike behavior. However, since this is not possible, we have to simplify the
model somehow. Models can be made in varying levels of complexity. Most often, a
higher complexity means slower performance. That is why we have to think about
getting the right balance between realism and performance. We also have to decide
how we define realism. Do we take the inner model into account, or do we purely
compare the resulting behavior to real people in similar situations?

• How do we let the pedestrians make decisions based on time left to reach the desti-
nation?
In situations such as departure halls, people have a destination (e.g. airplane, train)
that is only available for a limited amount of time. Some actions might take a very
short amount of time, some may need more. How do we let these pedestrians decide
between the different options?

• Is it possible to have emergent behavior based on time restrictions?
Ideally, our model should lead to behavior that we have not expressly implemented
in our system. In the context of time restrictions, we would like to see the behavior
of the pedestrians to look hurried or relaxed based on the amount of time they have
left to reach their goal.

• Is it possible to quickly generate these virtual pedestrians without much tweaking for
each environment?
We aim at creating pedestrians that can be used in many different environments
without much additional scripting. Is it possible to do this and still have varied
behavior between environments?

In the following chapters we will first discuss the relevant literature that helped us
develop our method that will answer these questions. Consequently, we will describe our
system for simulating pedestrians in detail. After that we will test the implementation of
our method both qualitatively (by comparing the trajectories of simulated pedestrians to
real pedestrians), and quantitatively (by following the frequencies of hurried and relaxed
behavior over time). Lastly we will discuss our findings.



Chapter 2

Related Work

When studying existing methods for modelling pedestrian behavior, the amount of avail-
able literature is quite overwhelming. This is not surprising as a large part of AI research
focuses on the imitation of human behavior, and pedestrian behavior can imply many
different kinds of behavior. However, not all means of simulating pedestrian behavior are
developed for the same purpose. What we would like to have in our system, is a method to
design behavior in an environment in the same way that other objects in the environment
are designed. That is, it should be possible to spatially place the behaviors in the environ-
ment. As a consequence, we have to divide our search into two categories, namely methods
that describe how to design individual behaviors and methods for designing behavior in
relation to others, or to the environment.

Figure 2.1: An image from an implementation of Reynolds boids model. This
particular implementation can be found at http://vvvv.org/contribution/
boids-3d.

2.1 Group Interaction

The research of interaction in groups started with Reynolds’ boids [22] , where members of
the group were seen as particles that exert both repulsive and attracting forces on the other
members of the flock, depending on the distance to one another, and forces inwards from
the outer contour of the flock, in order to remain in a certain shape. This behavior is driven
by three simple rules, namely separation (avoiding crowding local flockmates), cohesion
(move toward center of mass of local flockmates), and alignment (steering towards average

5
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heading of local flockmates). Even though the rules the individual flock members adhere to
are simple, it led to emergent group behavior that imitated actual group behavior in nature.
However, this flocking behavior is more suitable for modelling behavior of more primitive
animals such as fish, and will not give a very plausible result when it is used to model
humans. Because humans usually act in a way more complicated than a flock. However,
many researches have built upon this idea of modelling groups of people by viewing the
members as particles. This approach is particularly suitable for simulating large crowds.
Other researches divide the crowd up in smaller groups, or treat the pedestrians on an
individual level. This angle asks for different approaches.

2.1.1 Large Crowds

In the collection of researches concerned with simulating large crowds, many models can
be found that focus on crowds in panic situations. An important of simulating panic
situations can be found in the article of Helbing, Farkas, and Vicsek [11]. In their model,
people exert a repulsive interaction force to stay away from each other, an additional
body force slowing to counteract body compression, and a sliding friction force when a
pedestrian comes in contact with another pedestrian or the wall. The resulting change in
velocity over time can be expressed in acceleration equation 2.1.

mi
dvi

dt
= mi

v0
i (t)e

0
i (t)− vi(t)

τi
+

∑
j(6=i)

f ij +
∑
w

f iw (2.1)

Where pedestrians 1 ≤ i ≤ N of mass mi want to move with a certain desired speed v0i in
a certain direction e0i . They tend to adapt their instantaneous velocity vi(t) within time
interval τi. The interaction force f ij is added to simulate the tendency of the pedestrians
to want to keep their distance from others. Interaction force f iw makes the pedestrians
tend to keep away from the walls. This model can lead to several effects known to occur
in real panic situations. Focussing on large crowds though does not always mean one is
unconcerned with the individual agents. One example of large crowd simulation while
taking individuality into account is the research by Pelechano and Badler [19]. They
successfully show that Helbings model can be combined with a high-level wayfinding model
that bases decisions of individuals on their mental map of the building. Individuals are
even divided into three categories: trained leaders, who have complete knowledge about
the building the simulation takes place, untrained leaders, who handle stress well, help
others and will explore the building, and untrained non-leaders. In later research they
extend the psychological model even more by using the PMFServ software system [20].
PMFServ is a model based on established psychological principles [24]. Braun et al. [5]
also used the model of Helbing as a basis, but introduced additional features for creating
group behaviors, such as family members, dependence level, altruism level, and desired
speed of the agent.
While these methods give a good insight into the movements in those particular panic
situations, they are less suitable for experiments simulation non-threatening situations.
Only in those few moments of panic, or when crowds are very dense, do these models
represent a crowd realistically. What we are looking for, is a framework that gives realistic
behavior over longer periods of time. Pelechano, Allbeck and Badler [18] have simulated
high-density crowds for normal situations. They base the movement of the crowds on a
simple wayfinding algorithm and a number of different psychological (impatience, panic,
personality attributes, etc.) and physiological traits (e.g. locomotion and energy level).
Furthermore, the agent is given perception and will react to objects and other pedestrians
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in the nearby space.
Bayazit, Lien and Amato approached the subject of crowd simulation in a very different
way [3]. Instead of letting an entity such as one pedestrian or a group do the navigation
on the fly, global roadmaps are used. In this method, a map is generated beforehand
defining where the pedestrians can walk. During simulation, the pedestrians are given a
goal location, and will then explore the paths defined by the map, based on which direction
exercises the highest force on the pedestrians. The pedestrians can update this map in
real-time indicating if a path is favorable or not when trying to get to the goal. When
two paths exert an equal amount of force on the pedestrians, they will split up and both
paths will be explored simultaneously.
However, global roadmaps are not the only way an environment can be defined with respect
to behavior. Various methods have been developed that use a combination of multi-agent
techniques and cellular automata [8][10]. Here, the behavior stems from a combination of
basic multi-agent systems, combined with information about how the pedestrians should
be distributed over a grid. This grid follows the rules typical to cellular automata, where
the value of a single square in the grid at time t depends on the value of the surrounding
squares in the grid at t − 1. Figure 2.2 shows how Hamagami et al. structured their
implementation of this idea.

Figure 2.2: Crowd simulation model using cellular automata by Hamagami
et al. [10]

.

2.1.2 Smaller Groups and Individual Approaches

The previously mentioned approaches focus on movements of large groups of people. This
might generate realistic effects when the crowds are dense, but when the pedestrians are
more sparsely scattered in the environment, these models will not suffice. That is why
there have been many researches focusing more on crowds as a collection of smaller groups.
In an urban environment, a lot of pedestrians move around together with a couple of other
pedestrians and very few move around on their own. An important step in this direction
has been made by Li, Jeng and Chang [16], who proposed a leader-follower model, in which
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one person in a group gets the role of leader, who has the job to decide on the destination
and has to plan the path. This leader will exert an attractive force on the followers, who
will continuously follow this leader around. Hostetler and Kearny chose an approach in
which all members of the group cast an equal vote on which direction to head in [12]. The
walkways have been modelled as ribbons to define the geometry of the surface, and which
create a conduit that channels pedestrian traffic into parallel streams. Every member
of a group casts a vote on which way to turn and how to adjust the speed based on a
discretized action space. The group will then collectively follow the action that has the
highest vote. Peters, Ennis and O’Sullivan decided to have a more direct approach to the
formation of groups [21]. They studied a large video corpus of prototypical walking areas
and concluded groups always occur in certain formations. Subsequently, they designed
a number of formations in a formation template that represent discrete formations that
the pedestrian groups may adopt, such as walking completely abreast, or in a staggered
formation (see figure 2.3). The distance between the group members is defined by a
cohesion matrix, which describes the cohesion between every two members in the group.
Another factor contributing to the distance between each member is the minimum frontal
aspect the formation can have, which describes the width of the formations.

Figure 2.3: (a) Examples of formations where people walk completely abreast
or staggered. (b) Group dynamics. From Peters et al. [21].

Until now, we have only seen models that deal with crowds in terms of walking behav-
ior. Interpersonal relationships may have been somewhat defined, but were only expressed
through spacial positions. Bcheiraz and Thalmann have attempted to express these in-
terpersonal dynamics through a set of animations that express a persons mood through
body language [4].
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2.1.3 Mixed Approaches

Farenc et al. even devised a hierarchical framework that incorporates a number of different
models managing the crowd on different levels (crowd behavior, group specification, group
behavior, and individual behavior). A framework such as this is very suitable for incor-
porating multiple crowd behavior techniques. While a single method of the previously
mentioned techniques might not generate a satisfactory result, a hierarchic combination
of several methods might be able to do the job.

2.2 Interaction with the Environment

As previously mentioned, most researches with the focus on crowds as a group of individu-
als or viewed globally do not address the problem of how to interact with the environment
except for some collision detection. While this results in realistic behavior in panic sit-
uations, it is less suitable for scenarios when people have more freedom to choose their
actions. The methods for crowd simulation we’ve looked at in the previous sections that
don’t focus on emergency scenarios are mostly concerned with interactions between peo-
ple, and less about interaction with the environment. Because it is important for our
purposes to have pedestrians with behavior tailored to the specific environment we need
to look further.
The obvious solution to more interaction with the environment is to extend the knowledge
of the pedestrians with instructions about how to deal with the objects that are present
in the simulation. This has been successfully done for instance by Shao and Terzopoulos
[23]. They used an extensive psychological model to determine the behavior of the indi-
viduals. This led to a simulation in which the behavior looks very realistic, even when
one individual is followed for a long time. The downside of this method is that a different
behavior needs to be programmed for the pedestrians for every simulation environment.
This is unfortunately quite time-consuming.
It would be easier to generate the virtual human agents if the environment would automat-
ically decide for the agents what interactions are possible and appropriate. The first step
towards this focus was made by Kallmann and Thalmann who introduced the principle
of smart objects [14]. In their simulations, the information about interaction with objects
is stored in the objects themselves, instead of in the human agents. This way, additional
behavior can be added to a pedestrian by simply placing a new object in the environment.
The object also keeps track about how many agents can interact with it at the same time
and if the interaction should be the same for all agents. For instance, an elevator modelled
as a smart object will make the first agent interacting with it press the button, but not
the next agents that approach this object.
By using smart objects, the internal model of the pedestrians can be kept very simple,
because they do not need to remember specific information about how to interact with
the objects. Furthermore, this means that the pedestrians do not have to be specifically
designed for the current simulation environment, because the environment will tell them
how to act. In the most basic approach to smart objects, the agents lose all their auton-
omy when they approach a smart object. When these agents interact with an object, they
become ”slaves” of these objects, as it were, because these objects provide the animations
that the agents need to execute.

A lot of research has been built upon the idea of smart objects. For instance, Kallmann,
de Sevin and Thalmann have extended this model to have agents that have their own
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Figure 2.4: An human agent interacting with a tv in the videogame The
Sims 4.

motivations and needs [13]. This model uses five main motivation types: eat, drink,
rest, work, and go to toilet. These motivations control the action through a hierarchical
decision graph. Information about which objects fulfill these different needs are added
to the specification of the objects. The fact that the general idea of smart objects has
been implemented in the very successful video game series ”The Sims” (see a screenshot
in figure 2.4) might be seen as an illustration of its effectiveness. By modelling the in-
game human behavior through smart objects, the game developers have been able to add
expansion after expansion of new items (with new required behavior) with great ease. The
initial implementation of the agents doesn’t need to be modified, but their behavior will
still be enriched.
Another slightly different approach to modelling interaction in the environment is the use
of a situation based control structure (Sung, Gleicher and Chenny [25]). A situation is
an area in the environment that requires the pedestrians to act in a certain way. The
behavior of a pedestrian is described by a finite state machine in which a state is defined
as follows:

s = {t,p, θ,a, s−}

In which t is the time, p is the current position in two dimensional space, θ is the ori-
entation, a is an action, and s− is a list of previous states. By ”action” they mean a
particular animation clip that has to be played at this state. Note that this definition
of finite state machines differs from the standard definition. More information about fi-
nite state machines can be found in section 2.3. Situations extend the pedestrians’ finite
state machine with situation-specific actions. The probability distribution of the actions
the pedestrian can take is multiplied with the probability distribution given by the situa-
tion. Situations are divided into two categories: spatial situations for stationary objects
or areas, and non-spatial situations to describe concepts such as friendship with another
pedestrian. In figure 2.5 an example is shown of an area around a crosswalk where the
behavior is designed with the situations based control structure. The numbered areas
are (1) a ”crossing street” situation, (2) a ”traffic sign situation and (3) an ”in a hurry”
situation where the street is crossed without a crosswalk.

2.3 Behavior Modeling Languages

For some Pedestrian simulatinos, such as Helbings, it is sufficient to have one mathematical
equation that can describe all the movement. However, when one wants to be more specific
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Figure 2.5: A screenshot of pedestrian simulation based on the situation
based control structure by Sung et al.

about how an agent interacts with an environment, it might be advantageous to choose
a modelling language to express behavior. In this thesis, two different languages are
important: Finite State Machines and Petri nets. They will be described in detail below.

Finite State Machines

Finite-state machines (FSMs) are behavioral models that are composed of a number of
states associated to transitions [9]. They can be used to describe a sequence of actions.
A finite state machine moves from state to state by doing sets of actions associated with
certain transitions. Both deterministic and non-deterministic finite state machines are
defined by a 5-tuple (Q,Σ, δ, qo, F ) consisting of:

• Q: a finite set of states

• Σ: a finite input alphabet of symbols

• δ : Q× Σ→ Q: a transition function

• q0 ∈ Q: a start state

• F ⊆ Q: a set of accept states

The difference between deterministic and non-deterministic FSMs is that in a non-deterministic
FSM, a transition function can give multiple states for one combination of a state and in-
put symbol. Finite state machines are widely used in a variety of applications such as
electronic design automation, but also for language parsing. Many variations on FSMs
exist for a variety of purposes such as deterministic and non-deterministic. The latter
can also be seen as a representation of a Markov chain. Finite state machines have been
used extensively as tools for behavior modelling. The previously mentioned situations
based control structure for example uses finite state machines to describe the behavior
of a pedestrians as is illustrated in figure 2.6. Here, extensible states are attached and
detached in the course of a simulation, depending on where a pedestrian is located.

2.3.1 Petri nets

Petri nets are a mathematical modeling language used for the description of distributed
systems. A Petri net is a bipartite graph consisting of two types of nodes: places and
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Figure 2.6: An example of the use of finite state machines in Sungs research.

transitions. These nodes are connected by directed arcs. An arc can run from either a
place to a transition, or from a transition node to a place, but never from a place to a
place, or between two transitions. Activity in a Petri net is expressed by by the movement
of tokens from place to place, through transitions. Input arcs (from place to transition)
denote which places need to contain tokens in order to enable the transition. When a
transition is enabled, it consumes the tokens from the input places, and produces tokens
in the place indicated by the output arc. The basic Petri nets that we describe in this
thesis are called place-transition nets, or p/t nets [6]. P/t nets can be described by a
four-tuple:

PN = (P, T, F,M0)

which comprises of

• a set of places P = (p1, p2, ..., pm),

• a set of transitions T = (t1, t2, ..., tm),

• a set of directed arcs, F ⊆ (S∪T )×(S∪T ), satisfying F ∩(S×S) = F ∩(T ×T ) = ∅

• an initial marking M0 = (m01.m02, . . . ,m0m).

Graphically, places are indicated with circles, transitions as rectangles and arcs as arrows.
All places and transitions are elements of N . Furthermore, it is important to know the
definitions of pre-sets and post-sets:
For an element x of N , its pre-set •x is defined by

•x = {y ∈ N | (y, x) ∈ FN}

and its post-set is defined by

x• = {y ∈ N | (x, y) ∈ FN}

P/t nets have been extended in many ways in order to accommodate many different
functionalities. An example of this are stochastic Petri nets. In this extension, there are
two types of transitions: immediate and timed transitions. The Stochastic Petri net (SPN)
model can be described as a five-tuple:

SPN = (P, T, F,M0,Λ) (2.2)
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where (P, T, I,O,M0) is the marked untimed PN underlying the SPN, and Λ = (λ1, λ2, . . . , λn)
is an array of (possibly marking dependent) firing rates associated with transitions.

Immediate transitions always have priority over timed transitions, and the likelihood
of firing a timed transition is dependent on a parameter called the firing rate of the
transition. This rate indicates the firing delay of the timed transition. This firing rate
may be marking-dependent, so it should be written as λi(Mj). The average firing delay of
a transition ti in marking Mj is [λi(Mj)]−1. Immediate transitions fire in zero time once
they are enabled, while timed transitions fire after a random, exponentially distributed
enabling time.
Another way an aspect of time is incorporated are Timed Petri nets [26]. Here, Petri nets
are accompanied by a firing time function that assigns a positive rational number to each
transition. This number indicates how much time the firing of a transition costs. When
a transition is fired, it consumes and holds its input tokens, until this time has past, and
the firing is terminated when the tokens have been produced in the transition’s output
places.
Köhler et al. show us an example of how Petri nets can be used to model elaborate social
situations [15]. They use a high level variant of Petri nets called reference nets to model
the decision making processes in universities. Reference nets are built up of multiple layers
of Petri nets that represent both emergent aggregation of processes on a micro level and
more high-level rules and structures on a macro level. In their multi-agent system, they
make the distinction between system nets and object nets, where tokens of a system net
correspond to Petri nets on a lower level, called object nets. In this structure of nets within
nets these lower level Petri nets move around in the higher level system nets. They manage
to apply this modelling language to the decision problem of recruiting new employees in
universities.

2.3.2 Finite State Machines vs. Petri nets

Sungs situations framework looks very promising, but for our purposes it would benefit
from using Petri nets instead of finite state machines. There are several properties of Petri
nets that FSMs lack that would be very beneficial for us. We will discuss those properties
below, but first it might be important to ask, is it difficult to substitute FSMs in a system
with Petri nets? Petri nets and FSMs don’t only look similar, but FSMs can even be
considered a subclass of Petri nets. A finite state machine can namely be described as a
Petri net that contains only one token. According to Desel et al., a (finite) state machine
can be defined as a Petri net that ”has no branching transitions, and hence does not allow
for synchronization”.
The lack of the possibility to describe synchronous behavior is one of the reasons that
we prefer Petri nets over FSMs. This means that with Petri nets it would be possible to
model behavior that makes an agent do several tasks at once. For instance, it could be
possible to model our pedestrians’ Petri nets so that a token would represent an arm or a
leg. That way, a pedestrian could execute multiple basic tasks independently. More im-
portantly, Petri nets could be used to model complex interactions between several agents.
It would never be possible to achieve this kind of behavior with a finite state machine,
unless a state would be described for every possible combination of activities. An example
of how interaction between agents could be modelled can be found in 2.7.
However, this is not the only advantage Petri nets have over finite state automata. The
aspect of time is also very important for our research. There are several ways with which
a sense of time can be incorporated into Petri nets, while are harder to find for finite state
machines. Timed automata do exist [2], but more approaches exist for Petri nets.
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Figure 2.7: An example of a behavioral model of a restaurant expressed in
a Petri net

Seeing the tremendous availability of implementations of Petri nets with various exten-
sions, and the possibility to design synchronous behavior, we are confident that we should
choose Petri nets over finite state machines.

2.4 Time Planning

The essential extension to the situations framework that is proposed in this thesis adds
an element of time to the system. This is needed to enable the system to deal with
daily motion patterns. An important element without which the system cannot succeed
is knowledge about how long actions are going to take. Only when this information is
known to the agent (or system) it can be decided whether taking a certain action will
result exceeding the deadline for the goal. Both stochastic Petri nets and timed Petri nets
deal with a part of the time issue, but when we specifically want our agents adapt their
behavior to deadlines, these methods still fall too short. Unfortunately, not much research
has been done regarding the planning of actions or behavior under time restrictions. More
often the restrictions of processing time are more important than the restriction of the
executing time of behavior. That is why we decided to design our own method that can
deal with this problem.
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2.5 Which Techniques Can We Use?

We have seen many different techniques for many different purposes. We can immediately
eliminate most global approaches to crowds, since for most environments, we do not want
the pedestrians to move as one big mass, all pedestrians heading into the same direction.
Using purely attracting and repulsive forces will also generally not work when the pedes-
trians are too far apart, so we have another reason to rule out most global techniques. Of
course, the global roadmaps approach does enable the pedestrians to split up and walk in
different directions, but using this system on its own will not create very realistic behavior,
since it does not have the capability to deal with interpersonal relations, and interaction
with objects.
The techniques focusing on smaller groups do show some potential. Ideally, people should
interact with each other based on a variety of social relationships such as ”parent” and
”friend”. However, this will require much configuration beforehand, and may increase
processing time for each decision the pedestrians have to make. In this case, configuration
may not be the issue, since these relationships can be defined and then used for many
different simulations, but processing time is a larger problem, increasing with the number
of pedestrians present in the simulation.
For our purposes though, we rule out the techniques that don’t put more importance in
the environment except for collision detection, because with those techniques it will be
impossible for a designer of the environment to have any influence on the behavior of the
pedestrians, which is an important requirement for us.
Of all the possible existing techniques, the ”situations” approach of Sung et al. seems the
most appealing. However, it is not directly usable for our purposes. One downside to the
situations approach, or at least how it is described in Sungs paper, is that state transi-
tions are mainly low-level animations. However, it should be possible to adapt the state
transitions to correspond to higher-level actions, such as change of goal. Path planning
should then be delegated to another module. In this way, it is very likely that the state
representation can be reduced from s = {t,p, θ, s−} to s = {t,p, θ}. The s− was used to
remember which actions were taken previously, so that the pedestrian remembers which
way it was walking. When the actual walking is delegated to another module, it seems
unnecessary to keep s−.
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Chapter 3

Method

In the upcoming sections will be described how we decided to design our system. We
decided to base our model around Sungs situations framework [25]. We chose this frame-
work because it allows for probabilistic behavior, and puts emphasis on defining behavior
through the environment. This framework will have to be extended to deal with time
restrictions. However, we won’t work with finite state machines, as Sung does, since these
offer too little functionality to enable us to work with time restrictions. Furthermore,
FSMs are not suitable for describing interactions between multiple agents. That is why
we model behavior in a more advanced way in our system. Instead of modelling the sys-
tem with finite state machines, we describe the behavior of the pedestrians with Petri
nets. The toolkit we will use for this is Platform Independent Petri net Editor 2 (PIPE2).
http://pipe2.sourceforge.net/ Further down below we describe how we decided to
use this toolkit.

In short, this chapter will describe how we combined the situations framework with
Petri nets instead of finite state machines, and added a mechanism with which we compute
a ”utility” measure for behavior.

In our method, a number of concepts will be mentioned that have a very specific
meaning within our research. These concepts might sometimes be easily confused with
each other.

• Scene
A scene or scenario is the area where the simulation takes place. For example, in
our experiments the scene is Rotterdam airport.

• Situation
In our research, the term situation is used to indicate an area in a scene where a
specific behavior is applicable. For example, a situation could be the area around a
drinks machine. A situation as a number of properties: the area in the environment
where it is placed, the behavior, and whether an instance of the behavior is shared
with other agents so they can interact or is exclusive to one agent.

• Behavior
A behavior is a group of consecutive actions. In our framework a situation (as
previously described) always has a accompanying behavior. The behavior for the
drinks machine situation would be going up to the machine and buying a drink.

• Action
Actions are the building blocks in which a behavior is described.

17
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• Petri net
Petri nets are the modelling language in which we describe our behaviors.

• Steps or Timesteps
Lengths of time are expressed in timesteps. The reason for this is that this is that our
multiagent simulation uses this measure of simulation time. If a different simulation
would have been used, the system could have been easily adapted to deal with the
time indications that would be used there.

It is important to keep in mind the difference between behaviors and actions when
covered in our thesis. These two terms are not interchangeable. With actions we indicate
movement of a pedestrian that is described in a single transition in a Petri net. Behaviors
on the other hand, indicate the whole set of actions that are encompassed within a whole
situation. Another way a behavior can be viewed is the whole sequence of actions that
take place when a token of a pedestrians Petri net leaves the base place until it comes
back again.
For example, a pedestrian might have entered the region of the toilet situation. A new
behavior, namely the Petri net corresponding to the toilet situation, is then attached to
the pedestrian. A pedestrian might then decide to fire the transition that produces a
token in this newly attached Petri net, thus making the pedestrian execute the behavior
corresponding to the toilet situation. This Petri net consists of several transitions, corre-
sponding to various actions, such as walking to the toilet.

3.1 Petri nets

Our method of designing behavior for large groups of pedestrians is largely based on the
situation framework by Sung et al., but the finite state machines are replaced by Petri
nets. Our Petri nets are based on place/transition Petri nets (p/t-nets)[6]. However,
we did make some changes to the way one transition is selected from a set of enabled
transitions. These changes were necessary to be able to incorporate a way of dealing with
time pressure. In the following subsections we will introduce the tool we use for designing
Petri nets, and how we incorporate these Petri nets in the overall structure of our system.

3.1.1 PIPE2

PIPE2 is a tool written in Java to create and analyse Petri nets. We chose this toolkit for a
number of reasons. First of all, PIPE2 is written in Java, which makes it easier to integrate
with VR-Forces, because VR-Forces is made to communicate with Java. Secondly, this
toolkit promised a number of Petri net extensions, the most important of which is the
capability to create Generalized Stochastic Petri nets. Generalized stochastic Petri nets is
an extension that adds timed transitions to standard p/t nets. Unfortunately, at a later
time it seemed that the generalized stochastic Petri nets that we planned to use did not
behave as described in the specifications, so that is one of the reasons we stick to use
modified, basic, place/transition Petri nets. Another reason that extend regular p/t Petri
nets is that it allows us to have more control over frequencies of behavior. PIPE2 also
provides a clear and simple GUI with which Petri nets can be designed (see figure 3.1).
This is very important because the design of the behavior in our method should be fast and
easy. It should require minimal effort to place large amounts of agents in a environment.
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Figure 3.1: The PIPE2 interface.

3.1.2 Separating the Petri Nets of Situations and Pedestrians

Because a pedestrian should only be able to do behavior when he is in the associated
situation, we should keep the Petri nets belonging to the pedestrian and the nets that
describe the behavior for a situation separate, like in figure 3.2. In the middle of this
figure we can see the base place, to which all Petri nets eventually loop back, except for
the gotogoal behavior. The large circles in this example indicate the situation Petri nets.
These have to attach to and detach from the pedestrian Petri net as he walks in and
out of the associated situation. We do this through specially labelled source and sink
transitions. A source transition is a transition t ∈ T of which the pre-set •t = ∅, whereas
a sink transition is a transition t ∈ T of which the post-set t• = ∅. An example of a place
with a source and sink transition attached can be found in figure 3.3
When a pedestrian walks into a certain situation, two new transitions are attached to
the base place. One of these transitions has an arc pointed from itself to the base place,
this is a source transition. The other transition, which has an arc pointed the other way
around is a sink transition. Because a source transition does not consume any tokens, but
only produces them, it is always enabled and can fire at any time. Sink transitions only
consume tokens.

In our system, we generate source and sink transitions when a pedestrian Petri net is
attached to a situation Petri net, and treat these differently from other transitions. These
new transitions will be associated to sink and source transitions of the situation Petri
net. This way, when a newly attached sink transition is fired in a pedestrian Petri net,
the associated source transition of the situation Petri net will be found and fired as well.
This way tokens can be ”transported” from pedestrian Petri nets to situation Petri nets.
Situation Petri nets have a fixed amount of special source and sink transitions, so no
new ones are generated through the simulation. These sources and sinks indicate where
a pedestrian Petri net should ”attach” its sink and source transition when the pedestrian
enters the associated situation. Whether a source or sink transition in a situation Petri
net is meant to be attached to a pedestrian Petri net can be seen in the name of these
transitions. These sources and sinks always come in pairs with the names source:n and
sink:n. There is another way in which these source and sink transitions are treated
differently. Regular source transitions are always enabled. Therefore, if these transitions
would be treated as other transitions, attaching a situation to a pedestrian would create a
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Figure 3.2: Our plan for separating pedestrian Petri nets from situation
Petri nets.

transition that releases an endless amount of tokens into the Petri nets, which would upset
our system. It is possible implement for example a situation in which a regular source
transition is incorporated. Whether the system will work correctly is left to the judgement
of the designer of the Petri net. An important rule though that all designs should adhere
to is that a pedestrian net should always be restricted to transporting only one token to a
situation Petri net, and only one should be transported back. This is because the system,
expects this, and the behavior will become unpredictable otherwise. In figure 3.4 shows
the process of connecting to a situation Petri net and exchanging tokens.

Figure 3.3: A place with a source and sink transition.
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(a) Pedestrian Petri net
with no situations at-
tached.

(b) Source and sink transitions are gen-
erated to attach to situation Petri net.

(c) Sink of pedestrian net is associated
with source of situation net and vice
versa.

(d) When the sink transition of the
pedestrian net is fired, the source tran-
sition of the situation net is fired simul-
taneously.

(e) The final place that is attached to
the special sink transition in the situa-
tion net is reached.

(f) The sink transition of the situa-
tion net is fired simultaneously with the
source transition of the pedestrian net.

Figure 3.4: The process of connecting and exchanging tokens between pedes-
trian and situation Petri nets.
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3.2 Time Planning & Decision Mechanism

In this section will be described how the pedestrian agents’ behavior is decided upon using
information about their deadlines and time spent doing the various behaviors. What is
important to remember is that pedestrian Petri nets always have one base place from
which it is always possible to reach the (time constrained) goal. This place should also
be labelled base by the designer so our system can find it. In the following subsections,
we will first describe how we estimate how much time a certain behavior costs, then we
will show how we use this information together with the deadline time, a utility function
and the current time to compute the probabilities of various behaviors, and finally we will
propose various utility functions that we think will result in the desired behavior.

3.2.1 Estimating the Time of Behaviors

In order to save computing time during a simulation, we make a few computations before
the simulation has started. An important step is the calculation of the distance in time
between all the places in a Petri net and a destination place. This distance can easily be
computed using the Dijkstra shortest path algorithm [7]. Dijkstra’s algorithm is a graph
search algorithm that can produce a shortest path tree for a single source, for a graph with
nonnegative edges. In our system we can use this to compute the time from any place
to the destination place (the source). We then pick the place from all the places in the
Petri net the one that has the highest distance to the destination. We use this information
to make an estimate of how long a pedestrian will be stuck to the behavior of a certain
situation. However, it will never be more than an estimate, since it is possible to design
Petri nets with (possibly) infinite loops, since the Petri nets are probabilistic, it will never
be possible to give an exact prediction of the time it takes to execute a certain behavior.
In figure 3.2 the estimates of the behaviors described in section 3.3 are shown.

3.2.2 Deciding on Behavior

Though the probabilities of the various behaviours a pedestrian can have are dependent
on what kind of utility function we are going to use, the underlying mechanism will always
be as described in the algorithm in figure 3.5. This algorithm is used to choose one of
the various behaviors that are currently available to a pedestrian at a certain timestep.
Once one is chosen, this behavior will be executed from the current timestep until it has
finished, and the token has moved back to the base place of the pedestrian. This algorithm
is only run for the pedestrians whose token is currently in the base place. When the token
is in another place, the decision about which transition to choose follows the basic p/t
Petri net rules.
The mechanism works as follows: first of all, we subtract the current simulation time from
the deadline time of a specific pedestrian. When we have computed this td, we know how
much time this pedestrian has left to reach its goal.
Next, the algorithm computes for every situation how much time is left would the pedes-
trian choose to execute this behavior. This remaining time is then used to compute the
utility of these behaviors. The utility is computed with the utility function U , and can
have various distributions. In section 3.2.3 the various utility functions that we experi-
ment with are described. We will try out behavior various options for U to see which will
give the most realistic behavior. When the utilities for all the behaviors have been com-
puted, they are normalized, and based on the resulting probabilities, one of the behaviors
is randomly chosen.
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Algorithm 1 δ ← deadline time - current time
for Every connected transition numbered t0, t1 . . . tn do

ε← time estimate(tx) . Estimated time of behavior connected to tx
τ ← δ − ε . Time left after doing behavior.
if name(transition) =’gotogoal’ then

ux ← Ugoal(τ))
else

ux ← Unon−goal(τ))
end if

end for
normalize(u0 . . . un)
Select randomly from situations 0 . . . n, weighted by u0 . . . n

end

Figure 3.5: The behavior decision mechanism

As one may have noticed, this does not give a guaranteed solution to the planning
problem. However, since we have to be able to model large crowds, we cannot create an
overly complex planning system, because then we would not be able to run the simulation
real-time. Furthermore, we do not aim at finding an optimal solution to the planning
problem, but rather the most lifelike behavior. In real life, people make errors in judge-
ment, so creating pedestrians who can look ahead perfectly would not be realistic. It is
impossible to make an exact definition of realism for our purposes, but what we try to
do, is to copy certain specific behavior found in real-life footage. In our experiments we
will try different utility functions to influence the probability of going to the goal or do
something else, and attempt to assess which function will be most suitable.

3.2.3 The Utility Functions

Below the various utility functions we use will be described.

Sigmoid Function

A sigmoid function is an S-shaped curve that has a progression that accelerates and ap-
proaches a climax over time. This function can be found in many natural processes, such
as learning curves. This function closely resembles how we reason that the behavior will
shift when a pedestrian approaches a deadline. Our sigmoid function is defined as follows.

U(τ) = η
1

1 + e−
τ−µ
ω

(3.1)

Our sigmoid function includes parameters for translation and transformation: η to mul-
tiply in the y direction, ω to multiply in the τ direction and µ to translate in the τ
direction.

Linear Function

We first chose to use a sigmoid function, because intuitively it felt like it would reflect real-
life behavior best. However, it could be the case that the sophistication of this function is
lost in practice. If this is the case, we might as well use the simpler linear function. Our
linear function was of the following form, where parameter d is the time of the deadline:
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If 0 ≤ τ ≤ d: P (τ) = aτ + b
If τ < 0: P (τ) = P (0)
If τ > d: P (τ) = P (d)

However, we do not specify parameters a and b directly. What matters the most to us,
is the value U(τ) at τ = 0, which we call U0 and the value of U at the end where τ = d,
which we call Ud. Consequently, we compute a and b as follows:

a = Ud−U0
d

b = U0

Gaussian Function

We also used a Gaussian function to model the behavior. A Gaussian distribution (or
normal distribution) is a continuous probability distribution with a bell-shaped probability
density function and has mean (µ and variance (σ2) as parameters.

U(τ) =
1

σ
√

2π
e−

(τ−µ)2

2σ2

We chose to try a Gaussian function as well because of the following reasoning: A pedes-
trian might not care about going to it’s goal until it is approximately the time of the
deadline. With this we mean that going to the goal is a priority around the time of the
deadline, and will also decline when the deadline has passed for a while, and the pedes-
trian hasn’t reached its goal yet. With this reasoning, the ”go-to-goal” behavior frequency
should increase when approaching the deadline, and should peak just before the deadline,
and decline thereafter.

3.3 Rotterdam Airport

In our research, we focus on behavior found at the main hall at Rotterdam airport. In
order to know what the behavior at this location looks like, we have observed footage
from the security cameras at the main hall (see figure 3.6) in Rotterdam airport that the
Intelligent Imaging department at TNO was so kind to provide. From these observations
we have established a couple of specific behaviors that are recurrent in Rotterdam airport
and managed to recreate the behavior in Petri nets.

• Standing still, figure 3.7.
People stand still and do nothing very often while waiting.

• Wandering, figure 3.8.
People also wandered around randomly.

• Leaning against a pillar, figure 3.9.
Another recurring behavior we saw is that people lean against the pillars in the hall.

• Going to the toilet, figure 3.10.
In the videos, we observed that a typical behavior that manifests itself multiple times
in the video material is that one person goes to the toilet, and another one waits
until this person has come back. After that, they move on to do something else.
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Figure 3.6: The floor plan of the main hall of Rotterdam Airport.

As can be seen, the standing still behavior in figure 3.7 was easiest to recreate, closely
followed by the ”wandering” behavior in figure 3.8 and ”leaning against a pillar” behavior.
The exact appearance in the simulation mostly depends on the implementation of the
actions indicated in the places of the Petri nets. Whether there will be e.g. collision
detection or other lower-level functionality depends on which kind of multiagent simulation
is used.
The ”go-to-toilet” behavior in figure 3.10 is the most interesting, because this Petri net
can actually be shared between two pedestrians. We see that this fairly complicates the
structure of the Petri net. In comparison to the other Petri nets, there are relatively more
places here that do not map to an actual action. These places are necessary to make sure
that one pedestrian does not move forward to its next action too soon. This will cause
the pedestrians to have more ”idle” actions between their other actions than there would
be with the simpler behavior. This is not a problem though, because the pedestrians will
not remain idle longer than one or two timesteps.

Figure 3.7: Pedestrian standing still.
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Figure 3.8: Random wandering around

Figure 3.9: Going to the nearest pillar and leaning against it.
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Figure 3.10: One person going to the toilet and one person waiting for the
other.
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(a) Room with agent (b) Room with agent and situation areas.

Figure 3.11: A hypothetical room that could be simulated.

3.4 Example

In order to give a clear insight into how our method is used in practice we will give a
small example. Let us say that we need to simulate only one person, who has to wait in
a room. At a certain point in time (let us say 100 steps), he has to advance through a
door. There are a few objects in this room with which he can interact. In figure 3.11a we
see a schematic representation of this room. The red circle in the middle is the agent, the
rectangle on the lower left side is a bench and on the upper left side we can see a door
going out of this room.
Our agent can do a couple of things in this room. First of all, he can wander around the
room. In our representation it is possible to decide to do this standing in any position in
this room. Another option is to sit on the bench. For the purpose of this example it is only
possible for the agent to decide to do this when in close proximity of the bench. In figure
3.11b the situation areas for these two behaviors can be seen. Our agent is not planning
to stay in this room forever though. He wants to leave the room before 100 (time) steps,
so leaving the room will be our go-to-goal”gotogoal” action.

The high level behavior is described in Petri nets. Our pedestrian comes with only
a very basic Petri net, with its only transition being the gotogoal transition as shown in
figure 3.12. The bench and wander situation have their associated situation Petri nets, as
shown in figure 3.13 and 3.8 respectively. The red numbers indicate how much timesteps
the designer of the Petri net thought these transitions would take.
When the simulation is run, the time in steps from every place in the situation Petri nets
to the sink transition are computed, and the maximum time per situation are registered as
heuristic. These heuristics are quite easy to compute for our example Petri nets. For the
bench situation it would be 1+3+10+1+1 = 16. For the wander situation 1+3+1 = 5.
Of course, our simulation also needs goal and non-goal utility functions. Let us say they
are the following:

Ugotogoal = − 1

100
τ + 1
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Unongoal =
1

100
τ (3.2)

After this the preprocessing of the actual simulation starts. Our pedestrian stands in the
situation area of both the wander situation and the bench situation. That means the Petri
nets of both will be attached to the pedestrian. How they are connected through sources
and sinks can be seen in figure 3.15.

Figure 3.12: Our agent’s basic pedestrian Petri net.

Figure 3.13: The Petri net of the bench situation.

The token of the pedestrian is in the base place. That means transitions connected to
Petri nets of the situations can be chosen. He still has 100 timesteps left. The estimated
time left (named τ after doing the wander behavior would be 100− 5 = 95 for the bench
situation 100 − 16 = 84. The time left after executing the go-to-goal behavior would be
100− 5 = 95. The utilities are computed as follows:
Ubench = 1

100 ∗ 84 = 0.84
Uwander = 1

100 ∗ 95 = 0.95
Ugotogoal = − 1

100 ∗ 95 + 1 = 0.05
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Figure 3.14: The Petri net of the wander situation.

Figure 3.15: Example of how the Petri nets are connected.

To compute the probabilities for selecting the transitions, these utilities are normalized,
which leads to the following values:
P (choosing bench transition) ≈ 0.46
P (choosing wander transition) ≈ 0.51
P (choosing gotogoal transition) ≈ 0.03
So most likely the agent will wander around or sit on the bench. Let us say the sink
transition connected to the wander Petri net will be randomly chosen. Now the token gets
consumed by sink transition sink:2 and produced by source:1 in the Petri net with wander
behavior. Every time an action needs to be taken, the active transition in the Petri net
will be fired. First it will be wander:1, then source:2, and the cycle starts anew, until the
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go-to-goal transition is chosen and the pedestrian moves through the door.
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Chapter 4

Experiments

Although it can be difficult to decide whether a group of people walks around ”realis-
tically”, we will certainly give it a try. We will attempt to test our framework in two
different ways; first of all, we will assess our framework by doing a qualitative comparison
with real-life footage of Rotterdam Airport. We have access to both camera footage and
manually tracked locations of the visitors. Secondly, we will assess how the the different
utility functions we choose for the go-to-goal action will affect the frequency of other ac-
tions. In other words, we will attempt to investigate whether our method leads to emergent
behavior.

4.1 Qualitative Experiment

First of all, we will see if it is possible to recreate real-life behavior in Rotterdam airport
with our framework. As mentioned before, we have observed footage from the security
cameras at Rotterdam airport. From these observations we established a couple of specific
behaviors that are recurrent in Rotterdam airport, as mentioned in section 3.3. We will
briefly mention them here again:

• One person going to the toilet, other person waiting.
We have observed this behavior 2 times in 10 minutes

• Leaning against a pillar We have observed this behavior approximately 2 times in
10 minutes.

• Standing still This behavior happens almost constantly

• Wandering This behavior happens constantly. Although it is sometimes hard to
assess whether a pedestrian is randomly wandering around because he has to wait
or actually has a goal in mind.

In order to make a fair comparison, we searched for these behaviors in the tracked
data, and drew their approximate trajectories, which can be found in figure 4.1, 4.2 4.3,
and 4.4. The trajectories are divided into different steps.

In this qualitative experiment, we will try to imitate these behaviors using our Petri
nets. We expect that our Petri nets will be capable of imitating these behaviors.
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Figure 4.1: Approximate trajectories of one person going to the toilet, other
person waiting.

Figure 4.2: Approximate trajectory of a person going to a pillar and standing
against it.

Figure 4.3: Approximate trajectory of a person standing still for a while and
then moving on.
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Figure 4.4: Approximate trajectory of a person wandering around.

4.2 Quantitative Experiment

It is quite a challenge to quantitatively establish whether lifelike behavior has been mod-
eled. However, it is possible to check whether the mechanics of time planning work as
predicted. If the mechanics work as expected, the simulation should start with a prefer-
ence of relaxed over hurried behavior. Then, as time passes and the deadline draws near,
the frequency of hurried behavior should increase while relaxed behavior decreases.
In order to test our theory, we run the simulation once with 100 pedestrians and log for
every step in time, for every pedestrian, which action he is doing at the moment. This
information will be plotted in a graph that shows the frequency of every action at every
step in time.
The deadline of going to the goal will be 200 steps in our simulation. We chose this value
because our behavior takes up to roughly 40 steps (but most behavior takes 20 steps or
less) and this leaves enough room for the pedestrians to decide on multiple behaviors while
”relaxed” before time starts running out and they have to start hurrying.
To distinguish between hurried and relaxed behavior we replaced the ”wander” behavior
of the qualitative experiment by two other behaviors, called fastwander and slowwander.
We use these two behaviors to try to get a clear distinction between hurried and relaxed,
and see how the number of pedestrians doing one or the other changes over time. The
Petri nets for these behaviors look exactly the same, as can be seen in figure 4.5. The
difference between these Petri nets is in the weight of the slowwander:1 and fastwander:1
transitions. These are 20 versus 10 respectively. This weight is used by the Dijkstra al-
gorithm to compute the amount of time that a this behavior will take. The reason that
these are 20 and 10 is that we programmed the slowwander behavior in such a way that
the pedestrian will walk roughly in one direction for 20 timesteps. Fastwander makes
the pedestrian walk faster than slow wander, and for a shorter period of time, namely 10
timesteps. We added slowwander and fastwander situation areas in the simulation that
both encompass the entire map.
Because of the structure of our implementation, it was easier to log the actions of the
pedestrians instead of the Petri nets that are fired for every pedestrian. Because most
Petri-nets only contain one action, it is an almost one-on-one mapping from action to
Petri net (or behavior), but for clarity, we will list the various actions that can be exe-
cuted below:
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(a) ”Fast wander” behavior. (b) ”Slow wander” behavior.

Figure 4.5: Petri nets of the new behaviors

• fastwander

• slowwander

• gototoilet and waitforfriend (these both belong to the gototoilet situation)

• gotonearestpillar and leanagainstpillar that are both part of the leanagainstpillar
situation

• standstill

• idle

The last action is the default action when nothing else can be executed. It is executed
when a fired transition does not have an associated action. Another situation in which
this idle behavior can happen that will be important in these experiments, is when there
are no transitions left any more to fire. This can be for example when all transitions have
gotten a probability of 0 for firing.

We will try different utility functions for the go-to-goal and non-goal behavior to see
how this influences the simulation. We chose our parameters based on which values would
give a significant but gradual increase in the course of this timeframe and give the max-
imum utility on either t = 0 or t = 200, the first when the function is used as utility
measure for go-to-goal behavior, the latter when applied to non-goal behavior. The utility
functions will be judged on whether they result in behavior that transitions from relaxed
to hurried, and whether they help the pedestrians reach their goal in time.
We have used the combination of functions listed in table 4.1. For more information about
the various parameters refer back to section 3.2.3. We will judge these results on two as-
pects: deadline drivenness and the transition from hurried to relaxed. The results can be
found in the next chapter in section 5.2.
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Goal Utility Non-goal Utility

1 Linear: U0 = 1, Ud = 0 Linear: U0 = 0, Ud = 1

2 Linear: U0 = 1, Ud = 0 Sigmoid: µ = 100, β = 0, ω = 10, η = 1

3 Linear: U0 = 1, Ud = 0 Gaussian: µ = 200, σ = 50

4 Linear: U0 = 0.1, Ud = 0 Linear: U0 = 0, Ud = 1

5 Linear: U0 = 0.1, Ud = 0 Sigmoid: µ = 100, β = 0, ω = 10η = 1

6 Linear: U0 = 0.1, Ud = 0 Gaussian: µ = 200, σ = 50

7 Sigmoid: µ = 100, β = 0, ω = −10, η = 1 Linear: U0 = 0, Ud = 1

8 Sigmoid: µ = 100, β = 0, ω = −10, η = 1 Sigmoid: µ = 100, β = 0, ω = 10, η = 1

9 Sigmoid: µ = 100, β = 0, ω = −10, η = 1 Gaussian: µ = 200, σ = 50

10 Gaussian: µ = 0, σ = 50 Linear: U0 = 0, Ud = 1

11 Gaussian: µ = 0, σ = 50 Sigmoid: µ = 100, β = 0, ω = 10, η = 1

12 Gaussian: µ = 0, σ = 50 Gaussian: µ = 200, σ = 50

Table 4.1: The list of combinations of utility functions used for the first
quantitative experiment.

4.3 Second Quantitative Experiment

It is possible that the goal and non-goal utility functions interfere with each other. For
example, when the goal utility function causes the pedestrians to go to their goal early
in the simulation, they might not have time enough to show a transition from hurried
to relaxed behavior. That is why we decided to run a second quantitative experiment.
The purpose of this experiment is to follow the the hurried and relaxed behavior of the
pedestrians with the goal utility being the constant function U(τ) = 0. We varied the non-
goal utility functions in the same way that we did in the first quantitative experiment.
For clarity, the functions and parameters we will use are the following:

• Linear: U0 = 0, Ud = 1

• Sigmoid: µ = 100, β = 0, ω = 10, η = 1

• Gaussian: µ = 200, σ = 50

The results will again be judged on its transition from relaxed to hurried. We expect that
this transition will be more clear than in the previous experiment.
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Chapter 5

Results

5.1 Results of the Qualitative Experiment

We ran a simulation that included the behaviors that we found in real-life, and observed
the trajectories that the simulated behaviors made. The resulting trajectories can be
found in figure 5.1, 5.2, 5.3 and 5.4. From a qualitative point of view, it seems that the
behavior of one person going to the toilet and one person waiting could be mimicked very
well. Leaning against a pillar has a trajectory close to the real-life trajectory, and standing
still was of course also possible.
Lastly, 5.4 shows the trajectory of a simulated agent wandering around. We see that
the pedestrian that was tracked in real life walks from left to right and back, while our
pedestrian walks roughly in one direction. That does not mean that it is not possible for
our system to mimic this specific behavior. We use our wandering to make sure that the
pedestrians pass over several situations. If we had made the wandering as in the footage,
the pedestrians would cross a minimal amount of floor while wandering, and would possibly
not engage enough in more diverse behavior. This problem is of course easily solved by
making several different wandering behaviors: one with which more floor is crossed and
one where the pedestrian stays roughly in the same place.

Figure 5.1: Approximate trajectories of one person going to the toilet, other
person waiting.
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Figure 5.2: Approximate trajectory of a person going to a pillar and standing
against it.

Figure 5.3: Approximate trajectory of a person standing still for a while and
then moving on.
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Figure 5.4: Approximate trajectory of a person wandering around.
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5.2 Results of the First Quantitative Experiment

Firstly we are going to discuss the results of the first quantitative experiment. One thing
that is noticeable in all results is that there are periods in which the number of pedestrians,
especially in slow and fast wander, is steady, after which the number drops drastically.
After a few steps the number goes up again. In sync with this behavior the number of
pedestrians remaining idle stays low, and increases when the other behaviors drop.
This phenomenon is easily explained. Slow and fast wander are behaviors that exist of a
single action. When this action has been executed, which takes a few steps, the token of
the pedestrian moves out of the attached Petri net into its base place. In order to move
this token, a slot and sink transition have to be fired. These transitions do not have an
associated action. When there is no action available for the pedestrian, it executes the
idle behavior.
Especially at the start, this effect is very prominent. This is because all pedestrians start
the simulation at exactly the same moment. All pedestrians executing the same actions
or actions that take the same amount of time stay synchronous. After a few dozens of
steps, the behavior has varied more and the pedestrians are not as synchronous any more
in going back to the idle ”action”.
Another thing that we can notice is that there are more or less four actions that dominate
simulation, namely slow wander, fast wander, go to goal, and idle action. Behavior like
going to the toilet and waiting for their friend (which are both part of the same going
to the toilet behavior and Petri net) are only done by one or two pedestrians at a time.
This is completely as expected. The go-to-toilet situation is shared, which means that one
Petri net is attached to multiple pedestrian Petri nets. The more dominant actions belong
to situations that are not shared and are instantiated for every pedestrian that enters it.
That means that the shared Petri nets are only instantiated once for every situation, while
the ones that aren’t shared are instantiated many times.

Figure 5.5: Goal utility linear with U0 = 1 and Un = 0. Other behavior
utility linear with U0 = 0 and Un = 1.
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Figure 5.6: Goal utility linear with U0 = 1 and Un = 0. Other behavior
utility sigmoid with t0 = 100, β = 0, ω = 10 and η = 1

Figure 5.7: Goal utility linear with U0 = 1 and Un = 0. Other behavior
utility Gaussian with µ = 200 and σ = 50.

In figure 5.5, 5.6 and 5.7 we see the results for having a linear goal utility function that
decreases from 1 to 0 and the utility function for other behavior varying. Figure 5.5 and
5.6 look very similar. The simulation starts out with a large preference for slow wander
behavior, which decreases while fast wander increases. After about 70 steps however, the
gotogoal action starts to dominate the simulation, increasing at a fast pace. This makes
the other actions decrease rapidly until pedestrians are either idle (because they have
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already reached their goal) or still going to their goal. When we look at figure 5.7 we see
that almost all pedestrians go to the goal in the first dozen of steps. Fast wander and slow
wander become completely overshadowed.

Figure 5.8: Goal utility linear with U0 = 0.1 and Un = 0. Other utility
linear with U0 = 0 and Un = 1

Figure 5.9: Goal utility linear with U0 = 0.1 and Un = 0. Other utility
sigmoid with t0 = 100, β = 0, ω = 10 and η = 1.

In figures 5.8, 5.9 and 5.10 we see the results for the experiments with the goal utility
function with U0 = 0.1 and Un = 0. We varied the utility function of the other behavior
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Figure 5.10: Goal utility linear with U0 = 0.1 and Un = 0. Other utility
Gaussian with µ = 200 and σ = 50.

the same as before. For some reason, the go-to-toilet and wait-for-friend actions are not
present in this simulation. They have been replaced by the stand-still action. We would
have expected to see more variation in actions now the utility of the go-to-goal behavior
has been lowered. Instead, the time-consuming go-to-toilet behavior has been replaced by
the less demanding stand-still behavior.

Figure 5.11: Goal utility sigmoid with t0 = 100, β = 0, ω = −10 and η = 1.
Other utility linear with U0 = 0 and Un = 1
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Figure 5.12: Goal utility sigmoid with t0 = 100, β = 0, ω = −10 and η = 1.
Other utility sigmoid with t0 = 100, β = 0 and ω = 10 η = 1.

Figure 5.13: Goal utility sigmoid with t0 = 100, β = 0, ω = −10 and η = 1.
Other utility Gaussian with µ = 200 and σ = 50.

In figure 5.11, 5.12 and 5.13 are the results for the experiments with a sigmoid goal
utility function where t0 = 100, β = 1, ω = −10 and η = 1. The effects are more or less
the same as for the previous results. Again, the sigmoid goal utility function causes the
pedestrians to go to the goal very soon, eliminating the possibility to do other behavior
very soon in the simulation.
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Figure 5.14: Goal utility Gaussian with µ = 0 and σ = 50. Other utility
linear with U0 = 0 and Un = 1

Figure 5.15: Goal utility Gaussian with µ = 0 and σ = 50. Other utility
sigmoid with t0 = 100, β = 0, ω = 10 and η = 1.

The results for a Gaussian goal utility function are shown in figure 5.15, 5.14 and 5.16.
We see that in general, the pedestrians seem to wait longer before they go to their goals.
This also causes more pedestrians to be too late, because they still are on their way to the
goal when the deadline passes. This is very likely due to the fact that the estimation of
going to the goal is too low for some pedestrians, because the area they move in is larger
than I took into account when estimating the time needed to go to the goal.
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Figure 5.16: Goal utility Gaussian with µ = 0 and σ = 50. Other utility
Gaussian with µ = 200 and σ = 50.
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From the results of this experiment we can make a table in which we judge the utility
functions on two important aspects: change from relaxed to hurried behavior (table 5.1)
and deadline-drivenness in table 5.2 (do they reach the goal in time?). We give the graphs
a score in the following way: when it scores sufficiently, we give a checkmark (X). If
they score better, we have + and ++, and for worse, – and – –. We also gave a special
score in table 5.2, namely >>. It means that the pedestrians reached their goal too early.
When we would judge in terms of whether they are on time, we should have given them
++. However, the pedestrians reached their goal so early that they hardly did any other
behavior than going to their goal. This is not desirable, so we decided to score them
differently.
When looking at the tables, there is only one combination of utility functions that scores
sufficiently or better on both categories. A Gaussian goal utility function combined with
a sigmoid non-goal utility seems to behave the best in our simulation.

Goal

Linear Linear to 0.1 Sigmoid Gaussian

Non-goal
L – + – X
S – X – X
G – – – – – – –

Table 5.1: Utility functions judged by change from relaxed to hurried behav-
ior

Goal

L L to 0.1 S G

Non-goal
L + – – s –
S ++ – + ++
G >> >> ++ +

Table 5.2: Utility functions judged by if the pedestrians reach the deadline
soon enough.

In short, a number of combinations of utility functions perform well on one of the two
criteria, and the combination of a Gaussian goal utility function with a sigmoid non-goal
utility performs at least sufficiently on both. We do notice that the goal utility function
does start to have a large influence after only a few dozen of steps in most simulations.
This way it is possible that the goal utility function ”sabotages” the development of a
nice transition from hurried to relaxed behavior (we will also talk about this in chapter
6). This was actually why we decided to do the second quantitative experiment that we
described in the previous chapter (4.3). The results can be found in section 5.3.

5.3 Results of the Second Quantitative Experiment

In the first experiment, the go-to-goal behavior was so dominant that it was difficult judge
other emergent behavior. The following results will give a clearer view of whether hurried
and relaxed behavior can emerge from our framework.

First of all, we have figure 5.17 where the U = 1 for all t. We see the typical phases
that we saw in section 5.2 where most pedestrians execute slow- or fast wander for a
while, after which the frequency of idle behavior goes up for a few steps. We can also see
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Figure 5.17: Non goal utility is constant with U = 1

a few pedestrians doing the go-to-toilet and the accompanying wait-for-friend action. The
frequencies of the actions deviate more or less around the same value through the whole
simulation.

Next, we have the results for the utility functions that do decrease when time runs
out. It is very clear that eliminating the goal gives the pedestrians the freedom to do
different kinds of behavior. We see that the slow wander action has the preference most
of the time, except when time has almost run out. Slow wander then decreases while fast
wander increases, until even this less time consuming action takes too much time, and
the pedestrians become idle. This preference of relaxed behavior (slow wander) until that
takes to long to catch a deadline and transitioning to hurried behavior (fast wander) is
exactly what we wanted to show with our framework.

In figure 5.19 we very clearly see the influence of the shape of the sigmoid curve.
At around 100 steps the pedestrians exchange their preference of relaxed behavior (slow
wander) for hurried behavior (fast wander). With a Gaussian utility function, the resulting
graph resembles the results of the linear function again for the first part, but after about
180 steps, it is quite different. We saw that with linear utility functions, the frequency of
slow wander would decrease first, followed by fast wander, while idle behavior increases.
The Gaussian curve never reaches 0, and the probabilities of executing non-goal behaviors
are derived from the relation between the other non-goal behaviors (i.e. the non-goal
utilities are normalized). Consequently when the go-to-goal behavior is eliminated, the
frequency of non-goal behavior will not decrease with a Gaussian curve.

We have scored the utility functions again on whether they transition from relaxed to
hurried behavior in a realistic manner. The scores can be found in table 5.3. The Gaussian
non-goal utility function still results in a poor performance, but with the linear and sigmoid
function, the simulation has a better transition from hurried to relaxed behavior than it
had when any goal utility function was added.
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Figure 5.18: Non-goal utility linear with U0 = 0 and Un = 1.

Figure 5.19: Non-goal utility sigmoid with t0 = 100, β = 0, ω = 10 and
η = 1.

Relaxed to Hurried

Linear ++

Sigmoid ++

Gaussian –

Table 5.3: Scoring table of non-goal utility functions when leaving out go-
to-goal action and transition



52 CHAPTER 5. RESULTS

Figure 5.20: Non-goal utility Gaussian with µ = 200 and σ = 50.



Chapter 6

Conclusion & Discussion

In this research we managed to create a system with which behavior for an airport-type or
deadline-driven scenario can be easily designed with Petri nets and placed in an environ-
ment by drawing the areas in which this behavior should take place. In this final chapter
we will first discuss what answers our research can give to our research question and its
subquestions. Secondly we will discuss the limits of our system. Lastly, we will provide a
few directions followup research could take.

6.1 Research Questions

In our research we wanted to give an answer on the following question:

How can an intelligent virtual environment for simulated pedestrians be
extended to deal with time-restricted destinations?

This will be done by first answering each of the subquestions. We will go through them
one by one:

To what extent can pedestrians be simulated realistically?

In our research we compared a number of key behaviors found at Rotterdam Airport with
their simulated counterparts in our system. In terms of the trajectories these agents follow,
the simulated pedestrians matched up with the trajectories of actual pedestrians.

How do we let the pedestrians make decisions based on the time left to reach
the destination?

When deciding on behaviors, the pedestrians are guided by how much time is left after a
behavior has been executed (variable τ). This variable is used together with the utility
functions to compute the likelihood of a behavior occurring at that moment. From the
experiments can be concluded that a Gaussian goal utility function combined with a
sigmoid non-goal utility function gives the best result in terms of deadline drivenness and
emergent relaxed and hurried behavior.

Is it possible to have emergent behavior based on time restrictions?

As stated in the answer to the previous question, when using the right combination of
utility functions, yes, hurried and relaxed behavior does emerge. The slower, more time-
consuming behaviors are preferred when the deadline is still far away, while quick behaviors
are preferred when more time has passed. From this we can conclude that emergent
behavior based on time restrictions is possible with our system.
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Is it possible to quickly generate these virtual pedestrians without much
tweaking for each environment?

By using Petri nets combined with the situations framework, behaviors can be designed
once and used in many different environments. The behavior of the pedestrians will then
emerge from the combination of situations defined in the environment and a predefined
goal for every pedestrian. In an airport-type scenario, the goal for almost every pedestrian
is the same, namely reaching their plane before it leaves. The goal of those pedestrians
can therefore be defined once.

6.1.1 The Benefits of Petri nets

In our research we replaced the finite state machines of the situations framework of Sung et
al. [25] with Petri nets, but was it necessary to do so? For our purposes it most certainly
was. The way in which a sense of deadline was implemented through the use of goal
and non-goal utility functions could probably be approximated with finite state machines,
but in doing so the potential complexity of implementable behaviors would be limited
severely. The usefulness of Petri nets over finite state machines especially expresses itself
when multiple tokens can move around. This property of Petri nets enables the designers
to make behaviors where multiple agents are interacting, or where a single agent can keep
track of resources. For example, a token could indicate whether an agent has bought a
drink, and only when that token would be present, he could actually execute the behavior
of drinking.

6.2 Limits of the Deadline Driven Behavior Framework

Modelling pedestrian behavior with our method does have its limits. First of all, the
movements of the agents are designed explicitly through linking together basic movements
in the Petri nets. As a consequence, interaction with other agents is quite static, and not
directly responsive to surrounding agents. Consequently, our method is not particularly
suitable for situations in which the pedestrians have to move very close together, such
as when a large amount of pedestrians has to move through a narrow space and have to
move closer together or form a queue. When pedestrians move very close together, their
behavior will become more uniform, and it would be more sensible to look at the group as
a whole, and not as individuals. A more suitable approach would then for example be to
look at crowds as particles in a liquid, like Moore, Ali, Mehran and Shah have done [17].
Their supposition is that people in crowds seem to move according to the flow, just like
particles in a liquid. However, in the type of scenarios our system is made to simulate, it
is not a problem that crowd behavior isn’t easily designed. When observing the footage,
we noticed a lot of individual behavior, or behaviors in pairs, and crowding behavior was
virtually absent.

In section 6.1.1 a number of benefits were named to using Petri nets. One of the
examples used was the possibility of adding resources to the Petri nets. It is important
though to mention the restrictions of this type of use of Petri nets. While it is possible to
keep track of the number of items of a specific resource through tokens, it is not possible to
have the Petri net react to it in a continuous fashion. Either a place contains the token(s)
and a transition can be fired, or the place is empty and the associated behavior is not
possible. It is not possible to have an agent react differently depending on how much he
has of a resource on a continuous scale.
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6.2.1 Future Work

There are a number of directions research regarding our type of framework can take. First
of all, the number of behaviors used to simulate the pedestrians on Rotterdam Airport
was very limited, so it could be beneficial to add more kinds of behaviors to the scenario.
Furthermore, the system could be tested with more complicated Petri net designs. The
choice to use Petri nets gives the ability to design very complicated behavior, that takes
a lot of factors into account. For example, the fact that Petri nets can contain multiple
tokens gives the opportunity to work with resources as mentioned in section 6.1.1.
There are also several ways in which the deadline driven behavior framework can be
extended or improved. For example, currently, the probabilities for entering situations are
only dependent on how close the agent is to the deadline. So, no matter what time of day
it is, the pedestrians will always have the same utility for a certain action. However, in real
life, a person’s probabilities for certain behavior is also largely dependent on their daily
cycle. Ideally, a pedestrian’s propensity to execute certain actions, such as eating, should
vary dependent on whether the individual has recently executed that action, and their
daily cycle. In other words, it would be beneficial to introduce needs to the framework.
By adding the concept of needs, we would be better able to model the daily flow of people
in a typical public area. We can vary the needs according to the time of day and whether
this need has been fulfilled recently. It is not definite though whether the system needs to
be changed for this to be possible. It might be possible to introduce the concept of needs
in a way that it can be designed with our existing system.
Another improvement the system would benefit from would be to change the way the goal
utility function is used. In our current setup, the goal utility function sometimes stands
in the way of the emergent relaxed and hurried behavior. Cumulatively, the probability
of going to the goal becomes high soon in the simulation, unless a goal utility function is
used with only very low values. Because there is nothing to be done after the pedestrian
reaches its goal, this means they remain idle for a large part of the simulation. It is very
likely that this behavior could be improved if the time for a pedestrian to go to its goal
is sampled beforehand from a probability distribution function, and only the non-goal
behavior is handled by a utility function.
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