
MSc Artificial Intelligence
Master Thesis

Visual Feature Detection in RTAB-Map
with the Spot Robot: Applicability and

Performance Analysis

by

Emily Sae Mes
11737220

July 26, 2023

48 EC
November 2022 - July 2023

Supervisor:
Prof. Dr. Takayuki Nagai

Examiner:
Dr. Arnoud Visser

Second reader:
Dr. Shaodi You

Contents

1 Introduction 2

2 Problem definition 3

3 Theoretical background 5
3.1 Navigation . 5
3.2 Simultaneous Localization and Mapping (SLAM) 6

3.2.1 Problem definition . 6
3.2.2 SLAM paradigms . 7

3.3 SLAM implementations . 8
3.3.1 Filter-based SLAM . 8
3.3.2 Graph-based SLAM . 8
3.3.3 Visual SLAM . 8

3.4 VisualSLAM methods . 9

4 Related work 10
4.1 Feature Detection . 10
4.2 Binary features . 10

4.2.1 Comparison . 11
4.3 Floating-point features . 12

4.3.1 Comparison . 14
4.4 Deep learning-based features . 14

4.4.1 Comparison . 16
4.5 Discussion . 17

5 Method 18
5.1 Robot Spot . 18
5.2 Hardware . 19
5.3 Software . 20

5.3.1 ROS . 20
5.3.2 RTABMap . 20

5.4 Implementation . 23
5.4.1 RTABMap addition: R2D2 . 23
5.4.2 Evaluation . 24

5.5 Summary . 26

6 Experiments 27
6.1 Perspective . 27
6.2 Validation . 28
6.3 Extension . 29

i

7 Results 30
7.1 Perspective . 30
7.2 Validation . 31

7.2.1 Exploration . 31
7.2.2 Qualitative results . 32
7.2.3 Quantitative results . 34

7.3 Extension . 35
7.4 Conclusion . 36

8 Conclusions 37
8.1 Discussion . 37
8.2 Future work . 37
8.3 Conclusion . 38

Abstract

This thesis investigates the applicability and performance of feature detection in a visual
SLAM approach, namely RTAB-Map, by conducting a comparative analysis of existing
visual features in terms of re-localization and application and the integration of an additional
visual feature using the robot Spot. This study aims to gain a deeper understanding of the
optimal performance of visual SLAM under varying conditions. This study finds that the
optimal choice of a feature detector depends on the specific task at hand and the data
distortions, leading to diverse outcomes, notable with the SuperPoint feature. Moreover,
the integration of the R2D2 feature detection may have revealed a concern about using deep-
learning based visual features in combination with visual SLAM. Additionally, an evaluation
approach based on the fiducial principle is proposed for map assessment in the absence of
ground truth data. In conclusion, this thesis provides valuable insights into visual SLAM
feature detection, and offers directions for future research to enhance the methodology’s
robustness and overall performance.

1

CHAPTER 1

Introduction

Japan has been facing a rapid shift in the demographic structure since 2010 [49], which is demon-
strated by the declining birthrate and aging population [58]. This also results in a decreasing
labor force; Whereas labor force was around 79 million people in 2013, it is expected to decline
by 9 million people in 2025 [66]. A domestic help robot could provide a solution for both the
demanding elderly care and decreasing labor force, for example by being able to send a robot
on a mission to get products from a store and deliver it back to you. Since convenience stores
are structured and its services are standardized, it is an ideal environment for this study. Fur-
thermore, due to Japan having around 50.000 convenience stores [66], the impact could also
be substantial. Robotics in convenience stores has been studied scarcely, however, its research
has been accelerated by the introduction of the Future Convenience Store Contest (FCSC) in
2017 [66], which focused on tasks such as restocking, trash disposal, customer interaction and
restroom cleaning. The robot Spot could be used as test object for this kind of application, since
it can be used both indoors and outdoors, has the ability to perform actions, such as opening
doors and picking up objects, and is able to descend and climb stairs. Furthermore, it has the
required sensors and cameras to perform the tasks. Therefore, for this research Spot will be used
to provide a understanding and lay the groundwork to achieve this envisioned scenario.

2

CHAPTER 2

Problem definition

Since the release of the robot Spot, it has been used in a variety of applications or research,
such as exploring extreme environments [4] or joining search-and-rescue missions of the military
or police departments [45, 19, 70]. The fact that Spot has mostly been used in those kinds of
applications comes as no surprise, since Spot started as a Defense Advanced Research Projects
Agency (DARPA)-funded project in as early as 2003 [70]. This may have led to perceptions of
dystopian danger. Nonetheless, Boston Dynamics has also shown the entertaining side of Spot
while showing off its dance moves and its human-friendly domestic side when fetching a drink
for its owner at home in various published videos 1 2 3. Spot is very suitable for comprehensive
tasks, due to its versatility and agility [23].

Service robots in retail environments have been experimented with for a variety of tasks, such
as showing product locations or carrying products for customers [21]. Additionally, recently a
robot restocking the shelves has been rolled out to hundreds of Japanese convenience stores
4. These service robots in retail environments aim to improve overall customer experience, in
which it succeeded since [21] reported that 92% of the customers would use a robot again as a
shopping companion. However, in those experiments, full prior knowledge of the environments
was required, meaning that the robot can not operate autonomously in an environment that
is not manually mapped, and can not adopt to changes in that environment. Incorporating
SLAM could solve these challenges. In [13], a robot architecture for the autonomous search
and localization of products in unknown dynamic grocery stores is proposed by using the con-
textSLAM framework. The contextSLAM framework achieves this by obtaining the context via
deep learning-based Optical Character Recognition (OCR), and merging this context with the
laser range measurements.

1https://www.youtube.com/watch?v=kHBcVlqpvZ8
2https://www.youtube.com/watch?v=fn3KWM1kuAw
3https://www.youtube.com/watch?v=tf7IEVTDjng
4https://blogs.nvidia.com/blog/2022/08/10/telexistence-convenience-store-robotics/

3

https://www.youtube.com/watch?v=kHBcVlqpvZ8
https://www.youtube.com/watch?v=fn3KWM1kuAw
https://www.youtube.com/watch?v=tf7IEVTDjng
https://blogs.nvidia.com/blog/2022/08/10/telexistence-convenience-store-robotics/

Figure 2.1: Situation of the robot Spot mapping and localizing itself in the Experiment Room
of the Robot Learning Group.

In this study, the objective will be for Spot to localize and map itself in an unknown environ-
ment. In the end, this could be extended to and have an application in Spot retrieving an item
from the convenience store. Specifically, the research will take place in the Experiment Room of
the Robot Learning Group of the Osaka University, where various visual features incorporated in
SLAM methods will be compared. A situation where the robot Spot is mapping and localizing
itself in this environment is shown in Figure 2.1, which shows the construction of the map on
the left side by finding keypoints and matches between frames as shown in the middle. While
it is also interesting to let the Spot robot walk freely through the Kisokougaku building of the
Toyonaka campus where the Experiment Room is located, this had to be restricted too much, as
for example navigation with an elevator is a research project on its own [65, 69]. Therefore, the
main focus will be on the navigation in the Experiment Room. This gives the following research
questions:

RQ1. What are the currently available feature detectors for visual SLAM methods, and how do
they compare to each other?

RQ2. Is it possible to integrate a new feature detector, namely R2D2, into RTAB-Map, and how
does its performance compare to the existing feature detectors?

RQ3. How can map assessment be performed of a map produced by visual SLAM when the
ground truth is not available?

4

CHAPTER 3

Theoretical background

3.1 Navigation

Navigation is commonly regarded as the most challenging competence that is required of an
autonomous mobile robot [59]. Robot navigation consists of multiple parts. First of all, the
robot has to interpret its sensory data in order to gain relevant information. Secondly, the robot
has to localize itself in the current environment. Thirdly, the robot has to know what to do
to achieve its given objective. Lastly, the robot has to direct itself to do what it wants itself
to do. These four building blocks – perception, localization, cognition and motion – are closely
intertwined: however good the processing of information is, if the sensory information is not
correctly obtained, the robot will have trouble localizing itself in the environment. Alternatively,
when the robot is successful in all four of those modules, it will succeed in navigating itself
safely through an environment. The process of robot navigation can be seen in Figure 3.1. The
operations of this study are identical to this process. When the Spot robot starts its operation,
it must gain information about its current environment (perception) to map and localize itself
(localization), whereafter it can start planning where it wants to go (cognition). Lastly, this
planned path could be executed and it could complete its given task of for example retrieving
an item (motion).

Figure 3.1: An abstract control scheme for mobile robot systems. Courtesy from [59].

5

3.2 Simultaneous Localization and Mapping (SLAM)

Navigating through an environment requires the knowledge of the current location and the ex-
istence of a map of the environment. This map is classically built by hand, which can be hard,
costly, and very time-consuming [59]. Localization is the process of using the sensor data to
update the current position of a robot in an environment. So navigation is actually a chicken-
and-egg problem [24]. The current position of the robot (obtained by localization) is required to
build a map of the environment successfully, but the map is essential when performing localiza-
tion. This is one of the main reasons for ‘autonomous map building’ [68], which enables a robot
to be placed at an unknown location in an unknown environment, where it incrementally builds
a consistent map of this environment while simultaneously determining its location on the map
[11]. This is called the Simultaneous Localization and Mapping (SLAM) problem [59]. In short,
SLAM addresses the problem of a robot navigating in an unknown environment, while seeking
to acquire a map of that environment to localize itself on that map. This section will provide
the mathematical problem definition and function as a comprehensive introduction to the major
paradigms. To put into perspective, in this study the RTABMap visual SLAM algorithm will
be used, which is a graph-based SLAM method that is able to process both laser and visual
observations.

3.2.1 Problem definition

The SLAM problem can be defined in probabilistic terminology [61]. Let t be a certain time

point, and the position of the robot at that time as x⃗t = (X⃗t,Θt)
T , where X⃗t = (xt, yt, zt)

T and
Θt denote the 3D position and the orientation of the robot. The entire trajectory of the robot
can then be denoted by XT = (x⃗0, x⃗1, ..., x⃗T). Note that T is the time length of the trajectory,
and x⃗0 is the initial position. The measurements of the odometry between time point t and time
point t − 1 can be denoted by u⃗t, meaning that UT = (u⃗0, u⃗1, ..., u⃗T) denotes the sequence of
relative motions of the trajectory. In theory, this relative odometry sequence in combination
with the initial position x⃗0 could be enough to determine the entire path. However, odometry
readings are prone to be corrupted by noise, which might result in a discrepancy between the
actual end pose x⃗T and reconstructed end pose x⃗∗

T . The actual map of the environment can
be denoted as m, which consists locations of possible landmarks or objects in the environment.
These locations are determined by the sensor measurements at a certain time step z⃗t. This means
that the sensor measurements of the robots trajectory can be defined by ZT = (z⃗0, z⃗1, ..., z⃗T).
Note that here the assumption is made that a sensor measurement is taken at every time step.
Now, the SLAM problem is the problem of recovering the robot trajectory XT and modeling the
map m simultaneously, from the odometry data UT and the sensor measurements ZT . Figure 3.2
shows a graphical model of the SLAM problem.

6

ut−1 xt−1

ut

ut+1

xt

xt+1

zt−1

zt

zt+1

m

Figure 3.2: A graphical model of the SLAM problem. Note that the arrows indicate a causal
relationship, and that the yellow nodes are observable by the robot, whereas the shaded nodes
are not. The goal of SLAM is to recover the shaded nodes. Inspired by / courtesy from [61].

The SLAM problem can be divided up into two flavors: the offline, also called full, and the
online approach. The offline approach considers the full posterior, thus the measurements of the
entire trajectory to estimate the entire trajectory and the map, as follows:

p(XT ,m|ZT ,UT) (3.1)

The online approach tries to estimate the current robot pose instead of the entire trajectory,
and utilizes only the measurements at one time step, as follows:

p(x⃗t,m|z⃗t, u⃗t) (3.2)

While both instances seek to maximize the probability of the robot pose(s) and the map,
the approach differs, meaning there are different paradigms. These will be discussed in the next
subsection.

3.2.2 SLAM paradigms

In this section, the basic paradigms will be discussed, which can be divided up in filter-based and
graph-based methods. Note that typically in the filter-based approaches the map is incrementally
established whereas the graph-based approaches can typically be categorized as the previously
discussed full approach. The filter-based paradigm is typically based on the principles of the
Extended Kalman Filter (EKF) SLAM and Particle Filter (PF) SLAM. EKF SLAM [2] was
historically the first method, but has since then become overshadowed due to its limitations in
computation. In EKF SLAM, the pose of the robot and the positions of all features are stored
in a state vector and the associated error covariance matrix that represents the uncertainty in
these estimates are being updated using the extended Kalman filter as the robot moves through
the environment and observes new features. This means that as new features, such as points or
planes, are observed, the state vector increases and the covariance matrix is growing quadratically,
hence EKF SLAM being computationally expensive. In PF SLAM [46], the pose of the robot
and the locations of the landmarks are also iteratively updated as the robot moves through
the environment, however, the big difference is that the robot’s pose and the landmarks are
represented by a set of particles, by which the posterior distribution can be approximated. In
theory, the particle filter is capable of approaching the true posterior with an increasing particle
size, but since particle filters scale exponentially with the dimension of the true space, its use
is limited by the number of dimensions. To summarize, the common feature of the graph-based
approach is as follows: the prediction step is model-based on possible paths and maps, which
could aggregate uncertainty. The update step then corrects this with the actual observations,
which in turn reduces the uncertainty.

7

The second SLAM paradigm is characterized by the graph-based models, which uses non-
linear sparse optimization to perform SLAM, both on the current observation and the history
of all previous observations. Intuitively, the landmarks and robot locations are represented as
nodes in the graph, where adjacent nodes are connected by an edge which contains the odometry
reading between the two locations. These edges represent the constraints between the loca-
tions, and the trick is to optimize the edge constraints to estimate the maximum likelihood pose
and landmark positions. Note that the graph-based model is in essence a full SLAM problem
solution, however, recent developments [61] include an incremental version of the graph-based
model. Generally, since there are highly efficient optimization techniques available to solve sparse
nonlinear optimization, graph-based SLAM [62] is the method of choice for building large-scale
maps.

3.3 SLAM implementations

3.3.1 Filter-based SLAM

SLAM algorithms can be categorized into two groups. The classical methods use Bayes-based
filter approaches [61], whereas the new methods make use of graphs [62]. Two of the most signif-
icant implementations following the Bayes-based filter methods currently available as packages
are GMapping [20, 22] and HectorSLAM [33, 32].

While GMapping was developed in 2007, it is still one of the most commonly used system
[43]. It uses 2D lidar data to build grid maps using a particle filter approach [20]. However, it was
found that the final obtained map did not correctly represent the real map of the environment,
as for example the orientations of the hallways were not realistic [16]. HectorSLAM integrates
laser scan matching feature with the 3D navigation method based on Extended Kalman Filter
(EKF) state estimation [33]. HectorSLAM does not make use of odometry data, which makes
it more noisy [43], but alternatively it may have an advantage in environments with pitch and
roll characteristics [55]. Furthermore, it does not provide loop closure capabilities to avoid
inaccuracies.

3.3.2 Graph-based SLAM

Noteworthy available implementations of the graph-based approach include KartoSLAM [34],
RTAB-Map [36], Cartographer [29], and SLAM Toolbox [43]. Graph-based methods represent the
map as a graph, where each node represents a pose of the robot. Those are connected by arcs that
represent the motion between these poses. A pose-graph contains a set of robot poses connected
by nonlinear constraints that are retrieved using the observations of features that are common
to nearby poses [34]. However, the optimization of pose-graphs can be a bottleneck for mobile
robots, due to computation time scaling quadratically with the size of the graph. To prevent
this, KartoSLAM makes use of Sparse Pose Adjustment (SPA) for scan matching and loop-
closure procedures [34]. A proposed improvement that, just like KartoSLAM is based on SPA, is
the SLAM Toolbox, which provides not only accurate mapping algorithms, but also a variety of
other tools [43]. Cartographer also uses lidar data for a graph-representation, where the front-end
does scan matching, building trajectory and submaps, and the back-end does the loop closure
procedure [29]. However, it is abandoned by Google and no longer maintained. Contrary to
aforementioned lidar-based approaches, RTAB-Map, abbreviated from Real-Time Appearance-
Based Mapping, is a feature-based approach that builds a point cloud map as graph, with the
position and orientation captured image at every pose as nodes [36]. It can be implemented with
3D lasers, stereo vision, or RGB-Depth cameras [55]. RTAB-Map is also the choice for this study
because it is well-maintained and contains the interesting features such as Visual Odometry and
loop closure.

3.3.3 Visual SLAM

Visual SLAM, where visual sensors are utilized to map and localize an environment, has become
a popular and significant subject in recent years [59]. Visual SLAM consists of three main

8

steps, initialization, tracking and mapping [59]. In the first step, the global coordinate system
is defined and an initial estimate is made of the position of the robot in the initialized map.
This initialization is then approximated during the tracking step, when the motion through the
environment is tracked by determining the changes in the feature positions and estimate the
robot’s pose based on that. The Feature Extraction step determines what exactly are features.
These are distinctive features from the image, such as corners or edges or more complex features
retrieved using a feature detection algorithm. Then the features of adjacent image frames are
compared in the Feature Matching step. Once matched, an estimation is made of the camera’s
motion based on the changes of the features. This step is known as Visual Odometry (VO)
[48]. Lastly, in the mapping step a 3D map of the environment is built. To potentially improve
the map as good as possible, two additional steps are performed: loop closure and optimization.
Visual frames offer a lot of information for loop closing, which often relies on visual bag-of-words.
Images are reduced to visual ‘words’ by the feature descriptors, whereafter the similarity of two
images can be determined by calculating the product between the word vectors containing the
weighted word frequency. If the images are similar enough, that is when the robot has revisited
a location, the loop is closed. This results in adjusting the map to correct for the drift. In the
optimization step, the reprojection error between the observed and predicted feature positions
is minimized to obtain a more accurate map.

3.4 VisualSLAM methods

Apart from RTAB-Map, all aforementioned graph-based approaches like KartoSLAM, Cartog-
rapher and the SLAMToolbox require a lidar input, be it in 2D, 3D or the additional odometry
data that can be used to help the SLAM approach compute motion estimation. However for vi-
sualSLAM, while various open-source approaches exist, not many can easily be used on a robot
[38]. One of the first approaches in the visual SLAM domain was introduced in 2007, under the
name of MonoSLAM [8], which was equipped with a monocular camera to recover the trajectory.
Over the years, the reconstruction methods became more advanced, for example by including
global optimization techniques and loop closure detection modules [64]. Also the sensors were
changed to provide richer information about the environment, and stereo and RGB-D cameras
or visual-inertial odometry were used. For this study, the methods are limited to approaches
that do not suffer from scale drift, and are therefore able to estimate the correct scale of the
environment to be mapped. Some of the currently most significant implementations comparable
with RTAB-Map discussed previously, are ORB-SLAM and Elbrus SLAM. ORB-SLAM2, that
can be used by either stereo camera or RGB-D camera, is a graph-based SLAM approach that
uses Bundle Adjustment (BA) to optimize the map when a loop closure is detected [47]. As the
name suggests, the used features are found using Oriented FAST and Rotated BRIEF (ORB)
[53]. The improvement ORB-SLAM3 extends its use by being able to perform visual, visual-
inertial and multimap SLAM with monocular, stereo and RGB-D cameras, using pin-hole and
fish-eye lens models [7]. Elbrus SLAM 1 from NVIDIA achieves state-of-the-art performance by
combining Visual Odometry (VO) and SLAM. VO estimates the camera position relative to its
start position, which is used by SLAM to improve the predictions. This way, when the current
scene was already previously seen, the obtained poses can be corrected, if necessary. Inertial
Measurement Unit (IMU) data can also be used when VO is not able to make an estimation,
for example due to bad lightning, or when the camera is obstructed. This addition can lead to
significant performance improvements in cases of poor visual conditions. In the experiments, the
robot was able to find multiple products in various environments with unpredictable dynamic
situations.

1https://docs.nvidia.com/isaac/packages/visual_slam/doc/elbrus_visual_slam.html

9

https://docs.nvidia.com/isaac/packages/visual_slam/doc/elbrus_visual_slam.html

CHAPTER 4

Related work

In this chapter, the related work of multiple challenges of this research will be discussed. The
primary focus will be on various feature detection techniques, that can be integrated with a
visual SLAM approach. First of all, the importance and the first approaches of feature detection,
specifically when using visual SLAM are introduced, whereafter the currently available feature
detectors are discussed. These feature detectors are categorized in binary features, floating-point
features and deep-learning based features.

4.1 Feature Detection

Visual SLAM is mostly based on determining the geometric relationships between the obtained
sequences of images and the surrounding environment by feature extraction and matching [10].
This makes the detection of features a crucial step [57]. Whereas visual features were previously
extracted using corner feature detectors, such as Harris [26] and Förstner [17], the development
of invariant feature description methods, such as SIFT [41], the applicability of visual SLAM
has been improved significantly [10]. This is because both the extraction and matching of the
keypoints in the image are able to be performed with limited image deformation and illumination
changes. However, since these performance improvements require significant computations and
are therefore accompanied by a limitation in the efficiency, more feature detectors have been
developed to regard the efficiency [10]. These include feature detectors such as SURF [3], BRISK
[40] and ORB [53]. In this chapter, the currently available feature detector that are able to be
integrated with a visualSLAM approach will be discussed. Furthermore, three categories are
distinguished, namely binary features, float features and learned features, since generally all
feature types can be placed in one of these categories [39].

4.2 Binary features

Binary features are characterized by the following common principles [28]. First of all, the
descriptor corresponding to the binary keypoint is created by comparing the intensities in pairs.
Secondly, each bit in the descriptor represents the outcome of one single comparison. Thirdly,
the sampling pattern remains constant, except for potential changes in scale and rotation. And
lastly, the similarity between descriptors is measures using the Hamming distance [25]. On top of
these common principles, each binary feature is characterized by different properties compatible
with its design goals.

BRIEF (Binary Robust Independent Elementary Features) is the simplest of methods in this sec-
tion. A smoothing kernel is applied with noise sensitivity, whereafter every keypoint is described
by a binary feature detector [6]. The sampling pattern can consist of either 128, 256 or 512 com-
parisons, which results in 128, 256 or 512 bits respectively. The sampling points are randomly

10

selected from an isotropic Gaussian distribution which is centered at the feature location (see
Figure 4.1a for an illustration).

ORB (Oriented FAST and Rotated BRIEF) builds on the well-known Features from Accelerated
Segment Test (FAST) keypoint detector [52] and the previously introduced BRIEF descriptor [6].
FAST is a high-speed keypoint detector that uses machine learning to classify whether a certain
point is a interesting corner point. It is faster than other existing corner detectors, and is able to
reach high levels of repeatability under large aspect changes, but it is not robust to high levels of
noise and dependent on a threshold [52]. ORB is an improvement of BRIEF in the sense that it
overcomes the lack of rotation invariance. This is achieved by computing a local orientation by
utilizing an intensity centroid [53]. This is determined by averaging the intensities of the pixels
that are within a specific area around the feature. Then the orientation is determinated by the
vector between the mentioned centroid and the feature itself. The sampling pattern is performed
using 256 pairwise intensity comparisons, however, ORB, unlike BRIEF, constructs the pattern
using machine learning techniques. The aim is to maximize the variance of the descriptor while
simultaneously minimizing the correlation under different orientation changes (see Figure 4.1b
for an illustration).

BRISK (Binary Robust Invariant Scalable Keypoints) adds another functionality on top of ORB,
namely being both scale and rotation invariant [40]. BRISK utilizes the AGAST corner detector
[44], which is a faster version of FAST for the feature detection, which is done in a scale-space
pyramid to realize scale invariance. Furthermore, non-maxima suppression and interpolation
across multiple scales is performed to prevent duplicates. Contrary to BRIEF and ORB, a
symmetric pattern is used to describe the features. The sampling takes place in concentric circles
around the feature, where each sample points represents a Gaussian blur of the surrounding
pixels. The degree of blurring (the standard deviation) increases as the distance from the center
of the feature grows (see Figure 4.1c for an illustration). The orientation is determined by using
several long-distance sample point comparisons, that capture vector displacements weighted by
intensity differences. Averaging these reveals the dominant gradient direction. The sampling
pattern is scaled, rotated and built into the descriptor using 512 short-distance sample point
comparisons, representing local gradients and shape [40].

(a) (b) (c)

Figure 4.1: Example patterns of the (a) BRIEF, (b) ORB, and (c) BRISK feature type algo-
rithms. Courtesy from [28].

4.2.1 Comparison

These feature detection algorithms have been compared in three categories, namely non-geometric
transforms, affine image transforms and perspective transforms [28]. Non-geometric transforms
consist of transformations that are image-capture dependent and do not rely on the viewpoint.
In this category, even though BRIEF has a noticeably lower precision than ORB and BRISK,

11

it outperforms them, which makes BRIEF favorable. This can be explained by its fixed pat-
tern. Also, the authors note that the lower precision is caused by having either a less restrictive
matching criteria or feature distinction, which also does not make it surprising that the pre-
cision of BRIEF suffers slightly. Affine image transforms consist of image plane rotation and
scaling. In this category, ORB and BRISK performed well, whereas BRIEF performed rather
poorly. This is expected because BRIEF is neither rotation and scale invariant. Furthermore,
since ORB only has the rotation invariant attribute, whereas BRISK has both, BRISK performs
the best of all binary feature detectors. Perspective transforms are achieved by changes in view-
point. Surprisingly, even though BRIEF has a limited complexity, it has a slight lead in recall
and matching, but the authors note that this may be explained by the upright nature of the
dataset. Additionally, the precision of BRISK is better than the other two, which points to the
descriptiveness of BRISK. Therefore, even though BRIEF has the lowest compute and storage
requirements, it does not always perform the worst. Whereas BRISK requires significantly more
computational resources, and frankly performed best in these experiments, but may not always
outperform other binary features. This highlights the importance of leveraging knowledge about
the data and specific use case [28].

4.3 Floating-point features

Floating-point features are, contrary to binary features, not represented by a single bit for every
comparison, but by a floating-point value, which gives them potentially more descriptive power.

SIFT (Scale Invariant Feature Transform) is one of the most commonly used feature detection
algorithm in vision tasks [27], and goes through four main stages to obtain the keypoints [41].
The first step is to search for a set of stable features over multiple sclaes using a Difference-
of-Gaussian (DoG) function [5] to detect the scale-space extrema. Since the local extrema are
most interesting, a sample point is only selected if it is larger or smaller than all the neighboring
points. Note that there are eight neighboring points in its current scale and nine neighboring
points in the two adjacent scales. Next, a detailed model is fit to determine the location, scale and
ratio to localize keypoints accurately. In this step keypoints are filtered to guarantee stability.
Thirdly, the orientation is assigned, which consists of assigning one or more orientations to each
keypoint based on the local image gradient directions. This enables determining a descriptor
for each detected point based on the local image information. The description stage consists
of sampling image gradient magnitudes and orientations and creating orientation histograms,
which is overlayed by a Gaussian weighting function to account for gradients less affected by
positional changes. The obtained histograms can then be transformed and normalized to a
128-dimensional feature vector for every keypoint. The creation of the keypoint descriptor is
visualized in Figure 4.2. SIFT is carefully designed to avoid problems in boundary changes,
which is evident in its performance, however, its high dimensionality affects the computational
time significantly [27].

SURF (Speeded-Up Robust Features) was developed as alternative to the well-established SIFT.
While the aim was to come close to its competitor in terms of repeatability, distinctiveness
and robustness, the improvement lay in the ability to be faster to compute and match. For
the detection part, interest regions in the form of blob-like structures are detected based on
the determinant of the Hessian matrix, which is a square matrix that consists of second-order
Gaussian derivatives. A blob response map over different scales is obtained by approximating
the second order Gaussian derivatives, specifically when the derivatives responses are high in
two orthogonal directions or if the determinant has a local maxima. Performing a non-maximum
suppression assures that unreliable points are filtered out. Once detected, description is done
by creating a square window around the detected keypoint, which is positioned at its center and
aligned with its main orientation. This interest region is then divided into smaller sub-regions,
for which wavelet responses are computed, which in turn are multiplied by a Gaussian filter to
improve the found keypoints in robustness. These can then be summed and combined into a

12

Figure 4.2: A simplified schematic representation for computing the SIFT descriptor by firstly
computing the gradient magnitude and orientation at each image sample point in a region around
the keypoint location weighted by a Gaussian (left), which are then accumulated into orientation
histograms (right). Courtesy from [41].

normalized feature vector with 64 dimensions [3]. The creation of the descriptor is visualized in
Figure 4.3.

Figure 4.3: A simplified schematic representation for computing the SURF descriptor by using
an oriented grid. Courtesy from [27].

KAZE (Japanese for wind) is a multi-scale feture detection and description approach which
operates in the nonlinear scale space. Exactly like the previously discussed SIFT and SURF
approaches, multi-scale features are found, however, SIFT and SURF find these by filtering the
input image with Gaussian blurring, whereas KAZE makes use of nonlinear diffusion filtering [67].
An advantage of nonlinear diffusion filtering over Gaussian blurring is that Gaussian blurring no
respect has for natural boundaries of objects, meaning that details and noise are smoothened in
the same manner. Nonlinear diffusion filtering on the other hand is able to blur noise out but
keep image details and object boundaries unaffected, which leads to obtaining better localization
accuracy and distinctiveness. These effects are visualized in Figure 4.4.

The four main steps discussed with SIFT are also appropriate here. Firstly the nonlinear scale
space is computed using a nonlinear diffusion filtering technique combined with a conductivity
function. The filtered images are processed using an Additive Operator Splitting (AOS) method
[14]. To detect the keypoints, the response of the scale-normalized determinant of the Hessian
at multiple scale levels is computed, and to localize the keypoints the maxima in scale and
spatial location are found by making use of non-maximum suppression. The orientations are
assigned according to an estimation of a centered circular area around the keypoints. Lastly, the
descriptors are computed using a modified non-linear scale-space version of the SURF descriptor,
leading to a 64 dimensional feature vector. Identical to the other discussed feature detectors,
this feature vector is then normalized to an unit vector for robustness [1] [27].

13

Figure 4.4: Comparison between Gaussian or linear (top row) and nonlinear (bottom row) dif-
fusion scale space for various evolution times ti. Courtesy from [1].

4.3.1 Comparison

Extensive comparisons between these floating-point feature detectors and descriptors are made
[1]. Whereas in the binary features category there were differences in invariancy, in this category
the dicussed feature detectors are all rotation and scale invariant. However, still some differences
could be observed in image rotations and scale changes experiments [27]. In the experiments, the
metrics used are precision, recall and the number of inliers. Only image rotations were performed
best by KAZE followed by SIFT, for only scale changes SIFT beat all the other detectors in all
metrics, and combined rotation and scale changes resulted in the best performance by SIFT but
both KAZE and SURF obtained a good performance as well. As for the perspective changes,
there were multiple datasets evaluating changes of viewpoint, but on one dataset SIFT performed
best, whereas for another dataset KAZE took the lead. Unsurprisingly, KAZE performed best
when investigated under the blur effects, as KAZE takes natural object boundaries into account.
All in all, several observations could be made. While the claim from the KAZE authors that
it could surpass SIFT is supported by the results, SIFT still outperforms in pure scaling. The
performance under JPEG compression effect is favorable for KAZE, which is the best performer
in all metrices.

4.4 Deep learning-based features

The last category of features are the deep learning-based feature, which could be in either a
supervised, self-supervised or unsupervised manner. Either way, the task is often converted into
a regression problem, which is trained in a differentiable way under various transformations and
imaging condition invariance constraints [42]. Supervised approaches rely on human annotations
to obtain the model, however, these are hard to properly define and are therefore more prone to
being restrictive. This could lead to preventing the network to find and propose new keypoints.
Contrarily, self-supervised and unsupervised approaches do not require human-labeled annota-
tions, and only the geometric constraints between two images suffice. Generally, the training
for the feature description and matching happens simultaneously and the feature detection is
integrated into the matching pipeline directly. This could improve the matching performance
as the entire procedure can be optimized end-to-end. In this study, solely self-supervised and
unsupervised approaches will be discussed.

SuperPoint SuperPoint is a self-supervised fully convolutional model that inputs the full-sized
images and jointly computes the locations of the pixel-level interest points and its corresponding
detectors in a single forward pass [9]. There is a single shared encoder that enables the input
image dimensionality to be processed and importantly reduced. Then, the architecture is divided
up into two decoders, namely one for interest point detection and one for interest point descrip-
tors. While the two decoders each learn their own task specific weights, most of the parameters
of the network are shared between both tasks. Note that this is different from the traditional

14

systems, as then the interest points are firstly detected, whereafter the descriptors are computed,
meaning that they lack the ability to share computation and representation across both tasks.
The SuperPoint architecture is visualized in Figure 4.5. Note the decoder architectures for both
tasks.

Figure 4.5: Superpoint architecture, where both decoders operate on a shared and spatially
reduced representation of the input image. Courtesy from [9].

Furthermore, the authors propose in their self-supervised training approach a pre-training
step and a self-labeling step using a novel procedure that they call Homographic Adaptation.
Firstly a large dataset of pseudo-ground truth interest point locations in real images is con-
structed, which is supervised by the interest point detector itself, meaning that a large-scale
human annotation effort is not necessary. These pseudo-ground truth interest points are gener-
ated by training a fully-convolutions neural network on a synthetic dataset, resulting in a trained
detector the authors name MagicPoint. While MagicPoint performed surprisingly well on real
images, especially when considering domain adaptation issues, it misses many potential interest
point locations. To repair this, the multi-scale, multi-transform technique Homographic Adapta-
tion was developed. This module warps the input images and so achieves self-supervised training
while boosting detection repeatability.

R2D2 R2D2 is a fully-convolutional model that is designed to enable end-to-end optimization for
both feature extraction and description. An explicit distinction is made between reliability and
repeatability, of which a detected feature must both comply to [51]. The authors claim that both
characterizations are complementary aspects that must be predicted separately. In Figure 4.6 toy
examples illustrate the crucial difference between repeatability (visualized in the second column)
and reliability (visualized in the thrid column) of two given input images. Whereas only the pixels
near the black region are regarded as repeatable in the left image, for the reliability the pixels
surrounding the black region are all equally confident. On the other hand, the right input image
shows an example of a case whereby there are a lot of salient and thus repeatable pixels, namely
all the squares in the checkerboard, but due to self-similarity none of the pixels is discriminative,
resulting in no pixels being regarded as reliable. Therefore, the proposed network R2D2 is a
new learning-based feature extraction method that, in contrast to existing deep-learning based
methods, learns both keypoint repeatability and a confidence for keypoint reliability [51]. As
a backbone the network L2-Net is used [63], and the network is furthermore trained via self-
supervision using a combination of synthetic and real images. Also, style transfer methods are
applied to increase robustness against drastic illumination changes.

D2-Net In D2-Net a single CNN is used that plays a dual role; it is both a dense feature
descriptor and a feature detector simultaneously. Note that while the proposed is also a detect-
and-describe approach, the major difference is that in D2-Net the detection stage is postponed.
Instead of utilizing low-level information to detect the features early in the pipeline, firstly a set
of feature maps is computed via a CNN, which is then used to both compute the descriptors

15

Figure 4.6: Toy examples that illustrate the distinction and specific difference between repeata-
bility (second column) and reliability (third column). Courtesy from [51].

and detect the keypoints. Thus, the locations of the detections correspond to the pixels of the
descriptors that are distinctive and therefore appropriate for matching. The D2-Net architecture
is visualized in Figure 4.7. The network finetunes a pretrained VGG network [35]. While the
authors acknowledge the fact that their approach is less efficient due to its dense nature of the
extraction, and that using higher-level information may lead to less accurate keypoints, they
show that D2-Net achieves state-of-the-art performance and even the less accurate keypoints are
still more robust and nevertheless accurate enough for visual localization [12].

Figure 4.7: A visualization of the D2-Net, which uses a feature extraction CNN F to extract
feature maps that a) obtain local descriptors by going through the n feature maps Dk at location
(i, j), and b) obtain detections by performing a non-local-maximum suppression on a feature map
followed by a non-maximum suppression across each descriptor. Courtesy from [12].

4.4.1 Comparison

In this section, three deep-learning based feature detectors have been discussed, which all utilize
the one-stage approach to perform the detection and description tasks simultaneously. Both
SuperPoint and D2-Net encode the images in a feature map of 1/8 of the size of the original
image, whereas R2D2 preserves the size of the original input image. This leads to a better strict
pixel accuracy, but the obtained keypoints are mostly from large receptive fields. Furthermore,
SuperPoint and R2D2 both share a representation from the deep neural network to learn a dense
feature descriptor and a feature detector, but they are trained independently, whereas in D2-Net
all parameters between the detection and description tasks are shared and are optimized simul-
taneously. R2D2 regards the repeatability and reliability as two separate entities that need to
be optimized, whereas SuperPoint and D2-Net do not make such distinction. This distinction
results in the experiments of [57] of R2D2 outperforming the other two feature detections signifi-
cantly in repeatability in all transformations, namely viewpoint perspective, zoom and rotation,
luminosity, blur and compression, with D2-Net performing considerably better than SuperPoint
except for the luminosity and compression transformations. As for the 3D reconstruction ex-
periments, SuperPoint and R2D2 are able to perform better in the number of verified image
observations per sparse points, but the completeness of the reconstruction the opposite is the
case. This may demonstrate that SuperPoint and R2D2 find mostly discriminative keypoints and
therefore may ignore keypoints are that not distinct enough. The accuracy of the reconstruction,
the reprojection error, is the worst for D2-Net.

16

4.5 Discussion

In this chapter, three categories of feature detection approaches and various corresponding ex-
isting feature detection methods are highlighted. A distinction is made between binary features,
floating-point features and deep-learning based features. The binary feature detectors are the
simplest of the three categories and are generally outperformed, but due to the performance
trade-off it could be a viable choice when the application provides robustness against outliers.
Or since they are the most-efficient, they could be a better choice than the more time and memory
demanding approaches. Whereas the binary and floating-point features make use of a two-stage
approach, also called detect-then-describe, where firstly the keypoints are detected whereafter
the descriptors can be described, the deep-learning based features are found by a detect-and-
describe approach, which only consists of one stage. In the one-stage approach, there should be
more consistency between the keypoint detections and the keypoint descriptors. However, there
is no universal and optimal approach, since the best choice is generally dependent of the specific
task, the setup and the existing distortions in the available data. In this thesis, we will compare
the different feature detectors on their usability in the visual SLAM algorithm RTAB-Map.

17

CHAPTER 5

Method

In this chapter the approach of performing Visual SLAM is discussed. Firstly, the utilized hard-
ware and software is introduced, whereafter the implementation details are explained. This
includes the implementation of the addition of the software package RTAB-Map and the imple-
mentation of an evaluation method based on the fiducial principle.

5.1 Robot Spot

Spot is a quadrupled robot developed by one of the world’s leading robotics companies, Boston
Dynamics. It is equipped with advanced sensors and cameras, and able to collect and analyze
data.

Figure 5.1: The robot Spot from Boston Dynamics, with its base platform.

The base platform 1, as visualized in Figure 5.1, provides advanced mobility and perception
and simultaneously collects 2D and 3D information with on board sensors. Spot’s mobility is
enhanced by the fact that it has legs, meaning that Spot is able to traverse and navigate through
challenging environments, such as stairs, as opposed to for example wheeled robots. Spots move-
ment is achieved by the use of 12 hydroscopic motors in this legs. However these 12 degrees
of freedom can make the robot more susceptible to drifting, because more variability to the
movement is introduced, so it is crucial properly calibrate to mitigate the effects of drifting. Fur-
thermore, Spot has 4 sensing modules, each consisting of a pair of stereo cameras. However, these
cameras are faced slightly downwards, because these cameras are intended for obstacle avoidance;
this configuration is less favorable for mapping, which may result to data being lost or cut off.

1https://www.bostondynamics.com/products/spot

18

https://www.bostondynamics.com/products/spot

In addition to the base platform, provided payloads can be added to enhance Spot’s sensing and
data processing capabilities, for example on the levels of perception (SpotCAM), computation
(SpotCORE), autonomy (SpotEAP), integration (SpotGXP) and manipulation (SpotArm). The
utilized Spot of the Robot Learning Group has added the SpotArm and a SpotCORE. This arm
can be used to open and close doors or pick up objects. This makes the robot even more versatile.
This Spot is shown in Figure 5.2.

Figure 5.2: The available Spot from the Robot Learning Group at the University of Osaka.

5.2 Hardware

In addition to the by Boston Dynamics provided hardware, an additional payload has been
integrated into Spot. In particular to solve the issue of the downwards facing cameras that are not
as helpful for mapping as for obstacle avoidance. The total payload consists of the SpotCORE,
LiDAR sensor and RGB-D camera. The SpotCORE is an additional CPU processor, which
enables software to run locally on the robot, resulting in high-bandwidth low-latency connections.
The specifications are an i5 Intel 8th generation motherboard, 16 GB of RAM memory, and 512
GB of primary storage. The newer variant of the SpotCORE, SpotCORE I/O, does have access
to both a CPU and a GPU, which enables more training opportunities on the SpotCORE itself.
However, for this study there was no access, meaning that training had to be done on an external
GPU, that could be connected to the SpotCORE. The SpotCORE comes preconfigured with
Ubuntu 18.04. The LiDAR sensor is Velodyne VLP-16, which uses 16 laser beams to provide
360 degrees coverage and can capture up to 300.000 points per second with a range of up to 100
meter. Note how the Velodyne is placed on the robot. While this high placement enables the
sensor to capture a proper 360 degrees view, it could lead to a more wobbly ride, which may
eventually result to drift. The RGB-D camera is the ASUS Xtion Pro Live sensor, which is based
on the PrimeSense technology. This makes use of a cheaper alternative to stereo camera systems,
namely structured light technology in the near infrared spectrum for the depth measurements,
and also includes an RGB sensor. Furthermore, there are hardly CPU requirements, as the data
processing is done by PrimeSense’s System-on-a-Chip (SoC). The distance of use is between 0.8
and 3.5 meter.

19

5.3 Software

5.3.1 ROS

The most important software tool used in this implementation is the Robot Operating System
(ROS). ROS is, unlike the name suggests, not a operating system but a software framework that
provides a framework for communicating with multiple processes [50]. ROS is used extensively
in both research and industry, and has a large community of developers that contribute to
its development. ROS consists of multiple fundamental concepts, namely nodes, topics and
messages. A node is a process that performs the computations. Therefore, this is also called the
software module. Nodes receive the data to be processed in the form of messages from topics,
which are named buses over which nodes exchange messages. And a message is a strictly typed
data structure. A node is able to subscribe and publish to multiple topics simultaneously, and
there may be multiple concurrent publishers and subscribers to a single topic.

5.3.2 RTABMap

In this thesis, the primarily used software is the package RTABMap-ROS, which is a ROS
wrapper for RTAB-Map, Real-Time Appearance-Based Mapping [36] [38] discussed in section 3.3.
RTAB-Map is a RGB-D SLAM approach based on a global loop closure detector with real-
time constraints, and it was chosen due to its versatility. While it was originally proposed as
an solely appearance-based solution, it has been well-maintained and evolved as a full online
graph-based visual SLAM approach with notable practical features such as online processing,
robust and low-drift odometry, robust localization, practical map generation and exploitation
and multisession mapping. RTABMap can be used both using the default visual odometry and
external odometry, resulting in the visual information only being used for loop closure detection
[60] and map reconstruction. Loop closure is done using a visual bag of words approach [37],
where the vocabulary is built during the process. As the RTABMap package is constantly being
developed, it has been updated to incorporate new and state-of-the-art feature detectors, which
enables the possibility to make comparisons and gain insights.

Figure 5.3 shows the overview of the ROS node rgdb odometry functionality where this study
heavily relies on. Note that input TF is the position of the camera in relation to the base of
the robot and the output TF is the odometry transform of the base of the robot. This pipeline
is feasible for both a RGB-D camera and a stereo camera, but in case of the stereo camera the
calculation of stereo correspondences is required. However, in this thesis the RGB-D is assumed.

20

Figure 5.3: Block diagram of rgbd odometry and stereo odometry ROS nodes. Courtesy from
[36].

In this thesis, the main focus will be on the feature detection step of the visual odometry
of RTABMap. Visual Odometry (VO) is a technique that aims to estimate the position ans
orientation of a robot by using the visual input, so the motion of the camera relative to the
environment [59]. In case of the RTABMap, two visual odometry flavours are implemented:
Frame-To-Map (FTM) and Frame-To-Frame (FTF). Whereas FTF compares the new frame
with the last key frame, FTM compares the new frame with the local map of features that
are created from the past key frames. The visual odometry process works as follows [38]: For
every incoming frame, feature detection is performed using GoodFeaturesToTrack algorithm.
However, all feature types available in OpenCV are supported by RTABMap. When receiving
RGB-D images, the depth map is used as a mask to avoid feature detection with invalid depth
values. The detected features are then matched by either matching the current frame features
using by default BRIEF descriptors against a FeatureMap using nearest neighbor search (F2M),
or by matching the current frame features with optical flow against the key frame, without the
need for descriptors (F2F). This difference is also shown in Figure 5.3 below Feature Detection.
Then, a motion model predicts where either the Key Frame features (F2F), or the Feature Map
features (F2M) should in the current frame, whereafter the transformation of the current frame
according to the features in either the Key Frame (F2F), or the Feature Map (F2M) is calculated
in the motion estimation step. This is followed by the local bundle adjustment step, in which
the resulting transform in refined on either the last Key Frame features (F2F), or on the features
on all the key frames in the Feature Map (F2M). Lastly, both the poses as the Key Frame (F2F)
and Feature Map (F2M) are updated.

As mentioned in the previous section, in the feature detection step, RTABMap allows for
all OpenCV feature types to be used. As of now, the following CV feature detectors have
been integrated into RTABMap. Some of the implemented feature detection algorithms are also
discussed in chapter 4, but they are here all shortly summarized again as a reminder. Note that
when there are two feature types listed together, for example FAST/FREAK, it means that that
algorithm is configured to use a combination of both feature types, so in this case FAST is used
as a feature detector and FREAK is used as a feature descriptor. Since every feature type has
its strengths and weaknesses, combining two types might give an increase in performance.

21

SURF (Speeded Up Robust Features) is a feature transform algorithm based on the concept of
scale-space representation, so the image is analyzed at different scales to detect and describe the
features. Therefore, it is scale-invariant, and also robust to changes in rotation and illumination.

SIFT (Scale-Invariant Feature Transform) is, as the name suggests, also a scale-invariant feature
transform algorithm that detects and describes local features. The principle of SIFT is detecting
and describing the key interest points in an image, and matching those of that of another image.

ORB (Oriented FAST and Rotated BRIEF) is an algorithm that uses oriented FAST keypoints
and rotation-invariant BRIEF descriptors to detect and describe features. Since ORB is designed
to be fast and efficient, it is well-suited for practical applications.

FAST/FREAK combines the FAST feature detector with the FREAK descriptor. FAST (Fea-
tures from Accelerated Segment Test) is a corner detection algorithm, which is very fast but not
robust to high levels of noise. FREAK (Fast Retina Keypoint) is a binary descriptor intended
for fast matching.

FAST/BRIEF combines the FAST feature detector with the BRIEF descriptor. BRIEF (Binary
Robust Independent Elementary Features) is, like FREAK also intended for fast matching, but
differs mainly in the sampling pattern and descriptor size.

GFTT/FREAK combines the GFTT feature detector with the FREAK descriptor. GFTT (Good
Features To Track) is a combination of the Harris and GFTT corner detection algorithms, that
calculates the local autocorrelation of the intensity of the image.

GFTT/BRIEF combines the GFTT feature detector with the BRIEF descriptor.

BRISK (Binary Robust Invariant Scalable Keypoints) uses AGAST, a faster version of FAST,
for the feature detection and has similar properties to SIFT, since it is also scale and rotation
invariant. However, the sampling pattern differs, because BRISK uses concentric circles.

GFTT/ORB combinest the GFTT feature detector with the ORB descriptor.

KAZE (named after the Japanese word for wind) is a feature detection and description method
that is able to operate in a nonlinear scale space (as opposed to the Gaussian scale space in for
example SIFT or SURF), which makes it more robust to challenging image conditions.

ORB-OCTREE is a modification of the ORB feature detector and descriptor that uses an octree
structure, which enables faster matching.

SuperPoint is a deep learning-based feature detector that uses self-supervised learning. Syn-
thetic data is used to pretain the detector, and then test time augmentation is used to transfer
to real data.

SURF/FREAK combines the SURF feature detector with the FREAK descriptor. Since both
algorithms are designed with efficiency in mind, it is effective in large-scale images.

GFTT/DAISY combines the GFTT feature detector with the DAISY descriptor. DAISY (no
acronym given) is very efficient to compute densely, and excells in begin robust to deformations.

SURF/DAISY combines the SURF feature detector with the DAISY descriptor.

22

PyDetector enables using a feature detection method with an existing implementation. This
path of this implementation can be added and then this implementation will be used.

The method used by default is GFTT/ORB if the xfeature2d module of OpenCV is not
available, and otherwise GFTT/BRIEF. Furthermore, there are restrictions for using certain
feature detectors. For example, in order to utilize SuperPoint, OpenCV must be built with both
CUDA and PyTorch support.

5.4 Implementation

The implementation of this thesis consists of two main parts. While the focus was to draw
insights in the currently available feature detectors in RTABMap and make an extension by
implementing a novel feature detection approach, when making a comparison and an evaluation
of the feature detection approaches, there was no ground truth available, which make it clear
that an assessment approach of the quality of the obtained map was also a crucial research
component. Therefore, in addition to a feature extension, an evaluation method based on the
fiducial principle is proposed.

5.4.1 RTABMap addition: R2D2

In this study, the functionality of RTABMap is extended by implementing an additional feature
type, R2D2. R2D2 is also globally discussed in section 4.4, but will be discussed to a greater
extent in this section. R2D2 stands for Repeatable and Reliable Detector and Descriptor [51].
In the paper, the authors distinguish two methods for interest point detection and local feature
description, namely the classical methods and the neural network approach. The classical meth-
ods are characterised by a detect-then-describe paradigm, where the interest points are firstly
identified and afterwards described using local feature descriptors. While these methods have
been widely used in computer vision applications, they are often manually tweaked meaning that
they can not generalize well. So recently, the deep-learning methods have emerged and caught up
with these techniques by learning repeatable saliency maps for interest point detection and learn-
ing descriptors at the detected keypoint locations. Groundbreaking approaches in this category
include SuperPoint and SuperGlue. The authors acknowledge the performance and efficiency of
the neural network approach, but argue that salient regions are not necessarily discriminative
and hence could even harm the performance of the description. Additionally, they claim that
descriptors should only be learned if matching with high confidence is achievable. Thus, R2D2 is
proposed, a jointly learned keypoint detection and description method together with a predictor
of the local descriptor discriminativeness. Crucial is the explicit distinction between repeatabil-
ity and reliability, which is claimed to be two complementary aspects that should be predicted
separately.

Figure 5.4: Overview of the R2D2 network for jointly learning repeatable and reliable matches.
Courtesy from [51].

The fully-convolutional network (FCN) shown in Figure 5.4 has three outputs for an image
I of size H ×W .

23

1. a 3D tensor X ∈ RH×W×D; This tensor contains a set of D-dimensional dense local dis-
criptors. These descriptors correspond to individual pixels in the input image I.

2. a repeatability heatmap S ∈ [0, 1]H×W ; This is a confidence map that is an estimate of the
probabilities that a keypoint is repeatable. Since this confidence map is trained to contain
only strong and repeatable local maxima, it should only have confidence in sparse and
repeatable keypoint locations. The confidence map contains a value for every descriptor
Xij at each pixel (i, j), with i = 1...W and j = 1...H.

3. a reliability heatmap R ∈ [0, 1]H×W ; This is a confidence map that is an estimate of the
probabilities that a keypoint is reliable. A value for the discriminativeness factor means
that a keypoint can accurately be matched with high confidence. The confidence map
contains a value for every descriptor Xij at each pixel (i, j), with i = 1...W and j = 1...H.

Then, the keypoints are extracted corersponding to the locations that maximize both confidence
maps S and R. The obtained keypoints and its corresponding descriptors can then be fed into
the existing RTABMap framework, as visualized in Figure 5.3.

5.4.2 Evaluation

To assess the obtained map quality of RTAB-Map with various feature detectors and descriptors,
normally a ground truth of the area has to be available, but that was not available during this
research. Therefore, to determine the performance a fiducial approach is used. Originally used
in the context of the RoboCup Rescue league, the fiducials (artificial objects placed in the envi-
ronment) can function as a simplification of the ground truth of the environment [56], meaning
that the ground truth of fiducial locations can be compared with that of the observed fiducial
locations. Note that this approach abstract the environment completely, by not necessarily ob-
serving information like walls or explored areas, but by relying solely on the observed fiducials.
This also makes the performance heavily dependent on the placement of the fiducials, and the
exploration in that environment. However, for situations where it is seeked to make a comparison
between various methods in the same environment, and thus the same placement, this should
not cause issues. The fiducials approach works for both visual SLAM and lidar SLAM. For lidar
SLAM, the fiducials are typically cylinders that are cut in half and placed on either side of a
wall. These circular fiducials will stand out in the obtained 2D map, which makes it easier to
evaluate. For visual SLAM, the fiducials are Augmented Reality (AR) markers.

AR tags and more generally fiducial markers, are highly distinguishable patterns that contain
strong visual characteristics [30]. Most of the markers are visually QR-like black and white
square images within a black border, as the four points that make up the square allows for
camera calibration and marker position calculation [54]. There are various AR tag generation
algorithms that each produce different tags and a different way of detecting them. AR tags of
three of the state-of-the-art and most commonly used algorithms are visualized in Figure 5.5.
The detection strategy consists of two main steps for all three approaches. First of all, the
image or environment is searched for a unique feature, such as a quadrilateral shape. Then
the identification step validates whether the detected marker is in fact an AR tag. Since all
approaches make use of a different design, detection and recognition algorithm, they all different
strengths and weaknesses in various situations [54]. For this study the ARTag marker was selected
due to its lowest computational cost [30] and the knowledge that the usecase for this study did
not require the AR tags to be very robust. ARTag [15] uses a simple detection and recognition
algorithm, where image binarization is used to detect and map potential markers with a set of
marker patterns.

24

Figure 5.5: ARTag (left), AprilTag (middle) and CALTag (right) markers examples. Courtesy
from [54].

For this research, the ROS package ar track alvar was used, a ROS wrapper for Alvar, an
open source AR tag tracking library, which is known to provide a large amount of flexibility in
the style and content of the markers [30] . This package is able to generate AR tags, and identify
and track the pose of AR tags. The first step is to generate AR tags that can be placed into the
environment. Examples of generated AR tags are shown in Figure 5.6.

Figure 5.6: Various generated AR tags using the ar track alvar package.

Now, when the robot walks through the environment the ar track alvar can be run to iden-
tify and publish the locations of the identified AR tags. The ar track alvar package subscribes
to the topics /camera/rgb/image raw and /camera/rgb/camera info and publishes the topics
visualization marker and ar pose marker and a transform from the camera frame for every
detected marker named ar marker x, with x being the marker id. Those relations are visual-
ized in a graph shown in Figure 5.7. Note that the rectangles represent topics, and the ellipse
represents a node.

Figure 5.7: Graph of the ROS process regarding the ar track alvar.

Once a marker is detected, the package ar pkg subscribes to the transform from the camera
to the marker, and temporarily stores it to retrieve the coordinates later. This is necessary
because during the exploration, the map is being generated, so at the moment when the marker
is detected, the transform does not represent the position in the optimized frame. Therefore,
the package ar sub subscribes to the sent transform when the map optimization process is done,
and writes it to file. Lastly, to determine the performance of the visual SLAM method, the
ground truth can be observed in the RViz tool [31]. RViz is a toolkit that enables visualizing
real-domain data generated by arbritary data structures and algorithms. Note that this ground
truth is a constructed ground truth, as obtained by the fiducial approach, which is a simplifica-
tion of the ground truth of the environment that was not available. This ground truth topic is
then published, which in turn the ar diff package is subscribed to. This package then compares

25

the ground truth with the observed marker location which can be read from file. This pack-
age calculates the Euclidean distance between the ground truth and observed marker position,
and also is responsible for showing the ground truth and observed markers in the rviz tool for
visualization purposes. This procedure is visualized in Figure 5.8.

Figure 5.8: The evaluation procedure.

5.5 Summary

In this chapter, the implementation details of this study are presented. The robot Spot with
its provided payload is tasked to walk around the environment of the Experiment Room to
construct a map of the current environment by means of using the visual SLAM approach
RTAB-Map. RTAB-Map also has a Feature Detection step in which the visual features used for
the SLAM approach are obtained. In this study, a comparative analysis will be made of the
performance of the constructed map using various visual features. Furthermore, an additional
currently not available is introduced and will be integrated in the framework as well. Lastly, as
the environment does not provide a ground truth, an evaluation method based on the fiducial
principle is introduced. There approaches will be evaluated in chapter 7.

26

CHAPTER 6

Experiments

In this chapter, the conducted experiments will be discussed. The experiments focus not only on
the currently available feature detection algorithms and how they relate to each other in various
conditions and different datasets, but also in what way they can be separated. Also an additional
feature detector is tried out.

6.1 Perspective

The first experiment being conducted is to gain an understanding of the current landscape and
put the currently available feature detectors introduced in subsection 5.3.2 into perspective.
However, as for the binary features, such as ORB and FREAK, they are very similar to BRIEF
in terms of processing time, memory and localization performance, so only the BRIEF detector
is included in the experiment [39].

In this experiment, the robustness of the visual feature algorithms are put to the test, with
illumination variations in indoor environments as main objective. To achieve this, the dataset
of an environment is captured during different lightning conditions in an apartment using an
ASUS Zenfone AR phone with a running RTAB-Map Tango version [39]. Google Tango is a 3D
augmented reality platform, which specifically brings augmented reality experiences to mobile
devices, like smartphones and tablets [18].

During the creation of the multi-session map, the illumination conditions should be similar
enough to the previous mapping session to a certain degree so that the map is able to follow the
original trajectory, but it should experience sufficient lightning changes to realize the addition of
new locations [39].

27

Figure 6.1: A visualization of the multi-session map. There are three sessions merged together
and utilized to re-localize the during the localization sessions. Courtesy from [39].

To this extent, the structure of the map is represented as a pose-graph where the nodes
represent each acquired image, and the links represent the six degrees of freedom transformations
between them. This structure of the map is visualized in Figure 6.1. In this example, three
sessions are taken during different times of the day, which are merged together in the SLAM
phase by finding loop closures between the sessions. These loop closures are visualized as the
yellow links. The two additional sessions are localization sessions, that represent two examples of
experiment conduction in the localization phase. The corresponding frame of the re-localization
is visualized with the dotted yellow link. The goal of the experiment is to gain an understanding
of the robustness of the SLAM process using the various feature detection algorithms by re-
localizing in the same environment during different times of the day [39].

6.2 Validation

Once the baseline is established, the gained insights to the various feature detection algorithms
can be validated in a different environment, which could pose other challenges. One crucial
aspect of the experiments is the dataset being used. While there are a variety of public dataset
published for evaluating SLAM approaches, such as KITTI 1, TUM RGBD 2, EuRoC 3, for this
study they are not appropriate. Among other issues, such that the KITTI dataset is specifically
for autonomous driving and EuRoC is captured using a drone, they lack the placing of the AR
tags that are being used for the evaluation part. Therefore, it was necessary to obtain the dataset
using the provided hardware introduced in chapter 5.

The environment of the dataset is the Experiment Room of the Robot Learning Group of
the University of Osaka. Generally, the purpose of this room is to conduct experiments, how-
ever, since the Robot Learning Group mostly focuses its research on the possibilities of home
application robots, the setup of the room is similar to an apartment, including a kitchen and
living area. Therefore, the environment is not as similar to convenience store, but nevertheless
the performance could to a certain degree generalize to the convenience store as well. Further-
more, all the robots of the laboratory are stored in the room, so there are not multiple routes or
trajectories for the robots due to the space. An example of the situation is shown in Figure 6.2.

1https://www.cvlibs.net/datasets/kitti/
2https://cvg.cit.tum.de/data/datasets/rgbd-dataset
3https://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets

28

Figure 6.2: An example of the situation of the Experiment Room of the Robot Learning Group.

Before the dataset of the environment could be captured, some experiments were carried
out to explore the environment. More specifically, the workings of the loop closure and the
construction of a 3d overview of the environment were tested. As for the validation dataset,
because the environment is not too large, either 2 repetitions of the same placing should suffice.
Ideally, the dataset contains three marker placements, such that a discrepancy can be filtered out
rather easily. However, during data capturing the robot Spot was not able to obtain all desired
datasets, since it crashed down completely due to a misalignment on its arm, meaning that the
robot Spot had to be sent back to the repair unit of Boston Dynamics, and was unfortunately
not repaired in time to be used for this study.

Considering the placement of the markers itself, it is a requirement to think about the markers
that they should be in view of the camera on the robot. So this means that the dataset should be
tailored to the specific situation and setup of the experiment. Furthermore, ideally there would
be a distinction between markers on easily detectable locations such as walls or more challenging
places such as on corners, since they are both of value, such that the performance of the feature
detection algorithms can be separated well.

The goal of this experiment is to research whether the established landscape of localization
using various feature detection algorithms also holds up in the context of visual SLAM in another
environment, and record a dataset that is able to create a separation between the performance
of the various feature detectors.

6.3 Extension

The last experiment extends the previously discussed experiment by introducing an additional
feature detection algorithm, and place it in the landscape of feature detectors discussed earlier.
Therefore, the same obtained dataset can be used but the focus will be on the additional feature
detector R2D2.

29

CHAPTER 7

Results

In this section the results of the previously discussed experiments will be presented. In total,
there were three experiments, that give an overview of the performance of the currently within
RTAB-Map available visual features.

7.1 Perspective

In the first experiment, the robustness of the various visual features were tested by determining
the re-localization performance for a single mapping session. The percentage of re-localized
frames can be visualized in Figure 7.1a. Note that the diagonals show the highest re-localizations
performance, which is as expected since the illumination conditions of the re-localization mapping
are then in line with those of the mapping session. Contrarily, the re-localization percentage is
the lowest during day-time if the map is taken during night-time, or the other way around. This
is shown by having more orange colors in the table on the non-diagonal. This is the case for all
visual features, except for the SuperPoint, which shows to be the least dependent on whether
the time of the mapping is in correspondence with the obtained localization map, both with and
without SuperGlue.

(a) Single-session re-localization. (b) Multi-session re-localization.

Figure 7.1: Localization percentage over six mapping sessions. Courtesy from [39].

Additionally, the same experiments were carried out using multi-session maps that are created
using merging maps that are captured during different times of the day, and hence providing a

30

different illumination condition. The shown combinations of maps in Figure 7.1b are a combina-
tion of the two mapping sessions with the highest illumination variations (1+6), with a one-hour
interval (1+3+5 and 2+4+6), and a thirty-minute interval (1+2+3+4+5+6). The merging of
these maps have taken place without graph reduction, meaning that all nodes of all sessions are
in tact, except for the 1-2-3-4-5-6 map, which represents the assembled maps with graph reduc-
tion enabled. The results show that except for SuperPoint, either with or without SuperGlue,
all visual features have an increase in re-localization as more sessions are merged, meaning that
the 1+2+3+4+5+6 map performs best with the 1-2-3-4-5-6 map not far behind.

7.2 Validation

In the validation experiments, a new dataset is obtained by exploring a new environment and
gaining insights in how well the previous findings translate to this new environment.

7.2.1 Exploration

To this extent, the exploration experiments of the new dataset are visualized in Figure 7.2,
which shows the Experiment Room of the Robot Learning Group. This viewer, the quality of
the assembled points could be better, but it gives a good indication of the environment, with the
kitchen section shown in the top and the living room section with a television and sofa shown in
the middle section. Furthermore, we can see that not all sections are captured enough with the
camera to properly show the situation. For example, the left and bottom walls are lined with
stand-by robots and working places, but those are not visualized correctly, since the hallways are
very narrow, which prevents the robot from turning and capturing the situation after turning.

Figure 7.2: 3D pointcloud viewer of a single trajectory through the environment.

This 3D point cloud visualization is obtained by using both the lidar sensor and the camera

31

introduced in section 5.2. This combination results in the fact that the lidar sensor can be
precise in the demarcation of the walls and the camera can detect loop closures to correct the
accumulated drift. The effect of loop closure is visualized in Figure 7.3, where the trajectory
of the robot is shown as the blue line. On the left image, i.e. before loop closure, the entire
environment is slightly rotated, but since the robot is able to recognize the place it has been
before, it is able to adjust the accumulated drift and correct its trajectory. This discrepancy
between the first and second time the robot visits a place in the environment is shown in red
lines. After the correction, Figure 7.3b shows the environment with straight walls, without being
rotated.

(a) Before (b) After

Figure 7.3: The obtained map before and after applying loop closure.

The exploration experiments entailed showing the constructed maps to get an idea of the
environment.

7.2.2 Qualitative results

Previous experiments have shown that re-localization in an environment using RTAB-Map per-
forms very similarly, regardless of the visual feature being used, with SuperPoint being the
exception. Therefore, to create a separation between the visual features, another experiment is
conducted. In this section, the qualitative results of a run are shown in which the trajectory is
only a straight line and is through the hallway with the living room on the left side and the wall
on the right side. The trajectory ends before the dinner table. In Figure 7.4, we see that there
is a distinction between the SuperPoint visual features on the one hand, and the other visual
features on the other hand. Visually speaking, we can assess that SuperPoint performs the worst
among all the feature detectors. Note that while SuperPoint’s visualization appears to have a
cracked pattern, this is actually due to the fact that it is more zoomed in, because SuperPoint was
not able to match at the beginning of the trajectory. This is surprising, as in the re-localization
experiment SuperPoint emerged as the winner. Furthermore, the differences between the other
feature detectors are subtle but present. For example, the visualization obtained by KAZE is
less precise seen by the fact that less of the floor is mapped. This is not the case for the other
feature detectors.

32

(a) SURF (b) SIFT

(c) GFTT/BRIEF (d) BRISK

(e) KAZE (f) SURF/DAISY

(g) SuperPoint

Figure 7.4: The qualitative results of a single trajectory experiment.

33

In this specific case, SuperPoint seems unable to match the first couple of frames, meaning
that the entire hallway is not correctly matched, and only is able to map its current location just
before the dinner table at the end of the captured data. Upon further inspection, the construction
of the map visualized in Figure 7.5 shows that SuperPoint is in fact able to find keypoints, but
not able to match them. Every dot is a keypoint, of which the yellow color indicates that it is a
new keypoint but not unique, whereas a green color indicates that it is a new keypoint and also
unique. Therefore, the fact that the SuperPoint construction and SURF construction both have
a yellow dots, in combination with the fact that the SuperPoint construction shows yellow dots,
which are not unique, and is still not able to match them to construct the environment indicates
that it struggles in this particular situation. This could be due to the fact that SuperPoint is a
deep-learning based model, meaning that it is dependent on the data it is trained, and maybe in
this particular case could not be generalized well to this environment.

(a) SURF (b) SuperPoint

Figure 7.5: Comparison between the construction of the map using SURF and SuperPoint.

7.2.3 Quantitative results

The quantitative results are examined in this subsection. Note that because of the Spot robot
requiring repairment in Boston, these experiments were performed with a substandard dataset.
Nonetheless, the findings can gain some insight in the performance of the feature detectors under
challenging conditions. Table 7.1 shows the results, which presents the mean and standard
variance of every marker after the visual SLAM process using every feature detector over three
runs. Since these reported values are errors, the lower the value is, the better. Hence, the error
presented in bold is the best performing feature detector for every marker. Interestingly, the
three AR markers each have a different best-performing feature detector, namely BRISK for
AR marker 1, SURF/DAISY for AR marker 2 and SuperPoint for AR marker 3. Notice how
the values differ significantly, meaning that probably AR marker 1 was more difficulty placed
as opposed to AR marker 3. This actually makes sense, since marker 1 was placed along the
wall where the Spot robot did not have enough room to turn to the side, whereas marker 3
was placed in the middle of the room, where it was visible from multiple sides. This shows

34

that an experiment where this quantitative evaluation approach is used has to be tailored to
the environment. Unfortunately, as discussed in the previous subsection, the SuperPoint was
not able to map the beginning of the trajectory, meaning that the first two markers were not
captured and could therefore not be included in the results table. This was the case for all three
runs. However, for the marker it was able to map, the error value is the lowest of all feature
detectors, which is promising for better conditions. Among the feature detectors, it is interesting
to see that there are considerable difference in their reliability. KAZE is, apart from the error
value it obtained, very stable in its performance, wheras SIFT performs especially for marker 1
very unstable.

AR marker 1 AR marker 2 AR marker 3

SURF 2.416 ± 0.538 0.107 ± 0.018 0.268 ± 0.322

SIFT 2.535 ± 1.001 0.107 ± 0.015 0.311 ± 0.296

GFTT/BRIEF 2.779 ± 0.482 0.075 ± 0.028 0.081 ± 0.026

BRISK 2.389 ± 0.515 0.106 ± 0.018 0.071 ± 0.035

KAZE 3.020 ± 0.088 0.153 ± 0.032 0.066 ± 0.004

SURF/DAISY 3.052 ± 0.129 0.099 ± 0.027 0.076 ± 0.019

SuperPoint - - 0.054 ± 0.022

Table 7.1: The quantitative results given with the mean and standard deviation over three runs.
The lower the better. The best feature detector for every marker is printed in bold.

7.3 Extension

In this section, the results of the additional feature detection algorithm incorporated in RTAB-
Map will be presented. Specifically, the feature detector R2D2 was incorporated into RTAB-Map,
but unfortunately, RTAB-Map was not able to construct a proper map of the environment using
the by R2D2 provided keypoints and descriptors due to losing visual odometry. When visual
odometry is lost, this means that there were not enough keypoints found and matched between
the frames, meaning that the constructed map is empty. Upon further inspection, the keypoints
were correctly found, as shown in Figure 7.6, where there are features found along a certain line
or interesting keypoints such as edges. Furthermore, the size of the circle shows the confidence
and we see that there are cases in which a large circle is placed over a marker. However, we also
see some dubious keypoints found, for example in the frame 4, 7 and 8, keypoints are found along
the floor, which should not be a repeatable and reliable keypoint. Therefore, it was not possible
to correctly integrate the R2D2 feature detector in the RTAB-Map visual SLAM approach.

35

Figure 7.6: The found keypoints using the R2D2 feature detector. Note that the larger the circle
is, the more confident the detector is.

7.4 Conclusion

In this chapter, the results of the in chapter 6 introduced experiments were presented. This
included the perspective experiment, which showed promising re-localization performance in
both single-session and multi-session mapping. Interestingly, while SuperPoint outperformed all
other visual features in the re-localization experiments, the opposite was true for the additional
validation experiments. This may have something to do with the fact that the data set was
substandard, but it may also be an issue of deep-learning based visual features in combination
with RTAB-Map. This could also explain the fact that the integration of R2D2 did not succeed
in constructing a map. Nonetheless, the experiments have also resulted in an exploration map
of the used environment, and have demonstrated the effect of loop closure detection.

36

CHAPTER 8

Conclusions

This study set out to gain insights in the applicability and performance of visual features in
a visual SLAM approach. While lidar SLAM has been discussed and researched to a great
extent, visual SLAM in much less degree. Therefore, in this study a comparative analysis is
made between the feature detectors and various visual SLAM approaches. Furthermore, the re-
localization performance of these visual features is highlighted together with further experiments
using these visual features in an unknown environment of the Experiment Room. To assess the
obtained map of the environment using the diverse visual features an evaluation approach is
proposed. The concluding findings will be examined in this chapter.

8.1 Discussion

First of all, the captured datasets were not in the desired quality. This was the result of the
robot Spot not being in optimal condition, meaning that the robot often collapsed which made
a lot of datasets unusable. Eventually, the robot Spot had to be send back to Boston Dynamics
for reparation, but unfortunately did not make it back to the Robot Learning Group in time to
be used for this study. While the datasets could also be captured using a wheeled-robot, due
to the applicability of a legged-robot, the choice was made to experiment with the substandard
datasets. This could still give an indication of the performance of the feature detectors and visual
SLAM approach, but it is not possible to make generalizations of the performance. Hence, this
study only answers the research questions in the specific case of the Experiment Room being
the environment. Similarly, the fact that no repeating experiments were possible, to validate the
results of this study, more thorough testing has to be done.

8.2 Future work

The results indicate that the combination of lidar and visual SLAM approach performed con-
siderably well, with the layout of the Experiment Room being quite distinctive. However, along
the walls of the environment and in the center, it seems that it was not captured enough by the
camera. Future research might explore the possibility of improving the quality of regions that are
brought less into view. Additionally, the deep-learning based feature detectors did not perform
as expected at all. This has to be investigated further to incorporate deep-learning based feature
detectors better into the RTAB-Map framework. One direction of research could be the effect of
the pre-training step and data specifically on the performance of the visual features to improve
the current mapping using visual SLAM.

37

8.3 Conclusion

The research questions of this study are:

RQ1. What are the currently available feature detectors for visual SLAM methods, and how do
they compare to each other?

RQ2. Is it possible to integrate a new feature detector, namely R2D2, into RTAB-Map, and how
does its performance compare to the existing feature detectors?

RQ3. How can map assessment be performed of a map produced by visual SLAM when ground
truth is not available?

To formulate an answer on the first question, the currently available feature detectors were
categorized in three categories, namely binary features, floating-point features and deep-learning
based features, and every category was theoretically discussed, from which the conclusion was
that there is no universal and optimal approach, as the best choice is generally dependent on
the specific task, the setup and the existing distortions in the available data. The corresponding
experiments showed that SuperPoint was a special case, where it was the complete winner in the
re-localization experiments, but performs by far the worst in the experiment in the Experiment
Room. This is in line with the hypothesis that the performance of the feature detectors is to
a certain extent dependent on external factors. Nonetheless, the reason that SuperPoint did
perform this unexpectedly bad is an interesting direction for future research. To this extent,
SuperPoint may have been experiencing the same issues as R2D2, also a deep-learning based
approach, which also formulates an answer to the second question. While it was possible to
integrate R2D2 into the RTAB-Map framework as the used visual features, its performance
could not be determinant as it was not possible to obtained a map by means of the RTAB-Map
visual SLAM approach. Whether this is the same cause as SuperPoint, can be investigated as
future work. The other feature detectors were compared in the both qualitative and quantitative
manner. Whereas the qualitative manner was restricted to looking which map is more visually
appealing, the quantitative map was able to associate the performance to a value. In these
experiments, as there was no ground truth available, the map assessment of a map produces
by RTAB-Map could be performed using an evaluation approach based on the fiducial principle,
where fiducials are placed in the environment that can be compared to the location of the observed
fiducial. Therefore, this answers the third research question, however, more thorough testing has
to be done to evaluate the exact performance and applicability of this evaluation approach. To
conclude, this thesis has provided a deeper insight into the feature detection step of the visual
SLAM approach RTAB-Map specifically in the combination with the robot Spot and the ROS
framework. While this study has answered the research questions, the performance of the R2D2
feature detector and more robust findings on the evaluation procedure still remains to be seen
in future work.

38

Bibliography

[1] Pablo Fernández Alcantarilla, Adrien Bartoli, and Andrew J Davison. Kaze features. In
Computer Vision–ECCV 2012: 12th European Conference on Computer Vision, Florence,
Italy, October 7-13, 2012, Proceedings, Part VI 12, pages 214–227. Springer, 2012.

[2] Tim Bailey, Juan Nieto, Jose Guivant, Michael Stevens, and Eduardo Nebot. Consistency of
the ekf-slam algorithm. In 2006 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 3562–3568. IEEE, 2006.

[3] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Speeded-up robust features
(surf). Computer vision and image understanding, 110(3):346–359, 2008.

[4] Amanda Bouman, Muhammad Fadhil Ginting, Nikhilesh Alatur, Matteo Palieri, David D
Fan, Thomas Touma, Torkom Pailevanian, Sung-Kyun Kim, Kyohei Otsu, Joel Burdick,
et al. Autonomous spot: Long-range autonomous exploration of extreme environments with
legged locomotion. In 2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 2518–2525. IEEE, 2020.

[5] Alan Bundy and Lincoln Wallen. Difference of gaussians. Catalogue of Artificial Intelligence
Tools, pages 30–30, 1984.

[6] Michael Calonder, Vincent Lepetit, Christoph Strecha, and Pascal Fua. Brief: Binary robust
independent elementary features. In Computer Vision–ECCV 2010: 11th European Con-
ference on Computer Vision, Heraklion, Crete, Greece, September 5-11, 2010, Proceedings,
Part IV 11, pages 778–792. Springer, 2010.

[7] Carlos Campos, Richard Elvira, Juan J Gómez Rodŕıguez, José MM Montiel, and Juan D
Tardós. Orb-slam3: An accurate open-source library for visual, visual–inertial, and mul-
timap slam. IEEE Transactions on Robotics, 37(6):1874–1890, 2021.

[8] Andrew J Davison, Ian D Reid, Nicholas D Molton, and Olivier Stasse. Monoslam: Real-
time single camera slam. IEEE transactions on pattern analysis and machine intelligence,
29(6):1052–1067, 2007.

[9] Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. Superpoint: Self-supervised
interest point detection and description. In Proceedings of the IEEE conference on computer
vision and pattern recognition workshops, pages 224–236, 2018.

[10] Kaichang Di, Wenhui Wan, Hongying Zhao, Zhaoqin Liu, Runzhi Wang, and Feizhou Zhang.
Progress and applications of visual slam. Journal of Geodesy and Geoinformation Science,
2(2):38, 2019.

[11] Hugh Durrant-Whyte and Tim Bailey. Simultaneous localization and mapping: part i. IEEE
robotics & automation magazine, 13(2):99–110, 2006.

[12] Mihai Dusmanu, Ignacio Rocco, Tomas Pajdla, Marc Pollefeys, Josef Sivic, Akihiko Torii,
and Torsten Sattler. D2-net: A trainable cnn for joint detection and description of local
features. arXiv preprint arXiv:1905.03561, 2019.

39

[13] Daniel Dworakowski, Christopher Thompson, Michael Pham-Hung, and Goldie Nejat. A
robot architecture using contextslam to find products in unknown crowded retail environ-
ments. Robotics, 10(4):110, 2021.

[14] István Faragó. A modified iterated operator splitting method. Applied mathematical mod-
elling, 32(8):1542–1551, 2008.

[15] Mark Fiala. Artag, a fiducial marker system using digital techniques. In 2005 IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol-
ume 2, pages 590–596. IEEE, 2005.

[16] Maksim Filipenko and Ilya Afanasyev. Comparison of various slam systems for mobile robot
in an indoor environment. In 2018 International Conference on Intelligent Systems (IS),
pages 400–407. IEEE, 2018.

[17] Wolfgang Förstner and Eberhard Gülch. A fast operator for detection and precise location
of distinct points, corners and centres of circular features. In Proc. ISPRS intercommission
conference on fast processing of photogrammetric data, volume 6, pages 281–305. Interlaken,
1987.

[18] Mark Froehlich, Salman Azhar, and Matthew Vanture. An investigation of google tango®
tablet for low cost 3d scanning. In ISARC. Proceedings of the International Symposium on
Automation and Robotics in Construction, volume 34. IAARC Publications, 2017.

[19] Constantine Gidaris. The rise of the robots: Technocapitalism and the policing of race. Fast
Capitalism, 18(1), 2021.

[20] Giorgio Grisetti, Cyrill Stachniss, and Wolfram Burgard. Improved techniques for grid
mapping with rao-blackwellized particle filters. IEEE transactions on Robotics, 23(1):34–
46, 2007.

[21] H-M Gross, H Boehme, Ch Schroeter, Steffen Müller, Alexander König, Erik Einhorn,
Ch Martin, Matthias Merten, and Andreas Bley. Toomas: interactive shopping guide robots
in everyday use-final implementation and experiences from long-term field trials. In 2009
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 2005–2012.
IEEE, 2009.

[22] Robin P Guan, Branko Ristic, and Liuping Wang. Combining kld-sampling with gmapping
proposal for grid-based monte carlo localization of a moving robot. In 2017 20th Interna-
tional Conference on Information Fusion (Fusion), pages 1–8. IEEE, 2017.

[23] Erico Guizzo. By leaps and bounds: An exclusive look at how boston dynamics is redefining
robot agility. IEEE Spectrum, 56(12):34–39, 2019.

[24] Dirk Hahnel, Dirk Schulz, and Wolfram Burgard. Map building with mobile robots in
populated environments. In IEEE/RSJ International Conference on Intelligent Robots and
Systems, volume 1, pages 496–501. IEEE, 2002.

[25] Richard W Hamming. Error detecting and error correcting codes. The Bell system technical
journal, 29(2):147–160, 1950.

[26] Chris Harris, Mike Stephens, et al. A combined corner and edge detector. In Alvey vision
conference, volume 15, pages 10–5244. Citeseer, 1988.

[27] Mahmoud Hassaballah, Hammam A Alshazly, and Abdelmgeid A Ali. Analysis and eval-
uation of keypoint descriptors for image matching. Recent Advances in Computer Vision:
Theories and Applications, pages 113–140, 2019.

[28] Jared Heinly, Enrique Dunn, and Jan-Michael Frahm. Comparative evaluation of binary
features. In Computer Vision–ECCV 2012: 12th European Conference on Computer Vision,
Florence, Italy, October 7-13, 2012, Proceedings, Part II 12, pages 759–773. Springer Berlin
Heidelberg, 2012.

40

[29] Wolfgang Hess, Damon Kohler, Holger Rapp, and Daniel Andor. Real-time loop closure in
2d lidar slam. In 2016 IEEE International Conference on Robotics and Automation (ICRA),
pages 1271–1278, 2016.

[30] Michail Kalaitzakis, Brennan Cain, Sabrina Carroll, Anand Ambrosi, Camden Whitehead,
and Nikolaos Vitzilaios. Fiducial markers for pose estimation: Overview, applications and
experimental comparison of the artag, apriltag, aruco and stag markers. Journal of Intelli-
gent & Robotic Systems, 101:1–26, 2021.

[31] Hyeong Ryeol Kam, Sung-Ho Lee, Taejung Park, and Chang-Hun Kim. Rviz: a toolkit for
real domain data visualization. Telecommunication Systems, 60:337–345, 2015.

[32] Stefan Kohlbrecher, Johannes Meyer, Thorsten Graber, Karen Petersen, Uwe Klingauf, and
Oskar von Stryk. Hector open source modules for autonomous mapping and navigation with
rescue robots. In Robot Soccer World Cup, pages 624–631. Springer, 2013.

[33] Stefan Kohlbrecher, Oskar Von Stryk, Johannes Meyer, and Uwe Klingauf. A flexible and
scalable slam system with full 3d motion estimation. In 2011 IEEE international symposium
on safety, security, and rescue robotics, pages 155–160. IEEE, 2011.

[34] Kurt Konolige, Giorgio Grisetti, Rainer Kümmerle, Wolfram Burgard, Benson Limketkai,
and Regis Vincent. Efficient sparse pose adjustment for 2d mapping. In 2010 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 22–29. IEEE, 2010.

[35] Brett Koonce and Brett Koonce. Vgg network. Convolutional Neural Networks with Swift
for Tensorflow: Image Recognition and Dataset Categorization, pages 35–50, 2021.

[36] Mathieu Labbe and Francois Michaud. Appearance-based loop closure detection for online
large-scale and long-term operation. IEEE Transactions on Robotics, 29(3):734–745, 2013.

[37] Mathieu Labbe and François Michaud. Online global loop closure detection for large-scale
multi-session graph-based slam. In 2014 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 2661–2666. IEEE, 2014.

[38] Mathieu Labbé and François Michaud. Rtab-map as an open-source lidar and visual si-
multaneous localization and mapping library for large-scale and long-term online operation.
Journal of Field Robotics, 36(2):416–446, 2019.

[39] Mathieu LabbÃ© and FranÃ§ois Michaud. Multi-session visual slam for illumination-
invariant re-localization in indoor environments. Frontiers in Robotics and AI, 9, 2022.

[40] Stefan Leutenegger, Margarita Chli, and Roland Y Siegwart. Brisk: Binary robust invariant
scalable keypoints. In 2011 International conference on computer vision, pages 2548–2555.
Ieee, 2011.

[41] David G Lowe. Distinctive image features from scale-invariant keypoints. International
journal of computer vision, 60:91–110, 2004.

[42] Jiayi Ma, Xingyu Jiang, Aoxiang Fan, Junjun Jiang, and Junchi Yan. Image matching
from handcrafted to deep features: A survey. International Journal of Computer Vision,
129:23–79, 2021.

[43] Steve Macenski and Ivona Jambrecic. Slam toolbox: Slam for the dynamic world. Journal
of Open Source Software, 6(61):2783, 2021.

[44] Elmar Mair, Gregory D Hager, Darius Burschka, Michael Suppa, and Gerhard Hirzinger.
Adaptive and generic corner detection based on the accelerated segment test. In Computer
Vision–ECCV 2010: 11th European Conference on Computer Vision, Heraklion, Crete,
Greece, September 5-11, 2010, Proceedings, Part II 11, pages 183–196. Springer, 2010.

[45] Chelsia Rose Maricus. See ‘spot’ save: Robot dogs join the new york fire department. https:
//www.nytimes.com/2022/03/17/nyregion/fdny-boston-dynamics-spot-robot.html.
(accessed: 03.11.2022).

41

https://www.nytimes.com/2022/03/17/nyregion/fdny-boston-dynamics-spot-robot.html
https://www.nytimes.com/2022/03/17/nyregion/fdny-boston-dynamics-spot-robot.html

[46] Michael Montemerlo and Sebastian Thrun. Fastslam 1.0. FastSLAM: A scalable method for
the simultaneous localization and mapping problem in robotics, pages 27–62, 2007.

[47] Raul Mur-Artal and Juan D Tardós. Orb-slam2: An open-source slam system for monocular,
stereo, and rgb-d cameras. IEEE transactions on robotics, 33(5):1255–1262, 2017.

[48] David Nistér, Oleg Naroditsky, and James Bergen. Visual odometry. In Proceedings of the
2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
2004. CVPR 2004., volume 1, pages I–I. Ieee, 2004.

[49] Ministry of Internal Affairs and Japan. Communications. Population census,tabulation
on internal migration for population; 2015. https://www.stat.go.jp/english/data/

kokusei/2015/summary.html. (accessed: 10.11.2022).

[50] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob
Wheeler, Andrew Y Ng, et al. Ros: an open-source robot operating system. In ICRA
workshop on open source software, volume 3, page 5. Kobe, Japan, 2009.

[51] Jerome Revaud, Philippe Weinzaepfel, César De Souza, Noe Pion, Gabriela Csurka, Yohann
Cabon, and Martin Humenberger. R2d2: repeatable and reliable detector and descriptor.
arXiv preprint arXiv:1906.06195, 2019.

[52] Edward Rosten and Tom Drummond. Machine learning for high-speed corner detection.
In Computer Vision–ECCV 2006: 9th European Conference on Computer Vision, Graz,
Austria, May 7-13, 2006. Proceedings, Part I 9, pages 430–443. Springer, 2006.

[53] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. Orb: An efficient alter-
native to sift or surf. In 2011 International conference on computer vision, pages 2564–2571.
Ieee, 2011.

[54] Artur Sagitov, Ksenia Shabalina, Leysan Sabirova, Hongbing Li, and Evgeni Magid. Artag,
apriltag and caltag fiducial marker systems: Comparison in a presence of partial marker
occlusion and rotation. In ICINCO (2), pages 182–191, 2017.

[55] P Sankalprajan, Thrilochan Sharma, Hamsa Datta Perur, and Prithvi Sekhar Pagala. Com-
parative analysis of ros based 2d and 3d slam algorithms for autonomous ground vehicles. In
2020 International Conference for Emerging Technology (INCET), pages 1–6. IEEE, 2020.

[56] Sören Schwertfeger, Adam Jacoff, Johannes Pellenz, and Andreas Birk. Using a fiducial
map metric for assessing map quality in the context of robocup rescue. In 2011 IEEE
International Symposium on Safety, Security, and Rescue Robotics, pages 208–214. IEEE,
2011.

[57] Xuelun Shen, Cheng Wang, Xin Li, Yifan Peng, Zijian He, Chenglu Wen, and Ming Cheng.
Learning scale awareness in keypoint extraction and description. Pattern Recognition,
121:108221, 2022.

[58] Sawako Shirahase. Social Stratification in an Aging Society with Low Fertility: The Case of
Japan. Springer Nature, 2022.

[59] Roland Siegwart, Illah Reza Nourbakhsh, and Davide Scaramuzza. Introduction to au-
tonomous mobile robots. MIT press, 2011.

[60] Sivic and Zisserman. Video google: A text retrieval approach to object matching in videos.
In Proceedings ninth IEEE international conference on computer vision, pages 1470–1477.
IEEE, 2003.

[61] S Thrun, W Burgard, and D Fox. Probabilistic robotics. ma, 2005.

[62] Sebastian Thrun and Michael Montemerlo. The graph slam algorithm with applications to
large-scale mapping of urban structures. The International Journal of Robotics Research,
25(5-6):403–429, 2006.

42

https://www.stat.go.jp/english/data/kokusei/2015/summary.html
https://www.stat.go.jp/english/data/kokusei/2015/summary.html

[63] Yurun Tian, Bin Fan, and Fuchao Wu. L2-net: Deep learning of discriminative patch
descriptor in euclidean space. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 661–669, 2017.

[64] Ali Tourani, Hriday Bavle, Jose Luis Sanchez-Lopez, and Holger Voos. Visual slam: What
are the current trends and what to expect? arXiv preprint arXiv:2210.10491, 2022.

[65] Daniel Troniak, Junaed Sattar, Ankur Gupta, James J. Little, Wesley Chan, Ergun Calisgan,
Elizabeth Croft, and Machiel Van der Loos. Charlie rides the elevator – integrating vision,
navigation and manipulation towards multi-floor robot locomotion. In 2013 International
Conference on Computer and Robot Vision, pages 1–8, 2013.

[66] Kazuyoshi Wada. New robot technology challenge for convenience store. In 2017 IEEE/SICE
International Symposium on System Integration (SII), pages 1086–1091. IEEE, 2017.

[67] Joachim Weickert. A review of nonlinear diffusion filtering. In International conference on
scale-space theories in computer vision, pages 1–28. Springer, 1997.

[68] Felix H Wullschleger, Kai O Arras, and Sjur J Vestli. A flexible exploration framework for
map building. In 1999 Third European Workshop on Advanced Mobile Robots (Eurobot’99).
Proceedings (Cat. No. 99EX355), pages 49–56. IEEE, 1999.

[69] Po-Yu Yang, Tzu-Hsuan Chang, Yu-Hao Chang, and Bing-Fei Wu. Intelligent mobile robot
controller design for hotel room service with deep learning arm-based elevator manipulator.
In 2018 International Conference on System Science and Engineering (ICSSE), pages 1–6,
2018.

[70] Azalea Yunus and Stacy A Doore. Responsible use of agile robots in public spaces. In
2021 IEEE International Symposium on Ethics in Engineering, Science and Technology
(ETHICS), pages 1–5. IEEE, 2021.

43

	Introduction
	Problem definition
	Theoretical background
	Navigation
	Simultaneous Localization and Mapping (SLAM)
	Problem definition
	SLAM paradigms

	SLAM implementations
	Filter-based SLAM
	Graph-based SLAM
	Visual SLAM

	VisualSLAM methods

	Related work
	Feature Detection
	Binary features
	Comparison

	Floating-point features
	Comparison

	Deep learning-based features
	Comparison

	Discussion

	Method
	Robot Spot
	Hardware
	Software
	ROS
	RTABMap

	Implementation
	RTABMap addition: R2D2
	Evaluation

	Summary

	Experiments
	Perspective
	Validation
	Extension

	Results
	Perspective
	Validation
	Exploration
	Qualitative results
	Quantitative results

	Extension
	Conclusion

	Conclusions
	Discussion
	Future work
	Conclusion

