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Abstract

This thesis focuses on the development of a novel approach for modelling the behaviour
of agents in the RoboCup Rescue Agent Simulation Competition. The scenarios used
in this competition consist of multi-agent settings reflecting the challenges faced by
ambulances, fire brigades and police forces in the aftermath of a natural disaster, such
as an earthquake.

The underlying framework chosen for this task falls under the Decision Theoretic Plan-
ning paradigm. However, due to the complexity of the considered problem, using a single
model for the agents’ behaviour could prove unfeasible. A rich enough model taking into
account all relevant particularities of the domain would be intractable, while a much
simpler model would abstract away too much information. As such, a hierarchical con-
trol structure is considered, with a macro-level behaviour responsible for the strategic,
high level decisions and a micro-level behaviour dealing with the local particularities of
the environment.

Several method were considered in developing the macro level behaviour, including one
based on the Bayesian Game Approximation, an algorithm for finding approximate
solutions in multi-agent partially observable domains, and another following the DCOP
formulation, a popular framework in the scholarly literature studying this domain. The
micro level behaviour was implemented using a simpler MDP based method, due to the
strict computation limits.

Experimental results show a good overall performance of the methods considered, with
their differences being better highlighted on harder, custom made configurations of the
official contest maps.
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Chapter 1

Introduction

1.1 Rescue Agent Simulation League

RoboCup is an annual international robotics competition focused on promoting research
in the fields of robotics and Artificial Intelligence. Within RoboCup there are multiple
leagues aimed at various tasks, such as football playing (RoboCup Soccer), disaster relief
(RoboCup Rescue) or robot integration in domestic environments (RoboCup@Home).
The subject of this thesis focuses on the RoboCup Rescue Agent Simulation league
which was organised for the first time in 2001 as a reaction to the Great Hanshi-Awaji
earthquake which hit Kobe City on the 17th of January 1995 with devastating conse-
quences [1]. Within this league, multiple agents representing ambulances, fire brigades
and police forces act within a city following an earthquake aiming at rescuing victims,
controlling and extinguishing fires and clearing rubble from the roads.

1.1.1 Environment

The environment in which the agents take actions consists of (parts of) different cities,
either real or computer generated. These cities contain a number of buildings and
connecting roads, up to 10000 each. Apart from regular buildings, which make up for
the majority of the buildings in the city, two types of buildings have special functions,
namely the refuges and the gas stations. The former represents a safe zone where victims
can be dropped and where fire brigades can refill their water tanks, while the latter are
potentially dangerous entities, with increased negative effects on their surroundings,
should they catch fire. Apart from the buildings and the roads, fire hydrants provide
additional, albeit more limited points where the fire brigades can refill their water tanks.

The spreading of fires is controlled by the fire simulator and is governed by the topology
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CHAPTER 1. INTRODUCTION 2

of the map (the adjacency of the buildings), the size of the buildings (both ground area
and height) and the construction materials of each building (e.g. wooden buildings catch
fire more rapidly than concrete buildings). As such, a measure of the fire level and fire
related damage, called fieriness, is defined for each building and can take several levels:
unburnt, heating, burning, inferno.

The road blockades are controlled by the collapse simulator and are influenced by the
initial intensity of the earthquake, the height and fire state of the buildings, as well as
the possible aftershocks which occur during the simulation.

Civilians are entities controlled by the environment and represent the general population
of the city. Their behaviour is fixed and depends on their status. A unburied, uninjured
civilian will move towards the nearest refuge, although with a lower speed than the
autonomous agents. Buried civilians need to be rescued from the rubble first by the
ambulances and then transported to the refuge. Injured civilians are also unable to
move by themselves and their condition worsens (represented by a gradually decreasing
hitpoint measure) until they are safely returned to a refuge. Should their hitpoint
measure drop to 0, they are considered to be dead.

Agents can communicate directly through voice messages up to a certain range, as well
as through radio messages. Radio channels are limited in their number and bandwidth,
i.e. the maximum amount of information that can be transmitted through the channel
in a single time step. In order to simulate communication difficulties common in the
aftermath of a disaster, various constraints are imposed in each scenario, adding noise
or randomly dropping the messages partially or totally. In more extreme scenarios,
communication is not available at all.

The performance of the agents with respect to their tasks is estimated using a score
measure computed for each time step of the simulation. This measure is influenced
by the total number of civilians alive and their cumulative health, the speed of their
discovery, the total building damage across the city, the speed and efficiency of fire
extinguishing and the efficiency of road clearing.

Additional details regarding the parameters and behaviours of the aforementioned sim-
ulators can be found in the official rules of the competition [2].

1.1.2 Agents

As previously mentioned, there are three categories of agents acting within this envi-
ronment, ambulance agents, fire agents and police agents. Within each category two
types of agents are defined: immobile and mobile.

Immobile agents, called centre agents, are represented by buildings and can only have
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Agent type Actions
Centre agent Speak

Ambulance team Speak, Move, Rescue, Load, Unload
Fire brigade Speak, Move, Extinguish, Refill
Police force Speak, Move, Clear

Table 1.1: Available agent actions according to their type.

a role in the coordination of the mobile agents, the only actions available to them
being communication actions. Depending on their category, the centre agents are called
ambulance centres, fire stations and police offices, respectively. To be noted is the fact
that not all scenarios may include some or all of the centre agents.

Mobile agents, called platoon agents, have an active role in addressing the challenges
posed by the environment and each have different particularities according to their role.

Thus, ambulance teams are responsible for rescuing civilians or other mobile agents
trapped in collapsed buildings and transporting them to refuges. Multiple ambulance
teams can work together for rescuing victims from collapsed buildings, resulting in a
faster completion of the task, but only one agent can carry a single victim at a time.

The main role of the fire brigades is extinguishing fires. They carry a limited amount
of water which is depleted gradually while extinguishing buildings and which can be
replenished at refuges (where multiple fire brigades can refill simultaneously and at a
high rate) or hydrants (where a single fire brigade can refill at a time and at a limited
rate). Naturally, multiple fire brigades extinguishing the same burning building will be
able to complete the task more rapidly.

Finally, police forces are responsible for clearing out roads so that the other platoon
agents and victims can move freely. They can clear only a limited area at a time and
multiple police forces clearing the same area does not result in increased effectiveness
in completing the task.

In addition to their specific actions, all platoon agents can take communication actions
(speak commands) and movement actions. An overview of all the actions available to
all the agents is given in table 1.1.

In figure 1.1, an intermediate stage if a simulation is presented. Platoon agents are
represented by red, white and blue circles, depicting fire brigades, ambulance teams
and police forces respectively. Victims are represented by green circles and the darker
the colour shade, the lower their hit point measure. Buildings are usually depicted
with varying shades of grey, indicating their collapse damage. Burning buildings are
indicated by varying shades of yellow and red, according to their fieriness. Extinguished
buildings are shown in shades of blue, depending on their damage, while completely
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Figure 1.1: Example of an intermediate step in a simulation.

burnt buildings are shown in black. Special buildings such as refuges or centre agents
are marked with specific icons.

Usually, the behaviour of a certain agent type also affects the performance of the other
agent types. For example, the performance of police agents in clearing roads affects
the mobility of fire brigades and ambulance teams, and thus, indirectly, their ability to
fulfil their tasks efficiently. Also, the ability of fire brigades to contain and extinguish
burning buildings influences the expansion of fires to areas with trapped victims and
thus, affects the performance of the ambulance teams. However, the approaches studied
in this thesis will only focus on the behaviour of fire brigades and ambulance teams. The
main reason for this choice consists of the particularities of the road clearing method
employed by the police, shown in figure 1.2. As opposed to fire brigades and ambulances,
whose interactions with the environment are made through the use of entity IDs (which
can be viewed as higher level semantic information), police force agents clear roads by
specifying the location and rotation of the effective clearing rectangle. Thus, the main
challenge of the police’s behaviour is a geometric optimisation of the clearing area,
which would translate poorly in the approaches studied for developing rational agent
behaviour and cooperation. Furthermore, the cooperation aspect of the police force’s
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behaviour is relatively limited, as multiple agents clearing the same blockade do not
provide additional benefits.

Figure 1.2: Police team clearing method.

1.2 Decision-theoretic planning and learning

According to [3], decision-theoretic planning (DTP) is a general approach for enabling
autonomous agents to devise courses of action (policies) in environments which may
involve uncertainty with respect to the outcome of the undertaken actions, incomplete
information about the world and potentially multiple solutions of varying quality. These
particularities make DTP an attractive choice for developing rational agent behaviour
in the previously described context of the Rescue Agent Simulation competition.

The majority of DTP methods use the Markov Decision Process (MDP) framework as
an underlying model [3]. Under this model, the agent interacts with the environment
by taking actions which usually causes it to change its state. Taking an action also
causes the agent to receive a reward, either positive or negative, reflecting how desirable
the effect of the action was. For an environment with known dynamics, finding an
optimal behaviour for the agent is a planning task, while for an environment with
unknown dynamics rational behaviour can be achieved through learning. Although
robust methods exist for both these kinds of tasks, an MDP model may prove to limiting
for the entire Rescue Agent Simulation problem.

Fortunately, DTP also provides richer frameworks taking into account certain particu-
larities of the problem. Partial observability and the multi-agent character are the most
notable such particularities. Although several options exist incorporating these aspects,
probably the most popular is the Decentralized Partially Observable Markov Decision
Process (Dec-POMDP) [30]. However, the closer fidelity to the problem definition
comes at a cost, as finding optimal or bounded approximate solutions to Dec-POMDP
is proven to be NEXP-Complete [29]. This drawback is addressed by certain heuris-
tic approximate methods, but even so, the domains onto which they obtain reasonable
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results computationally-wise remain much smaller than the Rescue Agent Simulation
problem.

The main contribution of this thesis is the development a hierarchical control method
aimed at mitigating the limitations of using a single framework, either too limited as
the MDP, or computationally intractable as a Dec-POMDP. As such, the macro-level
behaviour is responsible for the higher strategic decisions and agent coordination, while
the lower, micro-level behaviour addresses the local, tactical challenges of each agent and
implements the suggestions received from the macro-level. This control scheme allows
both levels to abstract complementary parts of the problem, making both layers of the
decision making process manageable. A further contribution consists of the actual usage
of DTP methods in developing an approach capable of performing in the real Rescue
Agent Simulation competition and not only in benchmarks or artificial scenarios inspired
by it.

This thesis will focus on the performance associated with the macro level behaviour
based on the BaGA and DCOP methods. The former was chosen due to its good
performance in multi-agent partially observable domains larger than typical benchmark
problems. The latter approach was chosen due to its popularity and promising results in
the scholarly work studying the RoboCup Rescue Agent Simulation problem, as shown
in the following section.

1.3 Related work

As mentioned in [5], unfortunately most of the approaches employed by the teams in
the Rescue Agent Simulation Competition do not follow a single, consistent formally
defined framework, but rather aim at optimising various isolated aspects of the agents’
behaviour, which, in turn, lead to measurable increases in the competition score. Still,
some valuable insight can be found in some of the participating teams’ approaches. Re-
garding the extinguishing behaviour, several teams perform a clustering of the burning
buildings and then make assignments to fire brigades based on heuristics [10], convex
hulls [12] or a combination of both [7]. The more elaborate approaches use a lightweight
simulator to assess the possible spreading of fire and make assignments accordingly [13]
[16]. Ambulance behaviour usually involves ranking the victims and buried agents ac-
cording to a heuristic and then attending to the most promising targets [12] [13] [17]
[18]. Only one of the 2013 teams, MRL [16], reports using a learning mechanism for
better estimating the relative importance of victims. Another common aspect consid-
ered by most teams concerns the map partitioning into smaller, more manageable areas
which get assigned to subsets of agents. This partitioning is usually done using K-Means
[12] [16] [18] or variants such as X-Means [14] or C-means [17]. One of the teams [11]
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also assesses the impact of forming heterogeneous teams of agents, either assigned stat-
ically, at the beginning of the simulation, or dynamically, as need arises. Other aspects
presented in the team description papers concern optimizations to the path planning
algorithms [8] [18] and communications [14] [17].

One of the notable scholarly efforts to formalise and analyse the challenges and solutions
to the Rescue Agent Simulation is [5]. The authors consider a Coalition Formation with
Spatial and Temporal constraints (CFST) model for describing the general process of
task allocation for ambulance and fire brigades. The authors claim that in many circum-
stances the formation of coalitions (teams of agents) is critical for the success of most
tasks, as, for example, fires tend expand to multiple buildings, beyond a single agent’s
ability to contain and extinguish it. The spatial constraints of the CFST model encode
the particularities regarding the positions of the agents relative to the position of the
task, while the temporal constraints refer time sensitive properties of the task, such as
the gradual decrease of victims’ hitpoints or the incremental expansion of the fire clus-
ters. This general model is further formalised as a Distributed Constraint Optimization
problem, allowing an optimal task assignment with respect to the spatial and temporal
constraints through message passing between the agents. This optimal assignment is
computed using a variant of the Max-Sum algorithm, adapted to the particularities of
the problem, for improved memory consumption and speed.

The authors of [20] also consider a task allocation model, Extended General Assignment
Problem (E-GAP) previously introduced by [21], and describe two algorithms for solving
it. The first, Low-communication Approximate DCOP (LA-DCOP), relies on creating
tokens describing tasks based on the observed state of the environment and then passing
them between agents. If an agent has enough capability to successfully address the
task it retains the token, otherwise it passes to another agent. However, the choice of
retaining or passing the token is founded only on local information and thus the global
solution may not be optimal. The second algorithm, Swarm-GAP, follows a similar
approach, but uses a probabilistic decision process for accepting or rejecting the token,
making it less demanding computationally wise and slightly more efficient.

A further attempt at solving the coalition formation and task allocation is made in [22].
However, the method of choice in this case, bee clustering, is inspired by bee behaviour
in foraging nectar. More specifically, bees travel far away from the hive to gather nectar
and, depending on the sources found, perform a recruitment of other bees based on
the gathered information. This metaphor resembles to a certain degree the formation
of coalitions of agents with similar or complementary capabilities in order to address
tasks of various requirements, scenario similar to the previously mentioned models for
the Rescue Agent Simulation.

A thorough overview and synthesis of the DTP paradigm, highlighting its core assump-
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tions, strengths and weaknesses is made in [3]. A more in depth analysis and discussion
on various algorithms for solving problems under DTP models is given in [25]. One of the
more popular frameworks taking into consideration the partial observability and multi
agent characteristic of problems, Dec-POMDP, is presented in [30]. Finally, Bayesian
Game Approximation, a robust algorithm aimed at mitigating the prohibitive costs
associated with optimal solutions of Dec-POMDPs is introduced in [24].

1.4 Structure

The rest of this thesis is organised as follows. Chapter 2 gives a theoretical overview of
the algorithms and techniques used in developing the approaches studied in this thesis.
Chapter 3 describes the approaches in more detail, highlighting the particularities and
adaptations of the algorithms to the actual problem of the Rescue Agent Simulation.
Experiments assessing the aforementioned approaches are discussed in Chapter 4 and
finally, conclusions are drawn in Chapter 5.



Chapter 2

Theory

The purpose of this chapter is to provide an overview of the algorithms and techniques
employed in the studied approaches. Details on how these are used and adapted for the
Rescue Simulation problem are given in chapter 3.

2.1 General concepts

The Decision Theoretic Planning (DTP) paradigm served as a starting point for de-
signing the agents’ behaviour and constitutes an important part of the overall approach
studied in this thesis.

According to [3], DTP is an extension to the classical AI planning paradigm which allows
the incorporation of various particularities of real-world problems such as uncertainty
with respect to the outcome of actions or limited resources. Following the conventions
used in [25], under DTP, the problem is formalised as involving one or more rational
decision makers, called agents, which act within an environment towards achieving a
goal. In most situations, as in the case studied in this thesis, the time scale is discrete.
Thus, at each time step t, the agent is given a representation of the environment’s
state, st ∈ S. Based on this information, the agent is capable of taking one or more
actions at ∈ A(st). The quality of each action is encoded through a numerical reward
obtained at the next time step, rt+1 ∈ R. This cycle of observing the state st, taking
action at and receiving the reward rt+1 is repeated for a fixed number of steps (finite
horizon) or indefinitely (infinite horizon). The agent’s behaviour is described through
a policy, πt(s, a) which denotes the probability of action a being taken at time t if the
environment is in state s.

As opposed to classical planning, where the goal of the agent specified as a world state
in which it must arrive, the goal of the agent under DTP is to maximise its accumulated

9



CHAPTER 2. THEORY 10

reward over time. This measure, called return is defined for problems with finite horizons
as

Rt = rt+1 + rt+2 + ...+ rT (2.1)

where T is the final time step. In the case of infinite horizon, the concept of discounting
is necessary to keep the return finite. Thus, a discount rate γ is introduced, 0 ≤ γ ≤ 1,
reflecting the fact that more immediate rewards are deemed more important than later
ones:

Rt = rt+1 + γrt+2 + γ2rt+3 + ... =
∞∑
k=0

γkrt+k+1 (2.2)

2.1.1 Markov Decision Process

The underlying model for the vast majority of DTP methods is the Markov Decision
Process (MDP). In addition to the state space S, action set A and reward model,
the problem is specified by the transition probabilities, reflecting the probability of the
environment transitioning from st to a certain st+1 when action at is taken. In the case
of the MDP, this measure is conditioned only on the previous state st and action at,
and not on the entire history s0, a0, s1, a1, ...st, at.

Pass′ = Pr{st+1 = s′|st = s, at = a} (2.3)

Similarly, the reward follows the same conditioning:

Rass′ = E{rt+1|st = s, at = a, st+1 = s′} (2.4)

This is known as the Markov property, with st being a sufficient statistic for the entire
history. The authors of [25] point out the fact that even if the state signal does not
have this property, it is often useful to consider it as an approximation of a Markov
state. Mainly, this is due to the benefits of considering the state to be a good basis for
predicting future rewards or future states (in case the model is learnt and not specified
beforehand).

In solving MDP models, an useful construct is the value function, reflecting how desir-
able is a state from an agent’s point of view (or, alternatively, how desirable is an action
to be taken from a certain state of the environment). Since these estimates are based
on the expected return, and since the return is dependent on the agent’s actions, the
value function is therefore dependent on the agent’s policy (as the policy determines
which actions will be taken in certain states of the environment). Thus, for MDPs, the
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value function associated with a certain state s under a certain policy π is defined as

V π(s) = Eπ{Rt|st = s} = Eπ

{ ∞∑
k=0

γkrt+k+1|st = s

}
(2.5)

Similarly, for the value function reflecting the benefit of taking a certain action a in
state s under policy π is defined as

Qπ(s, a) = Eπ{Rt|st = s, at = a} = Eπ

{ ∞∑
k=0

γkrt+k+1|st = s, at = a

}
(2.6)

These value functions follow a fundamental property which is exploited by many ap-
proaches for solving MDPs and other related domains. This property is expressed by
the Bellman equation for V π and it highlights the relationship between the value of a
state and its possible successors, under a given policy π:

V π(s) =
∑
a

π(s, a)
∑
s′

Pass′
[
Rass′ + γV π(s′)

]
(2.7)

Similarly, for the action-value function, the Bellman equation takes the following form:

Qπ(s, a) =
∑
s′

Pass′
[
Rass′ + γ

∑
a′

π(s′, a′)Qπ(s′, a′)
]

(2.8)

Solving an MDP usually implies finding the best policy i.e. the policy which yields the
highest return. Expressed in terms of value functions, this equates to finding an optimal
policy π∗ such that

V ∗(s) = max
π

V π(s),∀s ∈ S (2.9)

Similarly, the optimal policies also yield the same optimal action-value function

Q∗(s, a) = max
π

Qπ(s, a),∀s ∈ S and ∀a ∈ A(s) (2.10)

Since the optimal value functions also respect equations 2.7 and 2.8, these can be rewrit-
ten in an alternative form, the Bellman optimality equations, for V ∗ and Q∗(s, a), re-
spectively

V ∗(s) = max
a

∑
s′

Pass′
[
Rass′ + γV ∗(s′)

]
(2.11)
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Q∗(s, a) =
∑
s′

Pass′
[
Rass′ + γmax

a′
Q∗(s′, a′)

]
(2.12)

For a finite MDP with N states, the Bellman optimality equation yields a system of N
equations with N variables which can be solved in principle if the dynamics of the envi-
ronment are known, namely the transition probabilities Pass′ and rewardsRass′ . However,
this approach to solving MDPs is rarely useful, since usually the number of states is
prohibitively large to allow reasonable computation times and memory requirements.
Furthermore, the dynamics of the environment are not always accurately known. In or-
der to mitigate this constraints, according to [25], three classes of algorithms are usually
employed, depending on the particularities of the problem.

The first of these consists of dynamic programming (DP) methods, such as policy itera-
tion and value iteration. These involve an iterative process for gradually approximating
the optimal policy or value function. However, they also require the transition proba-
bilities and rewards to be known in advance. For this reason, they cannot be used in
the studied approaches (as will be discussed in chapter 3) and thus will not be discussed
further.

The second class of algorithms mentioned in [25] consists of Monte Carlo methods. In
contrast to dynamic programming methods, these do not require an a priori knowledge
of the environment, but instead approximate value functions based on samples of on-
line experience or simulations. However, these samples are defined only for episodic
tasks and reflect complete returns. As such, the update of the value function and policy
only occurs between episodes. In this case, a generic update of the value function for a
certain state st can be expressed as

V (st)← V (st) + α[Rt − V (st)] (2.13)

where Rt denotes the episode’s return following time t and α a learning rate parameter.
This can be cumbersome for relatively long simulations as the ones studied in this thesis
and therefore will not be discussed further.

Finally, the third class of algorithms is Temporal Difference (TD) learning. TD meth-
ods combine advantages of both previously mentioned classes, being able to determine
optimal policies from experience, without a model of the environment dynamics (trait
at the core of Monte Carlo methods), while also bootstrapping on the estimates and
taking advantage of the learnt information online, not waiting for the episodes to finish.
Because of these particularities, part of the agent’s behaviour includes TD methods and
will be discussed in the following subsection.
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2.2 Temporal Difference learning

Similar to Monte Carlo methods, Temporal Difference methods also perform value func-
tion estimates. However, these are not done at the end of an entire episode, but rather
at every time step of the simulation. In order to be able to do this, it needs to bootstrap
on to an existing estimate. In the simplest case, called TD(0) by the authors of [25],
the update is expressed as

V (st)← V (st) + α[rt+1 + γV (st+1)− V (st)] (2.14)

This update equation is similar to the MC version, equation 2.13, with the return Rt
being replaced by the bootstrapped estimate rt+1 + γV (st+1). The learning parameter
α controls the impact of the new information over the already learned value function.
A typical value for this parameter is α = 0.1 [25].

Based on this principle, a control strategy can be devised, allowing the agent to find an
optimal policy. Because under TD methods the agent needs to learn the environment
dynamics while also benefiting off the learnt estimates, a balance must be found between
exploration and exploitation. A total focus on exploration will result in a irrational be-
haviour of the agent, exploring all the states and actions, but not benefiting at all from
what it learns. On the other hand, a total focus on exploitation will potentially not
allow the agent to discover an optimal policy, remaining stuck in a local optimum. A
commonly employed solution to this problem is the use of an ε-greedy policy, favouring
the choice of the action yielding maximum gain, but not completely ignoring the other.
As such, all nongreedy action have a ε

|A(s)| probability of being chosen, while the re-
maining probability mass of 1− ε+ ε

|A(s)| goes to the greedy action. A commonly used
value for this parameter is ε = 0.1, as it allows sufficient exploitation of the learned
policy, while not completely stopping exploration. More elaborate approaches such a
simulated annealing allow the variation of this parameter from a high value in the be-
ginning, stimulating exploration, to a lower value as the simulation proceeds, favouring
the exploitation of the more informed learned policy.

2.2.1 SARSA

SARSA represents an on-policy TD control method. Rather than estimating a state-
value function, it is more convenient to learn an action-value function as it would allow
a more accurate policy to be derived, by also learning about Pass′ . Being an on-policy
method, the goal is to estimate Qπ(s, a) for the current policy π, for all states s and
actions a. In this case, the transition occurs between state-action pairs, rather than
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Algorithm 2.1 SARSA algorithm
1: Initialise Q(s, a) arbitrarily
2: loop for each episode
3: Initialise s
4: Choose a from s using policy derived from Q (ε-greedy)
5: loop for each step in episode
6: Take action a, observe r, s′

7: Choose a′ from s′ using policy derived from Q (ε-greedy)
8: Q(s, a)← Q(s, a) + α[r + γQ(s′, a′)−Q(s, a)]
9: s← s′; a← a′

10: end loop
11: end loop

states. As such, equation 2.14 becomes

Q(st, at)← Q(st, at) + α[rt+1 + γQ(st+1, at+1)−Q(st, at)] (2.15)

Based on this update equation, the on-policy control scheme continually estimates Qπ

and shifts the policy π towards greediness with respect to this measure. This algorithm
is presented in listing 2.1.

2.2.2 Q-Learning

Q-Learning represents an off-policy TD control algorithm. As opposed to SARSA, which
estimates the action-value function Qπ for the current behaviour policy, Q-Learning
aims at directly approximating the optimal action-value Q∗, irrespective of the policy
followed. As such, the update equation becomes

Q(st, at)← Q(st, at) + α[rt+1 + γmax
a

Q(st+1, a)−Q(st, at)] (2.16)

In this case, the main difference from equation 2.15 is the fact that the action chosen
for st+1 is not specified by the policy π, but instead is the one yielding the highest
expected value, as selected by the max operator. This enables a faster convergence to
the optimal policy, but in certain cases the online behaviour might be slightly worse
than for SARSA, as highlighted in [25]. The pseudocode for the Q-Learning control
scheme is given in listing 2.2.
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Algorithm 2.2 Q-learning algorithm
1: Initialise Q(s, a) arbitrarily
2: loop for each episode
3: Initialise s
4: loop for each step in episode
5: Choose a from s using policy derived from Q (ε-greedy)
6: Take action a, observe r, s′

7: Q(s, a)← Q(s, a) + α[r + γmaxa′ Q(s′, a′)−Q(s, a)]
8: s← s′

9: end loop
10: end loop

2.3 Partially Observable Markov Decision Process

In many real world problems, the MDP model does not accurately reflect the agents
capabilities with respect to sensing its environment. Often, its perception is limited
and/or unreliable, thus conferring the partial observability property of the problem.
This is also true for the Rescue Simulation problem, where agents are only able to sense
the properties of entities in their immediate vicinity.

Incorporating partial observability into the MDP model yields the Partially Observable
Markov Decision Process (POMDP). As described in [26], in addition to the state space
S, action set A(s), transition probability Pass′ and reward model Rass′ , the POMDP also
includes

• Ω , a finite set of observations that the agent can perceive about the environment;

• O : S × A → Π(Ω) , an observation function giving the probability distribution
over possible observations, for each action and resulting states.

In this new context, the agent needs to keep a belief state reflecting its previous expe-
rience. This is usually defined as a probability distribution over the state space. This
belief is updated at each time step based on a and o using the observation function and
transition probabilities:

b′(s′) =
O(s′, a′, o)

∑
s∈S Pass′b(s)

Pr(o|a, b)
(2.17)

where Pr(o|a, b) is a normalising factor, independent of s. As such, solving a POMDP
is equivalent to finding an optimal policy over the continuous space "belief MDP".
However, as shown in [4], finite-horizon POMDPs are PSPACE-complete and existing
exact planning algorithms, such as the Witness algorithm described in [26], quickly
become intractable even for modest size problems.



CHAPTER 2. THEORY 16

2.4 Bayesian Game Approximation

As mentioned in [24], while approximate solution algorithms for POMDPs can provide
good results with reasonable computational costs, they generalise poorly to decentralised
multi-agent settings. This is mainly due to the fact that agents need to maintain parallel
POMDPs for tracking their peers’ joint belief states, taking all other agents’ observa-
tions as input. This requires computation costs exponential in number of agents and
observations, as well as very demanding communication costs. The method proposed
in [24] aims at mitigating these constraints and provides a solution applicable in wider
domains.

The problem is formulated as a Partially Observable Stochastic Game (POSG), an
extension handling uncertainty in world states to stochastic games, themselves a gen-
eralisation for MDPs in multi-agent scenarios. Following the conventions laid in [24], a
POSG is defined as a tuple < I, S,A,Z, T,R,O >, each of the elements having similar
meanings as their corresponding POMDP counterparts. Thus,

• I = {1, ..., n} represents the set of agents;

• S represents the set of world states;

• A = A1 × ... × An represents the joint action set (cross product of individual
agents’ action sets);

• Z = Z1× ...×Zn represents the joint observation set (cross product of individual
agents’ observation sets);

• T : S ×A→ S represents the transition function;

• R : S ×A→ R is the reward function;

• O : S ×A× Z → R represents the observation emission probability.

Furthermore, the algorithm is restricted only to POSGs with common payoffs (fully
cooperative setting) and, as such, the solution concept considered is the Pareto-optimal
Nash equilibrium. As it stands, this formulation of the problem is still intractable
for reasonably sized problems, as the action and observation spaces are exponential in
number of agents.

The solution suggested in [24] involves approximating the POSG as a series of single-step
Bayesian games. Under the Bayesian game model, each agent has some kind of private
information related to the decision making process. This information is called the type
and generally can be related to uncertainty regarding the utility of the game. Formally,
a Bayesian game is defined as a tuple < I,Θ, A, p, u > where I and A are defined the
same as for POSG, Θ denotes the type profile space, i.e. Θ = Θ1 × ... × Θn, where
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Θi represents the type space of agent i, p is a probability distribution over the type
profile space p ∈ ∆(Θ), assumed to be commonly known, and finally u = {u1, u2, ..un}
is the utility with ui being dependent on the action chosen by agent i, ai and its type
θi, as well as the actions selected by the other agents and their type profile. Thus this
measure is defined as a function ui(ai, a−i, (θi, θ−i)).

Figure 2.1: High-level representation of the Bayesian Game Approximation algorithm.
Image source: [24].

The high-level representation of the Bayesian Game Approximation (BaGA) algorithm
is reflected in figure 2.1. The POSG, represented by the outer triangle is approximated
by a succession of smaller games at each timestep of the simulation, along a certain
subpath of the tree. As described in [24], each subpath of the tree corresponds to
a specific set of observation and action histories up to time t for all agents. If the
specific path which actually occurred is known by all the agents, the problem becomes
fully observable and the payoffs associated with each joint action at time t are known
with certainty. This, in turn, allows the utility considered in the Bayesian games to
be conditioned on specific type profiles. Therefore, each path in the POSG up to
time t (i.e. observation and action histories) is represented as a specific type profile
θt. Furthermore, in order for the approximation to be viable, the agents must hold
a common prior over the type profile space Θ. This can be achieved if a common
knowledge of the starting conditions of the original POSG is assumed to be available
to all agents. As such, the algorithm can iteratively find Θt+1 and p(Θt+1) using
information from Θt, p(Θt), A, T, Z and O. Furthermore, the solution to the Bayesian
Game, σ describes the optimal next-step policy of all agents, this observation also being
used for updating the type profile space. Lastly, an important remark made in [24]
regarding the utility is that it must reflect not only the immediate benefit of a certain
action, but rather the long-term expected return. In other domains such as MDPs or
POMDPs, these future values are computed by backing up action values from the final
time step T down to the current time step t. However, in this case this procedure would
involve just as much workload as solving the entire POSG, and as such, any advantages
of the Bayesian approximation would be lost.
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Algorithm 2.3 BaGA: PolicyConstructionAndExecution

1: procedure PolicyConstructionAndExecution(I,Θ0, A, p(Θ0), Z, S, T,R,O)
2: Output: r, st, σt, ∀t
3: hi ← ∅, ∀i ∈ I
4: r ← 0
5: initializeState(s0)
6: for t← 0 to tmax do
7: for i ∈ I do
8: setRandSeed(rst)
9: σt,Θt+1, p(Θt+1)← BayesianGame(I, I,Θt, A, p(Θt), Z, S, T,R,O, rst)
10: hi ← hi ∪ zti ∪ a

t−1
i

11: θti ← matchToType(hi,Θt
i)

12: ati ← σti(θ
t
i)

13: end for
14: st+1 ← T (st, at1, ..., a

t
n)

15: r ← r +R(st, at1, ..., a
t
n)

16: end for
17: end procedure

The pseudocode of the BaGA approach, as described in [24], is presented in listings 2.3
- 2.5.

2.5 Distributed Constraint Optimisation and Max-Sum al-
gorithm

Parting away from the DTP methods, one of the other approaches considered concerns
the formulation of the behaviour as a Distributed Constraint Optimization Problem
(DCOP). An example for this is introduced in [5], where the authors use this formu-
lation to solve the issue of "coalition formation with spatial and temporal constraints"
(CFST). As such, the DCOP problem is defined as a tuple < A,X ,D,F > where
A = {a1, a2, ..., ak} represents the set of agents, X = {x1, x2, ..., xn} denotes the set of
variables, each variable xi being assigned to exactly one agent (but an agent potentially
owning more variables), D = {D1, D2, ..., Dn} represents the set of domains for each
variable and F = {f1, f2, ..., fn} is the set of functions characterising the constraints.
Thus, each function fi : Di1 × ... × Diri

→ R is defined on the cross product of the
domains of the variable set xi ⊆ X onto which depends, with ri = |xi|. In the context
described in [5], the variable domains consist of tasks which are reachable fast enough
by the corresponding agent for it to make a meaningful contribution. Furthermore, the
constraint functions reflect the utility of each task, taking into account all variables
which can be assigned the given task.
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Algorithm 2.4 BaGA: BayesianGame
1: procedure BayesianGame(I,Θ, A, p(Θ), Z, S, T,R,O, randSeed)
2: Output: σ,Θ′, p(Θ′)
3: setSeed(randSeed)
4: for a ∈ A, θ ∈ Θ do
5: u(a, θ)← qmdpV alue(a, beliefState(θ))
6: end for
7: σ ← findPolicies(I,Θ, A, p(Θ), u)
8: Θ′ ← ∅
9: Θ′i ← ∅,∀i ∈ I
10: for θ ∈ Θ, z ∈ Z, a ∈ A do
11: φ← θ ∪ z ∪ a
12: p(φ)← p(z, a|θ)p(θ)
13: if p(φ) > pruningThreshold then
14: θ′ ← φ
15: p(θ′)← p(φ)
16: Θ′ ← Θ′ ∪ θ′
17: Θ′i ← Θ′i ∪ θ′i,∀i ∈ I
18: end if
19: end for
20: end procedure

One of the algorithms commonly used for solving such a problem is the Max-Sum
algorithm [27]. In order to employ this technique, the problem is formulated as a factor
graph, a bipartite graph containing 2 types of nodes, representing variables (from X )
and functions (from F). Following the conventions laid out in [27], under the Max-Sum
algorithm, messages are passed between adjacent nodes of the factor graph. There are
2 distinct types of messages, from variable nodes to function nodes and from function
nodes to variable nodes. The first kind, from variable nodes to function nodes is defined
as

µx→f (x) =
∑

l∈ne(x)\f

µfl→f (x) (2.18)

where ne(x) denotes the neighbour nodes of x. The second kind of message, from
function to variable nodes are defined as

µf→x(x) = max
x1,...,xM

[
ln f(x, x1, ..., xM ) +

∑
m∈ne(f)\x

µxm→f (xm)
]

(2.19)

where x1, ..., xM represent the argument variables of f , other than x and ne(f) repre-
sents the neighbour nodes of f. As pointed out in [5], the messages to and from variable
nodes are sets of values reflecting the total utility of the network for each possible as-
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Algorithm 2.5 BaGA: findPolicies
1: procedure findPolicies(I,Θ, A, p(Θ), u)
2: Output: σi, ∀i ∈ I
3: for j ← 0 to maxNumRestarts do
4: πi ← random,∀i ∈ I
5: while !converged(π) do
6: for i ∈ I do
7: πi ← arg max

[∑
θ∈Θ p(θ) · u([πi(θi), π−i(θ−i)], θ)

]
8: end for
9: end while
10: if bestSolution then
11: σi ← πi, ∀i ∈ I
12: end if
13: end for
14: end procedure

signment of the respective variable. Once all messages have been passed, each agent
can compute on their own the maximum utility based on the received messages, and
determine the optimal task it should attend (i.e. the value assigned to its corresponding
variable xi):

xi = arg max
x

[ ∑
s∈ne(x)

µfs→x(x)

]
(2.20)

The algorithm is guaranteed to converge to the global optimal solution for cycle-free
factor graphs. However, as suggested by [19] [23], the algorithm generates good ap-
proximate solutions also for cyclic graphs. The Max-Sum algorithm developed from the
sum-product algorithm, initially conceived for inference in graphical models. However,
the dynamic nature of the RCR simulation can yield frequent changes in the structure
of the factor graph. The Max-Sum algorithm, in its standard form, cannot adapt to
these changes and the entire procedure of message passing must be run again entirely.
These issues are addressed in [5] with the Fast Max-Sum algorithm, by adapting certain
features of the standard Max-Sum, such as introducing new message types to accom-
modate disruptions in the graph or by restricting the domains of variables to reduce
communication and computation overhead.

2.6 Gaussian Mixture Model

Of the non-DTP techniques employed in the agents’ behaviour, probably the most
peculiar is the use of Gaussian Mixture Models (GMM). Although more details on how
this method is used in the agents’ behaviour will be given in section 3.4.3, the general
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idea behind the usage of GMM here is to help ambulance agents to keep an estimate
on the most probable victim locations, thus optimising exploration.

More commonly employed in Machine Learning and Pattern Recognition, GMM allows
a reasonable modelling of an unknown probability distribution. As described in [27],
the probability distribution generated by a GMM is

p(x) =

K∑
k=1

πkN (x|µj,Σj) (2.21)

where K is the total number of components, πk represent the mixing coefficients reflect-
ing the weight of each component, with 0 ≤ πk ≤ 1 and

∑K
k=1 πk = 1, and µj and Σj

are the mean and covariance of each Gaussian component, respectively.

Usually, the GMM parameters are computed using the Expectation Maximization al-
gorithm, based on a set of samples drawn from the unknown distribution. This is
an iterative general optimisation algorithm, whose goal in particular for the GMM is
to maximise the likelihood of the sample data points with respect to the parameters,
consisting of mixing coefficients, means and covariances of each component.

An outline of the algorithm, as presented in [27], is given below:

1. Initialise the means µk, covariances
∑

k and mixing coefficients πk, and evaluate
the initial value of the likelihood.

2. E step. Evaluate the responsibilities using the current parameter values. The
weighting factor for data point xn is given by the posterior probability γ(znk) that
component kth was responsible for generating data point xn.

γ(znk) =
πkN (xn|µk,Σk)∑K
j=1 πjN (xn|µj ,Σj)

3. M step. Re-estimate the parameters using the current responsibilities

µnewk =
1

Nk

N∑
n=1

γ(znk)xn

Σnew
k =

1

Nk

N∑
n=1

γ(znk)(xn − µnewk )(xn − µnewk )T

πnewk =
Nk

N
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where

Nk =

N∑
n=1

γ(znk).

4. Evaluate the log likelihood

ln p(X|µ,Σ, π) =
N∑
n=1

ln

{
K∑
k=1

πkN (xn|µk,Σk)

}

and check for convergence of either the parameters or the log likelihood. If the
convergence criterion is not satisfied return to step 2.



Chapter 3

Approach

3.1 Domain challenges

The Decision Theoretic Planning (DTP) paradigm offers a large array of algorithms
and approaches to suit a broad range of problems, addressing particularities such as
observability or number of agents. However, as problem specifications become closer and
closer to real-world applications, the computational costs for approaches accommodating
their particularities become prohibitive. Thus, in such cases, optimal trade-offs must be
found between the accuracy of the models employed and the feasibility of the algorithms
and techniques [33].

As previously mentioned in section 1.1, the considered problem involves a map with a
large number of buildings and roads onto which multiple agents with limited sensing
capabilities act. A straight-forward model of the problem would involve at the very
least encoding in the state space the joint set of the fieriness of each building and the
positions of each agent. With this information alone, ignoring the partial observability
character, the problem becomes intractable even for the simplest of algorithms. A more
detailed analysis of the complexity involved by a similar straight-forward approach is
done in [28].

Apart from the challenges imposed by the size of the considered domain, agents have
a further time constraint, being required to submit their commands to the simulator
within a limited time interval (typically between 1000 ms and 1300 ms) at each time
step of the simulation. This further restricts the range of algorithms which can be
considered for solving the problem.

Reducing the size of the problem, while still retaining sufficient information for efficient
behaviour may prove too difficult, if not impossible, using a single model. As such,
the solution described in this thesis involves using two separate approaches, organised

23
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hierarchically, for micro-level and macro-level behaviour, respectively.

3.2 Overview

The above mentioned challenges imposed by the problem help in narrowing down and
focusing the search for a suitable approach. This section presents some key observations
and assumptions which motivate the choices made for the agents’ behaviour. Regardless
of the chosen methods, all DTP models require at the very least a state space, and action
set and a reward model. These aspects will be discussed in the following paragraphs.

One important observation regarding the particularities of the problem is that the ac-
tions of the agents have a more pronounced and immediate effect in the close proximity
of the agent and much less so in the parts of the map further away. Thus, information
about the world that has little influence on the behaviour of the agent (e.g. the state of
the buildings much further away) can be omitted from the model. This allows a concise
enough domain to be defined for the micro-level behaviour. However, this model must
be sufficiently general to be effective regardless of the agents’ position along the map.
As such, information to be included in the state space cannot be tied to particular build-
ings or other elements of the map, but rather generic and relative to the agent. This
assumption seems reasonable since it also allows the agent to have similar behaviour in
similar contexts.

A consequence which arises from the above mentioned generality of the state space is
the fact that actions need to be defined in a similar fashion. Since the commands sent
to the simulator must target specific entities of the map, and since these entities are not
specified in the state space, the actions with which the algorithm operates need to have
a higher "semantic" content, which then gets translated into individual commands.

Also because of the generic state space, the reward model definition cannot be straight
forwardly inferred from the scoring function which needs to be optimised. Thus, a
custom reward model must be defined as well, reflecting desirable behaviour in the
context of the chosen state space and action set.

Although the agents have limited sensing capabilities with respect to map environ-
ment, considering partial observability, at least in the micro-level behaviour, can prove
too demanding computationally-wise. A popular choice for approaching problems with
partial observability in the multi-agent setting is the Dec-POMDP framework. While
finding optimal solutions or bounded approximations is proven to be NEXP-Complete
[29], various heuristic algorithms, such as the GMAA* family [31] [32] yield good re-
sults in typical benchmark problems. However, these typical benchmark problems are
significantly different than the considered Rescue Agent Simulation problem, often in-
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volving only 2 agents and just a few states and actions. Moreover, the horizons for
which the computation times remain manageable are much more restricted than the
typical simulation scenarios of 250-300 time steps. As such, given the short time frame
of 1000-1300ms available for computation at each time step of the simulation and con-
sidering the amount of information needed to be incorporated in the definitions of the
state space and action set, partial observability will not be considered for the micro-level
behaviour.

3.3 Fire brigade behaviour

The following behaviours share a common pattern, with a micro-level approach based on
MDP model and a macro-level responsible for suggesting the optimal fire to extinguish
for each agent. With the exception of the "Support requests" approach, all macro-
level behaviours involve a central agent (either a fire station or a commonly agreed fire
brigade leader) gathering fire reports and creating clusters of burning buildings. For
each of these clusters an auction is run for determining which agents should be assigned
to them. The fire brigades which are not currently engaged in extinguishing fires bid to
the requests with their distance to the centre of the cluster. The number of ’winners’
for each cluster auction is proportional to the total area of the burning buildings in
the cluster, and also capped at a maximum value, so as to avoid engaging too many
agents in a large cluster and completely ignoring smaller clusters. As the size of the
clusters evolves over time, either by new buildings catching fire or by buildings being
extinguished, the number of required agents is adjusted accordingly. Thus, subsequent
auctions may be run for assigning new agents, or agents can be released. In order
for the macro level decisions to be relevant, platoon agents continuously send updates
regarding relevant buildings and positions.

Once agents are assigned to clusters, each of them receives an assigned building from
within the cluster. The method for determining these assignments varies with each
approach. As the simulation progresses and conditions change, these assignments may
change over time.

3.3.1 Micro level approach

The micro level behaviour of the fire brigade allows it to make rational decisions, given
the orders from the higher level macro controller, as well as local circumstances, such as
the amount of water available or the state of other buildings. As previously mentioned,
the state space needs to be general enough not to depend on particularities of the
surroundings of the agent or on the map, and needs to include sufficient relevant local
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information based on the observable domain of the agent. For all the studied approaches,
with the exception of "Support requests", the following model was used for the micro
level behaviour.

State space

The state space consists of a Carthesian product of the domains of the following vari-
ables:

Assigned building boolean, indicates whether a building has been assigned from the
macro level controller;

Cluster size integer, indicates the total number buildings in the assigned cluster. If
there is no assigned cluster, this has a fixed value (-1);

Other agents integer, indicates the total number of other agents assigned to the same
cluster. If there is no assigned cluster, this has a fixed value (-1);

Buildings to check boolean, indicates whether there are buildings that need checking
for fires (see the "Check area" action in the following section);

Other fire boolean, indicates whether there is a burning building in the reachable
vicinity of the agent, other than the assigned building, if such an assignment
exists;

Water volume integer, indicates the amount of water carried relative to the total
capacity. This value has been discretised in 10 steps to keep the dimension of the
state space manageable.

Action set

The actions associated with the above state space are:

Explore The behaviour associated with this action causes the agent to explore (patrol)
a region of the map assigned to it. Details regarding this behaviour are given in
section 3.3.1.

Extinguish assigned Taking this action causes the agent to move towards the as-
signed building until it is in range and then extinguishing it;

Extinguish other Taking this action causes the agent to choose a "best fire" (accord-
ing to a heuristic) from among the observable burning buildings and extinguishing
it (after moving to get close enough, if necessary);
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Check area When taking this action, a list is firstly created, containing all buildings in
close proximity of the last extinguished building. Subsequently, the agent moves
towards them and removes them from the list as they are observed. The action
ends when all buildings in the list have been removed.

Refill Taking this action causes the agent to go to the nearest available refill point and
refill. If this refill point is a hydrant (where a single agent can refill at a time),
a message will also be sent to peer agents, informing that the respective hydrant
is occupied. This is required since only one agent can refill at a hydrant at any
given time. When the refilling is complete another message is sent to the peers,
pointing out that the hydrant has been released.

Micro level decision process

Given the previous state space and action definitions, analytically creating a suitable
transition model for planning would prove unfeasible. This is mainly due to the complex
spreading of fire and particularities of the maps. One option would be to learn the
transition probabilities from experience. Better yet, using a Temporal Difference control
algorithm, such as Sarsa or Q-Learning allows the agents to learn the dynamics of the
environment at runtime, while still enabling (reasonably) efficient behaviour. This also
guides the exploration of the state space towards the most promising areas.

Due to previously mentioned constraints of the micro level behaviour, explicit multi-
agent cooperation is not considered at micro level. Since the number of peer agents
present in a given cluster is encoded in the state description, one way to enable an
implicit cooperation is to consider stochastic action selection. For example, if 3 agents
are engaged in fighting fires within a cluster and all take a certain action with probability
0.33, only one of them will end up taking that action, despite all having the same policy.

Micro level: Exploration

An important aspect of the agents’ micro level behaviour is the exploration. Following
the commonly employed practice among participating teams, the map is partitioned
using K-Means into a number of sectors prior to the beginning of the simulation. Sub-
sequently, agents get assigned to clusters based on their proximity and such that all
clusters have an equal number of assigned agents. During the simulation each agent
keeps track of the time step it last observed a certain building in within its assigned
cluster. As such, whenever the agent takes the "Explore" action, the earliest visited
building is selected as a target and the agent begins moving towards it. This behaviour
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is also common to the ambulance team’s explore action in the "Support requests" ap-
proach.

3.3.2 Macro level behaviour: Heuristic pairing

The heuristic pairing macro behaviour takes into account the order in which the build-
ings have been reported within each cluster. Empirically, one can observe that the most
recently reported buildings usually correspond to the edge of the fire front of the cluster.
Thus, assigning the most recent buildings first favours extinguishing the outer buildings
and containing the fire to a manageable size, ultimately extinguishing it completely.

3.3.3 Macro level behaviour: BaGA pairing

The BaGA algorithm involves solving a series of Bayesian games, thus determining at
each time step a best response strategy for each agent. These Bayesian games reflect
the problems faced at each time step by the agents in their partial observable context.

Since the goal of the macro level is to efficiently allocate agents to fires, a reasonable
definition of the state space would encode the joint fieriness of all the buildings in the
cluster. Because of the limited sensing capabilities of each agent, the observations will
reflect the fieriness of the observed buildings from within the cluster. Each building from
the cluster has an action associated with it, thus actions representing final assignments.

Under the BaGA approach, the types, encoding specific information which distinguishes
each of the agents, are restricted to contain the individual histories of observations and
actions of the agents.

The quality of the assignments is given by an utility function tying the agent, its type
and the action. Four utility functions have been considered. The first function, seen
as a baseline, only takes into consideration the distance between the agent and each
fire. The second function takes into account the fieriness of the buildings, lower being
considered better, with the ties being broke by the distance between the agent and the
building. Finally, the last two utility functions are inspired by similar measures used in
different approaches by two of the 2013 finalist teams. The first of those, inspired by
team LTI [10], takes into account the fireriness of the building and the distance to the
agent, as well as the ground area and the number of unburning adjacent buildings. The
second utility measure, inspired by team MRL [16], takes into account the the fireiness
of the building, its area, the distance to the agent, as well as the temperature. In the
above described utility functions the building (or fire) mentioned is the one given by
the action code.
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To summarise, the problem model onto which the BaGA approach is employed is de-
scribed by:

• I = {1, 2, ...n} - the set of indices of agents engaged in the cluster;

• S =< F1×F2× ...×Fm > - the state space representing the joint fieriness of the
buildings in the cluster;

• Zi =< F1 × F2 × ... × Fm > - the observation space of agent i representing the
fieriness of the buildings observed by agent i;

• Ai = {B1, B2, ...Bm} - the action set of agent i, containing the indices of the
buildings in the assigned cluster;

• Θt
i =< z0

i , a
0
i , z

1
i , a

1
i , ...z

t
i , a

t
i > - the type of agent i at time t, consisting of its

history of observations and actions taken by agent i from time 0 until time t.

3.3.4 Macro level behaviour: DCOP pairing

Following the general description of [5] and [6], the final method considered for pairing is
based on the task allocation formulation. As such, each agent has a variable associated
with it, whose value domain reflects the buildings in the cluster. The problem of the
macro level behaviour then translates into finding the optimal value assignment for these
variables, with respect to an utility function. In particular for the studied approach,
the utility function used is part of the benchmark software described in [6] and depends
on the fieriness of the building and distance between the building and the agent.

The optimal assignment is computed through message passing between the agents
(hence the "distributed" nature of the approach), as described in section 2.5. A bench-
mark framework, introduced in [6], provides implementations for several state of the
art algorithms aimed at solving DCOP formulations of certain tasks in the RoboCup
Rescue simulation. Of these, the Max-Sum algorithm was chosen due to its superior
performance for this domain, compared to other algorithms.

3.3.5 Support requests

This approach assumes a very simple macro level behaviour, where the nearest fire
brigade is called to a previously unreported fire. Because under this model there is no
coordination with respect to building allocation, a more complex micro-level behaviour
is needed, particularly to take into account the fieriness of the buildings in the immediate
vicinity of the agent. As such, the state space of the micro level model for this approach
contains the following information:
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Distance to nearest low-burning building integer, indicates the discretised dis-
tance to the nearest low burning building (fieriness 1). If such a building does not
exist, this variable has a fixed value (-1);

Distance to nearest mid-burning building integer, indicates the discretised dis-
tance to the nearest mid burning building (fieriness 2). If such a building does
not exist, this variable has a fixed value (-1);

Distance to nearest high-burning building integer, indicates the discretised dis-
tance to the nearest high burning building (fieriness 3). If such a building does
not exist, this variable has a fixed value (-1);

Distance to nearest unexplored position integer, indicates the discretised dis-
tance to the nearest unexplored position;

Distance to nearest refuge integer, indicates the discretised distance to the nearest
refuge or hydrant;

Other agents integer, indicates the total number of other peer agents present in the
close vicinity;

Water volume integer, indicates the amount of water carried relative to the total
capacity. This value has been discretised in 10 steps to keep the dimension of the
state space manageable.

The action set for this approach is adapted accordingly,

Explore The behaviour associated with this action causes the agent to explore (patrol)
a region of the map assigned to it. Details regarding this behaviour are given in
section 3.3.1;

Extinguish low-burning Taking this action causes the agent to move towards the
closest low burning building until it is in range and then extinguishing it;

Extinguish mid-burning Taking this action causes the agent to move towards the
closest mid burning building until it is in range and then extinguishing it;

Extinguish high-burning Taking this action causes the agent to move towards the
closest high burning building until it is in range and then extinguishing it;

Refill Taking this action causes the agent to go to the nearest available refill point and
refill. If this refill point is a hydrant (where a single agent can refill at a time), a
message will also be sent to peer agents, informing that the respective hydrant is
occupied.
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3.4 Ambulance behaviour

Compared to the fire brigades, where agent coordination was crucial in containing larger
clusters of burning buildings and limiting the expansion of fires, the cooperation aspect
of the ambulance teams is somewhat less important. This flows from the fact that a
single ambulance can carry a single victim at a time and the only benefit of multiple
ambulances rescuing a buried victim is a reduced completion time of the unbury task.
This has a limited utility, mostly in cases where a fire expansion threatens the building
containing a victim and thus a faster evacuation would be desirable. However, since the
number of buried civilians is usually large enough not to allow a complete evacuation
before the end of the simulation, the extra ambulances aiding a single victim would be
put to better use in discovering and rescuing other victims.

Even though ambulance coordination does not impact greatly the actual victim rescuing
and transportation, it does affect the exploration of the map. As such, the macro level
behaviour of the ambulance teams is focused on victim discovery.

3.4.1 Micro level approach

Similarly to the fire brigade micro behaviour, the ambulance micro level model follows
a MDP structure and deals with the local, tactical decisions. Since the ambulance
behaviour revolves around buried and/or injured victims, the state space encodes in-
formation regarding the number and distance to the observed victims and the carying
availability.

State space

The state space consists of a Carthesian product of the domains of the following vari-
ables:

Distance to refuge integer, discretised distance to the nearest refuge;

Distance to victim integer, discretised distance to the nearest alive victim;

Distance to unexplored vertex integer, discretised distance to the nearest unex-
plored position;

Victim on board boolean, whether there is a victim on board;

Victims in range integer, the number of victims in the immediate vicinity.
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Action set

The actions associated with the above state space are:

Explore The behaviour associated with this action causes the agent to explore (patrol)
a region of the map assigned to it. Details about this behaviour are given in
subsection 3.3.1.

Pick up Taking this action causes the agent to move towards the nearest victim and
attempt to load it. If it is buried, the victim is first rescued;

Drop at refuge Taking this action causes the agent to move towards the nearest refuge
and, once there, to unload the victim;

3.4.2 Macro level behaviour: Support requests

One of the first approaches tested for the macro level behaviour of the ambulances is
closely related to the "Support requests" behaviour of the fire brigades, described in sec-
tion 3.3.5. As such, by default the ambulances explore their associated cluster (through
the micro-level behaviour, as described in section 3.3.1), until a victim is reported by
another agent (police force, fire brigade or already engaged ambulance team). An auc-
tion then takes place to determine the closest ambulance to the reported victim and the
"winner" is moves then towards the victim (with the micro-level behaviour taking care
of the actual rescuing process). Although this approach is relatively straight forward,
it directly leverages the exploration done by all the agents on the map, while also not
being constrained by a central agent which could form a bottle-neck.

3.4.3 Macro level behaviour: GMM-based

Another approach directed at improving the actual exploration behaviour of the am-
bulances is founded on the idea of maintaining a distribution of the probabilities of
victims’ positions. As such, the victims can be seen as samples drawn from an unknown
"threat distribution" over the bidimensional space of the city. The area onto which
each ambulance team can efficiently search and rescue victims can also be modelled as
a "help distribution". As such, the problem of the ambulance’s macro-level behaviour
translates into the problem of efficiently fitting the "help distributions" to the "threat
distribution". The method of choice for this task is using the Expectation Maximization
algorithm for Gaussian Mixture Models.

Naturally, the threat distribution is unknown and the real samples are also not given
(actual victims need to be discovered). Since the competition rules do not impose any
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restrictions on the positioning of the victims across the buildings of the city, the "threat
distribution" can be assumed to uniform. From this assumed distribution a number
of virtual samples are drawn, describing a potential placement of the actual victims.
Acting upon this information, the "help distributions" are fitted to approximate the
assumed samples, thus driving exploration across the city. As ambulance teams patrol
the buildings, they continually report their position to the central agent. Consequently,
this agent deletes any possible virtual samples which are not in accordance with the ob-
served circumstances of the ambulance team (i.e. virtual samples in the close proximity
of the respective ambulance team which do not correspond to real victims). As such,
the virtual samples describe the real threat distribution increasingly more accurate as
the simulation progresses. After a certain number of virtual samples has been deleted
(10 per cent of the total number of virtual samples) the fitting is run again so as to re-
flect the updates in the knowledge with respect to the victim placement. Consequently,
this drives the exploration of the agents towards the less explored regions of the map
(which, naturally, have more virtual samples).

Because of the particularities of this method, the explore action in the micro level be-
haviour is slightly modified. Thus, the estimation of the timestep when each of the
buildings within the cluster is visited, mentioned in section 3.3.1, is refreshed whenever
the GMM is re-estimated, such that it reflects the probability distribution of the as-
signed component. Therefore, whenever an explore action is chosen at the micro level
behaviour, the building with the highest probability is chosen, instead of the earliest
visited one.

An example of the evolution of the GMM is shown in figure 3.1. At the beginning of
the simulation, the virtual samples are uniformly distributed across the city and the
corresponding Gaussian components are somewhat broad. As the ambulance teams
explore the map and the virtual samples are eliminated, the components shift their
position reflecting the less explored regions, thus favouring these more promising areas
of the map.
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Distribution estimate at time step 22 Distribution estimate at time step 23

Distribution estimate at time step 92 Distribution estimate at time step 154

Distribution estimate at time step 186 Distribution estimate at time step 264

Figure 3.1: Evolution of the GMM estimation of victim position probabilities.



Chapter 4

Experiments

4.1 Fire brigade experimental setup

The maps used in the experiments are part of the official maps of the 2013 RoboCup
Competition, namely Kobe11, Kobe21, Paris11 and Paris21 . Differences between
the versions of the same city maps concern properties of the fires, such as the position
and fierceness of the initial fires and the likelihood of further ignitions, the distribution
of agents, both civilian and non-civilian and the availability and position of special
buildings, such as refuges and centre agents. In addition to the original maps, I have
also created custom, more difficult, versions. The Kobe-hard2 and Paris-hard2 maps
are versions in which the likelihood of additional ignitions throughout the simulation
is greatly increased. Additionally, I have also created a reduced version of the Paris-
hard2, called Paris-mini-hard2, as the original one proved to be too computationally
expensive for one of the tested methods. Finally, the Kobe2-f202 and Paris2-f202

maps have the same configurations as their respective originals with the difference that
the agents are not allowed to act ("frozen") for the first 20 time steps. Under this
restriction, the initial fires grow larger and are harder to extinguish without efficient
agent collaboration. The initial configuration of the maps, showing the map topology,
initial fires and agent positions are shown in figures 4.1 - 4.5.

In order to optimally assess the performance of the proposed approaches, there are two
important changes from the official competition simulations configuration. The first
concerns road blockages. Under normal competition circumstances, road blocks impede
the free movement of the agents throughout the city and it is the duty of the police
agents to clear and maintain proper navigable roads. As such, the measured performance
of the fire brigades and ambulance teams depends heavily on the performance of the

1The official maps are available for download at http://roborescue.sourceforge.net/2013/results/ .
2The custom maps are available for download at http://goo.gl/gKLCHK .
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Figure 4.1: Initial configuration for the
Kobe1 map.

Figure 4.2: Initial configuration for the
Paris1 map.

Figure 4.3: Initial configuration for the
Kobe2 map.

Figure 4.4: Initial configuration for the
Paris2 map.

police teams. However, since the behaviour of the police agents was not the object of
this thesis, and because the goal of the experiments is to assess the performance of the
individual approaches discussed in Chapter 3, the road blockages have been disabled.

Another particularity of the competition simulations regards the communication model.
The maps have a wide range of communication restrictions, with varying numbers of
channels, varying bandwidth and reliability. Again, since the topic of this thesis was
agent behaviour and not the development of high-performance, fail-safe communication
protocols and since the proper execution of (part of) the previously described approaches
relies on communication, all the simulations have been run using a single high bandwidth
(400Kb) reliable (no dropped messages or noise) radio channel.

The performance measure used in the following experiments is, unless otherwise noted,
the scoring function used in the competition scenarios. While this function takes into
account the state of the civilians’ health and the buildings throughout the city, only the
building component of the scoring function will be reported, as it is more relevant for
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Figure 4.5: Initial configuration for the Paris-mini-hard map.

the performance of the fire brigades. The building score equation is

scoret =

∑8
f=1 n

f
t ∗ wf

N
(4.1)

where scoret represents the overall score at time step t, nft represents the number of
buildings of fieriness f at time t, wf is a parameter reflecting the score of a building
at a given fieriness f and N represents the total number of buildings in the city. The
actual numeric values of the parameters wf are given in table 4.1.

In order to ensure consistency, for all experiments related to the macro level behaviour,
the micro level behaviour used a fixed deterministic policy.

4.1.1 Fire brigade macro level behaviour

The results obtained for the macro level approaches of the fire brigades are shown in
figures 4.6 - 4.14. In several cases, the performance of the "Sample agents" descends
to very low values (0.2 - 0.4), while the other approaches’ performance remains much
higher. In such cases the axis of the figure were restricted to better highlight the score
differences of the approaches other than "Sample agents".
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Fieriness (f) Description wf

0 Intact 1
1 Low burning 0.66
2 Moderately burning 0.33
3 Fiercely burning 0
4 Water damage 0.9
5 Extinguished, minor damage 0.75
6 Extinguished, moderate damage 0.5
7 Extinguished, severe damage 0.25
8 Burnt out 0

Table 4.1: Fieriness score parameters.
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Figure 4.6: Building score associated
with the performance of various macro
level approaches on the Kobe1 map.
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Figure 4.7: Building score associated
with the performance of various macro
level approaches on the Paris1 map.

As expected, the weakest performance on all the maps is yielded by the "Sample agents".
However, they do manage an acceptable result on the Kobe1 map, suggesting its low
difficulty. Another interesting result regarding the sample agents is found towards
the end of the Kobe-hard simulation (figure 4.10), where they slightly outperform the
"Support requests" approach. As indicated by the numerical values and shape of score
function, at that stage the fires are out of control and the majority of the buildings in the
city are burning. As such, the "Support requests" agents face a significant overhead of
requests and offers, with the agents not being able to react fast enough. In contrast, the
sample agents have a fixed reactive behaviour and no communication. This simpler and
more straight forward approach proves to be marginally more efficient in this context.

The lower difficulty of Kobe1 is also suggested by the very close performance of all other
approaches, with a slight advantage of "Heuristic pairing" approach. This approach
yields better performance on the other versions of the Kobe map as well. Since this is
not the case for the Paris maps, the result suggests that the assumption of the heuristic
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Figure 4.8: Building score associated
with the performance of various macro
level approaches on the Kobe2 map.
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Figure 4.9: Building score associated
with the performance of various macro
level approaches on the Paris2 map.

pairing method holds better for the particularities of the Kobe map. More specifically,
recently reported fires tend to correspond to the outer front of the burning building
cluster as the buildings are generally smaller (better granularity with respect to the
shape of the outer front) and the road network used by the agents is a (mostly) uniform
grid. As such, regardless of their destination, the agents are more likely to traverse the
city uniformly and encounter actual fronts of the fires, as opposed to the Paris-hard
map, where the optimal routes tend to make use of large avenues, making the agents
less likely to encounter fires in their early stages.

For the Paris maps, better performance is obtained by the "DCOP pairing" and "BaGA
pairing" methods, as the buildings are somewhat larger and harder to extinguish. In
such cases, the benefits of more elaborate coordination are more visible. This is also
suggested by the performance of "Support requests" which is further apart from the
other approaches than in the case of the Kobe maps.

Nonetheless, with the exception of "Sample agents", all the studied approaches manage
to successfully contain and extinguish the fires on the Kobe1, Kobe2, Paris1 and Paris2
maps, yielding good overall scores.

An interesting result concerns the Kobe-hard, Paris-hard and Paris-mini-hard maps.
Since the fires ignite randomly throughout the simulation, the agents are constantly
engaged in extinguishing them and the score does not settle to a fixed value, as is
the case in the other maps for most approaches. For Kobe-hard, the steady controlled
decrease of the score reflects the agents’ ability to contain the fires. As soon as the
fires go out of control the score rapidly decreases. This happens more quickly for the
"Support requests" approach, starting at around timestep 130. Apart from "Sample
agents", all other 3 approaches yield better performance, being able to contain the
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ated with the performance of various
macro level approaches on the Kobe-
hard map.
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Figure 4.11: Building score associated
with the performance of various macro
level approaches on the Paris-hard map.

fires until roughly timestep 230, with close performance scores afterwards. The typical
situation when the fires go out of control, for the "Heuristic pairing", "BaGA pairing"
and "DCOP pairing", consists of a large number of agents refilling at refuges and not
being able to contain rapidly expanding clusters of burning buildings while they still are
of manageable size. An important note must be made regarding the "DCOP pairing"
method. Because of the very high memory demands of the Max-Sum algorithm [6], when
clusters grow too large and numerous agents are involved, the thread responsible for
computing the pairings runs out of memory (in the experiment the agents are allocated
a total of 4GB of memory). For Kobe-hard this happens on average at around timestep
135. However, in order to reflect the performance of the "DCOP pairing" as accurately
as possible, the runs used for plotting the results in figure 4.10 have an average time of
running out of memory at around timestep 232. Judging by the evolution of the score
prior to that point and following that point, it is likely that higher level pairing done
would not have impacted greatly outcome for the interval 232-300.

Paris-hard represents a considerably larger map than Kobe-hard and the memory issues
causing the DCOP pairing to stop working manifest themselves at a very early stage,
on average at around timestep 28. Because of this, the performance associated with the
DCOP pairing shown in figure 4.11 is only given by the micro-level behaviour of the
agents (as the thread responsible for the pairing is not running anymore and thus no
assignments are issued to the agents). As such, it is interesting that although the final
score is the roughly the same for all studied approaches, the agents focusing on only
the fires in their immediate observable surroundings yield the best performance during
the intermediate steps of the simulation. Most probably this is due to the fact that fire
assignments received from the macro-level behaviour cause the agents to move across the
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Figure 4.12: Building score associated with the performance of various macro level
approaches on the Paris-mini-hard map.

map, effectively losing time while other fires grow beyond control, reducing the benefits
of the coordinated approaches. This explanation is also supported by the fact that
the "Support requests" approach has a similar performance to "DCOP pairing" until
timestep 115 and still outperforms the others until the end of the simulation, which is
never the case for any other map. In the "Support requests" approach, since the agents
are engaged in fighting fires throughout the simulation, they do not respond to any
support requests and thus also only focus on their immediate surroundings, effectively
relying on their micro-level behaviour. The reasoning on why this happens for the
Paris-hard map and not on the Kobe-hard map can be explained by the difference in
size, with the travelling time of the agents having a greater impact on the Paris-hard
map, as well as the nature of the buildings.

In order to still have an estimation for the DCOP pairing approach for a map other than
Kobe-hard, the Paris-mini-hard map was created, containing only the northern part of
the Paris-hard map, with adjusted parameters. In this case, the DCOP pairing method
ran out of memory on average around time step 230 and, as such, the performance
shown in figure 4.12 also reflects the macro-level behaviour. With the exception of
"Sample agents", all approaches manage to contain the fires until around timestep 140.
Following that point, "DCOP pairing" yields the best performance, as was the case
for other Paris maps, while for the other approaches the performance drops to similar
values towards the end. The rate of the descend suggests that the fires are too large to
be controlled between timesteps 160-250, and therefore for this interval the differences
between the approaches might not be relevant.
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with the performance of various macro
level approaches on the Kobe2-f20 map.
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Figure 4.14: Building score associated
with the performance of various macro
level approaches on the Paris2-f20 map.

For the Kobe2-f20 and Paris-f20 maps, the "DCOP pairing" method also ran out of
memory in the early stages of the simulation and the reported performance is only
due to the micro-level behaviour. Since there is no higher level coordination between
the agents, this would explain poor performance compared to the other methods on
both maps. Conversely, having the more elaborate agent coordination, the "BaGA
pairing" yields the best results on Kobe-f20 and second best on Paris-f20. Regarding
the "Heuristic pairing" method, on the Kobe-f20 map one of the initial fires has central
position and grows in the first 20 steps such that some of the agents are inside the
the cluster of burning buildings. As such, the assumption of the "Heuristic pairing"
regarding the correlation of the order of the reported fires and fire front does not hold
as well, reflected in the relatively poorer performance on the Kobe-f20 map. However,
this does not happen on the Paris-f20 map, as the fires, although larger, are discovered
naturally through exploration.

As a general conclusion regarding the performance of the various macro methods for
Fire Brigades, all the studied approaches yield acceptable performance on most maps.
"Heuristic pairing" yields its best results in the scenarios where its core assumption
holds. "BaGA pairing", although not the best method on all maps, has a good overall
performance. Taking into account the results on the harder maps, despite the perfor-
mance associated with DCOP pairing being very close to that of the other approaches,
sometimes even outperforming them, the very demanding memory requirements can
prove to be a considerable disadvantage of the method, making it impractical in certain
cases. Providing additional memory for this algorithm does not solve the problem, as
for the very demanding scenarios the computation time required significantly exceeds
the allotted time. A solution to this problem would be employing an any-time adap-
tation or a faster variant of the algorithm, such as Fast Max-Sum [5]. Lastly, lacking
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more elaborate coordination, "Support requests" usually has the lowest performance of
the considered approaches, though still leading to acceptable scores and considerably
outperforming the "Sample agents".

4.1.2 Fire brigade BaGA-pairing utility function experiment

In section 3.3.3 four utility functions have been introduced. The aim of this experiment
is to determine the influence of functions over the general performance and to help
choose the best one for use while comparing the BaGA pairing macro level behaviour
with the others. As a reminder, the utility functions used were closest emphasising
just the distance between the agents and the burning buildings in the cluster, lowest-
closest taking into consideration first the fieriness of the buildings (with lower burning
buildings being preferred) and then breaking ties with the distance and finally LTI and
MRL, inspired by the approach of the LTI and MRL teams respectively, finalists in the
2013 competition.

The building score component associated with these utility functions for the considered
maps are shown in figures 4.15 - 4.22.

Surprisingly, on most maps the simplest utility function considered, "closest", yields the
best or second best performance. As all other utility functions include the metric used in
the "closest" approach, namely the distance between the agent and the fire, this suggests
that the other elements, such as the fieriness or the area of the burning buildings usually
do not have significant benefits, even worsening the performance in certain cases. This
is particularly true in the cases with larger clusters of burning buildings, such as Kobe2-
f20 and Paris2-f20, where the more elaborate utility functions, "LTI" and "MRL", yield
considerably worse performance than the other two. "LTI" tends to loose control of
larger fires faster than other methods, suggested by the earlier beginning of the score
descend in Paris2, Kobe-hard, Paris-hard and Paris2-f20. This may be due to the fact
that the various metrics used are not normalised and just added together, which, for
clusters with numerous buildings, may lead to inconsistencies. Another interesting result
is the good performance of the "MRL" method on Kobe-hard. Although it outperforms
all the other methods, the shape of the score evolution suggests a similar evolution to
that of the "closest" approach, just being able to contain the smaller fires which appear
continuously for slightly longer (until roughly time step 220 as opposed to 180). Lastly,
a possible explanation for the good performance of the "closest" method is the fact that
agents approaching the fire from different directions and aiming at the nearest building
of the cluster end up extinguishing first the outer buildings, limiting its spread.
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Figure 4.15: Building score associated
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based fire brigade macro behaviour us-
ing different utility functions on the
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Figure 4.16: Building score associated
with the performance of the BaGA-
based fire brigade macro behaviour us-
ing different utility functions on the
Paris1 map.

4.1.3 Fire brigade micro level behaviour

Since the micro level behaviour is not as sensitive to the overall particularities of the
maps tested, only one of them were used for assessing its learning capabilities, namely
Kobe1. In order to ensure a higher degree of consistency, the macro level behaviour used
was the most straight forward of the approaches, "Heuristic pairing". The metric used
for this experiment is the evolution of the final score over 10 consecutive runs (thus, at
each run the agent benefiting from its past experience). Furthermore, these values are
averaged over 10 series of runs in order to reduce the influence of the inherent random
elements of the method. The results are reported in figures 4.23. Lastly, the values of
the parameters used were:

• ε = 0.1 , the probability of a non-optimal action being taken (ε-greedy policy) ;

• α = 0.1, the learning rate;

• γ = 0.3, the discount factor.

The agents obtain a good performance even within the first episode, which then rises
and oscillates around the score of 0.992 - 0.995, very close to the score obtained with
the handcrafted policy of 0.995. This oscillation is natural, as the agents continue
learning by trying other actions (through the ε-greedy policy). The performance of
Q-Learning and SARSA are very similar, with a slightly lower initial score for SARSA
(as it optimises Qπ instead of Q∗, which is somewhat slower), but with a marginally
higher score than Q-Learning afterwards. This sort of behaviour is also highlighted in
[25], pointing out that on certain domains the online performance of Q-Learning may
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Figure 4.18: Building score associated
with the performance of the BaGA-
based fire brigade macro behaviour us-
ing different utility functions on the
Paris2 map.

be lower than that of SARSA, despite a higher convergence time.

4.2 Ambulance Team macro behaviour

4.2.1 Experimental setup

In order to asses the performance of the ambulance teams’ macro behaviour, a different
setup has been considered due to the fact that fires can affect the civilians and other
agents, but not the other way around. As such, the experiments run in this section use
a modified version of the Kobe1 map where no fires occur and only ambulance teams
are present. Furthermore, the number of agents was reduced to just 6 ambulances to
better emphasise the performance of their behaviour. For the same reason, a total of
3 versions of the maps were considered, including 4, 8 and all the victims from the
original configuration, respectively. Please note that in the latter configuration not all
the civilians are buried and can move by themselves towards the refuges. However, these
unburied agents are not taken into consideration in the evaluation. The names of the
configurations previously described are Kobe-civ4, Kobe-civ8 and Kobe-civ-full,
respectively.

The metric used in these experiments is the time to victim discovery. As such, at each
time step the total number of found victims is assessed. For each configuration, the
results are averaged over 15 runs.

An observation is required with respect to the "Support requests" macro behaviour.
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Paris-hard map.

Since no agents other than ambulance teams are present in the considered maps, the
actual support requests will be very unlikely (issued only if an ambulance already carry-
ing a victim sees another unattended buried victim while on its way to the refuge). As
such, the performance of this approach better reflects the exploration of each individual
agent through its assigned cluster of buildings.

The behaviours tested in this experiment are "Support requests" and "GMM-based".

4.2.2 Results and discussion

The results obtained for the setup previously described are shown in figures 4.24 - 4.26.

While the performance of the approaches is overall similar for both maps, the GMM-
based approach yields better results in the later stages of the simulation (more pro-
nounced in the case of Kobe-civ4). This is to be expected, as the GMM-based approach
drives the exploration towards the more promising parts of the map, which become
more focused as the simulation progresses. This behaviour becomes more obvious in
the situations where finding the victims is harder, i.e. when there are fewer overall
victims. Therefore, in the case of Kobe-civ-full the performance difference is not as
obvious towards the end of the simulation, although an increase in the slope of perfor-
mance associated with "GMM-based" approach is visible between timesteps 240 - 300.
This suggests a better exploitation of the previously unexplored space.
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Figure 4.24: Average number of victims found over time for the Kobe-civ4 map.
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Figure 4.25: Average number of victims found over time for the Kobe-civ8 map.
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Chapter 5

Conclusions

In this thesis I have presented the theoretical foundation and evaluated a novel approach
for modelling the behaviour of agents in the RoboCup Rescue Agent Simulation com-
petition. The approach follows a hierarchical structure, with a macro-level behaviour
focusing on the higher strategic decisions and agent collaboration and a micro-level be-
haviour managing the local, tactical behaviour, and rapidly responding to changes in
the environment.

While micro level behaviour was restricted to a simpler MDP-based approach due to
computation time limitations of the simulators, several methods have been investigated
and tested for developing the macro level behaviour of fire brigades and ambulance
teams. Following the DTP paradigm, a method based on the BaGA algorithm allowed
the mitigation of the limitations usually associated with multi-agent partially observable
domains and yielded consistently good results on maps tested. Since the quality of the
solutions obtained by this algorithm depends on the utility function used, a separate
experiment investigated the influence of 4 such functions. Another method, popular
in the scholarly works studying the RoboCup Rescue domain, involved formulating
the macro level behaviour under the DCOP framework, subsequently solved using the
Max-Sum algorithm. This approach had a similar performance to the BaGA based
method, sometimes even outperforming it, but its use was limited in certain cases due
to the high memory demands. However, this limitation could be addressed by employing
adaptations of the original algorithm specifically designed for this problem, such as the
Fast Max-Sum algorithm [5]. Another heuristic method was evaluated obtaining good
results in circumstances where its core assumption held.

A fourth approach, favouring a more elaborate micro-level behaviour, yielded poorer
results for the fire brigades, but proved suitable for the ambulance teams. For the victim
finding task another approach proved slightly better, making use of a more elaborate
model. This model, based on a GMM, keeps track of the most probable victim positions,
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constantly updating them.

Lastly, the methods developed and evaluated in this thesis followed the rules and con-
straints of the Rescue Agents competition setting, making them suitable not only in
benchmarks or artificial experiments, but also for competitions. As such, participating
in the 2014 RoboCup in Brazil and the 2014 Iranian Open, on certain maps our team
outperformed several competitors of the main competition and the highest total score in
a special multi-agent challenge. Further details on these results are given in Appendix
A

5.1 Future work

Although the design, implementation and evaluation of the approaches studied in this
thesis provided great insight into the challenges and particularities of the RoboCup
Rescue Agent Simulation, there are multiple potential directions for future research.

One decision with a potentially significant impact on the performance of the agents con-
cerns the placement of the boundary between the micro and the macro level behaviour.
Throughout this thesis, the decisions taken in this regard are founded on the analysis
of the problem constraints and of the approaches employed by other teams. Naturally,
a different interpretation of these aspects can lead to a different set of design decisions.
Even by not modifying the methods employed, the structure of the state and action
spaces for the micro and macro level behaviours could reflect a shift in the boundary
between the two. For example, incorporating some multi-agent coordination at the
micro-level behaviour would allow some degree of local strategic planning. Similarly, a
more elaborate macro level behaviour could improve the tactical decision of the agents
through global knowledge. Ultimately, designing a solution which could seamlessly shift
the boundary between the two, either statically or dynamically, would prove ideal.

A crucial step in developing a robust method is proper evaluation. However, even in the
case of the official competition, defining properly balanced scenarios proves to be very
challenging. Often, maps are either too easy or too difficult, yielding minute differences
between the scores obtained by different teams or methods. To some degree this was also
the case with some of the official maps used for the experiments presented in chapter
4. This led to the need of artificially creating the harder maps Kobe-hard, Paris-
hard, Kobe2-f20 and Paris2-f20. Although the results of the experiments were largely
consistent, suggesting a good performance of the more elaboarate approaches, BaGA
and DCOP, some degree of dependence on the map particularities was apparent. As
such, finding other maps with various other particularities can provide further insight
on the strengths and weaknesses of the proposed methods. Also, the score metric
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measured, while being a legitimate measure of the overall performance, is somewhat
restricted. More precisely, it does not reflect the individual performance of the micro
and macro level behaviours. As such, finding a more informative metric can lead to a
more thorough evaluation.

Another aspect not addressed in this thesis is the behaviour of the police agents, which,
in competition circumstances, can prove to have a crucial impact on the performance
of all other agents. As mentioned in chapter 1, their behaviour may not be best suited
for the methods specific to the DTP. Nonetheless, their abilities and presence can be
coordinated with the behaviour of other agents, e.g., through the formation of het-
erogeneous teams, including multiple types of agents. As such, their support role can
either be exploited at the micro level behaviour, aiding agents based on their immedi-
ate surroundings, or at the macro level behaviour, ensuring an overall accessibility to
important parts of the map.

Lastly, throughout this thesis, the limitations with regard to inter-agent communication
and memory consumption were not thoroughly addressed. While this allowed a good
focus on the theoretical aspects of the studied approaches, they can have a serious
impact on the overall performance, as highlighted in the official competition results
and some of the presented experiments. As such, these aspects need to be taken into
consideration in further research.
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Appendix A

2014 RoboCup results

Abiding to the official RoboCup rules and constraints, the approach described in this
thesis formed the University of Amsterdam submission to the 2014 RoboCup cham-
pionship in João Pessoa, Brazil [34]. The focus of the thesis was on modelling the
behaviour of fire brigades and ambulance teams. Thus, other aspects with a signif-
icant impact on the competition score, such as the behaviour of police teams or the
communication model were largely responsible for an overall low ranking. Nonetheless,
on maps with relatively few blockades and sufficient communication capabilities, such
as NY1, Paris1 and Mexico1, our team outperformed other competitors. The initial
conditions and score evolution for these maps are presented in figures A.1 - A.6. One
characteristic of the score graphs which does not occur in the graphs reported in chap-
ter 4 is the stepped shape, apparent for example in the Paris1 map at timesteps 75,
170 and 190. This is due to the fact that the scores presented in this appendix also
incorporate the civilian health component, which is sensitive to punctual events such as
aftershocks or new fire ignitions. The complete results of the first 2 days of competition
are presented in tables A.1 - A.2, along with a rough estimate of level of blockades and
communication availability for each map. Due to some technical difficulties, the agents
did not run properly on the Kobe1 and VC1 maps. Further details, such as replays, can
be obtained at http://roborescue.sourceforge.net/2014/results/.

In the case of the Paris1 map, the agents successfully contain and extinguish 2 of the
initial fires. A third one is discovered later and the closest fire brigades are blocked
by debris. By the time other agents arrive to attend to it, at around timestep 65, it
becomes too large to be completely extinguished. On the NY1 map a large number of
agents were blocked in debris from the start of the simulation. As such, the exploration
of the map was impaired and two of the initial fires positioned along the edges of the
map were discovered relatively late. A third one, more central, was discovered earlier,
but could not be completely extinguished completely due to the relatively few agents
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available. However, they did manage to limit its spread to some degree. Finally, in
the case of the Mexico1 map, the agents completely extinguished one of the initial fires
before it spread to more than 2 buildings. The second initial fire grew larger and was
almost completely extinguished. However a single burning building was missed by the
agents, as most of them were refilling, which lead to an uncontrollable extension of the
fire starting at around timestep 110.

Apart from the main competition, a special "Multi-agent challenge" was held [35]. This
challenge focused only on the performance of the fire brigade agents and, as such, all
other agent types were eliminated, along with road blockades and civilians. Further-
more, the agents were aware of all the fires on the map, with the goal of the challenge
revolving around making optimal task assignments. This was successfully achieved by
the macro-level behaviour and, in the absence of blockades and communication restric-
tions, our team obtained the highest overall score. The results for this challenge are
detailed in table A.3.

Our team also participated in a secondary competition, the 2014 Iranian Open [36].
The results, shown in table A.4, were similar to the ones of the main competition in
Brazil, usually higher for the maps with few blockades and good communication.
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Figure A.1: Initial conditions of the NY1 map in the 2014 RoboCup Agent Simulation
competition.
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Figure A.2: Overall score for the NY1 map in the 2014 RoboCup Agent Simulation
competition.
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Figure A.3: Initial conditions of the Paris1 map in the 2014 RoboCup Agent Simulation
competition.
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competition.



APPENDIX A. 2014 ROBOCUP RESULTS 60

Figure A.5: Initial conditions of the Mexico1 map in the 2014 RoboCup Agent Simula-
tion competition.
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Figure A.6: Overall score for the Mexico1 map in the 2014 RoboCup Agent Simulation
competition.



Team Kobe1 VC1 Eindhoven1 Berlin1 Paris1 Total Rank
Road blocks ++++ +++ + ++ +

Communication ++++ ++ ++ +++ ++++
Score Points Score Points Score Points Score Points Score Points Score Points

GUC_ArtSapience 15.58 11 81.93 22 55.41 10 141.81 19 299.32 19 594.06 81 3
MRL 38.57 24 74.26 20 128.73 23 159.72 24 306.38 21 707.66 112 1
S.O.S 34.34 21 84.47 23 0.00 1 153.87 22 310.49 22 583.17 89 2

ZJUBase 15.86 12 50.66 12 89.46 16 97.10 9 296.36 17 549.43 66 5
NAITO-Rescue2014 7.58 5 27.02 4 30.54 5 91.73 7 124.62 1 281.49 22 11

Poseidon 15.05 10 46.59 10 36.97 6 123.93 15 304.12 20 526.67 61 7
Ri-one 13.54 8 0.00 1 42.42 7 115.28 13 297.84 18 469.09 47 8

RoboAKUT 10.05 6 31.81 6 90.79 17 127.63 16 288.97 16 549.24 61 6
Kherad 14.21 9 36.74 7 129.44 24 66.77 2 318.39 24 565.55 66 4

UVA-Rescue 6.01 4 26.89 3 29.21 4 49.92 1 233.23 7 345.25 19 12
SEU_Jolly 0.00 3 47.05 11 46.02 8 134.83 18 210.99 3 438.90 43 9

CSU-YUNLU 11.13 7 85.03 24 55.04 9 43.69 1 81.61 1 276.50 42 10

Table A.1: Results following the first day of the 2014 RoboCup Agent Simulation competition.

Team Joao1 NY1 Mexico1 Istanbul1 Kobe2 Day1 Total Rank
Road blocks +++ +++ + ++ +++

Communication ++++ +++ +++ + +
Score Points Score Points Score Points Score Points Score Points Score Points Score Points

GUC_ArtSapience 79.77 18 275.26 20 237.49 18 153.08 10 96.55 21 594.06 81 1436.21 168 3
MRL 81.82 22 147.59 2 254.53 24 214.96 23 98.61 23 707.66 112 1505.17 206 2
S.O.S 82.46 24 280.06 22 252.39 23 216.17 24 99.68 24 583.17 89 1513.93 206 1

ZJUBase 73.39 5 268.45 18 232.48 17 169.13 14 92.51 18 549.43 66 1385.39 138 6
NAITO-Rescue2014 74.20 7 129.77 1 107.98 1 57.85 1 43.82 1 281.49 22 695.11 33 11

Poseidon 76.84 13 179.77 7 231.35 16 138.82 8 92.50 17 526.67 61 1245.95 122 7
Ri-one 76.11 11 269.81 19 228.43 14 173.67 15 83.38 10 469.09 47 1300.48 116 8

RoboAKUT 73.45 6 104.62 1 222.37 13 158.75 11 92.46 16 549.24 61 1200.89 108 9
Kherad 79.63 17 279.99 21 229.50 15 182.90 17 95.62 20 565.55 66 1433.19 156 4

UVA-Rescue 62.67 1 155.83 3 161.66 1 61.18 1 34.54 1 345.25 19 821.13 26 12
SEU_Jolly 74.62 8 140.62 1 178.03 1 158.87 12 91.44 15 438.90 43 1082.49 80 10

CSU-YUNLU 80.58 20 287.95 24 243.52 20 190.88 18 97.47 22 276.50 42 1176.90 146 5

Table A.2: Results following the second day of the 2014 RoboCup Agent Simulation competition.



Kobe1 Paris1 Paris2
Time Damage Score Rank Time Damage Score Rank Time Damage Score Rank Total Score Sum Rank Final Rank

UvA Rescue 141 145 0.7911 3 299 573 0.6443 1 176 108 0.9476 2 2.383 6 2
NAITO-Rescue2014 138 139 0.7932 2 299 1251 0.236 3 180 106 0.9466 3 1.9758 8 3

MRL 129 131 0.8089 1 299 1062 0.357 2 89 54 0.9877 1 2.1536 4 1

Table A.3: Multi-agent challenge results.

Score Table Kobe-1 Point1 Paris-1 Point2 VC-1 Point3 Istanbul-1 Point4 Berlin-1 Point5 Map6 Point6 Total Point Total Score
S.O.S 136.586 15 149.736 15 145.38 14 120.563 15 120.28 15 59.841 13 87 732.386

Soshiant 122.494 13 48.277 1 149.15 15 111.642 12 118.83 10 66.849 15 66 617.242
GUC_ArtSapience 105.948 10 148 14 130.556 10 72.26 5 120.275 14 52.422 11 64 629.461

Apollo 107.163 12 135.514 13 144.161 13 106.496 8 113.934 8 41.314 9 63 648.582
ZJU_Base 14.576 2 133.62 12 131.369 11 111.505 11 119.524 11 53.374 12 59 563.968

Kherad-Rescue 96.034 8 130.598 10 115.362 8 103.479 6 117.552 9 61.618 14 55 624.643
MRL 132.754 14 82.13 6 10.608 1 118.503 14 119.573 12 41.159 8 55 504.727

Poseidon 106.901 11 125.571 8 47.409 4 109.512 9 120.068 13 41.134 7 52 550.595
SEU_Jully 59.592 5 84.677 7 132.928 12 106.386 7 103.032 7 45.843 10 48 532.458

R.A.S_Roshd 103.006 9 133.608 11 126.093 9 112.381 13 54.837 1 21.413 1 44 551.338
Sorena 63.44 7 126.582 9 37.76 3 110.464 10 76.976 3 25.795 2 34 441.017

Simorgh 60.404 6 60.392 4 101.543 7 55.411 4 85.564 4 39.731 6 31 403.045
Distribot 22.084 3 50.545 2 73.792 5 38.4 3 100.94 6 31.018 5 24 316.779

UvA_Rescue 11.428 1 58.655 3 94.311 6 18.385 2 93.562 5 27.967 4 21 304.308
CSU_Yunlu 36.915 4 78.615 5 11.515 2 12.254 1 71.134 2 26.646 3 17 237.079

Table A.4: Results following the first day of the 2014 RoboCup Agent Iranian Open.



Bibliography

[1] http://www.robocuprescue.org/

[2] http://roborescue.sourceforge.net/2014/rules2014.pdf

[3] Boutilier, Craig, Thomas Dean, and Steve Hanks. "Decision-theoretic plan-
ning: Structural assumptions and computational leverage." arXiv preprint
arXiv:1105.5460 (2011).

[4] Papadimitriou, Christos H., and John N. Tsitsiklis. "The complexity of Markov
decision processes." Mathematics of operations research 12.3 (1987): 441-450.

[5] Ramchurn, Sarvapali D., et al. "Decentralized coordination in robocup rescue."
The Computer Journal 53.9 (2010): 1447-1461

[6] Kleiner, Alexander, et al. "RMASBench: benchmarking dynamic multi-agent co-
ordination in urban search and rescue." Proceedings of the 2013 international con-
ference on Autonomous agents and multi-agent systems. International Foundation
for Autonomous Agents and Multiagent Systems, 2013.

[7] Jie Shen, Zhiwei Liang, Zhiqian Liu and Siyu Zhang "RoboCup 2013 - Rescue
Simulation League Team Description Apollo-Rescue (P.R. China)", RoboCup 2013,
Eindhoven, July 2013.

[8] Hisayuki Sasaoka "Effectiveness of Agents’ Communication using Pheromone in
RoboCup Rescue Simulation System", RoboCup 2013, Eindhoven, July 2013.

[9] Fu Jiang, Shang Wang, Zengrong Luo, Qun Yang and Jun Peng "Rescue Simulation
League Team Description CSU_YunLu-China", RoboCup 2013, Eindhoven, July
2013.

[10] Alan D. Barroso, Felipe de C. Santana, Victor Lassance, Annibal B. M. da Silva,
Luis G. Nardin, Anarosa A. F. Brandão and Jaime S. Sichman "RoboCup Rescue
2013 LTI Agent Rescue Team Description", RoboCup 2013, Eindhoven, July 2013.

[11] James Parker, Ernesto Nunes, Julio Godoy and Maria Gini "MinERS Preliminary
Report", RoboCup 2013, Eindhoven, July 2013.

64



BIBLIOGRAPHY 65

[12] Sho Okazaki, Takahiro Nakagawa, Ko Miyake, Shinya Oguri and Masahiro
Takashita "RoboCupRescue 2013 - Rescue Simulation League Team Description
Ri-one (Japan)", RoboCup 2013, Eindhoven, July 2013.

[13] Afsoon Afzal, Parand Alizadeh, Mozhdeh Arian Nezhad, Kimia Ghaffari, Ghazal
Hasanpour, Kiana Jahedi, Pooria Kaviani and Giti Omidvar "Poseidon Team De-
scription Paper RoboCup 2013, Eindhoven", RoboCup 2013, Eindhoven, July 2013.

[14] Dai Obashi, Toshiyuki Hayashi, Nobuhiro Ito and Kazunori Iwata "Implementation
of a communication library among heterogeneous agents: NAITO-Rescue 2013
(Japan)", RoboCup 2013, Eindhoven, July 2013.

[15] Wei Liu, Hongyu Zhao and Jinghao Lei "RoboCupRescue 2013 - Rescue Simulation
League Team Description ZJUBase (P.R.China)", RoboCup 2013, Eindhoven, July
2013.

[16] Pooya Deldar Gohardani, Peyman Ardestani, Siavash Mehrabi, Mehdi Taherian,
Sam Mirzaee Ramhormozi and Mohammad Amin Yousefi "RoboCup Rescue 2013
- Rescue Simulation League Team Description MRL (Iran)", RoboCup 2013, Eind-
hoven, July 2013.

[17] Dina Helal, Ahmed Abouraya, Noha Khater, Mina Fahmy, Fadwa Sakr, Salma
Osama and Abdullrahman Elhusseni "RoboCup 2013 Rescue Agent Simulation
Competition GUC ArtSapience Team Description Paper", RoboCup 2013, Eind-
hoven, July 2013.

[18] Yoosef Golshahi, Salim Malakouti, Seyed Mohammad Reza Modares Saryazdi, Sina
Sheikholeslami, Sina Tagva, Hesam Akbari Morteza Rezayi Khoshdarregi, Navid
Haeri, Angeh Aslanian and Aramik Markari "RoboCupRescue 2013 - Rescue Sim-
ulation League Team Description AUT S.O.S. (Iran)" , RoboCup 2013, Eindhoven,
July 2013.

[19] Kschischang, Frank R., Brendan J. Frey, and H-A. Loeliger. "Factor graphs and the
sum-product algorithm." Information Theory, IEEE Transactions on 47.2 (2001):
498-519.

[20] Ferreira Jr, Paulo Roberto, et al. "RoboCup Rescue as multiagent task allocation
among teams: experiments with task interdependencies." Autonomous Agents and
Multi-Agent Systems 20.3 (2010): 421-443.

[21] Scerri, Paul, et al. "Allocating tasks in extreme teams." Proceedings of the fourth
international joint conference on Autonomous agents and multiagent systems.
ACM, 2005.



BIBLIOGRAPHY 66

[22] Dos Santos, Daniela Scherer, and Ana LC Bazzan. "Distributed clustering for group
formation and task allocation in multiagent systems: A swarm intelligence ap-
proach." Applied Soft Computing 12.8 (2012): 2123-2131.

[23] MacKay, David JC. Information theory, inference, and learning algorithms. Vol. 7.
Cambridge: Cambridge university press, 2003.

[24] Emery-Montemerlo, Rosemary, et al. "Approximate solutions for partially observ-
able stochastic games with common payoffs." Autonomous Agents and Multiagent
Systems, 2004. AAMAS 2004. Proceedings of the Third International Joint Con-
ference on. IEEE, 2004.

[25] Sutton, Richard S., and Andrew G. Barto. Introduction to reinforcement learning.
MIT Press, 1998.

[26] Kaelbling, Leslie Pack, Michael L. Littman, and Anthony R. Cassandra. "Planning
and acting in partially observable stochastic domains." Artificial intelligence 101.1
(1998): 99-134.

[27] Bishop, Christopher M. Pattern recognition and machine learning. Vol. 1. New
York: Springer, 2006.

[28] Oliehoek, Frans A., and Arnoud Visser. "A hierarchical model for decentralized
fighting of large scale urban fires." (2006): 14-21.

[29] Rabinovich, Zinovi, Claudia V. Goldman, and Jeffrey S. Rosenschein. "The com-
plexity of multiagent systems: The price of silence." Proceedings of the second in-
ternational joint conference on Autonomous agents and multiagent systems. ACM,
2003.

[30] Bernstein, Daniel S., et al. "The complexity of decentralized control of Markov
decision processes." Mathematics of operations research 27.4 (2002): 819-840.

[31] Oliehoek, Frans A., Shimon Whiteson, and Matthijs TJ Spaan. "Lossless clustering
of histories in decentralized POMDPs." Proceedings of The 8th International Con-
ference on Autonomous Agents and Multiagent Systems-Volume 1. International
Foundation for Autonomous Agents and Multiagent Systems, 2009.

[32] Spaan, Matthijs TJ, Frans A. Oliehoek, and Christopher Amato. "Scaling up
optimal heuristic search in Dec-POMDPs via incremental expansion." IJCAI
Proceedings-International Joint Conference on Artificial Intelligence. Vol. 22. No.
3. 2011.

[33] Oliehoek, Frans A., Matthijs TJ Spaan, and Nikos A. Vlassis. "Optimal and
Approximate Q-value Functions for Decentralized POMDPs." J. Artif. Intell.
Res.(JAIR) 32 (2008): 289-353.



BIBLIOGRAPHY 67

[34] Traichioiu, Mircea, and Arnoud Visser. "UvA Rescue-Team Description Paper-
Agent competition-Rescue Simulation League RoboCup 2014-João Pessoa-Brazil."
(2014).

[35] Traichioiu, Mircea, and Arnoud Visser. "UvA Rescue Team Description Paper
Multi-Agent Challenge Rescue Simulation League RoboCup 2014-Joao Pessoa-
Brazil." (2014).

[36] Traichioiu, Mircea, and Arnoud Visser. "UvA Rescue-Team Description Paper-
Agent competition-Rescue Simulation League-Iran Open 2014." (2014).


	Abstract
	1 Introduction
	1.1 Rescue Agent Simulation League
	1.1.1 Environment
	1.1.2 Agents

	1.2 Decision-theoretic planning and learning
	1.3 Related work
	1.4 Structure

	2 Theory
	2.1 General concepts
	2.1.1 Markov Decision Process

	2.2 Temporal Difference learning
	2.2.1 SARSA
	2.2.2 Q-Learning

	2.3 Partially Observable Markov Decision Process
	2.4 Bayesian Game Approximation
	2.5 Distributed Constraint Optimisation and Max-Sum algorithm
	2.6 Gaussian Mixture Model

	3 Approach
	3.1 Domain challenges
	3.2 Overview
	3.3 Fire brigade behaviour
	3.3.1 Micro level approach
	3.3.2 Macro level behaviour: Heuristic pairing
	3.3.3 Macro level behaviour: BaGA pairing
	3.3.4 Macro level behaviour: DCOP pairing
	3.3.5 Support requests

	3.4 Ambulance behaviour
	3.4.1 Micro level approach
	3.4.2 Macro level behaviour: Support requests
	3.4.3 Macro level behaviour: GMM-based


	4 Experiments
	4.1 Fire brigade experimental setup
	4.1.1 Fire brigade macro level behaviour
	4.1.2 Fire brigade BaGA-pairing utility function experiment
	4.1.3 Fire brigade micro level behaviour

	4.2 Ambulance Team macro behaviour
	4.2.1 Experimental setup
	4.2.2 Results and discussion


	5 Conclusions
	5.1 Future work

	Appendices
	A 2014 RoboCup results

