
MSc Artificial Intelligence
Master Thesis

AI-Driven Segmentation and
Classification of Vegetation in the

Biesbosch Floodplain Using Remote
Sensing Data

by

Eva Claire Virginie Gmelich Meijling
12162124

February 12, 2025

48 ECTS
01/06/2024 to 15/02/2025

Supervisors:
Enrico Ceretti (Accenture)

Roberto del Prete (ESA)

Examiner:
Dr. Arnoud Visser

Second reader:
Dr. Shaodi You

Contents

1 Introduction 1

2 Background 4
2.1 Wetlands and Floodplains . 4

2.1.1 The Biesbosch Wetland . 4
2.1.2 Wetland Vegetation Types . 6

2.2 Remote Sensing for Wetlands . 7
2.2.1 Types of Remote Sensing . 7

2.3 Machine Learning for Remote Sensing . 10

3 Machine Learning for Remote Sensing 12
3.1 Machine Learning Methods in Remote Sensing 12

3.1.1 Conventional Machine Learning Algorithms 13
3.1.2 Deep Learning-Based Methods . 14

3.2 Machine Learning for Wetland Monitoring . 14
3.2.1 Supervised Learning for Semantic Segmentation 15
3.2.2 Self-Supervised Learning for Pretraining 16

4 Method 17
4.1 Model Architecture . 17

4.1.1 Autoencoder for Pretraining . 17
4.1.2 U-Net for Semantic Segmentation . 19

4.2 Learning Objective . 20
4.2.1 Autoencoder Loss . 21
4.2.2 U-Net Loss . 21
4.2.3 Performance Metrics . 22

5 Experimental Setup 24
5.1 Data . 24

5.1.1 Sentinel-2 imagery with Dynamic World labels 25
5.1.2 Pléiades NEO imagery with Manual Labels 27

5.2 Experiment 1: Impact of Pretraining (Label Dependency) 28
5.3 Experiment 2: Impact of Resolution . 30

6 Results 32
6.1 Baseline Performance of U-Net trained from Scratch 32
6.2 Experiment 1: Impact of Pretraining (Label Dependency) 33
6.3 Experiment 2: Impact of Resolution . 34

i

7 Discussion 36
7.1 Analysis of the Results . 36
7.2 Answering the Research Questions . 37
7.3 Future Research . 38

8 Conclusion 40
8.1 Conclusion . 40
8.2 Acknowledgments . 40

A Deep Learning Methods in Remote Sensing 41

B Hyperparameter Tuning 42
B.1 Autoencoder . 42

B.1.1 Learning Rate . 42
B.1.2 Dropout Probability . 43

B.2 U-Net . 44
B.2.1 Learning Rate . 44
B.2.2 Dropout Probability . 46

C (Pretrained) U-Net Results on Gaofen-2 imagary and LULC-labels 47

D Sentinel-2 imagery with Dynamic World labels 49
D.1 Available Sentinel-2 bands . 49
D.2 Selection of Wetland areas for Sentinel-2 . 50
D.3 Dynamic World Classification Scheme . 52

E Pléiades NEO imagery with Manual Labels 53
E.1 Selection of Biesbosch areas for Pléiades NEO 53
E.2 Rijkswaterstaat Classification Scheme . 54
E.3 Blackshark.ai labels . 55
E.4 Roboflow labels . 57

F Baseline U-Net 59

G Experiment 1 61

H Experiment 2 64
H.1 Medium-resolution imagery and labels . 64
H.2 VHR imagery and labels . 65

I Workflow Diagrams 66

ii

Abstract

Wetlands are dynamic ecosystems that play an important role in flood mitigation. To
reduce flood risks and preserve their ecosystems, wetland areas must be monitored effectively,
supporting informed decision-making and necessary actions. This study presents a methodology
for wetland land cover classification by training a U-Net model from scratch for semantic
segmentation across six wetland areas in the Netherlands. The baseline model trained on
Sentinel-2 satellite imagery achieves an accuracy of 85.26%.

Annotated datasets for land cover and land use classification in remote sensing are often
challenging to obtain due to the labor-intensive and time-consuming process of manual labeling.
To address this, the study also examines the impact of pretraining and higher-resolution satellite
imagery on the performance of the U-Net. Self-supervised learning (SSL) is used for pretraining,
leveraging large volumes of unlabeled remote sensing data to extract features, thereby reducing
the reliance on annotated samples. The effect of higher resolution is assessed by downsampling
high-resolution labels to a lower resolution and comparing the impact on U-Net performance.

This approach is demonstrated for land cover classification in the Biesbosch floodplain, a
dynamic wetland area in the Netherlands, using publicly available optical satellite data. Results
show that SSL pretraining with an autoencoder can improve classification accuracy, especially
when labeled data is limited. When only 10% of the dataset is annotated, pretraining leads
to a 1.23% relative improvement in accuracy compared to training from scratch. However, the
performance gap between SSL and purely supervised models diminishes when more labels be-
come available during training, and as training progresses over an increasing number of epochs.
Furthermore, this study shows that, when labels are sparse, using higher-resolution imagery
with corresponding labels also improves classification accuracy by 4.94% relative improvement
compared to lower-resolution imagery.

Limitations in this research include the misalignment between the pretraining data and
the target geographic regions, likely reducing the effect of the pretraining. Additionally, an
imbalance in the manually annotated dataset may affect the reliability of performance metrics.

Chapter 1

Introduction

Throughout the years, remote sensing has evolved significantly. In the early 20th century, the
first steps in capturing spatial data were made with airplanes conducting aerial photography. By
the mid-20th century, major advancements occurred with Earth-observing satellites, enabling
large-scale and continuous observations of Earth’s surface. More recently, since the early 2000s,
Unmanned Aerial Vehicles (UAVs), also known as drones, have been deployed to capture high-
resolution imagery of more localized areas, offering greater flexibility and accessibility compared
to traditional plane-based or satellite-based methods [71].

As shown in Figure 1.1, these three remote sensing modalities operate across different spatial
scales and resolutions, capturing varying levels of detail depending on the platform. Satellites
can now achieve very high resolutions, comparable to those originally provided by airplanes
and even drones. Since many satellites continuously orbit the Earth, they are also among the
most accessible data sources for remote sensing applications. Modern optical satellites, such
as Sentinel-2 [26] and Landsat [81], achieve resolutions of approximately 10 meters per pixel,
providing detailed insights at a regional scale wile remaining openly accessible. The highest-
resolution instruments are currently often offered by proprietary platforms, such as Maxar’s
WorldView-31, which provides native resolutions of up to 30 cm per pixel and generates 15 cm
high-definition (HD) imagery, enabling precise analyses of urban areas, environmental features,
and even applications in defense and military intelligence.

Figure 1.1: The approximate operating altitudes of satellite-, airplane-, and drone-based imag-
ing instruments. The corresponding fields of view used to capture vegetation from these differ-
ent altitudes provide an indication of the landscape extend captured by sensors onboard each
imaging platform [30].

1https://www.maxar.com/maxar-intelligence/products/optical-imagery

1

https://www.maxar.com/maxar-intelligence/products/optical-imagery

Remote sensing for Earth observation provides an efficient method for monitoring dynamic
ecosystems, overcoming the limitations of ground-based assessments, which often have restricted
spatial coverage, high operational costs, and time-consuming procedures [42]. This is particu-
larly valuable for large or inaccessible areas, such as wetlands and floodplains, which frequently
undergo rapid and unpredictable environmental changes [29].

Wetlands are ecosystems where water, either permanently or seasonally, saturates the soil
[68]. They support diverse plant and animal species, act as natural filters by trapping pollutants,
improve water quality, and play a vital role in carbon sequestration [68]. Floodplains, a specific
type of wetland found adjacent to rivers, absorb excess water during flooding, playing a crucial
role in maintaining environmental stability and mitigating flood risks. Both wetlands and
floodplains reduce flood risks by retaining water and regulating sediment transport. These
processes are closely linked to the vegetation’s roughness, which is influenced by the vegetation’s
distribution, density, and type.

The Biesbosch, located in the Netherlands, is a wetland that plays an important role in flood
mitigation in nearby regions such as Rotterdam and Dordrecht. The distribution and density of
the area’s vegetation strongly influence the water flow patterns, making accurate classification of
vegetation essential to effectively monitor and manage the ecosystem. Monitoring the area helps
identify locations where water builds up due to excessive or overly rough vegetation. Action
can then be taken, such as mowing by humans or deploying natural grazers. Natural grazing
organizations like Free Nature2 employ natural grazers, including water buffaloes, wild horses,
and deer, to manage vegetation. Especially in difficult-to-access areas, these grazers provide an
effective alternative to human intervention, while simultaneously promoting biodiversity and
improving ecosystem functionality.

Problem areas with high vegetation roughness can be identified using deep learning to
perform semantic segmentation on satellite imagery, as depicted in Figure 1.2. Especially
with high resolution imagery, the distribution, variation and specific type of vegetation can be
accurately determined. Nevertheless, despite the increasing accessibility of Earth observation
data and the large amount of public satellite imagery that is available for the Netherlands,
extracting insights from remote sensing imagery for land use and land cover detection using
deep learning methods still heavily relies on labeled datasets.

Figure 1.2: Flowchart of land cover classification approach using deep learning [74].

In addition to performing semantic segmentation, this study addresses the challenge of hav-
ing limited labeled data available. This is achieved by employing self-supervised learning (SSL)

2https://www.freenature.nl/nl

2

https://www.freenature.nl/nl

and leveraging high-resolution imagery. SSL utilizes large volumes of unlabeled data to extract
meaningful features, reducing the need for extensive manual labeling while improving model
performance. By integrating an autoencoder with a U-Net architecture, this study evaluates
whether SSL can improve the efficiency and accuracy of land cover classification in the Bies-
bosch when only limited labeled data is available. Additionally, the study examines the impact
of increasing the resolution of the data and its corresponding labels on semantic segmentation
performance, aiming to reduce reliance on large quantities of labels by emphasizing the use of
a smaller set of high-quality annotations.

Therefore, the overarching research question that this thesis addresses is:

How can effective semantic segmentation for land cover classification in dynamic wetlands be
achieved while reducing reliance on annotated data?

The following two sub-research questions will help answer this question by exploring how
remote sensing and advanced machine learning techniques can address the challenges associated
with vegetation classification in wetlands.

1. Can self-supervised learning improve the efficiency and accuracy of land cover classifica-
tion for estimating vegetation roughness in dynamic wetland environments?

2. How does image resolution influence the amount of labeled data required for accurate
vegetation classification?

This thesis will first discuss the context and background of wetland areas, with a specific
focus on the Biesbosch. It will then explore the use of remote sensing for wetland monitoring and
the role of machine learning in analyzing remote sensing data. Next, the methodology section
will detail the baseline U-Net model and outline the two experiments conducted to answer the
sub-research questions. An analysis of the results is presented, followed by a discussion and
conclusion of the study’s limitations, future work, and the implications of using self-supervised
learning and high resolution imagery for wetland monitoring and ecosystem management.

3

Chapter 2

Background

This chapter provides background information on wetlands, focusing on the Biesbosch, the
role of remote sensing (RS) in wetland monitoring, and introduces the application of machine
learning techniques for remote sensing.

2.1 Wetlands and Floodplains

A wetland is an area where the soil surface is either seasonally or permanently covered with
water throughout the year [68]. As shown in Figure 2.11, wetlands are vital ecosystems for both
humans and nature for several reasons, including their ability to naturally filter pollutants,
reduce flood risks by absorbing excess water, and combat climate change by capturing and
storing carbon. Despite covering only about 6% of the Earth’s land surface, wetlands hold
20-30% of the world’s carbon pool [56], helping mitigate climate change by reducing carbon
dioxide levels in the atmosphere. As highlighted by the Ramsar Convention2, an international
treaty for the conservation and sustainable use of wetlands, these ecosystems are also critical for
biodiversity, providing habitats and breeding grounds for 40% of all plant and animal species.

Floodplains are considered a type of wetland which are low-lying areas adjacent to rivers
and streams that become inundated during periods of high water. They play a crucial role
in dispersing and slowing floodwaters, thereby protecting surrounding regions from potential
flood damage [1].

Although wetlands help combat climate change, they are also highly vulnerable to its ef-
fects [9]. Rising temperatures and shifting rainfall patterns are causing many wetlands to lose
water, leading to drying or shrinking, especially in areas already facing water shortages [68].
Coastal wetlands, such as mangroves and salt marshes, are particularly at risk from rising sea
levels, which flood habitats with saltwater and reduce their size. These changes not only harm
the biodiversity that wetlands support, but also weaken their ability to store carbon, further
contributing to climate change.

2.1.1 The Biesbosch Wetland

The Biesbosch is located in the Netherlands between the provinces of Zuid-Holland and Noord-
Brabant, as shown in Figure 2.2 (a). It is one of Europe’s few remaining freshwater tidal
areas, shaped by the St. Elisabeth’s Flood in 14213. This flood disaster transformed an
agricultural area known as the Groote and Zuidhollandse Waard into an inland sea stretching
from Dordrecht to Geertruidenberg. Over time, sand and clay carried by water currents settled,

1https://europe.wetlands.org/wetlands/what-are-wetlands/
2https://www.ramsar.org
3The official Biesbosch National Park website: https://np-debiesbosch.nl

4

https://europe.wetlands.org/wetlands/what-are-wetlands/
https://www.ramsar.org
https://np-debiesbosch.nl

Figure 2.1: Key processes provided by wetlands1.

making the inland sea increasingly shallow. The first vegetation to colonize the emerging
sandbanks during low tide were rushes (in Dutch ”biezen”), as they thrive best with their roots
in water. The name ”Biesbosch” means ”forest of rushes”, and refers to this type of vegetation
that was abundantly present in the area. As more land emerged and became less frequently
inundated, the rushes were naturally replaced by reed vegetation that could better tolerate the
drier conditions. Subsequently, willows began to grow and were cultivated in embanked fields
known as ”grienden.” These willows were valued for their branches, marking the transition
from a rush-dominated landscape to the willow forests that largely define the Biesbosch region
today.

By 1850, two-thirds of this inland sea had been reclaimed for agriculture. A significant
change occurred between 1850 and 1870 with the construction of the Nieuwe Merwede canal,
dividing the Biesbosch into two parts. The area underwent its most dramatic hydrological
change with the Delta Works Project, especially the completion of the Haringvlietdam in 1970.
Before the Delta Works, tidal differences of two meters were common in the Biesbosch, fa-
cilitated by two open sea arms: the Nieuwe Waterweg and the Haringvliet. Originally, the
tidal flow entered primarily through the Haringvliet. However, due to the construction of the
Haringvliet dam, the connection to the sea was blocked, reducing the tidal movements. In
addition to these earlier interventions, more recent modifications such as depoldering have fur-
ther altered the landscape and water flow in the area, as shown in Figure 2.2. Today, while
the Nieuwe Waterweg remains open, tidal differences vary from just 20-30 centimeters in the
Dordtse and Brabantse Biesbosch to 60-80 centimeters in the Sliedrechtse Biesbosch, the latter
experiencing larger fluctuations due to its more northern location. Despite these changes, the
Biesbosch, which was designated as a National Park in 1994, remains one of the largest and
most valuable natural areas in the Netherlands, covering approximately 9,700 hectares.

The Biesbosch experiences seasonal variations in water levels, particularly during winter and
spring when the Rhine and Maas rivers can cause flooding in many polders. These hydrological
and ecological conditions specific to the Biesbosch wetland have given rise to a variety of
vegetation types. Hence, understanding these vegetation types and their characteristics is

5

important for managing the area’s water flow, sediment transport, and biodiversity.
A couple of studies have been conducted on the Biesbosch to investigate its hydrology,

ecology and vegetation dynamics [36, 73, 76]. Most date from the late 20th century and focus
on the impact of tidal reduction caused by the Delta Works, particularly on sedimentation
patterns and vegetation succession. Some research has also been done on the restoration of
natural processes, such as reintroducing tidal dynamics and creating new wetland habitats
within the Biesbosch itself to support biodiversity [22]. Additionally, the role of vegetation
in influencing water flow and sediment transport has been extensively explored [75], providing
valuable insights for flood management and habitat conservation in this unique freshwater tidal
ecosystem. To date, no studies have explicitly utilized remote sensing techniques to investigate
the Biesbosch in specific.

Figure 2.2: Figure from [76], where (a) depicts the location of The Biesbosch in The Netherlands
(b) the elevation above Dutch Ordnance Datum (m NAP), (c) schematic overview of the main
channels and their types before depoldering, and (d) a schematic layout of the channels after
depoldering in the Brabantse Biesbosch area. The year of opening and primary flow direction
of the new channels are indicated in (d).

2.1.2 Wetland Vegetation Types

Variations in vegetation height and density result in different levels of roughness, which in
turn affects water flow through the area. Wetlands are characterized by either permanently or
seasonally water saturated soil, and not unified by a common vegetation type. Instead, every
wetland area hosts a diverse range of plant species depending on the local hydrological and
environmental conditions [72].

Vegetation in the Biesbosch

The Biesbosch contains many different vegetation types, highly influenced by the tidal envi-
ronment. Historically, there were a lot of reed and sedge marshes. Over time, human activ-
ities such as land reclamation for agriculture, griend management, and flooding control have
changed the types of vegetation. Currently, the vegetation includes alluvial forests, reed and

6

sedge marshes, and grasslands4. The floodplain forests, found on higher terrain, have transi-
tioned from managed grienden into naturalized willow forests. However, many willows are aging
and lack regeneration. Reed and sedge marshes dominate lower floodplain areas and transition
into pioneer vegetation in shallow, silty riverbanks. Managed grasslands, such as hayfields and
summer polders, are present in areas where the water levels are highly controlled.

Vegetation Roughness

There is significant variation in plant density and stiffness between vegetation types, leading to
different levels of flow resistance [23]. Dense, tall reeds slow water more effectively than shorter,
flexible plants. Woody vegetation with thick stems and complex canopies further reduces flow,
promotes sediment deposition, and shapes the ecosystem’s long-term structure.

Vegetation roughness, defined as the degree to which plant structures obstruct water flow,
plays a key role in the Biesbosch. It influences water movement, sediment transport, and flood
dynamics. Classifying vegetation roughness accurately is therefore essential for effective flood
management and ecosystem conservation.

In wetlands, the roughness of the vegetation affects water velocity and turbulence [44].
Above the vegetation, velocity increases with height following a logarithmic pattern. Within
the vegetation, velocity increases almost linearly but stabilizes at low discharge (small water
volumes). As discharge increases (higher water volumes), turbulence intensifies. This turbu-
lence creates mixing, where faster-moving water from above interacts with slower-moving water
within the vegetation, causing the different layers in the water to mix. This effect is strongest
near the top of the vegetation, where the flow transitions from being slowed by plants to moving
more freely.

2.2 Remote Sensing for Wetlands

Wetlands face growing threats from human development and climatic impacts on their ecosys-
tems [68]. Monitoring these environments is crucial for understanding changes and making
informed decisions to mitigate or reduce these threats. If not properly observed, changes in
wetlands can lead to disruptions in surrounding areas, such as increased flooding risks. Ja-
farzadeh et al. [42] reviewed 334 studies on wetland monitoring using remote sensing (RS) over
the last three decades. More than half of the studies focused on classifying wetland zones, while
others explored internal changes, vegetation mapping, and the delineation of wetland extent.

Remote sensing has enabled the collection of data about objects or areas without direct
physical contact [64]. It employs sensors to detect and measure various forms of energy, such as
electromagnetic radiation, which is either emitted, reflected, or scattered by the objects being
observed. This technology has become indispensable in monitoring and analyzing the Earth’s
surface, especially in environmental and land cover studies.

2.2.1 Types of Remote Sensing

Remote sensing studies on wetlands often utilize either passive or active techniques, or a com-
bination of both. These methods can identify for instance: vegetation patterns, map wetland
boundaries, or assess structural features such as canopy height and surface roughness.

4https://www.brabant.nl/onderwerpen/natuur-landschap/natura-2000-gebieden/biesbosch/

7

https://www.brabant.nl/onderwerpen/natuur-landschap/natura-2000-gebieden/biesbosch/

Figure 2.3: Passive and active sensors for remote sensing.

Passive Sensors

Optical remote sensing has been in use for over fifty years [45] and function as passive devices,
as shown in Figure 2.3 by WWF Germany5, detecting sunlight that is reflected by the Earth’s
surface [43]. They capture data across multiple spectral bands, each sensitive to different
wavelengths, enabling detailed analysis of surface features such as vegetation, water bodies,
and urban areas. Multispectral remote sensing is based on capturing data in discrete spectral
bands, chosen according to their relevance for specific observations and their alignment with
atmospheric windows wavelength ranges where Earth’s atmosphere is transparent to incoming
and outgoing radiation. An overview of such spectral bands and their common applications in
RS, can be found in Table 2.1.

Table 2.1: Spectral bands captured by optical sensors and their applications in the wetlands
domain (roughly classified) [2].

Spectral Band Wavelength Range Common Applications
Ultraviolet (UV) <400 nm Ozone and atmospheric monitoring

Coastal/Aerosol Band Around 400 nm Water clarity, chlorophyll, aerosols

Visible Bands 400–700 nm Surface features, vegetation, water

Blue Band 400–500 nm Water quality, atmospheric corrections

Green Band 500–600 nm Vegetation health, biomass

Red Band 600–700 nm Vegetation stress, chlorophyll

Red-Edge Band 690–750 nm Vegetation stress, biochemical properties

Near-Infrared (NIR) 700–1300 nm Vegetation health, leaf structures

Shortwave Infrared 1300–2500 nm Water content, soil moisture, minerals

Multispectral optical satellite data can be retrieved from, among others, Sentinel, Landsat
or WorldView satellites. Sentinel-2 includes 13 bands, covering visible, NIR, SWIR, and red-
edge wavelengths. Landsat-8/9 captures data in visible, NIR, SWIR, and thermal bands.

5Official technical report by WWF Germany on remote sensing for conservation, retrieved from https:

//www.wwf.de/.

8

https://www.wwf.de/
https://www.wwf.de/

WorldView-3 provides a wide range of spectral capabilities, including visible, NIR, SWIR, and
additional specialized bands for vegetation and material analysis.

These multispectral sensors enable the calculation of vegetation indices, which are mathe-
matical combinations of spectral bands designed to enhance vegetation signals in remote sensing
data. One of the most widely used vegetation indices is the Normalized Difference Vegetation
Index (NDVI). NDVI is calculated using the near-infrared (NIR) and red (RED) bands, as
plants reflect strongly in the NIR band while absorbing light in the RED band. The formula
for NDVI is:

NDV I =
(NIR−RED)

(NIR +RED)
(2.1)

NDVI provides a measure of vegetation health, with higher values indicating denser, health-
ier vegetation. Figure 2.4 shows an NDVI map of the Biesbosch, where the three main water
basins, surrounding cropland, and river networks are clearly distinguishable due to their signif-
icant differences in vegetation cover and reflectance characteristics. Other vegetation indices,
such as the Enhanced Vegetation Index (EVI) and the Soil-Adjusted Vegetation Index (SAVI),
are tailored to specific conditions like dense canopies or areas with high soil reflectance.

Figure 2.4: NDVI map of the Biesbosch region derived from Sentinel-2 data. Red indicates low
vegetation health or sparse vegetation, and green represents high vegetation health or dense
vegetation. The color bar below the map shows the corresponding NDVI values

As previously discussed, multispectral sensors offer data across 4 to 20 bands, enabling gen-
eral land use and cover classification. Hyperspectral sensors, on the other hand, provide much
finer spectral resolution with hundreds of contiguous narrow bands, making them suitable for
identifying subtle differences in vegetation types or stress levels [34]. Their continuous spec-
tral coverage allows for greater flexibility in selecting wavelengths that align with atmospheric
windows, reducing the impact of absorption and scattering. However, the accessibility and
large-scale application of hyperspectral imaging are constrained by the absence of a globally
operational satellite that provides high spatial and spectral resolution.

To fully leverage satellite data for such applications, appropriate pre-processing is required
to ensure consistency and accuracy. These processing levels range from raw reflectance mea-
surements to fully corrected surface reflectance datasets, each suited for different analytical
needs.

9

Common Processing Levels

• Top-of-Atmosphere (TOA): Reflectance values measured at the satellite sensor, un-
corrected for atmospheric effects. Suitable for large-scale studies but less accurate for
surface-specific analyses.

• Surface Reflectance (SR): Corrected for atmospheric distortions to reflect actual sur-
face properties. Used for precise vegetation indices and time-series analysis.

• Harmonized SR (HSR): Ensures consistency across multiple satellite platforms or
within a single sensor over time. Ideal for global monitoring and multi-sensor studies.

Harmonized data improves accuracy, facilitates interoperability, and is critical for detecting
environmental changes. In this research, pre-processed Harmonized Surface Reflectance (HSR)
data from Sentinel-2 is used to ensure temporal consistency across different acquisition dates.

One of the advantages of optical remote sensing is its ability to offer high spatial resolution
and frequent revisit times, making it ideal for continuous environmental monitoring. However,
a key limitation of this method is its susceptibility to cloud cover, which can obstruct the view
of the surface. Contrary to passive sensors, active sensors do not rely on sunlight and can
operate in all weather conditions, providing a reliable alternative for Earth observation.

Active Sensors

Active sensors, such as radar and LiDAR, became widely adopted in the last two to three
decades. As shown in Figure 2.3, active sensors emit energy and measure the reflected or
backscattered signal [45]. They both look at the time delay in defining the object.

Radar uses microwave signals that can penetrate clouds and are less affected by atmospheric
conditions, making it particularly valuable for land mapping in cloudy regions. One of the most
widely used radar techniques is Synthetic Aperture Radar (SAR) [57], with Sentinel-1 being
one of the primary satellites providing SAR data. SAR systems use the motion of the radar
sensor to simulate a large antenna using the Doppler effect to process frequency shifts caused by
the sensor’s movement relative to the target, allowing for high-resolution images of the Earth’s
surface. This technique is particularly effective for mapping surface roughness, soil moisture,
and vegetation structure, even in cloudy or dark conditions.

Light Detection and Ranging (LiDAR) is another active sensing technology that uses laser
pulses to measure distances, creating high-precision three-dimensional maps. While primarily
deployed on aircraft and drones for detailed terrain mapping, LiDAR sensors are also car-
ried on satellites like GEDI and ICESat-2 for global-scale monitoring. It is ideal for detailed
topographic mapping, vegetation height estimation, and modeling urban environments.

Processing data from active sensors can be more complex than passive optical data [34].
Radar data, for instance, requires advanced techniques to interpret backscatter signals, which
depend on surface roughness, moisture content, and angle of observation. LiDAR data, while
providing high spatial resolution, it often has low spatial coverage and requires significant
computational resources to process raw point clouds into usable formats such as digital elevation
models (DEMs) or vegetation metrics.

2.3 Machine Learning for Remote Sensing

Since the launch of the first satellite in 1957, the volume and complexity of remote sensing
data has continued to grow. For instance, NASA’s Earth Observing System Data and Infor-
mation System (EOSDIS), which stores NASA’s Earth science data, is projected to exceed 300

10

petabytes by 2030 [63]. This increasing volume requires increasingly advanced tools to manage
and analyze the data efficiently. Artificial intelligence (AI) has grown to play a vital role in
generating insights by extracting, processing, and interpreting these vast datasets.

Since the early 2010s, research has focused on reducing data processing latency by enabling
real-time analysis directly on satellites instead of transmitting raw data to Earth [31]. On-
the-edge processing, as discussed by [28], optimizes data transmission by sending only relevant
or pre-processed information, improving the efficiency and accelerating ground-based analysis.
Advances in AI further enhance this approach by enabling more efficient data filtering, feature
extraction, and anomaly detection directly onboard, making satellite systems more autonomous
and responsive

Simultaneously, AI’s ability to detect patterns and trends in large datasets has seen signif-
icant advancements. The development of deep learning methods, such as multilayered neural
networks, vision transformers, generative adversarial networks (GANs), and large-scale visual
segmentation models, has greatly enhanced the capacity of AI in remote sensing [43]. These
advancements allow for more accurate and actionable insights that were previously difficult to
achieve with traditional RS methods.

With the introduction of foundation models in 2021, a paradigm shift took place in AI-driven
remote sensing. Unlike task-specific models, which are optimized for specific applications, foun-
dation models, such as CROMA [27], are pretrained on a diversity of datasets, allowing them
to generalize across multiple remote sensing tasks with minimal fine-tuning. As highlighted
by Lu et al. [50], these models excel in transfer learning, few-shot adaptation, and multi-
modal integration, making them highly effective for diverse remote sensing tasks. However,
their limitations include domain gaps between natural image datasets, on which they are often
pretrained. Additionally, they require high computation resources, task-specific fine-tuning for
optimal performance, and pose challenges in interpretability.

Looking ahead, as the volume of remote sensing data continues to grow, the speed at which
data is captured and processed, often referred to as the ingest rate, will become increasingly
critical. AI-based methods will need to evolve further to handle the vast amounts of data
generated, especially for real-time applications. In addition to increasing ingest rates, we can
expect the development of even more sophisticated AI techniques, such as advanced unsuper-
vised learning models, which can autonomously interpret and predict environmental changes
without large labeled datasets. These evolving methods will further improve the accuracy and
speed of AI-based analysis, making it an even more powerful tool in understanding and re-
sponding to complex environmental processes. More details on ML techniques applied in RS
are explained in the next chapter.

11

Chapter 3

Machine Learning for Remote Sensing

This chapter explores the application of machine learning (ML) to remote sensing (RS). It
reviews a range of ML methodologies applied in RS and introduces Self-Supervised Learning
(SSL) as an approach to overcome the challenge of having limited annotated data.

3.1 Machine Learning Methods in Remote Sensing

MLmethods have become common in analyzing RS data, enabling many use cases for Earth Ob-
servation like land cover mapping, object detection, and change detection [43]. Three prominent
ML approaches in RS are classification, object detection, and semantic segmentation. Depend-
ing on the use case, data resolution, and spatial complexity of the landscape, the chosen ML
methods can be pixel-based, object-based, or scene-based [51, 18].

Classification assigns a label to an image, region or individual pixels, depending on the use
case. Traditional pixel-based classification operates solely on spectral features, which can lead
to misclassification in high-resolution imagery where spatial context is crucial [4]. Object-based
classification overcomes this limitation by grouping pixels into meaningful segments before ap-
plying classification. By incorporating texture and shape, it is particularly useful for appli-
cations like land use mapping. Scene-based classification, on the other hand, analyzes entire
images for broad land cover categorization [18]. It uses deep learning models like CNNs and
vision transformers to capture spatial patterns and contextual relationships on a larger scale.

Object detection is also object-based but differs from classification in that it focuses on
identifying and localizing specific objects within an image rather than assigning it to a broad
category. It detects distinct elements like buildings, roads, or water bodies by analyzing spatial
relationships, texture, and shape features. In RS, object detection is particularly useful for
applications like urban monitoring, building planning, disaster prediction and even military
applications [47].

Semantic segmentation is inherently a pixel-based process and assigns a class label to each
pixel in an image. While the process operates at the pixel level, convolutional neural net-
works (CNNs) are used to capture the broader structural and spatial context. By doing so, it
considers relationships between neighboring pixels and multi-scale features. This approach en-
ables delineation of complex patterns and structures, making it effective for tasks like land use
and land cover (LULC) mapping, where understanding the spatial distribution of classes (e.g.,
vegetation, water, urban areas) at a granular level is necessary [84]. Furthermore, semantic
segmentation can also be used for change detection, where pixel-level comparisons over time

12

show changes in land cover or infrastructure [32, 35].

The aforementioned ML tasks can be addressed with conventional and Deep Learning (DL)
algorithms. The choice mainly depends on factors such as the complexity and volume of the
data, as well as the available computational resources. As can be seen in Figure 3.1, the main
difference lies in how the features are extracted and processed. Conventional ML methods
require manual feature engineering based on spectral, spatial or temporal properties, whereas
DL models automatically learn these features from raw remote sensing data [3].

Figure 3.1: Comparison of deep learning (top) and traditional machine learning (bottom)
workflows [14].

3.1.1 Conventional Machine Learning Algorithms

Conventional ML algorithms are capable of processing both multi-temporal and multi-sensor
remote sensing data [43]. In the 1960s, the Support Vector Machine (SVM) was introduced
and later popularized with the kernel trick in the 1990s [10]. As shown by among others
Gualtieri et al. [33] and Huang et al. [39], SVMs have since been widely applied in remote
sensing. However, although SVMs perform well on small, high-dimensional datasets [60], they
are sensitive to the selection of the kernel and can be computationally inefficient with large
data [54]. SVMs’ soft margin approach handles overlapping data, but struggles with extreme
outliers and noisy datasets [70]. Therefore, ensemble methods such as Random Forest (RF)
[11] and Extreme Gradient Boosting (XGBoost) [16] are often a preferred alternatives in more
complex scenarios.

RF, introduced by [11], is well-regarded for its ability to handle high-dimensional data by
creating an ensemble of decision trees. This technique enhances robustness and provides vari-
able importance metrics, making it valuable for feature selection in high-dimensional datasets.
XGBoost, developed by [16], extends this approach by iteratively correcting errors in the model,
achieving high accuracy even in cases with subtle spectral differences, such as differentiating
similar land cover types.

Similar to SVMs, RF and XGBoost have been widely applied in RS tasks like biomass
estimation and urban land cover mapping. In research by Antunes et al. [6], above-ground
biomass estimation in the Amazon rainforest demonstrated the effectiveness of both RF and
XGBoost, with XGBoost showing superior performance due to its capability to handle complex
relationships and residual errors, particularly when integrating SAR and optical data. Simi-
larly, in a study by Shao et al. [17] focusing on urban impervious surface mapping, XGBoost
outperformed RF by achieving higher accuracy and precision using fused data from Sentinel-1
and Landsat 8.

Nevertheless, both RF and XGBoost face computational challenges, especially with large
datasets or real-time predictions [24]. RF is robust but may bias toward categorical features

13

and requires pre-processing for missing values. And, although XGBoost often outperforms
RF, it remains sensitive to hyperparameter tuning and prone to overfitting without proper
regularization.

3.1.2 Deep Learning-Based Methods

The limitations of these shallow-structured conventional machine learning tools such as SVMs,
RF and XGBoost are addressed by more advanced, DL based methods [3]. DL has shown to
be very promising in the field of RS due to its ability to learn hierarchical representations and
process large, complex datasets [65, 7, 3]. Contrary to the conventional ML methods, DL does
not rely on handcrafted features but can automatically extract them from raw data, as can be
seen in Figure 3.1.

Such DL models are based on artificial neural networks, which excel at identifying patterns
and extracting features from large and complex datasets. A typical DL model undergoes three
key phases: training, validation, and testing. During the training phase, the model’s parame-
ters, the weights and biases, are iteratively adjusted through a process called backpropagation
[43]. Backpropagation works by comparing the model’s predictions to the ground truth labels
using a loss function, calculating the error, and propagating this error backward to update
the parameters. This process enables the model to learn patterns and relationships within the
data. As training progresses, the model becomes increasingly adept at transforming input data
into representations suitable for downstream tasks such as land cover classification or change
detection. Depending on this task, the final layers of the model map learned representations to
meaningful outputs, such as classification labels, bounding boxes, or pixel-wise segmentations.

Over the years, many DL architectures have been discovered and deployed. Table A.1,
based on the overview provided by [43], summarizes the most common algorithms and their
most common use cases for RS.

3.2 Machine Learning for Wetland Monitoring

ML, particularly DL methods, have shown 16–21% higher accuracy than traditional approaches
in land-cover and wetland classification by capturing complex patterns in RS data [53]. How-
ever, as highlighted in a meta-analysis by Jafarzadeh et al. [42], DL is not always the preferred
choice due to interpretability challenges, large data requirements, and high computational costs.
Their review of 344 studies (1990–2022), mostly published in the Remote Sensing journal, found
that ensemble learning, particularly Random Forest (RF), remains the most widely used ML
approach for wetland research due to its robustness with multi-source RS data.

The meta-analysis also identified land use and land cover (LULC) classification as the most
common RS application in wetlands (51%), followed by change detection (14%) and vegetation
mapping (12%). Additionally, the study found that supervised learning remains the dominant
approach, regardless of whether conventional ML or DL is used. However, self-supervised
learning is emerging as a promising alternative to reduce reliance on large labeled datasets.

Since this study focuses on mapping vegetation types, a method was selected that effectively
captures their spatial distribution and classification. As discussed in Section 3.1, semantic seg-
mentation is well-suited for this task, as it assigns class labels at the pixel level, enabling detailed
vegetation mapping, while also considering the spatial aspect. The following subsections ex-
plore ML-driven semantic segmentation for wetlands, comparing supervised and self-supervised
approaches.

14

3.2.1 Supervised Learning for Semantic Segmentation

Supervised learning techniques for semantic segmentation rely on annotated datasets, where
each pixel in an image is labeled with its corresponding class. For remote sensing applications,
annotated datasets typically consist of aerial imagery, captured through passive or active sensors
as explained in Chapter 2, and labeled according to specific classification schemes depending on
the use case, ranging from general land cover types to highly detailed vegetation classifications.

In 2015, Long et al. [49] introduced Fully Convolutional Networks (FCNs), demonstrat-
ing how CNNs could be adapted for pixel-wise predictions by replacing fully connected layers
with convolutional layers. Following this, several enhancements were introduced to improve
segmentation performance. For example, ParseNet [48] addressed the limitations of FCNs by
incorporating global context information. An extension on the FCN architecture was made
with U-Net [66], which introduced symmetric encoder-decoder structures with skip connections
to retain fine-grained spatial details, originally made for biomedical image segmentation.

U-Net, as shown in Figure 3.2, consists of an encoder that extracts compact feature repre-
sentations by downsampling the input, while its decoder reconstructs detailed segmentation
maps through upsampling. It’s skip connections bridge corresponding encoder and decoder
layers, enabling the model to retain both high-level abstract features and fine-grained spatial
details. This design makes U-Net highly effective for tasks requiring precise segmentation, such
as delineating features in satellite date, such as vegetation boundaries [13, 20].

Figure 3.2: U-Net architectur for image segmentation [20].

Pech-May et al. [61] show the ability of a U-Net architecture to effectively identify flooded
areas using SAR images, obtaining an IoU score of 73.02% and an accuracy of 94.31%. Walde-
land et al. [78] demonstrate that U-Net can also be used for large-scale vegetation height
mapping from Sentinel-1 and Sentinel-2 data, where it effectively maps forest extent, achieving
a root mean square error (RMSE) of 3.5 m for Sentinel-2 and 4.6 m for Sentinel-1, highlighting
the advantage of U-Net’s spatial feature learning. Similarly, Fawzy et al. [25] apply U-Net
for urban land cover classification using Very High-Resolution (VHR) satellite images, where
it outperformed traditional methods with an overall accuracy of 87.50%. These studies il-
lustrate U-Net’s versatility in remote sensing applications, demonstrating its effectiveness in
capturing fine spatial structures across diverse environments, including vegetation mapping,
flood detection, and urban classification, making it a strong candidate for wetland vegetation
segmentation.

However, as discussed by Dahiya et al. [20], two challenges of U-Net are image and label
quality. Image quality varies due to lighting, noise, and resolution differences. Label quality is

15

limited as ground truth annotations are difficult to obtain and require expert knowledge. While
increasing the training set size can sometimes offset minor labeling errors, Agnew et al. [5] show
that incorrect labels remain highly detrimental to model performance. Annotating wetlands is
particularly demanding, often requiring input from experts due to its heterogeneous vegetation
and subtle class distinctions [29].

Publicly available labeled datasets can alleviate the cost of annotation but often mismatch
target resolutions or class definitions, limiting direct applicability [53]. Models trained on
lower-resolution imagery, for example, may fail to capture the finer details essential for accurate
segmentation when applied to high-resolution scenes. Data augmentation and transfer learning
are among the most common approaches for improving model performance with limited labeled
data in the target resolution [67]. Self-supervised learning offers a way to leverage large volumes
of unlabeled data to improve feature extraction, reducing dependency on manual annotations
[38]. Similarly, few-shot and zero-shot learning approaches aim to improve classification by
training models to generalize from limited examples.

3.2.2 Self-Supervised Learning for Pretraining

Self-supervised learning (SSL) is a powerful approach to address the challenge of limited anno-
tated datasets in RS [69, 8]. By pretraining backbone networks such as CNNs or transformers
on domain-specific data, SSL methods enable models to learn representations of the desired
data and corresponding use case before any labels are provided to the model.

Contrastive learning [46] and (masked) autoencoding [19, 59, 83] are two examples of SSL
techniques that learn features from unlabeled data. Contrastive learning trains a model to
distinguish between similar and dissimilar pairs of data points, while masked auto-encoding
learns to reconstruct missing parts of an input image, forcing the model to capture meaningful
spatial and semantic information.

An autoencoder is a NN designed to learn efficient representations of data through unsuper-
vised learning [18]. They are commonly used for tasks such as feature extraction, dimensionality
reduction, and anomaly detection. Similar to the U-Net, an autoencoder consists of two primary
components: an encoder and a decoder. The encoder processes the input data and compresses
it into a latent-space representation, capturing the most important features while discarding
redundant information. This compressed representation, often called the bottleneck or bridge,
contains essential patterns needed to reconstruct the original input. The decoder takes this
latent-space representation and reconstructs the input data as accurately as possible, perform-
ing the inverse operation of the encoder. The final output layer produces the reconstructed
version of the input data, which the model attempts to make as close as possible to the original
input. During training, the autoencoder minimizes the reconstruction error, which measures
the difference between the original input and the reconstructed output, encouraging the model
to learn meaningful and robust representations.

16

Chapter 4

Method

4.1 Model Architecture

Although pretrained encoder backbones (e.g., ResNet, EfficientNet) are commonly used for
feature extraction in deep learning, this study does not utilize them. Standard backbones,
typically trained on natural images, may fail to extract relevant features from multispectral
and high-resolution remote sensing data. Instead, this research tests how domain-specific pre-
training improves remote sensing for wetlands by capturing unique RS spectral and spatial
characteristics that generic models might overlook. Both the feature extractor and the se-
mantic segmentation model are (pre-)trains from scratch. To ensure seamless integration, two
architectures with parallel structures were chosen. Specifically, an autoencoder was employed
for SSL pretraining, as its learned encoder weights can be directly transferred to the encoder
of the U-Net, which shares a similar design. This integration is illustrated in Figure I.1 and
Figure I.2, and further detailed in Chapter 4.

The following sections show the architecture of these models in detail. The code is based
on that of Sreenivas Bhattiprolu1, originally developed for microscopic image analysis. Despite
the differences in data domains, the U-Net’s architecture is also well-suited for remote sensing
tasks, as both applications involve pixel-level feature extraction and segmentation as discussed
in Section 3.2.1. The final code base for this research can be found on GitHub2.

4.1.1 Autoencoder for Pretraining

The used autoencoder is a fully convolutional architecture designed for image reconstruction.
It consists of two main components: an encoder and a decoder, made up from convolutional
blocks for feature extraction and reconstruction. Figure 4.1 provides a schematic overview of
the autoencoder architecture.

To accommodate different image resolutions, the input data was divided into patches of
varying sizes. For medium-resolution imagery, patches of 256 × 256 pixels were used with a
batch size of 8. For very-high-resolution imagery, larger patches of 1024 × 1024 pixels were
used, requiring a batch size of 4 due to higher memory demands.

To optimize autoencoder training performance, various learning rates and dropout prob-
abilities were evaluated. For the learning rate, a fixed rate of 0.001 yielded the best results
compared to 0.0001, as shown in Figure B.1 and Table B.1. As for the dropout probability,
values of 0%, 15%, and 25% were tested, with a dropout rate of 15% yielding the best results,
as illustrated in Figure B.2 and Table B.2.

1https://github.com/bnsreenu/python_for_microscopists/tree/master/235-236_pre-training_

unet_using_autoencoders
2https://github.com/Evameijling/WetlandSemanticSegmentation.git

17

https://github.com/bnsreenu/python_for_microscopists/tree/master/235-236_pre-training_unet_using_autoencoders
https://github.com/bnsreenu/python_for_microscopists/tree/master/235-236_pre-training_unet_using_autoencoders
https://github.com/Evameijling/WetlandSemanticSegmentation.git

Figure 4.1: Schematic representation of the autoencoder architecture. The encoder reduces the
spatial dimentions by a factor of 2 at each block, compressing the input from 256x256 pixels
to 16x16 pixels in the bridge. At the same time, the number of channels increases by a factor
of 2, from 64 in the first encoder block, to 512 in the bridge. The decoder restores the spatial
dimensions by a factor of 2 at each block, reconstructing the output from 16x16 to 256x256,
while the number of channels decreases by a factor of 2, from 512 to 64.

Encoder

As explained in Chapter 3, the autoencoder’s encoder extracts hierarchical features from the
input images and reduces their spatial dimensions. This encoder consists of four convolutional
blocks, each followed by a max-pooling layer for down-sampling. The components of each
encoder block are as follows:

• Convolutional Block: Each block contains two convolutional layers with a kernel size
of 3 × 3 followed by batch normalization. A ReLU activation function is applied after
each convolution. After the second convolution, a dropout layer with a probability of 0.25
is added to prevent overfitting.

• Max-Pooling Layer: After each convolutional block, a 2 × 2 max-pooling operation
reduces the spatial dimensions by half.

After the final encoder block, the bridge layer captures the most compressed and abstract
representation of the input image, preserving the most essential features before passing them
to the decoder.

Decoder

The decoder reconstructs the input image from the encoded features. It utilizes the same
convolutional blocks as in the encoder for consistency in feature extraction. The decoder blocks
consist of the following components:

• Transposed Convolutional Layers: Each decoder block begins with a 2×2 transposed
convolution, which up-samples the feature maps by doubling their spatial dimensions.

18

• Convolutional Blocks: After up-sampling, each decoder block contains two convolu-
tional layers with a kernel size of 3 × 3, followed by batch normalization. A ReLU acti-
vation function is applied after each convolution, and a dropout layer with a probability
of 0.25 is included to reduce overfitting.

The final layer is a 3× 3 convolution followed by a sigmoid activation function to produce
the reconstructed output with values in the range [0, 1].

4.1.2 U-Net for Semantic Segmentation

U-Net Architecture

The U-Net architecture used for supervised semantic segmentation has the same encoder design
as the autoencoder discussed in Section 4.1.1. This shared encoder design allows for easy
weight transfer between the two models, enabling the U-Net to leverage pretrained features for
segmentation tasks. The U-Net differs from the autoencoder by incorporating skip connections,
which help retain fine-grained spatial details necessary for accurate segmentation. Figure 4.2
provides a schematic overview of the U-Net architecture.

Similar to the optimization of the autoencoder, various learning rates and dropout prob-
abilities were evaluated for the training of the U-Net as well. For the learning rate, cosine
annealing yielded the best results compared to fixed rates of 0.001 and 0.0001, as well as warm
cosine annealing, as shown in Figure B.3 and Table B.3. As for the dropout probability, values
of 0%, 15%, 25%, 35%, and 45% were tested, with a dropout rate of 15% yielding the best
results, as illustrated in Figure B.4 and Table B.4.

Figure 4.2: Schematic representation of the U-Net architecture. The encoder reduces spatial
dimensions by a factor of 2 at each block while increasing the number of channels, compressing
the input from 256×256 pixels to 16×16 pixels in the bridge. Skip connections link correspond-
ing encoder and decoder layers, helping to retain spatial information. The decoder reconstructs
the segmentation map, restoring the spatial dimensions back to 256×256 while progressively
reducing the number of channels.

19

Encoder

The encoder in the U-Net is identical to that used in the autoencoder, as described earlier.
It extracts hierarchical features fromthe input satellite image and reduces spatial dimensions
through a sequence of convolutional blocks and max-pooling operations. The components of
each encoder block are as follows:

• Convolutional Block: Each block contains two convolutional layers with a kernel size
of 3 × 3, followed by batch normalization. A ReLU activation function is applied after
each convolution, and a dropout layer with a probability of 0.25 is added to mitigate
overfitting.

• Max-Pooling Layer: A 2× 2 max-pooling operation follows each convolutional block,
reducing spatial dimensions by half.

The encoder produces feature maps at multiple resolutions, which are saved and later used
in the skip connections to help reconstruction. After the final encoder block, a bridge layer
captures the most abstract and high-level features of the input before the decoder begins re-
constructing the segmentation map.

Decoder

The decoder reconstructs the segmentation map (the labeled ground truth mask) from the
encoded features of the satellite image. It differs from the autoencoder decoder by incorporating
skip connections, which concatenate feature maps from the encoder to the up-sampled feature
maps in the decoder. This helps the model retain spatial context and fine-grained details. The
decoder consists of:

• Skip Connections: Feature maps from the encoder blocks at corresponding spatial
resolutions are concatenated with the up-sampled feature maps in the decoder. These
connections enhance spatial precision and provide access to both low-level and high-level
features. In this implementation, skip connections transfer all feature channels from the
encoder to the decoder (a 1:1 ratio).

• Transposed Convolutional Layers: Each decoder block begins with a 2×2 transposed
convolution to up-sample the feature maps by doubling their spatial dimensions.

• Convolutional Blocks: After up-sampling and concatenation, each decoder block con-
tains two convolutional layers. The convolutional layers use a kernel size of 3 × 3 with
batch normalization and ReLU activation, similar to the encoder. The decoder also in-
cludes a dropout layer with a probability of 0.25 to reduce overfitting.

The final decoder block is followed by a 1 × 1 convolutional layer, which maps the feature
maps to the desired number of output classes. This allows the U-Net to produce a segmentation
map where each pixel is assigned to one of the class from the classification scheme it was trained
on.

4.2 Learning Objective

For both models, specific loss functions were applied to optimize the learning process. This
section outlines the loss functions used and the metrics employed to evaluate the performance
of each model.

20

4.2.1 Autoencoder Loss

The autoencoder loss function is a combination of three components: Huber Loss, Structural
Similarity Index Measure (SSIM) Loss, and Edge Loss. These losses are weighted by the coef-
ficients α, β, and γ, respectively, to balance reconstruction accuracy and feature preservation.

• Huber Loss [40]: The Huber Loss, LHuber, is used to handle outliers by combining the
properties of the Mean Squared Error (MSE) and Mean Absolute Error (MAE). This loss
helps in robust reconstruction by minimizing the impact of outliers. It is defined as:

LHuber(y, ŷ) =

{
1
2
(y − ŷ)2 if |y − ŷ| ≤ δ,

δ|y − ŷ| − 1
2
δ2 otherwise,

where y is the ground truth, ŷ is the predicted output, and δ is a threshold parameter.

• SSIM Loss [80]: The Structural Similarity Index (SSIM) Loss, LSSIM, focuses on preserv-
ing structural information in the image by comparing luminance, contrast, and structure
between the original and reconstructed image. It is defined as:

LSSIM(y, ŷ) = 1− SSIM(y, ŷ),

where the SSIM between the ground truth y and the predicted output ŷ is given by:

SSIM(y, ŷ) =
(2µyµŷ + ϵ1)(2σyŷ + ϵ2)

(µ2
y + µ2

ŷ + ϵ1)(σ2
y + σ2

ŷ + ϵ2)
.

Here, µy and µŷ are the means, σ2
y and σ2

ŷ are the variances, σyŷ is the covariance, and ϵ1
and ϵ2 are stabilizing constants.

• Edge Loss: The Edge Loss, LEdge, enforces the preservation of edges by comparing the
gradients of the ground truth and predicted images. It is defined as:

LEdge(y, ŷ) = ∥∇xy −∇xŷ∥1 + ∥∇yy −∇yŷ∥1 ,

where ∇x and ∇y represent the gradients along the x- and y-directions, respectively. This
loss helps in maintaining sharp edges in the reconstructed images.

The total loss function, Ltotal, is a weighted sum of these three components:

Ltotal = αLHuber + βLSSIM + γLEdge,

where α, β, and γ are the weights assigned to each loss component. In this work, we use
α = 0.5, β = 0.4, and γ = 0.1 to balance the contributions of each component. With Huber
Loss handling noise, SSIM Loss preserving structural details, and Edge Loss ensuring sharp
transitions, this combination of losses is well-suited for accurate satellite imagery reconstruction.

4.2.2 U-Net Loss

The U-Net model employs Dice Loss, LDice, which is particularly effective in addressing class
imbalance. This ensures that less frequent features, such as small vegetation types or bare
ground, are well represented alongside majority classes like water and built areas. Additionally,
its emphasis on spatial overlap and boundary alignment makes it well-suited for capturing the
complex and heterogeneous structures found in satellite imagery.

21

Dice Loss is derived from the Dice coefficient [21], a measure used to evaluate the similarity
between two sets. The Dice coefficient between the predicted segmentation map ŷ and the
ground truth y is defined as:

Dice(ŷ, y) =
2
∑N

i=1 ŷiyi + ϵ∑N
i=1 ŷi +

∑N
i=1 yi + ϵ

,

where:

• N is the total number of pixels in the image.

• ŷi is the predicted probability for the i-th pixel.

• yi is the ground truth label for the i-th pixel (1 for foreground, 0 for background).

• ϵ is a small constant (e.g., 10−6) to avoid division by zero.

The Dice Loss is then defined as:

LDice = 1−Dice(ŷ, y).

For the highly unbalanced labeled data, as discussed in Section 5.3, a Weighted Dice Loss
is applied to mitigate class imbalance by assigning lower weights to dominant classes, defined
as:

LWeightedDice = 1− 1

C

C∑
c=1

wc
2
∑N

i=1 ŷi,cyi,c + ϵ∑N
i=1(ŷi,c + yi,c) + ϵ

,

where wc represents the weight assigned to class c.

4.2.3 Performance Metrics

The following metrics are used to evaluate the performance of the models:

Metrics for the Autoencoder

• PSNR (Peak Signal-to-Noise Ratio): Quantifies the quality of the reconstructed
images.

PSNR = 20 · log10
(
MAXI√
MSE

)
where MAXI represents the maximum possible pixel value. Since the images are normal-
ized in the range [0, 1], MAXI = 1.

• SSIM (Structural Similarity Index): Assesses the similarity between the recon-
structed image and the original image. The formula is the same as shown in Subsec-
tion 4.2.1, SSIM Loss.

• Accuracy (Bandwise): Measures the proportion of reconstructed pixel values that fall
within a predefined tolerance (τ) for each spectral band.

Accuracy =
1

B

B∑
b=1

∑N
i=1 I(|ŷi,b − yi,b| ≤ τ)

N

where B is the number of spectral bands, N is the total number of pixels per band, yi,b
and ŷi,b are the ground truth and reconstructed values for pixel i in band b, respectively,

22

and I(·) is an indicator function that equals 1 if the absolute difference between the
reconstructed and ground truth values is within the tolerance threshold (τ = 0.1), and 0
otherwise.

Metrics for the U-Net

• Standard Metrics: These commonly used metrics evaluate the overall classification
performance of the model.

– Accuracy: Measures the proportion of correctly classified pixels.

Accuracy =

∑N
i=1 I(ŷi = yi)

N

where N is the total number of pixels, and I(·) is an indicator function that equals
1 if the predicted label ŷi matches the ground truth yi, and 0 otherwise.

– Precision (Macro-Averaged): Measures the proportion of correctly predicted
pixels for each class and averages across all classes.

Precision =
1

C

C∑
c=1

TPc

TPc + FPc

where C is the number of classes.

– Recall (Macro-Averaged): Calculates the proportion of correctly predicted pixels
among all actual positive pixels per class, then averages across classes.

Recall =
1

C

C∑
c=1

TPc

TPc + FNc

– F1 Score (Macro-Averaged): Combines precision and recall per class and aver-
ages across classes.

F1 =
1

C

C∑
c=1

2 · Precisionc · Recallc
Precisionc +Recallc

Note: The F1 score is mathematically equivalent to the Dice coefficient in the con-
text of segmentation. Since Dice is the standard metric for evaluating segmentation
quality, only the Dice coefficient is reported in the results to avoid redundancy.

• Dice coefficient [21]: Measures the overlap between the predicted segmentation and
ground truth, commonly used in segmentation tasks. The Dice coefficient, Dice(ŷ, y), is
defined using the same formula presented in Subsection 4.2.2.

• IoU (Intersection over Union), also known as the Jaccard Index [41]: Measures the
ratio of the intersection to the union of the predicted and ground truth segmentation
masks. It is defined as:

IoU =

∑N
i=1 ŷiyi∑N

i=1(ŷi + yi − ŷiyi)

where N is the total number of pixels, and ŷi and yi represent the predicted and ground
truth segmentation values for pixel i, respectively.

These metrics are tailored to evaluate the specific objectives of the autoencoder and U-Net,
ensuring comprehensive assessments of reconstruction quality and segmentation performance.

23

Chapter 5

Experimental Setup

The U-Net model described in Section 3.2.1 is used for semantic segmentation of land use in
satellite images. This chapter explores two methods to improve it. Specifically, the following
two factors are investigated:

• Dependency on labeled data: As discussed in Chapter 3, the performance of semantic
segmentation models heavily depends on the labeled training data. Oftentimes, the an-
notated data is scarce or misaligned with the data intended to be used during inference,
such as the desired classification scheme, resolution, and geographical coverage. This ex-
periment addresses this limitation by exploring the use of widely available unlabeled RS
data through pretraining.

• Dependency on resolution: In this experiment, the relationship between the resolution
of satellite imagery and the performance of semantic segmentation models is explored.
Higher-resolution shows more detailed information, which hypothetically could improve
model accuracy and reduce the dependency on labeled data. This experiment investi-
gates how using a different image resolutions (medium resolution vs very high resolution)
impacts the performance of the U-Net model under both from-scratch and pretrained
conditions.

In addition, this chapter also describes the datasets used in the baseline and experimental
setups, detailing the retrieval and pre-processing steps required to prepare the data for analysis.

All experiments were conducted on a high-performance computing cluster1 equipped with
NVIDIA A100 and V100 GPUs and AMD EPYC CPUs.

5.1 Data

The optical satellite data used in this research was obtained from open-source platforms, in-
cluding Google Earth Engine2 and Satellietdataportaal3. The specific Sentinel-2 dataset used
in this research is shared here4. Due to licensing restrictions, the Very High Resolution satel-
lite (VHR) imagery retrieved from Satellietdataportaal cannot be shared. Labels were derived
through a combination of Google Earth Engine and manual annotation using tools such as
Blackshark5 and Roboflow6. Eventually, only the labels obtained using Roboflow were used,

1https://www.surf.nl/en/services/snellius-the-national-supercomputer
2https://earthengine.google.com
3https://viewer.satellietdataportaal.nl/
4https://drive.google.com/drive/folders/1gETPmb8uniyRd0q6pjHlkyOxX0KEOuOA?usp=share_link
5https://blackshark.ai
6https://roboflow.com

24

https://www.surf.nl/en/services/snellius-the-national-supercomputer
https://earthengine.google.com
https://viewer.satellietdataportaal.nl/
https://drive.google.com/drive/folders/1gETPmb8uniyRd0q6pjHlkyOxX0KEOuOA?usp=share_link
https://blackshark.ai
https://roboflow.com

as these were all manually identified and therefore provided a more accurate representation of
the ground truth compared to the AI-generated labels from Blackshark, as will be discussed in
Section 5.1.2. In initial experiments, the pretrained U-Net was tested on a land-cover dataset
using Gaofen-2 (GF-2) satellite images [82], yielding promising results, particularly with per-
formance gains from pretraining. However, the dataset was not suitable for this research due
to differences in geographical coverage, resolution, and classification scheme, which did not
align with the Biesbosch area. The results of these preliminary experiments are presented in
Appendix C.

5.1.1 Sentinel-2 imagery with Dynamic World labels

Data Retrieval

Sentinel-2 imagery used in this research was obtained via the Google Earth Engine API,
sourced from the COPERNICUS/S2 SR HARMONIZED collection, which provides Harmo-
nized Level-2A Sentinel-2 data, as explained in Chapter 2. These images have a spatial reso-
lution of 10 meters per pixel and include 26 spectral bands, listed in Appendix D.1. Sentinel-2
satellites have a revisit time of 5 days, and over the Biesbosch region, passes occur consistently
between 10:00 and 11:00 in the morning local time, ensuring uniform illumination and minimal
shadow interference.

For this research, similar wetland areas in the Netherlands were selected, including the
Biesbosch, to acquire specific domain knowledge and ensure good coverage of the desired classes.
All selected areas are part of the Natura 2000 network7 and are considered wetlands according to
the Nationaal Georegister8, based on the Ramsar Convention on Wetlands (updated in 2024)9.
An exception is the Gelderse Poort, which, while not Ramsar-designated, was included due
to its high comparability with the Biesbosch as a floodplain shaped by the confluence of the
Rhine and Waal rivers. The locations of these areas within the Netherlands are displayed in
Figure D.1. Figure D.2 presents Sentinel-2 images of each area captured during various months
of the year, illustrating the variability in both the regions and their vegetation across different
seasons.

To ensure consistency in data quality, only Sentinel-2 scenes with less than 5% cloud cover
were selected, covering the period from January 1, 2017, to November 1, 2024. To account
for the multiple image tiles covering each wetland area, the Copernicus Browser10 was utilized
to manually identify and select the most relevant tile IDs for each area and date, ensuring
non-duplicate tiles per region, per date.

Land cover labels for each Sentinel-2 image were sourced from the Dynamic World dataset
(GOOGLE/DYNAMICWORLD/V1), which provides near real-time, 10 m resolution global
land cover classifications using deep learning [12]. The dataset uses Sentinel-2 spectral data
and a pretrained convolutional neural network trained on a combination of expert and non-
expert annotations to assign probabilities for 9 land cover types to each pixel. The Dynamic
World classification achieves an overall agreement of 73.8% with expert-labeled validation data,
performing best on categories like water, trees, and built areas while having more difficulty with
classes such as grass and shrub & scrub. The classes in the Dynamic World classification scheme
are extensively detailed in Table D.3. For each pixel, the class with the highest probability
(ranging from pixel values 0 to 8) is selected to create classification masks.

7https://www.natura2000.nl/gebieden
8https://nationaalgeoregister.nl/
9https://www.ramsar.org

10https://browser.dataspace.copernicus.eu/

25

https://www.natura2000.nl/gebieden
https://nationaalgeoregister.nl/
https://www.ramsar.org
https://browser.dataspace.copernicus.eu/

Figure 5.1: Overview of the pre-processing steps applied to both Sentinel-2 and Pléiades NEO
datasets. (a) Selection of relevant spectral bands tailored to the classification task. (b) Division
of images into patches of 256 × 256 pixels for consistency and usability in training. (c.1)
Exclusion of patches with dimensions smaller than 256 × 256 or containing excessive black
pixels (> 10% for Sentinel-2 and > 30% for Pléiades NEO). (c.2) Retention of patches that
meet size and quality requirements to ensure consistency in high-resolution data.

Data Pre-processing

Before the data could be fed to the model, it underwent several pre-processing steps as shown in
Figure 5.1. This structured approach to pre-processing ensured diverse and representative data
splits, enhancing the model’s ability to generalize across different wetland environments. First,
band selection was performed. From the 26 available bands in the Sentinel-2 imagery, 9 bands
were selected based on their relevance to wetland classification tasks and the need to balance
data size for computational efficiency. Comprehensive meta-analysis [42] on remote sensing
for wetland classification shows that in addition tot the RGB bands and SWIR-bands, the
red-edge and near-infrared bands are the most effective optical bands for wetland delineation
[52]. Hence, the selected bands for the Sentinel-2 dataset are B2 (blue), B3 (green), B4 (red),
B5-B7 (Red Edge 1-3), B8 (NIR), and B11-B12 (SWIR 1 and 2). These bands are known
for their sensitivity to vegetation, water bodies, and soil characteristics, which are essential
for distinguishing wetland environments. A full list of the 26 available bands is provided in
Table D.1. One exception of when not all these bands are used is in Experiment 2, as described
in Chapter 5. To enable a fair comparison between high- and low-resolution data, the same
number of bands (4) are used for both: the RGB and NIR bands. This is because, for the
high-resolution data from Pléides NEO, additional bands were not available due to storage
constraints in the experimental setup.

Second, the images were divided into patches of 256 × 256 pixels to match the input size
required by the model, resulting in input dimensions of 256× 256× n, where n is the number
of selected bands. Patches containing more than 10% black pixels or those not meeting the
256× 256 size requirement were excluded from the dataset.

Lastly, the data was divided into three sets. The Biesbosch region was used as the test set
to evaluate the model’s performance on unseen data. Due to its similarity to the Biesbosch,
Lauwersmeer was used as the validation set to tune model parameters. The remaining regions
- Gelderse Poort, Oostvaardersplassen, Loosdrechtse Plassen, and Land van Saeftinghe - were
used as the training set. Because the splits were based on geographical regions, which greatly
differ in size, the train/validation/test split was not balanced. A larger number of patches
came from retrieved the Biesbosch imagery, making the test set more extensive. The complete
training set contained 1,701 images, the validation set 948 images, and the test set 1,140 images.

In Experiment 2, only the Biesbosch region was used for training, validation, and testing
to ensure a fair comparison with the high-resolution data. As described in Chapter 5, this

26

experiment used 12 training images, 2 validation images, and 2 test images. Here, the division
into train, validation, and test sets was randomly selected.

5.1.2 Pléiades NEO imagery with Manual Labels

Data Retrieval

Pléiades NEO imagery11 was accessed via FTP from the Satellietdataportaal platform. This
open-access platform provides high-resolution optical satellite imagery of the Netherlands and
the Caribbean Netherlands and is only accessible to users with a Dutch IP address. It offering
spatial resolutions of up to 0.3m, significantly higher than Sentinel-2. Pléiades NEO provides
6 spectral bands: Red, Green, Blue (RGB), Near Infrared (NIR), Red Edge, and Deep Blue.
Pléiades NEO has a revisit time of approximately 6 weeks.

Due to the high storage requirements of high-resolution imagery and the primary goal
of Experiment 2 to compare high and low-resolution data rather than evaluate the U-Net’s
performance, the focus was limited to the Biesbosch area. From this area, all available data
was retrieved, spanning between the beginning of 2023 to the end of 2024.

To ensure sufficient data availability while maintaining quality, a cloud cover limit of 30%
was applied during pre-processing. This threshold balanced data availability and minimized
obstruction from clouds, ensuring clear visibility of the target features.

Land Cover Labels for this dataset were manually created using the Beeldenboek bij Rijk-
swaterstaat12 as a reference, with the annotation process carried out in Roboflow. To explore
more efficient labeling methods, semi-automated tools like Blackshark.ai were tested. This tool
generates ground truth labels based on a few user-provided examples. However, as shown in
Figures E.3 and E.4, its application to multiple wetland areas often resulted in incorrect labels
and significant inconsistency across different dates. These discrepancies confused the model
and negatively impacted performance.

Given these limitations, manual annotation using Roboflow was ultimately chosen to en-
sure label accuracy and consistency. While more time-intensive, this approach provided reliable
ground truth data for subsequent analysis, leading to a more robust model performance com-
pared to training on Blackshark-generated labels.

Data Pre-processing

The pre-processing of the Pléiades Neo imagery and manual labels is similar to that of Sentinel-
2, as discussed in Section 5.1.1 and shown in Figure 5.1. Pre-processing includes band selection,
aligning aerial and satellite images, cropping to remove pixels from the imagery and/or labels
with invalid pixel values, and splitting into training, validation, and test sets. Due to storage
limitations, only the first four spectral bands of the six available bands were used: Red, Green,
Blue, and Near Infrared. Unlike the 256 × 256 pixel patches of the Sentinel-2 data, the Pléiades
Neo data was tiled into 1024 × 1024 pixel patches to account for its higher resolution and to
capture more spatial information within each patch. Patches containing more than 5% invalid
pixels or those not meeting the required size were excluded from the dataset. The data was ran-
domly split into 1,027 training images, 205 validation images, and 136 test images. For training
the autoencoder used to pretrain the U-Net for the Pléiades NEO images, a larger dataset of
high resolution images from Satellietdataportaal was utilized, covering the same wetland areas
as those included in the Sentinel-2 dataset. The autoencoder was trained for nine epochs on

11https://earth.esa.int/eogateway/missions/pleiades-neo
12https://open.rijkswaterstaat.nl/overige-publicaties/2020/beeldenboek-vegetatiebeheer-grote/

27

64,485 training patches of 256 × 256 pixels using a batch size of 8. The validation set consisted
of 11,761 patches, and the test set comprised 53,118 patches. A similar train/validation/test
split was applied as with the Sentinel-2 dataset, with Lauwersmeer designated as the validation
set and Biesbosch as the test set.

5.2 Experiment 1: Impact of Pretraining (Label Depen-

dency)

The first experiment examines the impact of pretraining a U-Net model using an autoencoder,
where the encoder weights from the autoencoder are transferred to initialize the U-Net. The
performance of U-Net models trained from scratch is then compared to those initialized with
pretrained weights across different dataset subset sizes, as detailed in Table G.1. To assess
whether pretraining provides greater performance improvements when applied to VHR data, the
U-Net’s performance is evaluated on two datasets: medium-resolution imagery from Sentinel-2
and VHR imagery from Pléiades NEO, as discussed in Section 5.1.

For both datasets, histogram equalization is applied to normalize intensity distributions,
improving contrast and feature clarity. This pre-processing step enhances the model’s ability
to distinguish features by emphasizing subtle variations in pixel values and reducing the impact
of spectral inconsistencies typical in satellite imagery. Figure 5.2 shows the histograms of both
resolutions before and after equalization, highlighting the improved contrast and redistributed
intensity values.

(a) Medium-resolution pixel distribution (Sentinel-2).

(b) VHR pixel distribution (Pléiades NEO)

Figure 5.2: Histograms of pixel intensity distributions before (left) and after (right) histogram
equalization for Sentinel-2 medium-resolution (a) and Pléiades NEO very high-resolution (VHR)
data (b). Both datasets have 16-bit depth, with Sentinel-2 (9 bands) showing a skewed distribu-
tion and Pléiades NEO (4 bands, higher spatial resolution) exhibiting distinct peaks. Histogram
equalization successfully redistributes the pixel intensities, improving contrast and normalizing
brightness variations across bands in both datasets.

28

A detailed reconstruction of all nine Sentinel-2 bands can be seen in Figure G.1, where
each band is well reconstructed, consistently preserving key spectral information across all
bands. Once the raw input patches have undergone histogram equalization, they are fed to
the autoencoder. Applying the train/validation/test split for both datasets as described in
Section 5.1, the autoencoder learns features during training and reconstructs the input image
in as shown in Figure 5.3. The training of the autoencoder for the medium-resolution imagery
converged at 200 epochs, while for the VHR imagery, convergence was reached at just 9 epochs.

(a) Reconstruction result for medium-resolution Sentinel-2 data.

(b) Reconstruction result for VHR Pléiades NEO.

Figure 5.3: Reconstruction results from the autoencoder for medium-resolution Sentinel-2 data
(a) and very high-resolution (VHR) data (b). The first column shows the raw RGB input with
contrast stretching for visibility, followed by the histogram-equalized original RGB image. The
third column presents the reconstructed image from the autoencoder, while the last column
displays the error map, where blue indicates minimal pixel differences and yellow highlights
larger discrepancies.

Table 5.1 summarizes the performance of the autoencoder on the two datasets: medium-
resolution (Sentinel-2) and very high-resolution (Pléiades NEO). Despite the visually convincing
quality of the VHR reconstruction shown in Figure 5.3, its numerical performance appears
significantly lower. This discrepancy will be further analyzed in Chapter 7.

Resolution Accuracy ↑ PSNR ↑ SSIM ↑ Huber ↓
Loss

SSIM ↓
Loss

Edge ↓
Loss

Mixed ↓
Loss

Sentinel-2 0.6076 17.8110 0.4964 0.0083 0.2518 0.1060 0.1009
Pléiades NEO 0.3667 14.5375 0.4627 0.0111 0.2686 0.2342 0.1610

Table 5.1: Performance metrics of the autoencoder for medium-resolution (Sentinel-2) and very
high-resolution (Pléiades NEO) imagery on their corresponding test sets.

29

5.3 Experiment 2: Impact of Resolution

The second experiment examines how varying image resolutions affect the performance of the
U-Net model for vegetation classification in the Biesbosch. To achieve this, datasets from two
sources were utilized: VHR images (0.3m × 0.3m) from Pléiades NEO and medium-resolution
images (10m × 10m) from Sentinel-2. Data selection focused on four temporally diverse dates,
two in April and two in September, to capture seasonal variation. As shown in Figures E.1
and E.2, each of the four satellite images was divided into a 4 × 4 grid of patches, from which
four distinct patches were selected per image. This approach ensured that the final 16 selected
patches collectively covered the entire study area while capturing data from four different points
in time, balancing spatial coverage and labeling efficiency. To ensure a fair comparison, the
corresponding dates for the Pléiades NEO and Sentinel-2 datasets were selected to be temporally
close, as shown in Table E.1. These 16 tiles were then labeled using Roboflow, as shown in
Figure E.5. These manually annotated labels were transferred from the high resolution imagery
to the corresponding low resolution imagery, and down-sampled, as shown in Figure 5.4. By
following these steps, the experiment aimed to assess the relationship between image resolution
and the ability to classify detailed vegetation features, using consistent pre-processing of image-
label pairs and training steps for both resolutions to ensure a controlled comparison.

Figure 5.4: VHR imagery from Pléiades NEO (0.3m x 0.3m) was manually annotated to gen-
erate high-resolution land cover labels. A corresponding medium-resolution Sentinel-2 image
(10m x 10m) from the same date was found to ensure temporal consistency. The high-resolution
annotations were then downscaled to match the lower resolution of the Sentinel-2 image. This
process was repeated to generate multiple VHR and medium-resolution image-label pairs.

Since this experiment focuses only on the Biesbosch area, the number of images in the
train, validation, and test sets for both resolutions is relatively low compared to the baseline
and Experiment A. Table 5.2 provides the exact numbers of the splits. The VHR imagery
was divided into patches of 1024 × 1024 pixels to cover a larger geographical area. However,
due to the significant resolution difference between Sentinel-2 and Pléiades NEO, the VHR
dataset yielded substantially more patches. Specifically, within a single Sentinel-2 patch (10m

30

resolution), approximately 111 Pléiades NEO patches (0.3m resolution) fit, highlighting the
scale disparity between the two datasets.

Pleides-NEO Sentinel-2
Training patches 1027 12
Validation patches 205 2
Testing patches 138 2

Table 5.2: Number of input patches generated from high- and low-resolution datasets. The
Pléiades NEO imagery (0.3mx0.3m) generated more patches due to its higher spatial resolution.

Figure 5.5 shows the significant class imbalance across the dataset splits for both resolutions.
A more detailed overview of the exact percentages can be found in Tables E.2 and E.3. This
imbalance originates from the manual annotation where Water and Grass & Farmland were the
most easily distinguishable classes and were therefore labeled more frequently. Additionally,
these classes are naturally more prevalent in the Biesbosch region, which further contributes to
their overrepresentation in the dataset. To mitigate the effects of this imbalance, class weighting
was applied in the Dice loss function where the weight for Grass & Farmland was reduced by
a factor of 10 relative to other classes to balance their influence during model training.

Figure 5.5: Class distribution in the training, validation, and test datasets for both Pléiades
NEO (left) and Sentinel-2 (right). The dominant land cover classes, Water and Grass & Farm-
land, occupy the largest pixel proportions across all splits, reflecting their prevalence in the
Biesbosch region. This class imbalance is addressed by incorporating weighted loss functions
during training.

To prevent background pixels from causing a bias in optimization and metric computation,
they are excluded from both loss computation and accuracy calculations. This is done by
applying a binary mask that disregards these pixels. As a result, only annotated land cover
classes are considered during training and evaluation.

Furthermore, weighted accuracy was used to address class imbalance, adjusting each class’s
contribution based on its frequency in the dataset. Instead of a simple pixel-wise accuracy,
underrepresented classes received higher weights to ensure fair influence on overall performance.
Conversely, dominant classes, such as Water and Grass & Farmland, were weighted lower in
the high-resolution dataset, where they were more prevalent.

31

Chapter 6

Results

This chapter presents the results of the U-Net trained from scratch, alongside findings from
two experiments: one evaluating the dependency on labels through pretraining, and the other
analyzing the impact of resolution on model performance.

6.1 Baseline Performance of U-Net trained from Scratch

Table 6.1 presents the U-Net’s performance after 200 epochs, at which point training had
converged, using the dataset and hyperparameters described in Chapter 4. The test set results
show an accuracy of 0.8526 and a Dice score of 0.648. The lower performance on the validation
set across all metrics is likely due to its focus on a different geographical area, which may be too
distinct from the training set for the model to generalize effectively. Figure 6.1 visualizes the
model’s predictions compared to the ground truth. The prediction correctness map highlights
areas of uncertainty and misclassification, particularly around class boundaries.

Model Fraction Accuracy ↑ Dice ↑ IoU ↑ Precision ↑ Recall ↑ Dice Loss ↓

U-Net
Train 0.8522 0.7287 0.6096 0.7226 0.7687 0.4295
Val 0.7870 0.5940 0.4670 0.6412 0.5909 0.5712
Test 0.8526 0.6480 0.5346 0.6616 0.6694 0.4865

Table 6.1: Performance metrics for U-Net after training for 300 epochs with patch size 256 by
256 and batch size 8 on 100% of the dataset: 1701 training images, 948 validation images, 1140
test images. The dropout rate is 0.15, the learning rate uses cosine annealing from 0.001 to
0.0001 and the weight decay 1e-4.

Figure 6.1: From left to right: the test set image in RGB, the ground truth classification by
Dynamic World, the prediction of the U-Net, and last, the prediction correctness. Here, green
indicates correctly classified pixels, red represents misclassified pixels, and the color intensity
reflects the model’s certainty.

32

6.2 Experiment 1: Impact of Pretraining (Label Depen-

dency)

In Figure 6.2, the performance comparison between pretrained and non-pretrained U-Net ar-
chitectures is depicted for a subset of 10% and 100% of the Sentinel-2 dataset. The results show
that the performance gap between the pretrained and non-pretrained U-Net diminishes as the
number of available labels increases, suggesting that the features learned by the autoencoder
become less impactful when sufficient annotated labels are provided, as can also be seen in
Table 6.2. This aligns with the understanding that, for tasks like semantic segmentation, the
availability of labeled data primarily drives the training of the U-Net model, as the annotated
labels contain the most essential features needed for the downstream task.

(a) 10% subset (b) 100% subset

Figure 6.2: Training and validation accuracy and dice loss for pretrained and non-pretrained U-
Net models on 10% (left) and 100% (right) subsets of the Sentinel-2 dataset. The performance
gap between pretrained and non-pretrained models is more pronounced for the smaller dataset,
while the difference diminishes as more labeled data is available, indicating that the impact of
pretraining decreases with increasing label availability.

When analyzing the performance changes across different test set subsets, as shown in
Table 6.2, the relevant percentage improvement remain relatively small compared to those
observed in the training set (Appendix G). While the gap between the non-pretrained and
pretrained U-Net results narrows as the subset size increases, the pretrained model continues
to outperform the non-pretrained model, though only slightly at 100%.

Subset Accuracy Dice IoU Precision Recall Loss
1% +2.33% +5.41% +5.96% +4.43% +10.90% -8.05%
10% +1.23% +2.45% +3.57% +1.65% +1.08% -3.32%
30% +0.98% +2.24% +3.22% +2.09% +1.93% -3.58%
50% +0.79% +2.57% +3.38% +1.95% +3.27% -3.01%
70% +0.96% +2.90% +3.73% +3.29% +1.83% -3.14%
100% +0.50% +1.32% +1.67% +1.33% +0.79% -1.44%

Table 6.2: Relative percentage improvement for all performance metrics on the test set for the
non-pretrained versus the pretrained U-Net.

The results for the training, validation, and test sets across all subsets, comparing pretrained
and non-pretrained models, are provided in Appendix G.

33

The effect of pretraining was also evaluated on the VHR imagery from Pléiades NEO,
using corresponding manually annotated labels, as described in Section 5.3. A significant
improvement was observed, with a 46.20% relative increase in weighted accuracy, rising from
60.35% (non-pretrained) to 88.23% (pretrained), as shown in Table 6.3.

Model Type
Weighted ↑
Accuracy

Dice ↑ IoU ↑ Precision ↑ Recall ↑ Dice Loss ↓

Non-pretrained 0.6035 0.2827 0.2243 0.3889 0.3158 0.5114

Pretrained 0.8823 0.4457 0.3919 0.5079 0.4551 0.5457

Table 6.3: Performance comparison of non-pretrained and pretrained U-Net on VHR imagery
and labels.

6.3 Experiment 2: Impact of Resolution

Experiment 2, as outlined in Chapter 4, evaluated the performance of U-Net models trained
on VHR and medium-resolution datasets to investigate the impact of image resolution on
segmentation accuracy.

Table 6.4 compares the performance of non-pretrained VHR labels with non-pretrained
medium-resolution labels on both test sets. Due to differences in dataset size and resolution,
the number of training epochs was adjusted accordingly. The performance was documented at
the epoch where the weighted accuracy began to converge, which was 50 epochs for VHR and
200 epochs for medium resolution.

Resolution
Weighted ↑
Accuracy

Dice ↑ IoU ↑ Precision ↑ Recall ↑ Dice Loss ↓

Medium 0.5751 0.3454 0.2687 0.4148 0.4395 0.7241

Very High 0.6035 0.2827 0.2243 0.3889 0.3158 0.5114

Table 6.4: Performance comparison between medium-resolution (Sentinel-2) and VHR (Pléiades
NEO) imagery.

The most effective way to compare the performance of both approaches is through visual
evaluation, as the metrics are heavily influenced by class imbalance and the incomplete presence
of labels in the ground truth, as discussed in Section 5.3. These factors impose a strict upper
limit on the achievable accuracy, making quantitative comparisons less reliable. Figure 6.3
shows the semantic segmentation result of both resolutions.

From Figure 6.3, it is clear that although the performance metrics for both resolutions
appear comparable, and in some cases even slightly higher for the medium-resolution imagery
and labels, the VHR imagery and labels provide more precise segmentation results.

In addition to more accurately capturing the different classes, as can be visually assessed by
comparing the original image with the prediction in Figure 6.3, the VHR imagery also preserves
finer details. For example, the boat on the water appears as a bright white patch in the VHR
image and is labeled red in the prediction, despite not being included in the ground truth labels.
In contrast, the medium-resolution prediction fails to capture the boats present on the river.

Furthermore, for this specific use case in the Biesbosch, the class ”flooded soil” is particularly
important, as it frequently transitions to water during high tides and helps in monitoring flood
extent and tidal dynamics. This transition is best captured by the VHR imagery (represented
by the brown-colored class in Figure 6.3), highlighting the advantage of using VHR data for

34

wetland monitoring. Although some flooded soil is present in the medium-resolution image, it
does not appear in the prediction.

See the Appendix H for more comparisons between segmentation results of the medium-
resolution imagery (Section H.1) versus the VHR imagery (Section H.2).

(a) Medium-resolution segmentation results

(b) VHR segmentation results

Figure 6.3: Comparison of medium-resolution and VHR segmentation results. While perfor-
mance metrics appear similar, VHR imagery (b) provides finer details and more precise seg-
mentation. The legend shows the average predicted probability for each class across the image,
highlighting model confidence in class assignments.

35

Chapter 7

Discussion

In this chapter, the key findings and limitations of the research are discussed, the results are
analyzed in relation to the research questions described in Chapter 1, and directions for future
research are explored.

7.1 Analysis of the Results

The baseline U-Net model achieves an accuracy of 85.26% in distinguishing different veg-
etation classes, demonstrating its potential for wetland monitoring. Visual inspection of the
resulting segmentation maps (Figure 6.1) shows that the model distinguishes vegetation classes
well enough to identify areas that may need more attention, such as for conservation or grazing.

It is important to note that no other study uses exactly the same classification scheme,
resolution, and labels with a U-Net model, making direct comparisons to the state-of-the-art
difficult. One of the most recent and comparable studies is by Mainali et al. [53], which presents
a high-resolution (1m) wetland mapping model using a U-Net-based deep learning approach,
trained on Sentinel-2, LiDAR, NAIP, and geomorphological data. The model achieves high
accuracy (94%), precision (96.5%), recall (90.2%), and an IoU of 0.873 in its primary study area.
However, when applied to a new geographical region, precision drops to approximately 80%
and recall significantly decreases to 48%, emphasizing the impact of changing the geographical
domain - a challenge also observed in this research. The basic model in the research by Mainali
et al. uses only NAIP and Sentinel-2 data, achieving 91.6% accuracy, 90.5% precision, 91.3%
recall, and an IoU of 0.833. The noticeable difference in performance compared to their more
advanced model trained on four modalities instead of two highlights the difficulty of directly
comparing results. Performance improvements may be partly attributed to the inclusion of
additional data sources, resolution differences, and/or the geographical areas on which the
model is trained rather than to the model architecture alone.

Furthermore, most existing research on wetland mapping focuses on classification rather
than segmentation, and those that do employ segmentation often rely on traditional machine
learning approaches [55, 52]. Also, wetland monitoring suffers from a lack of standardized global
definitions and comprehensive classification schemes, complicating cross-study comparisons.

One key challenge in the experimental setup of the baseline experiment is the accuracy of
the Dynamic World labels, which do not always align with the satellite imagery upon visual
inspection. This discrepancy imposes an upper bound on the achievable accuracy of the model.

Moreover, although this study does not explore variations in the depth of the U-Net archi-
tecture, future work could investigate modifying the encoder-decoder depth of the U-Net (and
autoencoder) to enhance feature extraction.

Lastly, unlike the conventional 70/15/15 train/validation/test split, the dataset in this study
is divided based on geographical regions rather than randomly. The test set is about 70% the

36

size of the training set, which may influence performance metrics as the large number of test
images increases the chance of accumulating misclassifications, especially if the distribution of
classes or environmental conditions differs from the training set.

The influence of pretraining on a U-Net model is shown in Experiment 1, which indicates
that self-supervised learning enhances training performance, especially when only a small subset
of labeled data is available. However, its benefits are less apparent on the validation and test
sets, as the large size of these sets provides robust evaluations that probably dilute observable
differences between self-supervised and purely supervised approaches. Additionally, because
the autoencoder uses the same train/validation/test split as the U-Net for Sentinel-2 data, it
is not exposed to the geographical areas present in the validation and test sets. This limited
exposure hampers its ability to extract spatial features relevant to the target area. As noted
by Bai, Yu et al. [7], pretraining on large-scale datasets from domains different from remote
sensing can lead to a domain mismatch, causing degradation in generalization performance
during fine-tuning instead of an increase in performance. Since the autoencoder in this study is
pretrained on data that does not encompass the geographical areas of interest, its effectiveness
is potentially restricted. Moreover, the poor performance metrics of the VHR autoencoder
compared to the medium-resolution one suggest that reconstruction loss does not necessarily
reflect the usefulness of the learned representations for the downstream segmentation task.
This reinforces the idea that pretraining quality should not be judged solely on reconstruction
accuracy, as a higher reconstruction loss for VHR does not directly imply worse performance
when fine-tuned for U-Net segmentation. Alternative approaches, such as feature prediction
loss as proposed by Pihlgren et al. [62], provide a potential improvement by aligning learned
representations with high-level semantic features rather than pixel-wise reconstructions.

To address the issues encountered in this experiment, future research should consider us-
ing separate train/validation/test splits for pretraining to ensure that the pretraining data
includes representative geographical areas, thereby aligning it with the target application and
maximizing the benefits of transfer learning.

The influence of resolution on semantic segmentation of vegetation in wetland areas is
explored in Experiment 2, confirming research by Mainali et al. [53] that higher-resolution im-
agery significantly improves segmentation performance compared to medium- or low-resolution.
However, this difference is less apparent in the performance metrics, which are heavily influ-
enced by shortcomings in the manual annotation, such as the presence of unlabeled pixels and
high class imbalance. Although the methodology of this research attempts to account for these
factors by using, among others, a weighted loss, the performance metrics remain unreliable
as a definitive measure of which resolution performs better. Instead, visual inspection of the
segmentation maps alongside the satellite imagery provides a more accurate assessment of the
resolution’s impact.

One limitation of this experiment is the limited temporal spread of the data, as it includes
imagery only from April and September. Expanding the dataset to cover a broader range
of seasons could improve model generalization by capturing seasonal variations in vegetation
dynamics, thereby providing a more comprehensive assessment of how resolution influences
segmentation performance across different temporal conditions.

7.2 Answering the Research Questions

The results of this study provide key insights into how effective semantic segmentation for land
cover classification in dynamic wetlands is achieved while reducing reliance on annotated data.

37

RQ1: Can self-supervised learning improve the efficiency and accuracy of land
cover classification for estimating vegetation roughness in dynamic wetland envi-
ronments? Experiment 1 indicates that self-supervised learning enhances training perfor-
mance, especially when only a small subset of labeled data is available. However, its impact on
the validation and test sets is less pronounced, likely due to a significant domain shift between
the pretrained data and the validation/test data in the downstream segmentation task. It is
shown that, when labeled data is abundant, the U-Net model learns more from direct supervi-
sion than from pretraining. Additionally, if the model is trained for a sufficiently long duration,
the influence of pretraining diminishes as the U-Net adapts to the labeled data.

RQ2: How does image resolution influence the amount of labeled data required
for accurate vegetation classification? Experiment 2 demonstrates that higher-resolution
imagery results in better segmentation performance due to its ability to capture finer spatial
details. This, in turn, increases the potential benefits of pretraining, as the autoencoder learns
more meaningful representations from high-resolution data. However, the poor performance
metrics of the VHR autoencoder suggest that reconstruction loss alone is not always a reliable
indicator of segmentation effectiveness. Furthermore, higher-resolution imagery may require
fewer labeled samples because the model leverages spatial patterns more effectively, although
this advantage is highly dependent on annotation quality and class imbalance. The results also
suggest that the combination of pretraining and high-resolution imagery is most beneficial in
settings with limited labeled data, as the pretraining phase helps extract structural information
that compensates for the lack of supervision.

These findings indicate that the effectiveness of pretraining is conditional on both the avail-
ability of labeled data and the resolution of the imagery. When labeled data is abundant, the
benefits of pretraining diminish as the model relies more on supervised learning. Similarly, if
the model is trained for a sufficiently long duration, pretraining has a limited effect because
the U-Net learns task-specific features directly from annotations. However, when labeled data
is scarce and imagery is high resolution, pretraining provides a meaningful boost by leverag-
ing spatial detail that would otherwise be difficult to capture. A key takeaway from both
experiments is that pretraining and resolution interact in important ways: pretraining has a
greater impact when using high-resolution imagery, as it captures more spatial detail that is
leveraged during self-supervised learning. This reinforces the need for strategic dataset design,
where resolution and pretraining decisions are made jointly based on the amount of available
annotations and specific application requirements.

Overall, these findings address the overarching research question by demonstrating that ef-
fective semantic segmentation for land cover classification in dynamic wetlands can be achieved
through the combined use of self-supervised pretraining and high-resolution imagery, thereby
reducing reliance on extensive annotated data.

7.3 Future Research

Beyond addressing the limitations of this study, future research could explore change detection
as a valuable downstream task. This can be achieved using a Siamese Network, as demonstrated
by [35], which integrates structural change detection with pixel-level segmentation. Addition-
ally, investigating alternative architectures such as DeepLabV3+, which leverages atrous convo-
lutions and conditional random fields for improved boundary detection and outperforms U-Net
in both speed and accuracy [15, 37], could help overcome challenges related to computation,
class imbalance, and segmentation precision.

38

Furthermore, the upcoming Copernicus Hyperspectral Imaging Mission for the Environment
(CHIME), scheduled for launch in 2028, presents an opportunity to integrate hyperspectral
data, which could enhance vegetation classification and wetland monitoring through improved
spectral resolution [58]. Similarly, self-supervised learning datasets like SSL4EO-S12 [79] pro-
vide a promising foundation for pretraining models on large-scale remote sensing imagery,
improving generalization and representation learning for segmentation tasks.

Moreover, building on findings from Waldeland et al. [77], future studies might assess the
integration of multispectral data with ancillary sources like SAR or LiDAR to capture vegetation
height using a U-Net. Lastly, the emergence of foundation models in remote sensing enables
transfer learning across diverse datasets [27]. Fine-tuning such a foundation model to perform
semantic segmentation could allow for a more robust and adaptable approach compared to
training a task-specific model like U-Net.

39

Chapter 8

Conclusion

8.1 Conclusion

This study demonstrates that a U-Net model trained from scratch on Sentinel-2 data can achieve
an accuracy of 85.26% for land cover classification in dynamic wetland environments. When
only 10% of the dataset is annotated, self-supervised pretraining using an autoencoder results
in a 1.23% relative improvement in accuracy compared to training from scratch. In scenarios
with sparse labels, the use of high-resolution imagery (0.3m by 0.3m) with corresponding labels
enhances segmentation accuracy by a 4.94% relative improvement over medium-resolution data
(10m by 10m). Pretraining has the most pronounced effect on high-resolution imagery, yield-
ing a relative improvement of 46.20%. These results highlight the benefits of pretraining and
higher-resolution data. The primary contribution of this research lies in the comparative anal-
ysis of these factors, rather than in benchmarking model performance against state-of-the-art
methods. Such direct comparisons are challenging due to variations in classification schemes,
data modalities, and geographical domains. These findings emphasize the importance of strate-
gically leveraging both pretraining and image resolution to enhance segmentation performance
while reducing reliance on extensive annotated datasets.

8.2 Acknowledgments

I would like to thank my supervisor, Arnoud Visser, for his guidance, critical insights and
support the past months. I appreciate his patience and encouragement during challenging
times and his efforts to help me gain confidence in my work.

I would also like to express my gratitude to my Accenture supervisor, Enrico Ceretti, for
helping me find my way at Accenture and for sticking with me, even though this topic was not
in his field of expertise. I am equally thankful to all the great people from the Data & AI team
for the enjoyable (long) days at the office and for giving me my first insight into corporate life.

Furthermore, I would like to thank Roberto del Prete for showing interest in my work and
recognizing its potential. His technical expertise in the field of remote sensing (a domain that
was entirely new to me) greatly improved my research. Moreover, his introduction to the
European Space Agency community guided me to start my journey as a visiting researcher at
ESRIN in Frascati, Italy.

Last, but not least, I want to thank my family, friends, and most importantly my partner
Simón Rodriguez Cedeño, who has been there for me every step of the way. Whether it was
celebrating my highs or providing emotional support during my lows - you’ve helped me make
this work possible.

40

Appendix A

Deep Learning Methods in Remote
Sensing

Table A.1: (Non-Exhausive) Overview of Deep Learning Methods in Remote Sensing, based on
review by Janga et al. [43].

DL Method Description Example Applications

Deep Convolutional
Neural Networks
(DCNNs)

Capture spatial hierarchies in data
through convolutional layers

Land cover classification,
vegetation analysis

Residual Networks
(ResNets)

Use skip connections to address
vanishing gradient issues, enabling very
deep architectures

High-resolution image
analysis, vegetation mapping

You Only Look
Once (YOLO)

Provides real-time object detection by
processing the entire image in a single
forward pass

Object detection tasks such
as urban feature
identification and wildlife
monitoring

Faster R-CNN Combines region proposal networks and
CNNs for accurate object detection

Detailed feature extraction in
high-resolution images

Self-Attention
Mechanisms (e.g.,
Vision
Transformers)

Model global dependencies using
self-attention, improving performance for
complex spatial relationships

Advanced land cover
segmentation, vegetation
health analysis

Long Short-Term
Memory Networks
(LSTMs)

Process sequential data to monitor
temporal changes

Time-series analysis of
vegetation dynamics, climate
change impact studies

Generative
Adversarial
Networks (GANs)

Generate synthetic data to augment
training datasets, addressing challenges
of limited labeled data

Data augmentation,
enhancing small remote
sensing datasets

Deep Reinforcement
Learning (DRL)

Learn optimal strategies through
interaction with dynamic environments

Resource allocation, adaptive
monitoring strategies

41

Appendix B

Hyperparameter Tuning

B.1 Autoencoder

B.1.1 Learning Rate

Learning Rate Accuracy ↑ PSNR ↑ SSIM ↑ Huber ↓
Loss

SSIM ↓
Loss

Edge ↓
Loss

Mixed ↓
Loss

0.001 0.4401 16.1603 0.4243 0.0121 0.2879 0.1041 0.1132
0.0001 0.4881 16.7063 0.4529 0.0107 0.2735 0.1067 0.1088

Table B.1: Performance metrics on the test set after 200 epochs for different learning rate
strategies on 50% of the dataset.

42

(a) Test, Validation and Training Accuracy

(b) Test, Validation and Training Dice Loss

Figure B.1: Accuracy, Loss, and over 200 epochs using 50% of the Sentinel-2 dataset. The figure
compares the performance of two different, constant learning rate strategies: 0.001 (orange) and
0.0001 (green). In al runs, the dropout probability has been kept at a consistent 25%.

B.1.2 Dropout Probability

Learning
Rate

Accuracy ↑ PSNR ↑ SSIM ↑ Huber ↓
Loss

SSIM ↓
Loss

Edge ↓
Loss

Mixed ↓
Loss

0% 0.6158 17.0287 0.4111 0.0100 0.2945 0.1179 0.1169
15% 0.5848 17.3022 0.4714 0.0094 0.2643 0.1074 0.1055
25% 0.4881 16.7063 0.4529 0.0107 0.2735 0.1067 0.1088

Table B.2: Performance metrics on the test set after 200 epochs for different dropout probabil-
ities on 50% of the dataset.

43

(a) Test, Validation and Training Accuracy

(b) Test, Validation and Training Dice Loss

Figure B.2: Test, validation and training accuracy and loss over 200 epochs using 50% of the
Sentinel-2 dataset. The figure compares the performance of three different dropout probabili-
ties: 0% (blue), 15% (purple) and 25% (black). All runs were trained using a learning rate of
0.0001.

B.2 U-Net

B.2.1 Learning Rate

Learning Rate Accuracy ↑ Dice ↑ IoU ↑ F1 ↑ Precision ↑ Recall ↑ Loss ↓
0.001 0.8117 0.6109 0.4925 0.6109 0.6029 0.6746 0.5167
0.0001 0.8030 0.5852 0.4641 0.5852 0.6443 0.5789 0.5486
Cosine Annealing 0.8425 0.6419 0.5241 0.6419 0.6757 0.6432 0.5028
Warm Cosine Ann. 0.7880 0.5603 0.4417 0.5603 0.6152 0.5834 0.5633

Table B.3: Performance metrics on the test set after 200 epochs for different learning rate
strategies.

44

(a) Test, Validation and Training Accuracy

(b) Test, Validation and Training Dice Loss

(c) Learning Rate

Figure B.3: Accuracy, Dice Loss, and Learning Rate Schedules over 200 epochs using 50%
of the Sentinel-2 dataset. The figure compares the performance of four different learning rate
strategies: constant learning rates of 0.001 (pink) and 0.0001 (blue), cosine annealing (orange),
and warm cosine annealing (purple). In al runs, the dropout probability has been kept at a
consistent 25%.

45

B.2.2 Dropout Probability

Learning
Rate

Accuracy ↑ Dice ↑ IoU ↑ F1 ↑ Precision ↑ Recall ↑ Loss ↓

0% 0.8448 0.6337 0.5198 0.6337 0.6690 0.6374 0.5019
15% 0.8468 0.6416 0.6416 0.5852 0.6741 0.6432 0.4996
25% 0.8425 0.6419 0.5241 0.6419 0.6757 0.6432 0.5028
35% 0.8402 0.6343 0.5182 0.6343 0.6646 0.6412 0.5057
45% 0.8241 0.6141 0.4950 0.6141 0.6670 0.6185 0.5226

Table B.4: Performance metrics on the test set after 200 epochs for different learning rate
strategies.

(a) Test, Validation and Training Accuracy

(b) Test, Validation and Training Dice Loss

Figure B.4: Test, validation and training accuracy and loss over 200 epochs using 50% of the
Sentinel-2 dataset. The figure compares the performance of five different dropout probabilities:
0% (green), 15% (orange), 25% (black), 35% (blue), and 45% (pink). All runs were trained
using a cosine annealing learning rate schedule.

46

Appendix C

(Pretrained) U-Net Results on
Gaofen-2 imagary and LULC-labels

Figure C.1: Reconstruction of the Gaofen-2 satellite imagery using an autoencoder trained from
scratch.

Figure C.2: Training accuracy and loss of U-Net, comparing the performance of pretrained and
non-pretrained models.

47

Figure C.3: Results without pretraining on the autoencoder.

Figure C.4: Results with pretraining on the autoencoder.

Figure C.5: U-Net predictions (after 25 epochs with batch size 16) with and without pretraining
on the autoencoder.

48

Appendix D

Sentinel-2 imagery with Dynamic
World labels

D.1 Available Sentinel-2 bands

Name Scale Pixel Size Description
B1 0.0001 60 meters Aerosols
B2 0.0001 10 meters Blue (496.6nm (S2A) / 492.1nm (S2B))
B3 0.0001 10 meters Green (560nm (S2A) / 559nm (S2B))
B4 0.0001 10 meters Red (664.5nm (S2A) / 665nm (S2B))
B5 0.0001 20 meters Red Edge 1 (703.9nm (S2A) / 703.8nm (S2B))
B6 0.0001 20 meters Red Edge 2 (740.2nm (S2A) / 739.1nm (S2B))
B7 0.0001 20 meters Red Edge 3 (782.5nm (S2A) / 779.7nm (S2B))
B8 0.0001 10 meters Near Infrared (835.1nm (S2A) / 833nm (S2B))
B8A 0.0001 20 meters Red Edge 4 (864.8nm (S2A) / 864nm (S2B))
B9 0.0001 60 meters Water vapor (945nm (S2A) / 943.2nm (S2B))
B11 0.0001 20 meters Short Wave Infrared 1 (1613.7nm (S2A) / 1610.4nm (S2B))
B12 0.0001 20 meters Short Wave Infrared 2 (2202.4nm (S2A) / 2185.7nm (S2B))
AOT 0.001 10 meters Aerosol Optical Thickness
WVP 0.001 10 meters Water Vapor Pressure
SCL - 20 meters Scene Classification Map
TCI R - 10 meters True Color Image, Red Channel
TCI G - 10 meters True Color Image, Green Channel
TCI B - 10 meters True Color Image, Blue Channel
MSK CLDPRB - 20 meters Cloud Probability Map
MSK SNWPRB - 10 meters Snow Probability Map
QA10 - 10 meters Always empty
QA20 - 20 meters Always empty
QA60 - 60 meters Cloud mask
MSK CLASSI OPAQUE - 60 meters Opaque clouds classification band (0=no clouds,

1=clouds)1. Masked out before February 2024
MSK CLASSI CIRRUS - 60 meters Cirrus clouds classification band (0=no clouds, 1=clouds).

Masked out before February 2024
MSK CLASSI SNOW ICE - 60 meters Snow/ice classification band (0=no snow/ice, 1=snow/ice).

Masked out before February 2024

49

D.2 Selection of Wetland areas for Sentinel-2

Figure D.1: Wetland areas included in the Sentinel 2 dataset

50

(a) Loosdrechtse
Plassen 2019-02-15 (b) Lauwersmeer 2019-04-01

(c) Oostvaardersplassen 2023-06-24 (d) Land van Saeftinghe 2024-08-12

(e) Biesbosch 2021-10-24 (f) Gendtse Polder 2021-12-21

Figure D.2: The six geographical areas used for the Sentinel 2 dataset.

51

D.3 Dynamic World Classification Scheme

LULC Type Color Coding Description

Water #419bdf Permanent and seasonal water bodies

Trees #397d49 Includes primary and secondary
forests, as well as large-scale planta-
tions

Grass #88b053 Natural grasslands, livestock pastures,
and parks

Flooded vegetation #7a87c6 Mangroves and other inundated
ecosystems

Crops #e49635 Include row crops and paddy crops

Shrub & Scrub #dfc35a Sparse to dense open vegetation con-
sisting of shrubs

Built Area #c4281b Low- and high-density buildings,
roads, and urban open space

Bare ground #a59b8f Deserts and exposed rock

Snow & Ice #b39fe1 Permanent and seasonal snow cover

52

Appendix E

Pléiades NEO imagery with Manual
Labels

E.1 Selection of Biesbosch areas for Pléiades NEO

(a) 2023-04-15 (b) 2024-09-21

(c) 2023-04-20 (d) 2024-09-30

Figure E.1: Satellite images of the Biesbosch area, obtained from Pleiades NEO, used in this
study.

53

Figure E.2: Selection of tiles for manual annotation using Roboflow

E.2 Rijkswaterstaat Classification Scheme

LULC Type Color Coding Description

Grass and Farmland #53FB54 Bare terrains, open or dense grass,
and seasonal herbs

Reed and Rough Vegetation #E0FF06 Wetland vegetation and tall rough
vegetation

Shrubbery #FFD600 Dense shrub vegetation, 2-5 meters in
height

Forest #146600 Tree-dominated vegetation, 5-15 me-
ters or taller

Water #00C3CE Open water

Paved Surfaces #FF0000 Hardened surfaces with minimal veg-
etation

54

E.3 Blackshark.ai labels

(a) 2023-04-30 (b) 2023-06-01

(c) 2024-09-21 (d) 2023-09-30

Figure E.3: The label mask for the Biesbosch area, created using Blackshark, highlights a
notable inconsistency: despite some satellite images being taken in close proximity to one
another, the labels show significant variation. This underscores the limitations and potential
vulnerabilities of relying solely on AI labeling tools to generate ground truth labels.

55

Figure E.4: Labels generated for the wetland areas based on high resolution satellite data.

56

E.4 Roboflow labels

Figure E.5: Annotated masks for selection of Pléiades NEO imagery.

Pléiades NEO Sentinel-2

2023-04-15 2023-04-05

2023-04-30 2023-04-30

2023-09-30 2023-09-09

2024-09-21 2024-09-21

Table E.1: Dates corresponding to the Pléiades NEO and Sentinel-2 datasets used in Experi-
ment 2 to examine the impact of image resolution on vegetation classification in the Biesbosch.

57

Table E.2: Class distribution across VHR label dataset.

Class Train (%) Validation (%) Test (%)

Negative 0.00 0.00 0.00

Built 2.76 2.79 2.54

Flooded Soil 1.65 1.68 1.19

Forest 12.38 11.35 13.21

Grass & Farmland 37.72 37.19 36.20

Invalid Pixels 0.02 0.03 0.02

Reed & Rough 2.14 1.82 2.50

Shrubs 0.65 0.61 0.38

Water 42.67 44.54 43.95

Table E.3: Class distribution across medium-resolution label dataset.

Class Train (%) Validation (%) Test (%)

Negative 0.00 0.00 0.00

Built 1.56 15.85 6.85

Flooded Soil 1.81 0.45 0.70

Forest 7.69 10.51 43.68

Grass & Farmland 44.11 37.90 17.93

Invalid Pixels 0.00 0.00 0.00

Reed & Rough 1.52 13.67 5.01

Shrubs 0.78 0.58 0.70

Water 42.53 21.06 25.14

58

Appendix F

Baseline U-Net

Figure F.1: Baseline U-Net results for the medium-resolution imagery and labels.

59

Figure F.2: Performance metrics on training and validation set of baseline U-Net.

60

Appendix G

Experiment 1

Fraction 1% 10% 30% 50% 70% 100%

Train 17 170 510 850 1190 1701

Val 9 94 284 474 663 948

Test 11 114 342 570 798 1140

Table G.1: Dataset split across different subsets.

Figure G.1: The reconstruction of the 9 individual spectral bands from Sentinel-2 imagery using
an autoencoder. The colors assigned to the bands are for intuitive representation, as the direct
visual appearance of the bands differs from natural colors.

61

Model Type Fraction Accuracy ↑ Dice ↑ IoU ↑ F1 ↑ Precision ↑ Recall ↑ Dice Loss ↓

Non-pretrained

Train 0.8289 0.6760 0.5583 0.6760 0.6723 0.7047 0.4768

Val 0.6873 0.4436 0.3343 0.4436 0.5373 0.4747 0.6911

Test 0.6623 0.4399 0.3306 0.4399 0.4681 0.4766 0.6581

Pretrained

Train 0.8482 0.7126 0.5916 0.7126 0.7021 0.7815 0.4384

Val 0.7175 0.4620 0.3517 0.4620 0.5839 0.4607 0.6883

Test 0.7338 0.4670 0.3601 0.4670 0.5040 0.4846 0.6261

Table G.2: U-Net performance on the 1% subset with and without pretraining. The U-Net was
trained for 300 epochs with a dropout rate of 0.15, a batch size of 8, and a cosine annealing
learning rate schedule from 0.001 to 0.0001. The pretrained model used features extracted
from an autoencoder trained on the 100% of the training set for 200 epochs with a mixed loss
function (α = 0.5, β = 0.4, γ = 0.1), a learning rate of 0.0001, and a batch size of 8.

Model Type Fraction Accuracy ↑ Dice ↑ IoU ↑ F1 ↑ Precision ↑ Recall ↑ Dice Loss ↓

Non-pretrained

Train 0.8459 0.7055 0.5834 0.7055 0.7074 0.7399 0.4433

Val 0.7613 0.5148 0.3975 0.5148 0.5905 0.5322 0.6298

Test 0.8201 0.5750 0.4652 0.5750 0.6247 0.5866 0.5349

Pretrained

Train 0.8563 0.7228 0.6042 0.7228 0.7191 0.7479 0.4286

Val 0.7667 0.5141 0.3986 0.5141 0.5923 0.5229 0.6297

Test 0.8232 0.5818 0.4710 0.5818 0.6313 0.5835 0.5415

Table G.3: U-Net performance on the 10% subset with and without pretraining. The U-Net
was trained for 300 epochs with a dropout rate of 0.15, a batch size of 8, and a cosine annealing
learning rate schedule from 0.001 to 0.0001. The pretrained model used features extracted
from an autoencoder trained on the 100% of the training set for 200 epochs with a mixed loss
function (α = 0.5, β = 0.4, γ = 0.1), a learning rate of 0.0001, and a batch size of 8.

Model Type Fraction Accuracy ↑ Dice ↑ IoU ↑ F1 ↑ Precision ↑ Recall ↑ Dice Loss ↓

Non-pretrained

Train 0.8505 0.7320 0.6122 0.7320 0.7262 0.7715 0.4250

Val 0.7833 0.5818 0.4564 0.5818 0.6347 0.5760 0.5810

Test 0.8411 0.6416 0.5235 0.6416 0.6616 0.6470 0.5041

Pretrained

Train 0.8588 0.7484 0.6319 0.7484 0.7414 0.7864 0.4098

Val 0.7897 0.5685 0.4461 0.5685 0.6508 0.5544 0.5865

Test 0.8446 0.6369 0.5208 0.6369 0.6666 0.6427 0.5099

Table G.4: U-Net performance on the 30% subset with and without pretraining. The U-Net
was trained for 300 epochs with a dropout rate of 0.15, a batch size of 8, and a cosine annealing
learning rate schedule from 0.001 to 0.0001. The pretrained model used features extracted
from an autoencoder trained on the 100% of the training set for 200 epochs with a mixed loss
function (α = 0.5, β = 0.4, γ = 0.1), a learning rate of 0.0001, and a batch size of 8.

62

Model Type Fraction Accuracy ↑ Dice ↑ IoU ↑ F1 ↑ Precision ↑ Recall ↑ Dice Loss ↓

Non-pretrained

Train 0.8530 0.7344 0.6161 0.7344 0.7324 0.7625 0.4219

Val 0.7969 0.6037 0.4776 0.6037 0.6387 0.6091 0.5691

Test 0.8396 0.6381 0.5199 0.6381 0.6511 0.6536 0.5017

Pretrained

Train 0.8597 0.7533 0.6369 0.7533 0.7467 0.7874 0.4092

Val 0.7859 0.5927 0.4661 0.5927 0.6435 0.5857 0.5740

Test 0.8421 0.6435 0.5250 0.6435 0.6683 0.6529 0.5020

Table G.5: U-Net performance on the 50% subset with and without pretraining. The U-Net
was trained for 300 epochs with a dropout rate of 0.15, a batch size of 8, and a cosine annealing
learning rate schedule from 0.001 to 0.0001. The pretrained model used features extracted
from an autoencoder trained on the 100% of the training set for 200 epochs with a mixed loss
function (α = 0.5, β = 0.4, γ = 0.1), a learning rate of 0.0001, and a batch size of 8.

Model Type Fraction Accuracy ↑ Dice ↑ IoU ↑ F1 ↑ Precision ↑ Recall ↑ Dice Loss ↓

Non-pretrained

Train 0.8551 0.7321 0.6140 0.7321 0.7245 0.7694 0.4239

Val 0.7849 0.5954 0.4678 0.5954 0.6382 0.5947 0.5735

Test 0.8459 0.6559 0.5369 0.6559 0.6702 0.6706 0.4932

Pretrained

Train 0.8633 0.7533 0.6369 0.7533 0.7483 0.7835 0.4106

Val 0.7888 0.5961 0.4692 0.5961 0.6443 0.5933 0.5700

Test 0.8482 0.6639 0.5448 0.6639 0.6601 0.6984 0.4858

Table G.6: U-Net performance on the 70% subset with and without pretraining. The U-Net
was trained for 300 epochs with a dropout rate of 0.15, a batch size of 8, and a cosine annealing
learning rate schedule from 0.001 to 0.0001. The pretrained model used features extracted
from an autoencoder trained on the 100% of the training set for 200 epochs with a mixed loss
function (α = 0.5, β = 0.4, γ = 0.1), a learning rate of 0.0001, and a batch size of 8.

Model Type Fraction Accuracy ↑ Dice ↑ IoU ↑ F1 ↑ Precision ↑ Recall ↑ Dice Loss ↓

Non-pretrained

Train 0.8522 0.7287 0.6096 0.7287 0.7226 0.7687 0.4295

Val 0.7870 0.5940 0.4670 0.5940 0.6412 0.5909 0.5712

Test 0.8526 0.6480 0.5346 0.6480 0.6616 0.6694 0.4865

Pretrained

Train 0.8565 0.7383 0.6198 0.7383 0.7322 0.7748 0.4233

Val 0.7956 0.5963 0.4721 0.5963 0.6423 0.5959 0.5647

Test 0.8542 0.6518 0.5378 0.6518 0.6923 0.6483 0.4905

Table G.7: U-Net performance on the 100% subset with and without pretraining. The U-Net
was trained for 300 epochs with a dropout rate of 0.15, a batch size of 8, and a cosine annealing
learning rate schedule from 0.001 to 0.0001. The pretrained model used features extracted
from an autoencoder trained on the 100% of the training set for 200 epochs with a mixed loss
function (α = 0.5, β = 0.4, γ = 0.1), a learning rate of 0.0001, and a batch size of 8.

63

Appendix H

Experiment 2

H.1 Medium-resolution imagery and labels

(a) Test set

(b) Validation set

Figure H.1: Semantic segmentation results on the medium-resolution satellite imagery. The
model was trained for 200 epochs with a batch size of 8, as discussed in Chapters 4 and 5.

64

H.2 VHR imagery and labels

Figure H.2: Semantic segmentation results on the test set of the VHR satellite imagery. The
model was trained for 50 epochs with a batch size of 4, as discussed in Chapters 4 and 5.

65

Appendix I

Workflow Diagrams

Figure I.1: Replacement of the encoder from the unet with the encoder from the Autoencoder.

66

Figure I.2: Workflow diagram of the two architectures, autoencoder and U-Net, used in the
research.

67

Bibliography

[1] M Acreman and J Holden. How wetlands affect floods. Wetlands, 33:773–786, 2013.

[2] Elhadi Adam, Onisimo Mutanga, and Denis Rugege. Multispectral and hyperspectral
remote sensing for identification and mapping of wetland vegetation: a review. Wetlands
ecology and management, 18:281–296, 2010.

[3] Adekanmi Adeyinka Adegun, Serestina Viriri, and Jules-Raymond Tapamo. Review of deep
learning methods for remote sensing satellite images classification: experimental survey
and comparative analysis. Journal of Big Data, 10(1):93, 2023.

[4] Nikita Aggarwal, Mohit srivastava, and Maitreyee Dutta. Comparative Analysis of Pixel-
Based and Object-Based Classification of High Resolution Remote Sensing Images – A
Review. International Journal of Engineering Trends and Technology, 38(1):5–11, 2016.

[5] Cathaoir Agnew, Anthony Scanlan, Patrick Denny, Eoin M. Grua, Pepijn Van De Ven,
and Ciaran Eising. Annotation Quality vs Quantity for Object Detection and Instance
Segmentation. IEEE Access, 2024.

[6] Rodrigo Antunes, Luiz Junior, Gilson Costa, Raul Feitosa, Edilson de Souza Bias, Abimael
Cereda Junior, Catherine Almeida, Laura E. Cué La Rosa, Patrick Happ, and Leonardo
Chiamulera. Leveraging SAR and Optical Remote Sensing for Enhanced Biomass Esti-
mation in the Amazon with Random Forest and XGBoost Models. In ISPRS Annals of
the Photogrammetry, Remote Sensing and Spatial Information Sciences, volume 10, pages
21–27. Copernicus Publications, 2024.

[7] Yu Bai, Yu Zhao, Yajing Shao, Xinrong Zhang, and Xuefeng Yuan. Deep learning in differ-
ent remote sensing image categories and applications: status and prospects. International
Journal of Remote Sensing, 43(5):1800–1847, 2022.

[8] Paul Berg, Minh-Tan Pham, and Nicolas Courty. Joint multi-modal self-supervised pre-
training in remote sensing: Application to methane source classification. In IGARSS 2023-
2023 IEEE International Geoscience and Remote Sensing Symposium, pages 6624–6627.
IEEE, 2023.

[9] Sudipto Bhowmik. Ecological and economic importance of wetlands and their vulnerability:
a review. Research Anthology on Ecosystem Conservation and Preserving Biodiversity,
pages 11–27, 2022.

[10] Bernhard E Boser, Isabelle M Guyon, and Vladimir N Vapnik. A training algorithm for
optimal margin classifiers. In Proceedings of the fifth annual workshop on Computational
learning theory, pages 144–152, 1992.

[11] Leo Breiman. Random forests. Machine learning, 45:5–32, 2001.

68

[12] Christopher F. Brown, Steven P. Brumby, Brookie Guzder-Williams, Tanya Birch, Saman-
tha Brooks Hyde, Joseph Mazzariello, Wanda Czerwinski, Valerie J. Pasquarella, Robert
Haertel, Simon Ilyushchenko, Kurt Schwehr, Mikaela Weisse, Fred Stolle, Craig Hanson,
Oliver Guinan, Rebecca Moore, and Alexander M. Tait. Dynamic World, Near real-time
global 10 m land use land cover mapping. Scientific Data, 9(1), 2022.

[13] I. M. Butko, O. I. Golubenko, O. M. Makoveichuk, I. O. Zaitsev, and V. O. Kromkach.
Vegetation zone segmentation in multispectral imagery. In IOP Conference Series: Earth
and Environmental Science, volume 1415. Institute of Physics, 2024.

[14] Chen, Xie, Jingqi Yuan, Readmore Huang, and Li. Research on a real-time monitoring
method for the wear state of a tool based on a convolutional bidirectional lstm model.
Symmetry, 11:1233, 2019.

[15] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L
Yuille. Deeplab: Semantic image segmentation with deep convolutional nets, atrous con-
volution, and fully connected crfs. IEEE transactions on pattern analysis and machine
intelligence, 40(4):834–848, 2017.

[16] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Pro-
ceedings of the 22nd acm sigkdd international conference on knowledge discovery and data
mining, pages 785–794, 2016.

[17] Zhenlin Chen, Sahar H. El Abbadi, Evan D. Sherwin, Philippine M. Burdeau, Jeffrey S.
Rutherford, Yuanlei Chen, Zhan Zhang, and Adam R. Brandt. Comparing Continuous
Methane Monitoring Technologies for High-Volume Emissions: A Single-Blind Controlled
Release Study. ACS ES&T Air, 1(6):657–670, 2024.

[18] Gong Cheng, Xingxing Xie, Junwei Han, Lei Guo, and Gui Song Xia. Remote Sensing
Image Scene Classification Meets Deep Learning: Challenges, Methods, Benchmarks, and
Opportunities. IEEE Journal of Selected Topics in Applied Earth Observations and Remote
Sensing, 13:3735–3756, 2020.

[19] Yezhen Cong, Samar Khanna, Chenlin Meng, Patrick Liu, Erik Rozi, Yutong He, Marshall
Burke, David Lobell, and Stefano Ermon. Satmae: Pre-training transformers for temporal
and multi-spectral satellite imagery. Advances in Neural Information Processing Systems,
35:197–211, 2022.

[20] Raghav Dahiya, Manish Kumar Ojha, Shikhar Saini, and Sanatan Ratna. Satellite Im-
age Segmentation Using U-Net. In 2024 15th International Conference on Computing
Communication and Networking Technologies, ICCCNT 2024. Institute of Electrical and
Electronics Engineers Inc., 2024.

[21] Lee R Dice. Measures of the amount of ecologic association between species. Ecology,
26(3):297–302, 1945.

[22] H Duel, MJ Baptist, GJ Geerling, AJM Smits, and J Van Alphen. Cyclic floodplain
rejuvenation as a strategy for both flood protection and enhancement of the biodiversity
of the river rhine. 4th Ecohydraulics, pages 1–24, 2002.

[23] Charlotte Marie Emery, Kevin Larnier, Maxime Liquet, João Hemptinne, Arthur Vin-
cent, and Santiago Peña Luque. Extraction of roughness parameters from remotely-sensed
products for hydrology applications. Hydrology and Earth System Sciences Discussions,
2021:1–40, 2021.

69

[24] Sana Fatima, Ayan Hussain, Sohaib Bin Amir, Syed Haseeb Ahmed, and Syed Muham-
mad Huzaifa Aslam. Xgboost and random forest algorithms: an in depth analysis. Pakistan
Journal of Scientific Research, 3(1):26–31, 2023.

[25] Mohamed Fawzy and Arpad Barsi. A U-Net Model for Urban Land Cover Classification
Using VHR Satellite Images. Periodica Polytechnica Civil Engineering, 69(1):98–108, 2024.

[26] Valerie Fernandez, Philippe Martimort, Francois Spoto, Omar Sy, and Paolo Laberinti.
Overview of sentinel-2. In Sensors, Systems, and Next-Generation Satellites XVII, volume
8889, pages 97–102. SPIE, 2013.

[27] Anthony Fuller, Koreen Millard, and James Green. Croma: Remote sensing representa-
tions with contrastive radar-optical masked autoencoders. Advances in Neural Information
Processing Systems, 36, 2024.

[28] Gianluca Furano, Gabriele Meoni, Aubrey Dunne, David Moloney, Veronique Ferlet-
Cavrois, Antonis Tavoularis, Jonathan Byrne, Léonie Buckley, Mihalis Psarakis, Kay-Obbe
Voss, et al. Towards the use of artificial intelligence on the edge in space systems: Chal-
lenges and opportunities. IEEE Aerospace and Electronic Systems Magazine, 35(12):44–56,
2020.

[29] Alisa L. Gallant. The challenges of remote monitoring of wetlands. Remote Sensing,
7(8):10938–10950, 2015.

[30] Dunia Gonzales, Natalie Hempel de Ibarra, and Karen Anderson. Remote Sensing of Floral
Resources for Pollinators – New Horizons From Satellites to Drones. Frontiers in Ecology
and Evolution, 10, 2022.

[31] Zhujun Gu and Maimai Zeng. The use of artificial intelligence and satellite remote sensing
in land cover change detection: review and perspectives. Sustainability, 16(1):274, 2023.

[32] Zhujun Gu and Maimai Zeng. The use of artificial intelligence and satellite remote sensing
in land cover change detection: Review and perspectives. Sustainability, 16(1):274, 2024.

[33] J Anthony Gualtieri and Robert F Cromp. Support vector machines for hyperspectral
remote sensing classification. In 27th AIPR workshop: Advances in computer-assisted
recognition, volume 3584, pages 221–232. SPIE, 1999.

[34] Meng Guo, Jing Li, Chunlei Sheng, Jiawei Xu, and Li Wu. A review of wetland remote
sensing. Sensors, 17(4):777, 2017.

[35] Diaa Hafez Ibrahim, Reda A El-khoribi, and Farid Ali Mousa. A Novel Deep Learning
Method for Detecting Changes in Satellite Imagery. Journal of Theoretical and Applied
Information Technology, 15(1), 2025.

[36] A. L. Hakstege, S. B. Kroonenberg, and H. Van Wijck. Geochemistry of holocene clays
of the rhine and meuse rivers in the central-eastern netherlands. Geologie en Mijnbouw,
71:301–315, 1993.

[37] Herlawati and Rahmadya Trias Handayanto. Land Cover Segmentation of Multispectral
Images Using U-Net and DeeplabV3+ Architecture. Jurnal Ilmu Komputer dan Informasi,
17(1):89–96, 2024.

[38] Yassine Himeur, Bhagawat Rimal, Abhishek Tiwary, and Abbes Amira. Using artificial in-
telligence and data fusion for environmental monitoring: A review and future perspectives.
Information Fusion, 86-87:44–75, 2022.

70

[39] C. Huang, L. S. Davis, and J. R.G. Townshend. An assessment of support vector machines
for land cover classification. International Journal of Remote Sensing, 23(4):725–749, 2002.

[40] Peter J. Huber. Robust Estimation of a Location Parameter. The Annals of mathematical
statistics,, 1963.

[41] Paul Jaccard. The Distribution of the Flora in the Alpine Zone. New Phytologist, 11(2):37–
50, 1912.

[42] Hamid Jafarzadeh, Masoud Mahdianpari, Eric W. Gill, Brian Brisco, and Fariba Moham-
madimanesh. Remote Sensing and Machine Learning Tools to Support Wetland Monitor-
ing: A Meta-Analysis of Three Decades of Research. Remote Sensing, 14(23), 2022.

[43] Bhargavi Janga, Gokul Prathin Asamani, Ziheng Sun, and Nicoleta Cristea. A Review of
Practical AI for Remote Sensing in Earth Sciences. Remote Sensing, 15(16), 2023.

[44] Juha Järvelä. Influence of vegetation on flow structure in floodplains and wetlands. In
IAHR Congress RCEM Conf. Proc, pages 845–856, 2003.

[45] Neha Joshi, Matthias Baumann, Andrea Ehammer, Rasmus Fensholt, Kenneth Grogan,
Patrick Hostert, Martin Rudbeck Jepsen, Tobias Kuemmerle, Patrick Meyfroidt, Ed-
ward TA Mitchard, et al. A review of the application of optical and radar remote sensing
data fusion to land use mapping and monitoring. Remote Sensing, 8(1):70, 2016.

[46] Rdvan Salih Kuzu, Oleg Antropov, Matthieu Molinier, Corneliu Octavian Dumitru, Sudi-
pan Saha, and Xiao Xiang Zhu. Forest Disturbance Detection via Self-Supervised and
Transfer Learning With Sentinel-1&2 Images. IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, 17:4751–4767, 2024.

[47] Zheng Li, Yongcheng Wang, Ning Zhang, Yuxi Zhang, Zhikang Zhao, Dongdong Xu, Guan-
gli Ben, and Yunxiao Gao. Deep learning-based object detection techniques for remote
sensing images: A survey. Remote Sensing, 14(10):2385, 2022.

[48] Wei Liu, Andrew Rabinovich, and Alexander C. Berg. Parsenet: Looking wider to see
better. CoRR, abs/1506.04579, 2015.

[49] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for
semantic segmentation. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 3431–3440, 2015.

[50] Siqi Lu, Junlin Guo, James R Zimmer-Dauphinee, Jordan M Nieusma, Xiao Wang, Parker
VanValkenburgh, Steven A Wernke, and Yuankai Huo. Ai foundation models in remote
sensing: A survey. arXiv preprint arXiv:2408.03464, 2024.

[51] Lucrêncio Silvestre Macarringue, Édson Luis Bolfe, and Paulo Roberto Mendes Pereira.
Developments in Land Use and Land Cover Classification Techniques in Remote Sensing:
A Review. Journal of Geographic Information System, 14(01):1–28, 2022.

[52] Sahel Mahdavi, Bahram Salehi, Jean Granger, Meisam Amani, Brian Brisco, and Weimin
Huang. Remote sensing for wetland classification: a comprehensive review. GIScience and
Remote Sensing, 55(5):623–658, 2018.

[53] Kumar Mainali, Michael Evans, David Saavedra, Emily Mills, Becca Madsen, and Susan
Minnemeyer. Convolutional neural network for high-resolution wetland mapping with open
data: Variable selection and the challenges of a generalizable model. Science of the Total
Environment, 861, 2023.

71

[54] Ujjwal Maulik and Debasis Chakraborty. Remote Sensing Image Classification: A survey of
support-vector-machine-based advanced techniques. IEEE Geoscience and Remote Sensing
Magazine, 5(1):33–52, 2017.

[55] Niti B. Mishra. Wetlands: Remote Sensing. In Wetlands and Habitats, pages 201–212.
CRC Press, 2020.

[56] William J. Mitsch, Blanca Bernal, Amanda M. Nahlik, Ülo Mander, Li Zhang, Christo-
pher J. Anderson, Sven E. Jørgensen, and Hans Brix. Wetlands, carbon, and climate
change. Landscape Ecology, 28(4):583–597, 2013.

[57] Alberto Moreira, Pau Prats-Iraola, Marwan Younis, Gerhard Krieger, Irena Hajnsek, and
Konstantinos P. Papathanassiou. A tutorial on synthetic aperture radar. IEEE Geoscience
and Remote Sensing Magazine, 1(1):6–43, 2013.

[58] Jens Nieke, Laurent Despoisse, Antonio Gabriele, Heidrun Weber, Helene Strese, Nafiseh
Ghasemi, Ferran Gascon, Kevin Alonso, Valentina Boccia, Bogdana Tsonevska, et al. The
copernicus hyperspectral imaging mission for the environment (chime): an overview of its
mission, system and planning status. Sensors, Systems, and Next-Generation Satellites
XXVII, 12729:21–40, 2023.

[59] Mubashir Noman, Muzammal Naseer, Hisham Cholakkal, Rao Muhammad Anwer, Salman
Khan, and Fahad Shahbaz Khan. Rethinking transformers pre-training for multi-spectral
satellite imagery. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 27811–27819, 2024.

[60] M. Pal and P. M. Mather. Support vector machines for classification in remote sensing.
International Journal of Remote Sensing, 26(5):1007–1011, 2005.

[61] Fernando Pech-May, Raul Aquino-Santos, Omar Alvarez-Cardenas, Jorge Lozoya Aran-
dia, and German Rios-Toledo. Segmentation and Visualization of Flooded Areas Through
Sentinel-1 Images and U-Net. IEEE Journal of Selected Topics in Applied Earth Observa-
tions and Remote Sensing, 17:8996–9008, 2024.

[62] Gustav Grund Pihlgren, Fredrik Sandin, and Marcus Liwicki. Pretraining image encoders
without reconstruction via feature prediction loss. In 2020 25th international conference
on pattern recognition (ICPR), pages 4105–4111. IEEE, 2021.

[63] Hampapuram K Ramapriyan, Jeanne Behnke, Edwin Sofinowski, Dawn Lowe, and
Mary Ann Esfandiari. Evolution of the earth observing system (eos) data and information
system (eosdis). In Standard-based data and Information systems for Earth observation,
pages 63–92. Springer, 2009.

[64] Gareth Rees. Physical principles of remote sensing. Cambridge university press, 2013.

[65] Ekram M Rewhel, Jianqiang Li, Amal A Hamed, Hatem M Keshk, Amira S Mahmoud,
Sayed A Sayed, Ehab Samir, Hind H Zeyada, Sayed A Mohamed, Marwa S Moustafa, et al.
Deep learning methods used in remote sensing images: A review. Journal of Environmental
& Earth Sciences, 5(1):33–64, 2023.

[66] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks
for biomedical image segmentation. In Medical image computing and computer-assisted
intervention–MICCAI 2015: 18th international conference, Munich, Germany, October
5-9, 2015, proceedings, part III 18, pages 234–241. Springer, 2015.

72

[67] Anastasiia Safonova, Gohar Ghazaryan, Stefan Stiller, Magdalena Main-Knorn, Claas Nen-
del, and Masahiro Ryo. Ten deep learning techniques to address small data problems with
remote sensing. International Journal of Applied Earth Observation and Geoinformation,
125:103569, 2023.

[68] Shokoufeh Salimi, Suhad AAAN Almuktar, and Miklas Scholz. Impact of climate change on
wetland ecosystems: A critical review of experimental wetlands. Journal of Environmental
Management, 286:112160, 2021.

[69] Linus Scheibenreif, Joelle Hanna, Michael Mommert, and Damian Borth. Self-supervised
vision transformers for land-cover segmentation and classification. In 2022 IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pages
1421–1430. IEEE, 2022.

[70] Mohammadreza Sheykhmousa, Masoud Mahdianpari, Hamid Ghanbari, Fariba Moham-
madimanesh, Pedram Ghamisi, and Saeid Homayouni. Support vector machine versus
random forest for remote sensing image classification: A meta-analysis and systematic re-
view. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,
13:6308–6325, 2020.

[71] Anita Simic Milas, Arthur P. Cracknell, and Timothy A. Warner. Drones–the third genera-
tion source of remote sensing data. International Journal of Remote Sensing, 39(21):7125–
7137, 2018.

[72] Bart Slagter, Nandin Erdene Tsendbazar, Andreas Vollrath, and Johannes Reiche. Map-
ping wetland characteristics using temporally dense Sentinel-1 and Sentinel-2 data: A case
study in the St. Lucia wetlands, South Africa. International Journal of Applied Earth
Observation and Geoinformation, 86, 2020.

[73] Derk Jan Stobbelaara and Jack CM Schoenmakersa. The influence of the vegetation
structure on the water flow through the Noordwaard (Brabant, The Netherlands). NCR
DAYS 2018, page 118, 2018.

[74] Anastasios Tzepkenlis, Konstantinos Marthoglou, and Nikos Grammalidis. Efficient deep
semantic segmentation for land cover classification using sentinel imagery. Remote Sensing,
15(8):2027, 2023.

[75] Eveline C. van der Deijl, Marcel van der Perk, and Hans Middelkoop. Factors controlling
sediment trapping in two freshwater tidal wetlands in the Biesbosch area, The Netherlands.
Journal of Soils and Sediments, 17(11):2620–2636, 2017.

[76] Eveline C. van der Deijl, Marcel van der Perk, and Hans Middelkoop. Pathways of Water
and Sediment in the Biesbosch Freshwater Tidal Wetland. Wetlands, 39(1):197–215, 2019.

[77] Anders U. Waldeland, Arnt Borre Salberg, Oivind D. Trier, and Andreas Vollrath. Large-
Scale Vegetation Height Mapping from Sentinel Data Using Deep Learning. In Interna-
tional Geoscience and Remote Sensing Symposium (IGARSS), pages 1877–1880. Institute
of Electrical and Electronics Engineers Inc., 2020.

[78] Anders U. Waldeland, Øivind Due Trier, and Arnt Børre Salberg. Forest mapping and
monitoring in Africa using Sentinel-2 data and deep learning. International Journal of
Applied Earth Observation and Geoinformation, 111, 2022.

73

[79] Yi Wang, Nassim Ait Ali Braham, Zhitong Xiong, Chenying Liu, Conrad M Albrecht,
and Xiao Xiang Zhu. Ssl4eo-s12: A large-scale multimodal, multitemporal dataset for
self-supervised learning in earth observation [software and data sets]. IEEE Geoscience
and Remote Sensing Magazine, 11(3):98–106, 2023.

[80] Zhou Wang, Alan Conrad Bovik, Hamid Rahim Sheikh, and Eero P. Simoncelli. Image
quality assessment: From error visibility to structural similarity. IEEE Transactions on
Image Processing, 13(4):600–612, 2004.

[81] Michael A Wulder, David P Roy, Volker C Radeloff, Thomas R Loveland, Martha C Ander-
son, David M Johnson, Sean Healey, Zhe Zhu, Theodore A Scambos, Nima Pahlevan, et al.
Fifty years of landsat science and impacts. Remote Sensing of Environment, 280:113195,
2022.

[82] Qikai Lu Huangfeng Shen Shengyang Li Shucheng You Liangpei Zhang Xin-Yi Tong, Gui-
Song Xia. Land-cover classification with high-resolution remote sensing images using trans-
ferable deep models. Remote Sensing of Environment, doi: 10.1016/j.rse.2019.111322,
2020.

[83] Zhixiang Xue, Xuchu Yu, Anzhu Yu, Bing Liu, Pengqiang Zhang, and Shentong Wu. Self-
Supervised Feature Learning for Multimodal Remote Sensing Image Land Cover Classifi-
cation. IEEE Transactions on Geoscience and Remote Sensing, 60, 2022.

[84] Xiaohui Yuan, Jianfang Shi, and Lichuan Gu. A review of deep learning methods for seman-
tic segmentation of remote sensing imagery. Expert Systems with Applications, 169:114417,
2021.

74

	Introduction
	Background
	Wetlands and Floodplains
	The Biesbosch Wetland
	Wetland Vegetation Types

	Remote Sensing for Wetlands
	Types of Remote Sensing

	Machine Learning for Remote Sensing

	Machine Learning for Remote Sensing
	Machine Learning Methods in Remote Sensing
	Conventional Machine Learning Algorithms
	Deep Learning-Based Methods

	Machine Learning for Wetland Monitoring
	Supervised Learning for Semantic Segmentation
	Self-Supervised Learning for Pretraining

	Method
	Model Architecture
	Autoencoder for Pretraining
	U-Net for Semantic Segmentation

	Learning Objective
	Autoencoder Loss
	U-Net Loss
	Performance Metrics

	Experimental Setup
	Data
	Sentinel-2 imagery with Dynamic World labels
	Pléiades NEO imagery with Manual Labels

	Experiment 1: Impact of Pretraining (Label Dependency)
	Experiment 2: Impact of Resolution

	Results
	Baseline Performance of U-Net trained from Scratch
	Experiment 1: Impact of Pretraining (Label Dependency)
	Experiment 2: Impact of Resolution

	Discussion
	Analysis of the Results
	Answering the Research Questions
	Future Research

	Conclusion
	Conclusion
	Acknowledgments

	Deep Learning Methods in Remote Sensing
	Hyperparameter Tuning
	Autoencoder
	Learning Rate
	Dropout Probability

	U-Net
	Learning Rate
	Dropout Probability

	(Pretrained) U-Net Results on Gaofen-2 imagary and LULC-labels
	Sentinel-2 imagery with Dynamic World labels
	Available Sentinel-2 bands
	Selection of Wetland areas for Sentinel-2
	Dynamic World Classification Scheme

	Pléiades NEO imagery with Manual Labels
	Selection of Biesbosch areas for Pléiades NEO
	Rijkswaterstaat Classification Scheme
	Blackshark.ai labels
	Roboflow labels

	Baseline U-Net
	Experiment 1
	Experiment 2
	Medium-resolution imagery and labels
	VHR imagery and labels

	Workflow Diagrams

