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Abstract 

 
For Micro Aerial Vehicles (MAVs), robust obstacle avoidance during flight is a challenging 

problem due to limited payload they can carry. Due to limited battery capacity, only light 

weight sensors such as monocular cameras can be mounted which don’t cause a toll on battery 

life and weight limitations. The problem with monocular cameras for obstacle avoidance is 

depth perception as vision disparity cannot be estimated with a single camera and stereo 

cameras or additional sensors have to be used. We developed a method to focus only on regions 

which were classified as foreground and follow features in the foreground to estimate threat of 

potential objects being an obstacle in the flight path. For this we process video input from the 

drone, classify foreground and background on a pixel level, filter results and track these pixels 

using optical flow, assigning weights to determine closer pixels from further pixels. We 

experiment and evaluate results from our approach in a series of obstacle courses with varying 

levels of challenges using a small quad-rotor drone. We are able to determine evident obstacles 

in front of the drone with high confidence for a variety of obstacles in various settings. 
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1 Introduction 

 
Technological advances in terms of hardware and software allow for reproducing ideas from 

science fiction stories to physical reality. In the domain of robot technology, we see a lot of 

progress using sophisticated hardware and software coming together to create a functional 

machine to accomplish varying tasks replicating human activity. From various domestic tasks 

to complex intricate tasks, we see a positive future in research and development of such 

machines. Today, MAVs (Micro Aerial Vehicles) are used for tasks such as surveys, 

surveillance, search and rescue, and military applications which would otherwise be difficult 

or infeasible for humans considering harsher and challenging conditions. However, this is a 

challenging problem as activities that are simple and latent knowledge for living beings, are 

non-trivial when replicating on machines. Technology in this domain still has a way to go to 

achieve near human intelligence, but today, research tackles several sub-tasks which can 

someday be integrate into a system.  

Specific kinds of drones have been developed such as flappy-wing drones, fixed-wing drones, 

and rotor based drones. Flappy wing drones have an advantage of being able to hover and fly 

close to objects being small, agile, and less dangerous due to their low weight. Fixed-wing 

drones are UAVs that use a gliding mechanism and use either external propulsion mechanism 

or built in linear propellers. Unlike flappy wind drones, fixed-wing drones are not very agile 

but have longer flight durations and are extensively used for surveying and mapping 

applications. Rotor based drones have a number of rotors that keep the drone aloft and flight 

control is based on regulating rotor speed giving it a wide degree of freedom in flight. Being 

heavier and larger than flappy wing drones, rotor based drones lack the same degree of 

nimbleness but have a relatively larger payload for carrying additional sensors. Often, these 

drones have on-board cameras for receiving visual signals which is used in several research 

domains for tasks like intelligent obstacle avoidance. Camera based methods rely on external 

light sources for illumination of the environment and rely on texture and edge features and may 

be limited in situations where illumination based visibility is low or irregular.  

In this study, we look at the challenge of obstacle avoidance using MAVs in realistic 

environments with both stationary as well as moving obstacles. While MAVs have greater 

manoeuvrability over land robots, with respect to agility, speed and direction, there are several 

significant considerations to be taken into account when developing intelligence and stability. 

Today we have several options in MAVs with an array of sensors and feedback hardware, our 

study focuses on MAVs with only a frontal monocular camera. For this, we use the A.R. Drone 

from Parrot S.A. which has the advantage of stabilized flight. 

Previous approaches attempt to imitate biological approaches for obstacle detection and 

avoidance using optical flow or stereo disparity. However, these approaches are not suitable 

for oncoming obstacles directly in front of the camera. Scale based texture template matching 

algorithms mentioned in [24] may be used to detect on-coming obstacles but are subject to 

camera resolution and object texture. Supervised and semi-supervised approaches may be used 

as well if obstacle properties are known but may be challenging to provide in unknown 

environments. 
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The proposed method consists of a modular algorithm in order to generate confidence results 

using background/foreground classification, filtering, and optical flow. The result of the 

algorithm generates a confidence mask used to direct and control the drone avoiding immediate 

obstacles. While clearly visible obstacles are effectively detected, performance of our method 

is subject to lighting and stability conditions. We design a tiered framework using existing 

methods of background/foreground classification, and optical flow with our proposed 

extensions at each level that increase accuracy and improve avoidance results considerably. 

We illustrate this by comparing existing method results with results after applying our 

extension, and look at the overall performance of the proposed method in flight experiments. 

In section 2, we discuss related work in this area of study looking at advantages and limitations 

of these approaches. Section 3 touches upon general methods used in our obstacle avoidance 

application. Section 4 discusses the proposed method of this study followed by experiments, 

results, and discussion in section 5. We then conclude and discuss future work in section 6.  
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2 Related Work 

 
In recent years, obstacle avoidance in MAVs has been a keen area of interest. Several 

approaches exist using monocular vision for detecting obstacle threats and avoiding such 

threats based on optical flow as well as using feature descriptors for relative size changes. This 

study uses motion cues from the scene and uses this information to generate features in order 

to determine potential obstacles. The study presented in this thesis proposes a framework using   

background/foreground classification, optical flow, clustering, and proximity estimation to 

determine potential obstacles in the autonomous flight path of flying robots. Existing research 

in this area give us insight on benefits and challenges of this approach.  

Kim et al [16] propose a Block Based Motion Estimation approach. The approach in the paper 

includes splitting two image frames into non-overlapping blocks of pixels and generates motion 

vectors between matching blocks. Blocks with high degree of motion are highlighted in a scene 

and a 2D histogram is generated from the resulting confidence image. The method then applies 

a threshold on the histogram and crops the regions with the highest degree of movement from 

the confidence image. Using this information, a location of the motion region is estimated by 

a vertical projection of the confidence image and the moving object is found. While this method 

is effective for cases of large objects like humans, its applicability is subject to several 

conditions such as illumination, object properties, and movement of the robot itself. Also, this 

approach would not work well in estimating proximity of the approaching obstacle which may 

not be able to distinguish between a large fast moving obstacle far away and a small closer 

obstacle which is essential in our study to determine immediate threat for the robot.  

Kundu et al [17] propose a real time motion detection algorithm for perception and 

understanding of the environment in mobile robots. The method proposed in this paper use 

features detected in the scene and estimates the probability of a feature being stationary or 

moving using a probabilistic framework in the model of a Bayes filter. The features classified 

as moving individually are then clustered and filtered. Based on spatial proximity and motion 

coherence, it is possible to retrieve dense feature regions that have common motion properties. 

Although the method appears to work well detection motion in a moving camera scene, its 

applicability to obstacle avoidance is limited as the method does not account for proximity 

estimation. Proximity estimation allows the robot to tell immediate danger of collision with an 

obstacle from potential collision which is essential for the challenge of obstacle avoidance. 

Nishigaki et al [18] proposed two algorithms, one for monocular cameras and the second for 

stereo cameras. The algorithm for monocular cameras has a limited applicability where objects 

that are moving in a direction other than the camera are detected. While the approach is 

designed for use in cars, key obstacles are humans and traffic based on epipolar constraint. The 

second algorithm estimates a depth map from stereo vision by computing the magnitude of 

optical flow. As our domain is limited to monocular vision, we consider results of the first 

algorithm where the method employs a series of filters to segment the scene into parts based 

on homogeneity. With this, a motion model is used to detect moving regions in the scene and 

obstacles are retrieved. This method however is computationally expensive, and by using 
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colour based segmentation, is subject to illumination conditions and texture properties of 

obstacles.  

A variety of applications in similar domains exist in [19], [20], [24] and [25]. Study in these 

papers have a similar domain to the research presented in this thesis but vary in types of UAVs 

used. We use the knowledge of these studies in order to infer challenges and limitations of 

methods that are used in the work in this study. While existing methods discussed above 

provide possible solutions for our study, robustness and efficiency of motion cues is essential 

for a real time application of obstacle avoidance that can work in a larger variety of situations. 

One approach for obstacle avoidance is detecting features, generating descriptors for those 

features in an image and locating those features in the next image. The approach in [24] uses 

such features in conjunction with template matching with observed increase in size over 

subsequent frames, resembles our objective in this study. The MAV used in this study is similar 

to ours therefore the domain is similar. This approach allows the drone to estimate depth of 

objects detected as potential obstacles and observes relative changes in size of the sub-image 

template around that feature point to detect if the potential obstacle appears to come closer to 

the MAV by a fixed metric. While results of the study are positive for frontal obstacles using 

SURF features as shown in Figure 2.1, a limitation of this approach is that performance is 

subject to presence of sufficient textures in the scene. In cases where there isn’t sufficient 

texture available to track (smooth and regular surfaces) the matching of SURF features do not 

perform as well as in the case of detailed textures. Also, the experiments carried out in this 

paper focus on narrow, tree-like obstacles. While this approach tackles a similar problem as 

this thesis, we use an approach that focuses on foreground classification and optical flow that 

may be employed in a broader setting.  

 

 

Figure 2.1: Sample image of the expanding selected key points and command. The red circles 

represent the expanding key points. The purple line is the command given to the vehicle. One 

can see that many other key points in the field of view were rejected. Courtesy [24] 

 

Motion Parallax is used in optical flow methods to determine displacement of objects in a 

scene. [40], [41], [42], and [43] use optical flow methods for obstacle avoidance in a variety of 
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scenarios but face limitations as flow estimation between consecutive frames is proportional to 

the angle of the MAVs frontal direction. Due to this, objects moving towards the UAV during 

flight don’t register a large degree of confidence as there may be small to no movement of 

pixels when moving in a straight line. These methods do prove effective however for wall or 

corridor following applications.  

Another use of optical flow is in motion detection. Tracking markers to generate structure from 

motion may be used by optical flow to estimate translation quantity of ergomotion [50]. Since 

scenarios may exist where the environment is static and only the MAV camera moves, it 

possible to segment objects using optical flow as objects closer to the camera appear to move 

a greater distance between frames compared to objects further away. The accuracy of this 

approach however is dependent on knowledge of the ergomotion between frames. Using optical 

flow based motion models allows MAVs to navigate in indoor spaces as studied in [49] and 

[51].  

Bills et al [44] use an approach designed for indoor environments where there is uniformity in 

structure properties. The paper makes use of edges and detects lines using Hough transform 

and uses this information to classify the scene based on a trained classifier. While the paper 

uses MAVs with a single camera, the proposed method in the paper allows the MAV to 

navigate in indoor environments where such features can be used. Using these features, a 

“confidence” value is determined based on line intersections crossing a visible vanishing point. 

Based on this confidence value, the MAV adopts a control scheme to react accordingly to its 

environment. When faced with an unknown environment; when confidence value is small; the 

MAV enters an “unknown” state where it adopts defined exploration strategies. For indoor 

applications, the method proposed in the paper may be applicable however for outdoor 

situations scene regularity and line based cues are difficult to find making it difficult to train a 

classifier as there may be constant changes in the scene. In contrast to this method, our approach 

does not use any pre-existing training and learns the environment features during flight.  

Celik et al [45] use an approach that exploits both lines and corner features detected in a scene. 

Similar to the Hough transform method, the paper uses line information extracted from the 

scene to determine the scene structure however, instead of running the method on the entire 

scene, as Hough transform does, their method focuses only on scene parts where data exists. 

The next proposition of the paper is using a human like range estimation method using the 

height of the MAV and vanishing point of the scene. Using this information, the paper states 

that it is possible to obtain the relative distance of an object in the scene following feature 

points for its SLAM formulation. The paper uses a variation of optical flow as well for the 

proposed Helix Bearing Algorithm to create a motion field to determine turning points in the 

environment. This method too however is subject to camera capabilities and detection of strong 

features in the scene to navigate successfully. The use of features and focus on relevant parts 

of the scene is similar to our approach where the method focuses on select regions in the scene 

instead of the entire scene as a whole. However estimating vanishing point may prove to be 

difficult in natural environments due to irregularity in the scene.  

Lee et al [46] propose a method with the use of MOPS (Multi-Scale-Oriented-Patches) and 

SIFT feature descriptors to obtain three-dimensional information of the environment. MOPS, 

similar to Harris corner detector, is a quick and accurate corner point matching method. Using 

MOPS and SIFT, the paper attempts to reconstruct objects in 3D space where MOPS is used 
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to extract edge and corner information and SIFT used to detect the internal outline information 

of an object. By combining these, a distinction between the outline and the inline of objects 

can be determined using matching distance between frames. By listing cases between the 

relationships of SIFT and MOPS features in the scene, it is possible to know the nature of 

objects around when the UAV moves and construct a 3D map of the environment. While the 

paper highlights experiments where they illustrate results from the proposed approach, 

performance is subject to additional knowledge of flight test data. This however may not be 

available for all use cases for this study in unknown environments.  

Monocular cues used in the papers above ([44] [45] [46]) utilize information such as lines, and 

scene regularities to detect proximity and location of obstacles however don’t perform well in 

natural environments where such cues are challenging to find. Another limitation of these 

methods is that monocular approaches may not find distance to collision directly however [48] 

shows us that there exists a relationship between optical flow to time to collision which may 

be exploited to determine immediate threat of obstacles. [16], [17] and [18] use motion cues to 

estimate depth from motion and background subtraction to determine obstacles in a frontal 

scene however face the issue of computational cost as well as robustness of detection. [19] 

Uses a combination of appearance variation cues and optical flow for their approach to obstacle 

detection. This method however is highly influenced by blob-based texture variations in the 

environment and has limited performance in outdoor scenarios.  

From literature above, we see several approaches to tacked obstacle avoidance in various 

settings from indoor to outdoor but we also observe that these methods are subject to very 

specific cases. Where some study uses scene regularities and geometric information in the 

environment, this may not be the case in real applications especially in outdoor settings. Using 

trained models help detect obstacles faster and accurately, results are conditioned to prior 

knowledge of the obstacles or scenes. The approach presented in this thesis makes use of a 

combination of background subtraction, optical flow, as well as depth estimation used in 

individual studies to create a more robust obstacle avoidance system by taking the positive 

points of existing methods.  
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3 General Methods Used  

 
Our method uses background-foreground classification in the MAV flight environment and 

uses this information to track feature points of potential obstacles. In order to achieve this, we 

look at work in background segmentation proposed by papers [1], [2], [3], [4] and [5] where 

the research focuses around creating a background model to generate foreground and 

background masks for segmentation. Extensive study in feature detection in such environments 

has been done in [11], [13], [14] and [15] where various methods for estimating optical flow 

using salient features in frames are proposed. Using these concepts, we formalize general 

methods used in this study below. 

 

3.1 Background/Foreground classification 

Background subtraction is a method in computer vision and image processing where an image 

is classified into the background and the foreground. This is done to achieve a variety of 

applications which require segmentation of concerned objects from a scene and filtering out 

everything else. Background subtraction creates a model of the background and then segments 

out everything that doesn’t belong to the background as foreground based on a spatial and 

temporal setting. It’s can be seen as similar to detecting what objects are in the new image from 

the old image. Once foreground objects are retrieved in the foreground mask, it is easy to 

extract as well as localize the objects in the scene whether moving or stationary.  

There are several approaches to achieve this such as Frame differencing [32], Mean Filtering 

[33], Running Gaussian Average [34], and Mixture models [35]. The method we use in our 

study is Background Subtraction using Mixtures of Gaussians by P. KaewTraKulPong and R. 

Bowden.  

The method proposed is in two parts where we first consider background modelling and then 

maximising the expectation over the background Gaussian mixture model. The background is 

modelled using an Adaptive Gaussian Mixture Model where each pixel in the scene is modelled 

by K Gaussian distributions according to Grimson and Stauffer [37] and [38].  

The probability of a pixel XN at time N belonging to a class is given as: 

𝑝(𝑋𝑁) = ∑ 𝑤𝑗N(𝑥𝑁; 𝜃𝑗)𝐾
𝑗=1           (1) 

 

Where wk is the weight parameter of the kth Gaussian component. N(x:θk) is the normal 

distribution component represented by:  

N(x; 𝜃𝑘) = N(x; 𝜇𝑘, Ʃ𝑘) = 1

(2𝜋)
𝐷
2|Ʃ𝑘|

1
2

 𝑒−1
2

(𝑥−𝜇𝑘)
𝑇

Ʃ𝑘
−1(𝑥−𝜇𝑘)      (2) 
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Where µk is the mean and Ʃk=σk
2I is the covariance of the kth component. The background B 

is then modelled as: 

𝐵 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑏(∑ 𝑤𝑗 > 𝑇𝑏
𝑗=1 )          (3) 

Where T is the minimum fraction threshold of the background model. Here argminb is the 

minimum prior probability that the background is in the scene. We then look at the update 

equations for the Gaussian component that matches the test value as that is used by Grimson et 

al: 

�̂�𝑘
𝑁+1 = (1 − 𝛼)�̂�𝑘

𝑁 + 𝛼�̂�(𝜔𝑘 |𝑋𝑁+1) (4) 
 

�̂�𝑘
𝑁+1 = (1 − 𝛼)�̂�𝑘

𝑁 + 𝜌𝑥𝑁+1 (5) 
 

Ʃ̂𝑘
𝑁+1 = (1 − 𝛼)Ʃ̂𝑘

𝑁 + 𝜌(𝑥𝑁+1 − �̂�𝑘
𝑁+1)(𝑥𝑁+1 − �̂�𝑘

𝑁+1)𝑇       (6) 

𝜌 = 𝛼N(𝑥𝑁+1; �̂�𝑘
𝑁, Ʃ̂𝑘

𝑁) (7) 

 

�̂�(𝜔𝑘 |𝑥𝑁+1) = {
1  ; 𝑖𝑓 𝜔𝑘 𝑖𝑠 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑚𝑎𝑡𝑐ℎ 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

0  ; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
     (8) 

 
Where ωk is the kth Gaussian component. 1/α defines the time constant that determines change 

as learning rate. This update model however is incapable for complex background scenarios as 

explained by [4]. Bowden et al [4] then propose online Expectation Maximization algorithms 

to counter the issue of the method by Grimson et al [37] of slow convergence and inability to 

account for minor changes in background by utilizing expected sufficient statistics update 

equations and then switch to a window sampling method until the first L samples are processed 

in order to allow faster convergence on a stable background model. The L-recent window 

update equations prioritize over newer data leading to faster adaptation to changes in the 

environment. The EM algorithms proposed by Bowden et al for expected sufficient statistics 

are: 

�̂�𝑘
𝑁+1 = �̂�𝑘

𝑁 +
1

𝑁+1
(�̂�(𝜔𝑘|𝑥𝑁+1) − �̂�𝑘

𝑁)         (9) 

 

�̂�𝑘
𝑁+1 = �̂�𝑘

𝑁 +
𝑝(𝜔𝑘|𝑥𝑁+1)

∑ 𝑝(𝜔𝑘|𝑥𝑖)𝑁+1
𝑖=1

(𝑥𝑁+1 − �̂�𝑘
𝑁) (10) 

 

Ʃ̂𝑘
𝑁+1 = Ʃ̂𝑘

𝑁 +
𝑝(𝜔𝑘|𝑥𝑁+1)

∑ 𝑝(𝜔𝑘|𝑥𝑖)𝑁+1
𝑖=1

((𝑥𝑁+1 − �̂�𝑘
𝑁)(𝑥𝑁+1 − �̂�𝑘

𝑁)𝑇 − Ʃ̂𝑘
𝑁) (11) 

 

And the L-recent window version is: 

�̂�𝑘
𝑁+1 = �̂�𝑘

𝑁 +
1

𝐿
(�̂�(𝜔𝑘|𝑥𝑁+1) − �̂�𝑘

𝑁) (12) 
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�̂�𝑘
𝑁+1 = �̂�𝑘

𝑁 +
1

𝐿

𝑝(𝜔𝑘|𝑥𝑁+1)

�̂�𝑘
𝑁+1 (𝑥𝑁+1 − �̂�𝑘

𝑁) (13) 

 

Ʃ̂𝑘
𝑁+1 = Ʃ̂𝑘

𝑁 +
1

𝐿

𝑝(𝜔𝑘|𝑥𝑁+1)

�̂�𝑘
𝑁+1 ((𝑥𝑁+1 − �̂�𝑘

𝑁)(𝑥𝑁+1 − �̂�𝑘
𝑁)𝑇 − Ʃ̂𝑘

𝑁)                    (14) 

These update equations replace α learning component of Grimson et al by taking into account 

the L number of frames for the update. 

 

 

Figure 3.1: The top row consists of the original frame sequence at frames 15, 105, 235, 290 

and 1200 respectively. The second row shows the results from Grimson et al’s. The last two 

rows are the result of the method proposed by Bowden et al where the white pixels are the 

background mask and the foreground is the black pixel regions without and with shadow 

removal. Courtesy [4]. 

 

The paper by Bowden et al also features Shadow removal methods but we don’t use that in our 

experiments. With this approach, we use a robust tracker that works fairly well in our moving 

camera setting with respect to the drone. This step in our framework is the basis for detecting 

potential obstacles for the drone; both moving as well as stationary (considering the drone will 

move). Once we have the foreground classified, we can use the tracking method explained in 

the next section to keep following the potential obstacles detected. 

 

 

 



10 
 

3.2 Tracking and Depth Classification 

 

3.2.1 Feature detection 

For feature detection we look at capturing good pixels to track. At this state, an apt choice of a 

feature detector is essential. We look at classical the Harris Feature detector [12] with an 

updated model by Shi and Tomasi [13]. A feature is an entity in an image (in our case) that 

allows us to find matching points in two consecutive images so that we know the relation 

between the two images. These features may also be seen as specific characteristics of an image 

that “should” be present in the next image in the sequence which we can recognise easily. For 

this feature to be recognised, it is essential that feature is uniquely recognisable in all images it 

exists in. Features may exist in several ways such as corners, edges, colours, blobs to name a 

few. Our interest in this research is on corner features and edge. Corner features are the point 

of intersection between two edges and remain consistent in images unless occluded or skewed 

by change in perspective or morphological properties of an object.  

In order to find corners in an image, let’s first consider a grayscale image as an intuitive 

example. The Harris corner detector looks for edges in an image and then looks for intersection 

points between these edges and gives them a score. Based on a score threshold, the detector 

determines the best corners in an image as illustrated in Figure 3.2. 

 

 

 

Figure 3.2: (Top-Left) a simple Grayscale image of a triangle. (Top-Right) the same image 

with best rated corners found by the Harris Corner detector. (Bottom-Left and Right) same 

corners found despite location of triangle in image. 
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Based on the algorithm by Harris et al [12], we use a sliding window to go through the image 

and calculate variations in intensity in that window using the equation: 

𝐸(𝑢, 𝑣) = ∑ 𝑤(𝑥, 𝑦)[𝐼(𝑥 + 𝑢, 𝑦 + 𝑣) − 𝐼(𝑥, 𝑦)]2
𝑥,𝑦                 (15) 

Where: 

- w(x,y)  is the window at position (x,y) in the image 

- I(x,y) is the intensity at (x,y) 

- I(x+u,y+v) is the intensity of the moved window w(x+u,y+v) where u is the window 

shift in the x direction and v the shift in the y direction 

Whenever the sliding window has a corner, we expect a large shift in intensity. We can then 

represent the equation above to the form: 

𝐸(𝑢, 𝑣) ≈ [𝑢 𝑣] 𝑀 [
𝑢
𝑣

]                    (16) 

Where: 

𝑀 = ∑ 𝑤(𝑥, 𝑦) [
𝐼𝑥

2 𝐼𝑥𝐼𝑦

𝐼𝑥𝐼𝑦 𝐼𝑦
2 ]𝑥,𝑦   

Thus we have a score calculated for each window using the equation: 

𝑅 = det(𝑀) − 𝑘(𝑡𝑟𝑎𝑐𝑒(𝑀))2                   (17) 

Where: 

- det(M) = λ1 λ2 

- trace(M) = λ1 + λ2 

Therefore, we consider a window a corner if its R is greater than a threshold. The Eigenvalues 

λ1 and λ2 represent a bidirectional axes of an ellipse for fitting a corner, edge or flat value in 

the sliding window. An illustration of the impact of Eigenvalues of M is given in Figure 3.3 

where classification is based on three cases: 

- λ1 and λ2 are small, denoted a flat region 

- λ1 > λ2 or λ1 < λ2, denotes an edge 

- λ1 and λ2 are large, denotes a corner 
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Figure 3.3: Illustration of the impact of Eigenvalues of M in determining a corner. (Image 

taken from Robert Collins Lecture from Penn State University1) 

 

Shi and Tomasi [13] however updated this algorithm by calculating the R using the following 

equation: 

𝑅 = min(𝜆1, 𝜆2)                     (18) 

In their paper, Shi and Tomasi claimed and proved that their score criteria was superior to 

Harris and Stephens so we follow this algorithm for our research.   

 

3.2.2 Tracking 

We track features based on the Lucas-Kanade method for Optical Flow [11]. This method is 

based on the assumption that the flow of a concerned pixel in one image to another image 

should be present in the local neighbourhood of that pixel in the first image.  

 

 

Figure 3.4: Illustration of Optical Flow of a moving pixel in consecutive images 

 

                                                           
1 http://www.cse.psu.edu/~rcollins/CSE486/lecture06.pdf 
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For our study, we look at the Lucas-Kanade Pyramidal Feature Tracker paper by Bouguet [39] 

in Figure 3.5.  

 

 

Figure 3.5: Algorithm of Lucas-Kanade Pyramidal Feature Tracker. Courtesy [39] 
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3.2.3 Depth Classification 

Through optical flow, it is also possible to determine motion vectors or feature points that may 

be used to segregate faster moving features to slower moving features. This ocular illusion is 

most evident when there are objects at different depth level from the camera in a scene. We 

illustrate an example of this in Figure 3.6. 

 

 

Figure 3.6: Illustration of two balls rolling from left to right in Frames 1 and 2. The right 

frame shows the shift in pixels from Frame 1 to Frame 2 and segments them based on 

distance moved where the Blue ball is considered closer and the red ball considered further 

away from the camera. 

 

In Figure 3.6, we see an illustration that two balls positioned such that one ball is closer to the 

camera and one ball is positioned further away in Frame 1. In Frame 2, although both balls 

have moved the same distance realistically, due to camera perspective, it appears so that the 

closer ball may have travelled a larger distance. This illusion is what we use to estimate depth 

using optical flow and segment based on distance travelled on screen in terms of pixels. In our 

proposed method. 

 

3.3 Template Matching 

Template matching is a method used to estimate similarity between two images. For this 

method, we have a source image I and a template image T used for comparison. To detect 

matching areas in the source I, a sliding window approach is used where pixel values of T are 

compared with pixel values of a window with same dimensions “slides” over I pixel by pixel. 

At each location, a score is calculated to represent the quality of the match.  

There are various method of template matching in practice of which we use the OpenCV 

implementation of the Normalized Correlation Coefficient template matching [53]. Below, we 

give a walkthrough of the template matching method used (Courtesy OpenCV2) 

 

                                                           
2 http://docs.opencv.org/doc/tutorials/imgproc/histograms/template_matching/template_matching.html 
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Let’s say we have a sample input image I: 

 

And a template image T: 

 

We generate a coefficient mask on I based on the equation: 

𝑅(𝑥, 𝑦) =
∑ (𝑇′(𝑥′,𝑦′)∙ 𝐼′(𝑥+𝑥′,𝑦+𝑦′))𝑥′,𝑦′

√∑ 𝑇,(𝑥′,𝑦′)2∙ ∑ 𝐼′(𝑥+𝑥′,𝑦+𝑦′)
𝑥′,𝑦′

2
𝑥′,𝑦′

                  (19) 

Where R(x,y) is the matching score, T’(x,y) is the template pixel location, and I’(x+x’,y+y’) is 

the sliding window pixel location over source image I.  

We use the sliding window approach and find the best match: 

 

 

 

The red box over the result image is where the template matching method returns the best match 

in the source image. We use this method to compare current and previous images in our 

proposed method to estimate scale. We do this by generating several scaled versions of the 

template from the previous image and find the best match to the current image to determine the 

scale of expansion.  
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4 Proposed Method 

 

 

Figure 4.1: Overview of process framework 

 

In this thesis, we look at a detailed framework to tackle the challenge of obstacle avoidance 

using a monocular camera. We look at a graphical framework of our algorithm in Figure 4.1. 

The framework consists of two parts; the hardware side and the computer side. From the 

hardware side, we consider drone mechanism and stability, camera input, and medium of 

transmission of video feed. On the computer side we look at a series of algorithms that process 

the video feed and output the drone commands. In our proposed approach, we use a tiered 

approach to target issues such as dynamic backgrounds, stationary or moving and proximity of 

potential obstacles. 
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4.1 Background Subtraction 

We use an existing implementation background subtraction using Mixtures of Gaussians3 as 

explained in Section 3 in order to reduce the number of points generated in regions which are 

not of interest in the environment using the foreground mask as well as its ability to cope with 

dynamic backgrounds applicable to requirement. By focusing only on parts of a scene with a 

significant degree of movement, we can eliminate a large number of unnecessary points to be 

tracked in later stages. While this method is not a necessity in the framework, we see a 

significant improvement in accuracy and performance. Figure 4.2 illustrates the results of the 

foreground mask generated using the background subtraction method.  

 

 

Figure 4.2: Foreground mask generated from Background Subtraction using Mixture of 

Gaussians with the camera direction moving left to right in a fixed scene 

 

In Figure 4.2, we see that a lot of the background is removed from the scene and only regions 

of significant difference by camera movement is considered. This result still contains a lot of 

irrelevant contours in the mask. For that, we look at OpenCV findContours and drawContours4 

algorithm to remove small contours and fill gaps in large contours giving us results as shown 

in Figure 4.3 where we eliminate contours with an area size smaller than a set threshold and 

draw contours where we see gaps in order to maximise the region of the object captured by the 

segmentation mask. 

 

 

                                                           
3 
http://docs.opencv.org/modules/video/doc/motion_analysis_and_object_tracking.html#backgroundsubtracto
rmog 
4 
http://docs.opencv.org/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html?highlight=find
contours#findcontours 
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Figure 4.3: Results of Background Subtraction using Mixture of Gaussians with and without 

contour filtering 

 

As we see in Figure 4.3, we filter out a lot of noise and get a cleaner result from the background 

subtraction after filtering out excess information. The advantage of this step is to set a better 

ground for the next step where we detect and track features, so that features are detected only 

on relevant regions. The threshold θ we use for the contour filtering step is based on area of 

contours detected and discarding contours with an area less than 1% of the image resolution. 

An overview of the approach used for this step is given in Algorithm 1. 

___________________________________________________________________________ 

Algorithm 1: Retrieve foreground mask from Background Subtraction MOG and apply 

contour filtering to get improved results 

While( video_feed) 

 Get single frame from video feed f0 at time t 

 Set region of interest r0 from f0  

 Get foreground mask f_r0 from BackgroundSubtractorMOG(r0) 

 Detect contours c from findContours(f_r0) 

 For(i=0 -> nc) 

  Discard small contours: if area(ci) < θ 

  Else 

  Get contour region and fill it uniformly: if(ci > θ) 

  Redraw f_r0  

Output: filtered binary image of foreground mask  

Parameters: 

.video_feed: input stream of video from camera 

.f0: individual frame from video_feed 
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.t: time step 

.r0: cropped region of interest from frame 

.f_r0: foreground mask retrieved from Background Subtraction MOG implementation 

.c: vector of contours detected from findContours implementation 

.ci: i
th contour value in cont vector 

. θ: contour area threshold 

 

 

Figure 4.4: Comparison of results of different α values on a top experiment of a moving hand 

with a cola bottle. 

 

In Figure 4.4, we draw comparison of different learning rate α values where we move around 

a bottle in a stationary scene. We observe that with a higher learning rate, the object becomes 

less visible as it is being learned quicker. For lower learning rates, as the object is learned 

slower into the model, results in a motion trail as the pixels with change in intensity value does 
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not learn as quickly. We use a learning rate of 0.1 for our method as it retains most properties 

of the object in the scene and with our contour threshold extension, we note best results for our 

case.  

 

4.2 Optical Flow 

Once we have the foreground mask from the background subtraction method, we detect corner 

feature points used for optical flow tracking. For this we use the OpenCV implementation of 

“goodFeaturesToTrack” based on the algorithm by Shi and Tomasi. The features retrieved 

consist of 2D pixel locations that are matched in consecutive images. We then cluster these 

points (Section 4.3) and track these feature points using optical flow using the method in [39]. 

Figure 4.5 illustrates the result of optical flow between subsequent images for calculating 

motion vectors of feature points.  

 

 

Figure 4.5: Comparison of feature detection results at different corner score thresholds θ for 

an outdoor scene 

 

In Figure 4.5, we compare different results of applying various thresholds θ for the corner 

values generated by the feature detection method. From the figure, we draw conclusions that 

setting a threshold value too high, we tend to lose several feature points in the scene that could 

belong to the concerned obstacle as well. When we set a high threshold (θ =0.5) we see fewer 

incorrect points however at the compromise of losing features on the concerned object as well. 

For our experiments, we use a threshold value of 0.1 where we have a good number of features 

on the potential obstacle and fewer outside.  
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Figure 4.6: Results from the proposed method of tracking refined feature points. (Top Row) 

original images. (Middle Row) tracking using Lukas-Kanade pyramid optical flow method. 

(Bottom row) binary image showing location of feature points for clearer illustration. 

 

In Figure 4.6, we see the optical flow tracking method in action where we get a good outline 

of the moving entity in the scene and being successfully tracked. The red dots indicate the 

feature point location in the previous frame, the green dots indicate the feature point detected 

and located in the current frame and the blue lines illustrate the distance between the feature 

point in the previous and current frame. We then compare accuracy of the optical flow method 

in different pyramid levels in Table 4.1. 

 

Pyramid Level Number of Features Detected 

(149 frames) 

Number of Features Successfully 

Tracked (149 frames) 

Pyramid level 0 62879 27727 

Pyramid level 1 62879 41894 

Pyramid level 2 62879 50475 

Pyramid level 3 62879 50776 

Table 4.1: Table comparing number of features successfully tracked in 149 frames 

In Table 4.1, we see that using 3 pyramid levels for optical flow, we see the highest number of 

features successfully tracked. While we don’t see a very large difference between pyramid level 

2 and 3, we observe a large gap in scores between pyramid level 0 (where no pyramid levels 

are used) and level 1 (2 pyramid levels). With a higher number of pyramid levels (more than 

4) we don’t observe any change in number of features successfully matched.   

 

4.3 Clustering 

Once these corner features are detected, we see a lot of isolated features and overlapping 

features that add onto the feature vector which we reduce using clustering and neighbour count 

filtering rejecting isolated features and condensing number of features in one region of the 
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frame to limit computation load. For this, we implement our approach inspired by the method 

in [52], where nearest neighbour chains are created between points and small clusters are made. 

Then clusters are chained where each cluster is the nearest neighbour of the previous cluster. 

This process is repeated until reaching a pair of clusters that are mutually nearest neighbours. 

Our approach differs where we use a distance threshold d_θ instead of traversing through all 

neighbour chains by sorting the all points from a common origin and providing a threshold to 

the distance between neighbors n_θ. Algorithm 2 gives an overview of the clustering and 

neighbour filtering method used to improve tracking results.  

 

Algorithm 2: Cluster and group points based on Neighbouring features 

Input: pn, d_θ, n_θ 

Sort p based on distance to origin (top-left of image) to s_p 

For(i=0 -> s_p.size) 

 Compute distance between s_pi and s_pi+1 to ds_p[i], s_p [1+1] 

 If(ds_p[i], s_p[1+1} < d_θ) 

  Add s_pi to c 

 If(ds_p [i], s_p [1+1] > d_θ) 

  If(c.size > n_θ) 

   Add c to f_pend  

   Clear c  

Output: f_p  

Parameters: 

.p: vector of feature points detected 

.d_θ: distance threshold to end cluster 

.n_θ: number of neighbours to consider to keep cluster or discard 

.s_p: sorted feature points based on distance to origin 

. ds_p [i], s_p [1+1}: distance between s_p [i] and s_p [i+1] 

.c: vector of clustered points 

.f_p: vector of final points 

 

 Once feature points are refined and trimmed, we see results of the method in Figure 4.7.  
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Figure 4.7: (Left) result of feature points without clustering. (Right) result of feature points 

after clustering 

 

In Figure 4.7, we see a significant improvement by applying the clustering method in 

Algorithm 2. This step eliminates several isolated feature points and reduces number of points 

too close to one another. In the left image in Figure 4.6, we can clearly see the outline form of 

edges detected on the object of concern. This step allows the tracker to focus on potential 

obstacles for the next step of depth segmentation and proximity estimation as feature point bias 

is focused on feature points on the obstacle and not on feature points on the background.  

 

4.4 Depth Segmentation 

In a moving camera setting we see several parts of a scene with detected features moving as 

well, for this segmenting closer objects from further objects becomes a challenge in a 3D 

setting. For this, we look at how to segmenting faster moving features from slower moving 

features based on distance as explained in Section 3.  

Once we have the feature points tracked, we use the concept of ‘objects closer to the camera 

appear to move faster than objects further away’. This can be done by estimating the Euclidean 

distance between the pprev(x,y) location of a feature in the previous frame and the new 

pcurrent(x,y) location of the feature in the next frame. We then split the values from the motion 

vector of all points into bins based on distance travelled. With this, we get a segmentation of 

foreground and background, as well as closer objects and further objects in the foreground.  
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Figure 4.8: Results of Depth estimation in a moving scene from Optical Flow. (Left) Frame 

at t=10. (Right) frame at t=14. Red dots denote features moving at a faster rate and Blue dots 

denote slower moving features 

 

In Figure 4.8, we have a classification of movement vectors in two categories; red being faster 

moving vectors and blue being slower moving vectors. We see a satisfactory distinction 

between features tracked of a closer car compared to features tracked on the further car. 

Although we see some false positive features due to strong shadows detected in the scene but 

we get a good estimate of closer objects from further objects.  

 

4.5 Proximity Estimation  

Using optical flow methods, it is possible to estimate affine relationships between closer and 

further obstacles, however for continuous obstacle avoidance, proximity of closer obstacles is 

essential. In order to determine proximity of obstacles, calculating scale expansion of obstacles 

in the scene while moving closer makes it possible to estimate threat of collision.  For this, we 

use a template matching approach where we generate the previous image in different scales 

and then compare to the current image and find the best matching scale. For this, we take the 

mean location of dense feature groups from the result of tracking step and create a sub window 

around that point from the previous frame. We then draw a sample template from the current 

image with the same location and dimensions and run a template matching algorithm to 

determine the scale based on a proximity metric. The template matching method used is the 

matchTemplate and minMaxLoc implementation in OpenCV. Algorithm 3 gives an overview 

of the template matching method. 
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Figure 4.9: Results of Proximity Estimation method. (Left) Previous frame with features in 

green and template area in black for each cluster. (Right) Estimated proximity of clusters 

(red closest and blue furthest) 

 

In Figure 4.9, we illustrate an example of the proximity estimation method used to determine 

immediate threat of potential obstacles in the scene. The left image is the previous frame where 

feature points are detected and drawn as large squares to create a joint contour of cluster of 

points. The black border around the contour is the template around the cluster used for the 

template matching step in Algorithm 3. The result of Algorithm 3 is a vector of centre points 

of the templates represented in Figure 4.9 on the right. For illustration, we colour code closer 

objects having a higher red value and further objects having a higher blue value based on the 

score of the best matching template scale to the current image.  

___________________________________________________________________________ 

Algorithm 3: Template matching algorithm for detecting frontal obstacles 

Input: c, s_θ, fp, fc  

For(i=0 -> c.size) 

 Generate template around ci from fp as tp  

 Generate template around ci from fc as tc  

 Create samples of tp in scales from 1.1 to 1.9 as t_vec 

 Set m_t=0 

 Set m_s=0 

 For(j=0 -> t_vec.size) 

  Match tc with t_vecj and get score 

  Check if score is greater than previous score: If(s > m_s) 

    Set best score: m_s=s 

   Set index of best match: m_t=j 

 Check of best scale match is greater than scale threshold: If(m_t > s_θ) 
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  Add location of that cluster to obstacle location vector:  

o_vecend = ci 

Output: o_vec 

Parameters: 

.c: vector of midpoints of feature point clusters 

.s_θ: scale threshold for obstacle threat 

.fp: previous video frame 

.fc: current video frame 

.tp: template around cluster point ci in fp 

.tc: template around cluster point ci in fc 

.t_vec: vector of enlarged scales of tp in 9 sizes 

.s: matching score between tc and t_vecj  

.m_t: scale at which best match is found 

.m_s: score of best match 

.o_vec: vector of locations of all probable obstacle threats 
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5 Experiments and Results 

 

5.1 Tools 

For our experiments, we use a variety of tools for our experiments. We use the AR Drone by 

Parrot SA for our experiments, OpenCV in C++ as our core processing library, and ROS with 

ardrone_autonomy driver to bridge communication between the computer and the drone. 

  

5.1.1 Robot Operating System (ROS) 

The experiments presented in this thesis uses the Robot Operating System (ROS) software 

framework as a bridge between the robot we use, in our case the A.R. Drone by Parrot S.A. 

and a computer where ROS is loaded with the proposed method. ROS was originally developed 

in 2007 by the Stanford Artificial Intelligence Laboratory as an operating system as 

functionality for a variety of robots and hardware.  

ROS provides several operating system services such as hardware abstraction, process 

management and message passing, packet management as well as implementation of 

commonly used functionality for devices. ROS is released under terms of BSD license5 and is 

freely available as open source software for commercial as well as research use.  

We use ROS in our application in order to bridge communication between the processing 

computer and the drone. The choice of using ROS is influenced by availability of drivers and 

support specific for the AR Drone. While ROS offers several features for message passing, 

monitoring, and visualization tools, we utilize only the node framework and message passing 

system to bridge communication.  

 

5.1.2 OpenCV 

OpenCV is a popular computer vision library of programming functions focused around real-

time computer vision applications. OpenCV was officially launched in 1999 as an Intel 

Research Initiative initially in C programming language and later in C++ and Python 

programming language as a cross platform suite. OpenCV as a BSD license and is freely 

available as open source for both commercial as well as research use.  

OpenCV has several state of the art implementation of popular computer vision algorithms and 

applications. The functionality we use in our application are as: 

 Image processing 

 Video analysis 

 2D features framework 

 Object detection 

                                                           
5 http://www.linfo.org/bsdlicense.html 
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 Machine learning 

 Clustering and Search in multi-dimensional spaces 

OpenCV is also supported by several tutorials and detailed documentation on its website6. A 

large part of the research utilizes this library which makes it a suitable choice due to the nature 

of the research and the fact that it is freely available and widely used with several official7 as 

well as unofficial forums.  

 

5.1.3 Parrot A.R. Drone 

We consider a quad-rotor helicopter that is both small enough to be used in indoor as well as 

outdoor environments for our experiments. The small size a design of quad-rotors allow agile 

and responsive flight and easy maintenance. 

The Parrot A.R. Drone (Figure 5.1) is a popular and affordable quad-rotor that may be bought 

off the shelf in hobby stores and has good applicability in our study. The design of this specific 

drone allows for easy maintenance with replaceable parts. A significant advantage of using off-

the-shelf drones is specific features of on-bard stabilization and easy control design that allows 

us to focus on developing intelligent applications without focusing on developing hardware. 

Below we list some of the useful features that come factory-fitted with the drone: 

 Forward and bottom facing cameras: The drone comes equipped with two cameras; a 

forward facing camera and a bottom facing camera. Both cameras provide live video 

streaming to the control device. 

 

 Auto stabilization: The drone has an excellent on-board stabilization system that uses 

rotors, a gyroscope as well as the bottom camera for improved stabilization 

 

 

 Wireless connectivity: The drone can easily be connected to wireless devices such as 

smart phones and tablets (iOS and Android from their respective app stores), as well as 

computers with the corresponding drivers (example; ardrone_autonomy). 

 

                                                           
6 http://docs.opencv.org/ 
7 http://answers.opencv.org/questions/ 
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Figure 5.1: The A.R. Drone quad-rotor helicopter with protection hull attached 

 

5.1.3.1 Quad-rotor flight control 

The design of such drones is what influences its control and manoeuvrability. The structure of 

the drone consists of four rotor blades connected to a main body arranged in a 2x2 matrix-like 

structure with each opposite pair of the rotors turning in the same direction. As illustrated in 

Figure 5.2, rotors 1, 3 and rotors 2, 4 turn in opposite directions (one pair clockwise and other 

pair counter clockwise) which keeps the drone hovering in one place.  

 

 

 

Figure 5.2: Skeleton of a quad-rotor illustrating direction of rotation of each of the four 

rotors. 

 

For movement, the drone uses a three-dimensional tilt/rotation system around the X, Y and Z 

using differential torque and thrust among the rotors. Rotation along each of the three axes 

allows the drone to move front/back (pitch), left/right (roll) and turn left/right (yaw) as 

illustrated in Figure 5.3. 
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Figure 5.3: illustration of pitch, yaw and roll on quad-rotors 

 

Linear movement on quad-rotors is done by varying rotation speed of two corresponding rotors 

with respect to the other two rotors. The degree of movement of the quad-rotor drone can be 

seen as: 

 Forward/back linear movement (+/-pitch) is achieved by differential speed between the 

front rotors and the rear rotors. 

 Left/right linear movement (+/-roll) is achieved by differential speed between the right 

rotors and left rotors. 

 Left/right rotation movement (+/- yaw) is achieved by different speed between diagonal 

rotors (rotors 1 and 3 have different torque than rotors 2 and 4). 

 Up/down linear movement (+/- height) is achieved by same speed on all rotors varying 

where lower speed lowers the hover height of the drone and higher speed increases the 

hover height of the drone.  

Depending on the degree of rotation about either axes and the speed of each rotor, we can 

influence the speed and direction of movement of the drone.  

 

5.1.3.2 Sensors 

The A.R. Drone features six degrees of freedom inertial measurement units. The degrees of 

freedom are measured using 2 components: 

 An accelerometer for 3 axis used to measure acceleration in the X, Y and Z axes.  

 A gyro meter to measure 2 axis roll and pitch and single axis yaw by angular velocity 

in degrees per second.  

Along with degree of freedom estimation, the A.R. Drone also features an Ultrasound Altimeter 

used for automatic height stabilization, estimation and vertical speed control attached to the 

bottom of the drone. Ultrasonic waves are transmitted downwards from the altimeter and based 

on the “echo” or rebound of the waves, the altimeter is able to estimate the height of the drone 

from a relative flat surface immediately below the drone.  
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The A.R. Drone also features two cameras, one facing forward and one downward both of 

which support live streaming. The forward camera is primarily used for piloting the drone by 

transmitting live video feed to the controlling device. The bottom camera serves three purposes; 

to see what is below the drone, horizontal stabilization as well as estimating the velocity of the 

drone. 

  

5.1.3.3 On-board Intelligence 

The drone comes factory installed with several on-board intelligence functions. A primary 

example of the drone’s on-board intelligence is the flight stability procedure which makes use 

of all sensors and cameras to maintain the drones position, awareness and state estimation. As 

the drone’s on-board software is closed source and not publicly documented by the 

manufacturer, we don’t alter/modify this system and use it as-is.  

 

In our experiments, taking the on-board stability, estimation and controls as-is and without 

alteration, we use only the front camera live feed for processing. Detailed Documentation for 

the A.R. Drone is available on the official Parrot S.A. website8.  

 

5.1.4 A.R. Drone Driver for ROS 

At the time of this research, ROS did not have any built in driver for the A.R. Drone 2.0 so for 

this we use a third-party driver specifically tailored to the drone we will be experimenting on 

in this research. Ardrone_autonomy9 is a ROS driver with copyright and proprietary rights 

based on the official AR-Drone SDK 2.010 with BSD license for other parts of implementation 

and is developed by Simon Fraser University by Mani Monajjemi11 among other contributors.  

The driver provides several control parameters for the drone suited to our application such as: 

 Three-dimensional rotation along the X(left/right tilt), Y(forward/backward tilt) and 

Z(orientation) axes 

 Magnetometer readings along X, Y and Z axes 

 Linear velocity along X, Y and Z axes 

 Linear acceleration along X, Y and Z axes 

 Front and bottom cameras 

 Take-off and landing 

 Flat trim (a service that calibrates the drone based on rotation estimates assuming it is 

on a flat surface) 

                                                           
8 http://ardrone2.parrot.com/ 
9 https://github.com/AutonomyLab/ardrone_autonomy 
10 https://projects.ardrone.org/ 
11 http://sfu.ca/~mmonajje 
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These parameters provide a good control of the drone from the software side of the experiment 

for the pilot controller which will be discussed later. The driver package also comes with 

several tutorials and documentation on several official and unofficial forums.  

 

5.1.5 PC Configuration 

The video feed from the AR. Drone is processed entirely on a laptop connected via Wi-Fi in 

close unobstructed proximity. The specification of the laptop are: 

 Processor: Intel Core i7 quad-core processor @1.73Ghz 

 Memory: 8GB DDR3 RAM 

 Operating System: Ubuntu 12.04 

 Wireless card: Intel WiFi Link 5300 AGN 

 

 

5.2 General Experiments 

In this section, we look at experiments of our general methods with the proposed extensions in 

a number of toy experiments. Experiments carried out are using only the video feed of a drone 

in stationary and moving settings. All flight experiments are carried out in Dubai, United Arab 

Emirates where we see consistent climate conditions throughout the duration of our 

experiments.  

 

5.2.1 Background/Foreground Classification with Contour threshold 

While the Background Subtraction using Mixtures of Gaussians performs well as it, we often 

see several small blobs detected in the foreground mask, for which we extend the method by 

eliminating small contours from the foreground mask and fill gaps in large contours. We 

illustrate the results of this step in Figure 5.4. 
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Figure 5.4: Results of the proposed extension on the standard OpenCV implementation of 

background subtraction using MOG 

 

Discussion: In Figure 5.4, we have a setting where obstacles are stationary and the camera is 

moving. The first and second row show the original image and ground truth respectively. The 

second row shows the result of our algorithm where we extend the background subtraction with 

MOG algorithm with contour thresholds. The last row shows results of the standard OpenCV 

background subtraction MOG implementation where we can see a lot of the texture of the 

background being classified as foreground. To evaluate the error rate between the results of 

using background subtraction MOG with and without the contour threshold step, we compare 

the result of each image of each method to the ground truth in a pixel-wise comparison where 

matching pixels return a true value and un-matching pixels return a false value and estimate 

the error rate in Table 5.1.  

 

Method Error (avg. over 50 

frames) 

Background Subtraction with MOG and 

cluster threshold 

18.59 

Background Subtraction with MOG 23.995 

Table 5.1: Table comparing pixel-wise average error rate of the proposed method and the 

OpenCV implementation of Background Subtraction MOG 
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In Table 5.1, we compare pixel-wise accuracy of both methods and average it over 50 frames. 

We see that the proposed method performs significantly better looking at the error rate as well 

as the results in Figure 5.6. Our method filters out small background texture and removes a lot 

of trail or drag of the objects in the foreground mask caused when the camera moves. With 

this, we see that by using the cluster threshold feature, we have significantly fewer regions to 

detect feature points from and thereby increasing accuracy for following processes.  

 

5.2.2 Feature selection and Tracking 

For testing the tracking and feature selection module, we use the same environment setting as 

earlier where we use the results of the motion segmentation step as our input and track moving 

obstacles in the scene. We establish three settings for our experiments and compare the results 

in terms of frame-rate and number of features accurately/inaccurately tracked. Figures 5.6, 5.7 

and 5.8 show the results in settings; tracking with background subtraction, tracking without 

background subtraction and tracking without feature point clustering respectively.  

 

 

Figure 5.5: Results from the proposed method of tracking motion input from the background 

subtraction module previously and clustering feature points. (Top row) original images, 

(middle row) tracking using Lucas-Kanade pyramid optical flow algorithm and (bottom row) 

foreground feature mask generated after tracking, clustering and segmentation 
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Figure 5.6: Results tracking step without using the proposed background subtraction step. 

(Top row) original images, (middle row) tracking using Lucas-Kanade pyramid optical flow 

algorithm and (bottom row) foreground feature mask generated after tracking, clustering and 

segmentation 

 

Figure 5.7: Results from the proposed method of tracking motion input from the background 

subtraction module previously and without clustering feature points. (Top row) original 

images, (middle row) tracking using Lucas-Kanade pyramid optical flow algorithm and 

(bottom row) foreground feature mask generated without clustering 

 

Discussion: In Figure 5.5, we use the proposed framework of motion segmentation, contour 

threshold, feature selection and clustering, optical flow tracking and segmentation. The setting 

we use in this experiment is where the object is moving around in front of the drone while the 

drone is stationary. We see satisfactory results from the proposed method when compared to 

results in Figure 5.6 where we don’t use background subtraction and only find features, cluster 

and track them. We see a significant difference in terms of incorrect points tracked from the 

first frame at T=1 step itself. We compare the number of feature points tracked and accuracy 

in the following Table 5.2. 
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Method Number of 

Points (avg. 50 

frames) 

Correct (avg. 

50 frames) 

Incorrect (avg. 

50 frames) 

Frame-rate 

(avg. 50 

frames) 

BS-MOG + LK-

clust 

982 952 30 15 

LK-clust 1624 1098 526 4 

Table 5.2: Comparison chart between numbers of points accurately tracked between the 

proposed method and standalone optical flow tracking 

 

From Table 5.2, we draw conclusions that due to the segmentation step not used before finding 

feature points, there are lots of corners in the background that classify as feature points and are 

tracked constantly. The background subtraction step allows the result from feature detection to 

be focused resulting in accuracy as well as lower computation power when we calculate the 

average frame-rate. Even with the same feature selection settings, we see a considerable 

difference in terms of accuracy between the proposed method and the stand-alone optical flow 

method when we compare the foreground feature mask of both in Figure 5.5 and 5.6 

respectively. While the confidence images in Figure 5.5 segment the object from the scene 

fairy well, we see a lot of random points and arbitrary shifting features in the confidence images 

in Figure 5.6.  

We also note that in both cases, as more and more feature points are added, the computation 

time per frame increases and drops until a detected object does not leave the scene and is most 

noticeable when number of feature points tracked goes over 1200 as shown in Figure 5.8. 

 

 

Figure 5.8: Graph of system performance with respect to frame-rate (FPS) against number of 

features detected 

 

We now compare the proposed method with a similar version of the method but without the 

clustering and filtering of feature points through Figure 5.5 and 5.7. Comparing foreground 
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feature masks of both Figures, we see that there is not a large difference as we saw earlier 

between Figure 5.5 and Figure 5.6, but we do see a quite a few incorrect points tracked and 

outliers resulting in a noisy confidence result in when not using the clustering approach. We 

then evaluate the results of Figure 5.5 and 5.7 in Table 5.3. 

 

Method Number of 

Points (avg. 50 

frames) 

Correct (avg. 

50 frames) 

Incorrect (avg. 

50 frames) 

Frame-rate 

(avg. 50 

frames) 

BS-MOG + LK-

clust 

982 952 30 15 

BS-MOG + LK 1264 1155 145 11 

Table 5.3: Comparison chart between numbers of points accurately tracked between the 

proposed method including feature point clustering and without feature point clustering 

 

From the results observed from Table 5.3, see a notable difference in terms of accuracy as well 

as frame-rate performance between the two approaches. Through these experiments, we 

conclude that the proposed extensions to the general methods used in the frame significantly 

improve overall results and efficiency of obstacle detection in a scene. These being toy 

experiments, gives a positive indication towards what to expect in the next section for flight 

experiments. 

5.3 Flight Experiments 

We conduct flight experiments in a variety of situations to test performance of our method to 

highlight success and failure conditions. Flight path illustrations are plotted based on linear 

directions given by the drone controller to the drone in a sequence during the flight run. 

Example: [forward, forward, forward, left, left, left, left, forward, left, left, forward …] where 

the drone moves by linear velocity at ~1m/s in given direction.  

 

5.3.1 Experiment 1: Single stationary narrow obstacle in an outdoor 

scene 

For experiment 1, the drone attempts to avoid a large tree in a park (Figure 5.9).  
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Figure 5.9: (Left) Frame consisting single tree as an obstacle. (Right) Drone flight path 

avoiding the tree in 5 successful runs using the proposed method 

 

Discussion: In this experiment we test the proposed method against a single obstacle in an 

outdoor setting with large number of shadows and high illumination. We do 5 runs in this 

setting to evaluate and the drone avoids the tree successfully in all 5 runs. However, in this 

experiment, a lot of features are detected on the ground due to shadows. Due to this, the drone 

does not avoid the tree perfectly but in a jagged trajectory. It would be ideal if the drone flies 

close enough to the tree to alert the drone of eminent collision on its path and moves sideways 

until the threat is resolved and carries on in a straight path. Due to direction of illumination in 

the scene, we don’t detect many textures on the bark of the tree however we do get a good 

outline of the tree due to contrast difference between the tree and the surroundings. While most 

of the flight paths go around the tree from the left side, one run went around the tree from the 

right side of the drone’s flight path. This, we observe, is due to large number of feature points 

detected on the shadows on the ground.  

 

 

Figure 5.10: Drone flight frames illustrating results of the proposed method without 

Background/Foreground Classification (left) and with Background/Foreground 

Classification (middle) and flight results (right) avoiding 1 obstacle 
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In order to illustrate the impact of the background/foreground classification in our proposed 

method, we look at sample screenshots of drone flight with and without background subtraction 

in Figure 5.10. In Figure 5.10, we see a lot of feature points (green circles) detected in the 

background of the scene and not many on the obstacle of concern. Due to this, there is a very 

strong influence of feature points detected on trees at the back which affect the drone controller 

decisions. Using the proposed method with background/foreground classification, we get a lot 

more contours on the obstacle of concern and much fewer in the background. Due to which, 

the drone controller decisions are more accurate avoiding the obstacle in the scene, results of 

which are illustrated on the right in Figure 5.10. From the flight results, we observe that 3 runs 

fail (blue, red, and turquoise) as best features are detected in the trees in the background and 

not many detected on the obstacle tree. For the 2 successful runs (green and purple), we see the 

few features detected on the tree providing a small bias to the drone controller to move left and 

avoid the obstacle. Overall results for average number of total, correct and incorrect features 

detected over total number of frames are shown in table 5.4. 

 

Method Number of 

Features 

Correct Features Incorrect Features 

Proposed method 467 382 85 

Proposed method 

w/o BG/FG 

classification 

1539 126 1413 

Table 5.4: Table of comparison of number of correct and incorrect features detected between 

proposed method with and without background/foreground classification for a single narrow 

obstacle 

 

 

 

Figure 5.11: Drone Flight avoiding the tree in 5 successful runs without using depth 

segmentation or proximity estimation (algorithm 3) 

 

The experiment in Figure 5.11 shows the flight results when using the proposed method without 

proximity estimation. Here, using only detected and tracked feature points, the drone starts 
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avoiding the tree the moment it sees a high cluster of points around the tree. As the framework 

does not accommodate for nearness of obstacles, leading to very early decisions. As there is 

only one tree in this experiment, all 5 runs with this setting are successful but we expect it to 

fail if there are several obstacles detected.  

 

 

Figure 5.12: Drone Flight avoiding the tree in 4 successful runs using proximity estimation 

 

For the experiment in Figure 5.12, we disable the depth segmentation step in our method and 

use only proximity estimation (scale template matching). While we see 4 successful runs, we 

notice that the drone only detects the tree coming closer when flying forward toward it. When 

moving left or right, as the template matching algorithm does not register difference in scale, 

but only location, the drone keeps advancing forward until the process detects an obstacle 

coming closer and manoeuvring around it. Due to this, we have a fail run as well where the 

proximity estimation step does not get a good score to detect the threat resulting in collision 

with the tree. Table 5.5 shows the flight results of all cases. 

 

Method Number of runs Number of obstacles avoided 

Proposed Method 5 5 

Proposed Method without 

BG/FG classification 

5 2 

Proposed Method using only 

optical flow 

5 5 

Proposed method using only 

template matching 

5 4 

Table 5.5: Flight results of single obstacle avoidance runs 

 

5.3.2 Experiment 2: Two stationary narrow obstacles in an outdoor 

scene 

For experiment 2, the drone has to go around two trees in its path (Figure 5.13).  
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Figure 5.13: (Left) Frame consisting two trees as obstacles (Right) Drone flight path 

avoiding the trees in 5 successful runs using the proposed method 

 

Discussion: In this experiment, the drone has to avoid two trees at a slight offset from one 

another where one is behind the other. We see that out of 5 runs, 2 runs avoid the trees with a 

flight path through the gap between the trees, 2 runs dodge both trees from the left side and 1 

run dodges the first tree from the right side and doesn’t encounter the second tree at all in its 

path. We see 4 out of 5 runs facing a similar issue as the previous experiments with non-perfect 

flight path due to feature clusters detected form shadows on the ground. We also note in two 

runs (red and blue) there was a risk of the drone colliding sideways into tree 1 when avoiding 

tree 2. This is due to the multi-scale template matching finding best score at a lower scale thus 

attempting to avoid tree 2 too early resulting in nearly drifting into tree 1. All 5 runs are 

successful however, we don’t see a common flight path between all runs. This may be due to 

varying features detected in each run.  

 

 

Figure 5.14: Drone flight frames illustrating results of the proposed method without 

Background/Foreground Classification (left) and with Background/Foreground 

Classification (middle) and flight results (right) avoiding 2 obstacles 
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In Figure 5.14, we compare results of our proposed method with and without 

background/foreground classification and flight results of the run in an attempt to avoid 2 

obstacles. Similar to the previous experiment, we see a large number of feature points detected 

on the trees in the background and not many on the obstacles in Figure 5.14 (left) when we 

don’t use background/foreground classification. We see a lot more positive features detected 

and tracked with the proposed method (Figure 5.14 (middle)), as the background/foreground 

classification helps focus only on objects with a large degree of movement filtering out large 

parts of the background. Flight results (Figure 5.14 (right)) do not have any successful results 

as best features were mostly detected everywhere in the scene except for the obstacles. As Tree 

1 has more texture than Tree 2, 2 runs manage to successfully avoid Tree 1 however, the same 

level of accuracy is not achieved with Tree 2 and feature points detected on the ground create 

a bias for the drone controller to fly left when it should be flying right resulting in collision 

with Tree 2. 3 runs out of 5 don’t detect enough features on Tree 1 resulting in collision. While 

number of features detected may have detected features on the obstacles, we accept features 

only above a set score so that we don’t have features with low scores. Table 5.6 illustrates 

average number of features detected, correctly and incorrectly between the two methods.  

 

Method Number of 

Features 

Correct Features Incorrect Features 

Proposed method 840 631 209 

Proposed method 

w/o BG/FG 

classification 

1987 159 1828 

Table 5.6: Table of comparison of number of correct and incorrect features detected between 

proposed method with and without background/foreground classification for a two narrow 

obstacles 

 

 

Figure 5.15: Drone Flight avoiding the trees in 5 successful runs using only optical flow 
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In Figure 5.15, we run an experiment using only optical flow without proximity estimation. All 

5 flights in this setting are successful however as there is no proximity perception, the process 

just detects both trees as an obstacle at the same degree and avoid them both immediately once 

detected. This method however is sensitive to feature patches found on the ground by tree 

shadows therefore we don’t see a perfectly smooth flight once both obstacles are dodged. 

 

 

Figure 5.16: Drone Flight avoiding the trees in 2 successful runs using only proximity 

estimation 

In Figure 5.16, we run an experiment using only proximity estimation. While the first tree is 

avoided well in all 5 runs, 3 runs fail due to collision with tree 2. This is due to partial visibility 

of the entire trunk of tree 2 covering almost one half of the frame resulting in a poor template 

matching score as the previous frame texture did not match well with the current frame texture. 

In two runs, the template matched with scale factor 1.1 of the previous frame texture and in 

one run, the frame was too obscured by the tree trunk due to insufficient score in the previous 

run. This may have been due to the fact that tree 2 is wider than tree 1 and there was not enough 

distance to measure the template accurately after avoiding tree 1. Table 5.7 shows flight results 

for all cases.  

 

Method Number of runs Number of obstacles avoided 

Proposed Method 5 10 

Proposed Method without 

BG/FG classification 

5 2 

Proposed Method using only 

optical flow 

5 10 

Proposed method using only 

template matching 

5 7 

Table 5.7: Flight results of obstacle avoidance runs with 2 obstacles 
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5.3.3 Experiment 3: Two wide obstacles in an outdoor scene 

For experiment 3, the drone has to avoid two broad bodied obstacles like cars and go around 

them (Figure 5.17). 

 

 

Figure 5.17: (Left) Frame consisting of two cars as wide obstacles. (Right) Drone flight path 

avoiding the trees in 4 successful runs and 1 failed run (turquoise) using the proposed 

method 

 

Discussion: In this experiment, we park two cars as wide body obstacles as a series of obstacles 

for the drone to fly around. In this experiment, we see 4 successful runs and one failed run 

(turquoise) out of 5 runs. The failed run collided into car 1 just after taking off. We observe 

this to happen due to the template matching failing as the drone take off point was too close to 

car 1. The matching score was low causing the method assumed that the obstacle is far away. 

For the next 4 runs, we move the drone starting point a few steps back. Even after this step, the 

template matching score was not high enough however, the optical flow depth segmentation 

detected faster shift in feature points on car 1 compared to detected features elsewhere in the 

scene due to the motion parallax property of optical flow. With this experiment, we see that 

when objects are too close to the drone on take-off, the template matching algorithm fails as 

the drone does not observe a high degree of change in scale to satisfy the scale threshold in our 

method. 2 runs (green and purple) successfully avoid car 1 however there is some delay in 

going around the right way when car 2 is detected. This is due to a greater number of feature 

points detected on the rear of the car (right half of frame) compared to the front of the car (left 

half of the car). Once the drone decides to move left, features detected on the left side shift by 

a larger degree than the right side of the frame resulting in the controller giving the drone 

direction to move right successfully avoiding car 2.  
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Figure 5.18: Drone flight frames illustrating results of the proposed method without 

Background/Foreground Classification (left) and with Background/Foreground 

Classification (middle) and flight results (right) avoiding 2 wide body obstacles 

 

In Figure 5.18, we see results of the proposed method with and without the 

foreground/background classification along with flight results without using the background 

subtraction method. In the frames illustrated, we see that there are a lot of features detected 

again on background trees and fence in the background of the scene. While there are a few 

features detected on the obstacles, most features are detected outside the 2 cars. Due to this, 

again we see a strong bias from background objects leading to non-perfect obstacle avoidance 

runs. Using the proposed method, a large number of features are detected on the obstacles while 

the drone moves closer to the obstacles. When we run flight experiments using the proposed 

method but without background/foreground classification, we have two successful runs but 3 

unsuccessful runs. When faced with car 1, two runs (red and greed) detect a lot of features on 

the tree at the right side of the scene over features detected on the car 1. As not enough features 

are detected on car 1, the drone controller did not assume there to be an obstacle ahead resulting 

in collision. One run (purple) avoids car 1 and while crossing pass it, large number of incorrect 

features in the background and correct features detected on car 2 cause the drone controller to 

give instructions to move right colliding into car 1 along the drone’s side. Two successful runs 

(blue and turquoise) avoid car 1 and get enough features on car 2 to successfully avoid it as 

well despite more features detected on other objects in the scene due to the depth and proximity 

estimations employed in the proposed method. Table 5.8 illustrates average number of features 

detected, correct and incorrect between the two methods. 

 

Method Number of 

Features 

Correct Features Incorrect Features 

Proposed method 1211 874 337 

Proposed method 

w/o BG/FG 

classification 

1384 504 880 

Table 5.8: Table of comparison of number of correct and incorrect features detected between 

proposed method with and without background/foreground classification for a single narrow 

obstacle 
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Figure 5.19: Drone flight results with 3 successful runs and 2 failed runs (green and 

turquoise) using only optical flow 

 

In the experiment in Figure 5.19, we test using only optical flow. The runs are not very 

successful even though the method does detect feature points on car 1. For the 3 successful 

runs, the first car is avoided but going in the wrong direction. Even though car 1 was close to 

the drone take off point, and feature points of car 2 were detected as well, the scene contained 

greater number of feature points on the right side of the scene leading to the drone controller 

give the left command as all points appeared to be at the same level. Once car 1 was crossed, 

the flight path lead to the right direction however avoiding car 2 completely as there was no 

obstruction. We also observe 2 paths (green and turquoise) not moving in any set direction at 

once point as the drone kept shifting left and right when in the centre of car 1. This was because 

there were occasions where feature points on car 1 kept going in and out of the scene as it was 

too close, the drone was stuck shifting left and right.  

 

 

Figure 5.20: Drone flight results with 5 failure runs using only proximity estimation 
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Figure 5.20 illustrates experimental runs using proximity estimation method. We don’t observe 

any successful results as the template matching result always gave poor score values or no 

matches as car 1 was positioned very close to the drone. Due to which, the flight controller 

always gave forward commands as no threats were detected. Results of the experiments can be 

seen in Table 5.9.  

 

Method Number of runs Number of obstacles avoided 

Proposed Method 5 8 

Proposed Method without 

BG/FG classification 

5 2 

Proposed Method using only 

optical flow 

5 5 

Proposed method using only 

template matching 

5 0 

Table 5.9: Flight results of obstacle avoidance runs with broad bodied obstacles 

 

5.4 General Discussion 

For each experiment carried out in this thesis, we see a good performance of the proposed 

method in a variety of situations. During the experiments, we see some significant influence of 

lighting and texture conditions where performance was noted to be better when there was good 

contrast between the obstacles and the surroundings. For outdoor experiments, we saw a lot of 

false positive features detected around trees in the background among others which caused a 

toll on the computation time required for optical flow between each frame pair. Due to which, 

we adjusted the contour threshold algorithm to have a higher contour threshold so as to 

eliminate small blobs caused by trees and leaves in the foreground mask from the 

background/foreground classification step.  

In experiments where we test our proposed method with and without background subtraction, 

we see a significant difference in performance. The background subtraction method of 

background/foreground classification allows the feature detector only to focus on parts of the 

scene that register a significant amount of change while the drone moves. As more features are 

detected on the background than the foreground in the scene (when not using foreground 

classification), there is a strong bias towards incorrect features affecting decisions of the drone 

controller. We also note that without the background/foreground classification step, the feature 

detector returns a very large number of features which affects the computation time of the 

framework resulting in delayed decisions. While the number of features may be constrained to 

a manageable number, matching scores around trees are consistently higher and features on 

objects are not detected at all at times.  

Feature detection is also significantly affected when there are not enough corner points found 

in large smooth parts of objects; ex. Car panels. Due to which the method has to rely entirely 

on corners and edges of the object. We also observe that accuracy of the template matching 

algorithm depends on regularity of illumination between frames. When there is a sharp change 
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in illumination, the template matching algorithm returns low scores, and optical flow is also 

affected as feature are not matched.  

A failed run in experiment 3 shows us that, while the method performs adequately when the 

obstacle fits in the frame in its entirety, partially visible obstacles like car 1 with low texture 

for a large part of the body cause an impact on the result. We also learn from comparison with 

other methods that while optical flow methods work, for obstacles and features moving from 

side to side, they don’t function well when faced with walls or very narrow frontal obstacles. 

In the case with template matching, we see that it works fairly well when there is adequate 

distance between obstacles, but don’t perform too well in tight navigation scenes. The proposed 

method having a combination of both methods perform better than them individually but is 

subject to scene conditions of illumination and good features to track.  
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6 Conclusion 
In this thesis, we propose a multi-tiered framework where we employ a number of general 

methods in a process flow for the task of obstacle avoidance for aerial drones. Interest in this 

area of study have contributed to several approaches to tackle this problem employing a variety 

of existing methods and tools to solve this challenge. We take a closer look at methods such as 

background/foreground subtraction, feature detection, optical flow, and template matching to 

develop a framework that successfully detects, isolates, and avoids obstacles based on 

movement, location, and proximity. We look at various enhancements tailored to our case to 

the general methods to further improve results.  

We then conduct a series of toy and flight experiments in order to infer strengths and 

weaknesses of each method and compare it to a collective framework proposed in this study. 

We see issues with background subtraction and learn that this method is not enough to keep 

track of obstacles when not moving. For this we track moving objects in the foreground result 

to follow potential obstacles irrespective of movement by camera or object. We then apply 

some heuristics and clustering methods to further refine results of tracking and isolate potential 

obstacles from the scene. We then use depth and proximity tools to determine immediate threat 

of potential obstacles in the scene and see it perform adequately in a variety of experiments. 

We compare results of various combinations of the methods used in the proposed method to 

gain insight on the applicability of the method. We see that the proposed method performs 

relatively well consistently compared to each method used individually amalgamating to a 

more robust framework of methods.  

The framework is designed in a way that adding additional modules to it would be simple as 

there is one video feed that is used by all modules and each module can run independent of one 

another as simple as switching a module on or off. This aspect gives the framework a large 

degree of flexibility as it is not constrained to any one type of robot either. To sum the thesis 

up, we do see a positive application of the proposed method for applications such as mobile 

surveillance, auto-pilot systems, search and rescue missions, traffic management, military 

applications as well as domestic applications.  
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7 Future Work 

With some additional or improved methods to segment obstacles based on edges and colour 

information, the framework is guaranteed to perform even better. Below we outline some 

possible future work on this research for improvement: 

 Segmentation based on colour and adding that information to the confidence image 

 A drone with faster data transmission speed would help the video feed input stream 

and quick navigation decisions may be made 

 Processing frames on a newer and faster CPU to improve post-processing frame rate 

 Adding a learning method to detect known obstacles faster by using trained classifiers 

 Using a combination of colour as well as edge/corner features for tracking 

 Using another tracking method than optical flow once an object is successfully 

segmented 

 Adding a TLD-like method for tracking, learning and detection12 of obstacles 

 Additional hardware such as range-finders would definitely improve confidence 

results 

 Pre-existing knowledge of environment would help the accuracy of detection 

significantly 

A variety of extensions to the proposed method are possible and not limited by applicability 

in any scenario. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
12 http://personal.ee.surrey.ac.uk/Personal/Z.Kalal/tld.html 
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