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Abstract

This report presents three complementary research contributions to the field of AI for Earth
Observation (AI4EO). First, a semantic segmentation framework was developed for mapping vege-
tation classes in dynamic wetland environments using optical satellite imagery. The methodology
integrated self-supervised pretraining with supervised learning, achieving up to 88.23% accuracy on
high-resolution Pleiades NEO imagery and reducing reliance on annotated data. Second, a bench-
mark evaluation of the TerraMind geospatial foundation model was conducted for flood and vessel
detection from Sentinel-1 Synthetic Aperture Radar (SAR) data. Vessel detection was reframed from
bounding boxes to segmentation maps, and the effect of a custom binary Seesaw Loss was assessed
using scale-aware metrics. Although it showed improved Relaxed F1 scores, it did not consistently
outperform Dice Loss across standard evaluation metrics. Third, a regression-based approach to
small object detection in SAR imagery was proposed, showing promising results by incorporating
object scale and aiming to condition the model to better account for small vessels during training.
Together, these contributions address common EO challenges in label scarcity, domain adaptation
and detection of small or sparse targets, while highlighting the performance of foundation models
and alternative loss formulations in real-world EO applications.

1 Introduction

The work conducted during my three-month visiting researcher position at the European Space Agency
ϕ-lab (ESA ESRIN) built upon the initially proposed plan submitted for this Project AI, before my
arrival at ϕ-lab. The initial objective was the development of an advanced AI-driven framework for
semantic segmentation of wetland ecosystems, specifically focusing on the Biesbosch floodplain in the
Netherlands, leveraging both supervised and self-supervised learning paradigms.

While the original project centered on semantic segmentation using optical data, the dynamic re-
search environment at ϕ-lab provided an opportunity to broaden the scope of my research. I expanded
from developing a task-specific model toward exploring foundation models and incorporated not only
optical but also SAR imagery. Specifically, I extended my research scope by benchmarking a geospatial
foundation model for SAR based flood and vessel detection and explored regression based segmentation
techniques to enhance small object detection in SAR imagery. Although the research topics evolved, the
original goals were fully achieved and even expanded, leading to several deliverables, including datasets
and valuable scientific insights for both ϕ-lab and myself, and perhaps most importantly, an amazing
learning experience.

This report is structured around three main research directions conducted in collaboration with
ESA ϕ-lab. Each is presented with its objective, methodology, results, and deliverables. The first covers
semantic segmentation of wetland vegetation. The second, on benchmarking foundation models for SAR-
based flood and vessel detection, includes more detailed data processing and methodological steps due
to its broader scope. The third explores a regression-based approach to improve small vessel detection
in SAR imagery.
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2 Supervised and self-supervised land-cover segmentation &
classification of the Biesbosch wetlands

2.1 Objective

The objective of this research was to develop an AI-based semantic segmentation framework to classify
wetland vegetation types in the Biesbosch floodplain using optical satellite imagery. These classifications
are important for flood mitigation and ecological monitoring since vegetation roughness directly affects
water flow and retention capacity. A key challenge that was tackled and common in the domain of
remote sensing, is the scarcity of annotated data, especially for very-high-resolution imagery. To address
this, the research aimed to combine supervised semantic segmentation with self-supervised learning to
improve model performance under limited labeling conditions.

2.2 Methodology

The model architecture used for this research was a U-Net, a convolutional neural network designed
for pixel-wise classification. For the baseline model, the network was trained from scratch on medium-
resolution Sentinel-2 imagery (10m per pixel) using Dynamic World land-cover labels [3]. To address
the issue of label scarcity, a self-supervised learning (SSL) pipeline was introduced. An autoencoder
was trained to reconstruct the original satellite images, such that its trained encoder weights could then
be transferred to initialize the U-Net’s encoder. The same method was applied for very-high-resolution
(VHR) Pleiades NEO imagery (0.3m per pixel) with manually annotated labels. The output of this SSL-
based pretraining approach is visually demonstrated in Figure 1. Furthermore, a controlled experiment
was set up to assess how both resolution and pretraining impacted performance.

(a) Reconstruction result for medium-resolution Sentinel-2 data.

(b) Reconstruction result for high-resolution Pléiades Neo.

Figure 1: Reconstruction results from the autoencoder for medium-resolution Sentinel-2 data (a) and high-

resolution data (b). The first column shows the histogram-equalized original RGB image. The second column

presents the reconstructed image from the autoencoder, while the last column displays the error map, where blue

indicates minimal pixel differences and yellow highlights larger discrepancies.

2.3 Results

The U-Net trained from scratch on Sentinel-2 data, without pretraining, achieved an overall accuracy of
85.26% and a Dice score of 0.648%. When applied to VHR imagery, performance without pretraining
yielded only 60.35% accuracy. However, after SSL-based pretraining, accuracy increased significantly
to 88.23%, confirming the usefulness of representation learning in low-label, high-resolution scenarios.
By comparing the results in Table 1 for the medium-resolution data and Table 2 for the high-resolution
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data, it can be seen that the pretraining process was especially helpful for fine-grained high-resolution
data

Training method Accuracy ↑ Dice ↑ IoU ↑ Precision ↑ Recall ↑ Dice Loss ↓

Scratch 0.8526 0.6480 0.5346 0.6616 0.6694 0.4865

Pretrained 0.8542 0.6518 0.5378 0.6923 0.6483 0.4905

Table 1: Land-use classification performance for the U-Net model on the Sentinel-2 dataset with and without

pretraining. The U-Net was trained for 300 epochs on the dataset. The pretrained model started with weights

extracted from the autoencoder.

Training method Accuracy ↑ Dice ↑ IoU ↑ Precision ↑ Recall ↑ Dice Loss ↓

Scratch 0.6035 0.2827 0.2243 0.3889 0.3158 0.5114

Pretrained 0.8823 0.4457 0.3919 0.5079 0.4551 0.5457

Table 2: Performance comparison of non-pretrained and pretrained U-Net on high-resolution imagery and labels.

Figure 2 illustrates the qualitative improvements in segmentation accuracy when using a pretrained
model compared to a model trained from scratch on medium-resolution data and labels. More clearly,
Figure 3 shows the enhanced precision and detail provided by high-resolution imagery compared to
medium-resolution imagery, highlighting its effectiveness for detailed ecological applications such as de-
tecting small objects like the ship, and transitions between mixed classes.

(a) Land-cover classification for Sentinel-2 data trained from scratch.

(b) Land-cover classification for Sentinel-2 data with a pretrained model.

Figure 2: Land-use classification with U-Net for medium-resolution Sentinel-2 data with a model trained from

scratch (a) and pretrained (b). The first column shows the histogram-equalized original RGB image. The second

column presents the ground truth classification by Dynamic World. The third column shows the prediction of the

U-Net. The last column displays the error map, where red represents misclassified pixels, and the color intensity

reflects the model’s certainty.

2.4 Deliverables

This research produced several outputs. First of all, a publicly available dataset of Sentinel-2 imagery
with Dynamic World labels was released on Zenodo1. The annotated Pleiades NEO dataset is available

1https://doi.org/10.5281/zenodo.15125549
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(a) Medium-resolution segmentation results

(b) High-resolution segmentation results

Figure 3: Comparison of medium-resolution and high-resolution segmentation results. While performance metrics

appear similar, high-resolution imagery (b) provides finer details and more precise segmentation. The legend

shows the average predicted probability for each class across the image, highlighting model confidence in class

assignments.

upon request. All source code for the segmentation pipeline, including training and evaluation scripts, is
hosted at https://github.com/Evameijling/WetlandSemanticSegmentation and includes full docu-
mentation and usage instructions. A shortened version2 of the thesis summarizing the methodology and
findings was submitted for the NCCV 2025 conference in Utrecht, The Netherlands.

3 Benchmarking Foundation Models for SAR-based Flood and
Vessel Detection

3.1 Objective

This research aimed to evaluate the TerraMind geospatial foundation model [2], developed collaboratively
by IBM and ESA, for its suitability in detecting floods and small vessels in synthetic aperture radar (SAR)
data. Foundation models are pretrained on large multimodal datasets and are expected to generalize
well across downstream tasks. In this context, the goal was to assess how well TerraMind could adapt to
SAR imagery and whether it offered improvements over conventional task-specific models when applied
to Earth Observation tasks. Figure 4 illustrates the architecture of the TerraMind foundation model,
highlighting its multimodal design and training approach.

This benchmarking effort was part of a broader research direction focused on evaluating foundation
model performance across different processing levels of Sentinel-1 SAR data. Namely, RAW (Level-0),
SLC, and GRD products, with the long-term goal to achieve robust detection performance directly on
lower-level SAR inputs. This could potentially reduce reliance on computationally expensive preprocess-
ing and would allow faster, lower-latency applications (e.g., onboard AI systems). Figure 5 illustrates
this multi-level evaluation strategy, showing how the TerraMind model is fine-tuned separately on RAW,
SLC, and GRD SAR inputs for downstream tasks such as flood and vessel detection.

2https://staff.fnwi.uva.nl/a.visser/publications/SegmentationClassificationBiesboschWetlands.pdf
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Figure 4: Architecture of the TerraMind foundation model, reproduced from Jakubik et al. [2]. The
model integrates nine EO modalities, including Sentinel-1 SAR data (GRD, RTC), Sentinel-2 optical
data (L1C, L2A, RGB), DEM, NDVI, LULC, image captions, and coordinates. Inputs are tokenized
at both pixel-level and token-level before being processed through a masked correlation learning objective.
Associated geolocation coordinates are tokenized and included as sequence input. TerraMind supports
a range of downstream EO tasks, including flood and vessel detection, through fine-tuning, multimodal
generation, and inference using Thinking-in-Modalities (TiM).

Figure 5: Schematic overview of the broader research direction underlying this work. The TerraMind
foundation model is fine-tuned separately on different SAR processing levels (RAW, SLC, GRD), with
each version adapted for downstream tasks such as flood detection, vessel detection, and radio frequency
interference (RFI) detection.

3.2 Data Quality Analysis of the Deimos GRD Dataset

One of the preparatory steps in this research was the inspection of annotation quality in the GRD SAR
dataset provided by Deimos. To assist this process, I visualized randomly sampled SAR images side-by-
side with their corresponding segmentation masks (as will be discussed in the methodology section; it
was an iterative process), derived from XML annotation files. This visual approach helped to identify
inconsistencies between the imagery and the provided labels.

Through this visual analysis and manual review of the files and dataset structure, several issues
were discovered and compiled into a dedicated internal report, shared with ESA ϕ-lab. Notable findings
included:

• Duplicate annotation files: One of the GRD scenes had no unique annotation because its file
was an exact duplicate of another, resulting in a missing label entry.
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Figure 6: Example of visual inspection: SAR image (left) and segmentation mask derived from XML
annotations (right). Discrepancies between white radar signatures and labeled vessel locations were used
to assess label quality.

• Invalid bounding boxes: Several ships had undefined or non-numeric bounding box coordinates,
resulting in unusable labels.

• Mislabeled features: Some annotated regions aligned poorly with the SAR image content, either
omitting prominent bright features or labeling land structures (e.g., coastal islands) as vessels.

• Coordinate logic errors: In some SLC annotations, the bounding box Top coordinate was greater
than the Bottom coordinate, contradicting expected image coordinate conventions.

3.3 Methodology

Due to the scope and complexity of this study, the methodology is subdivided into four parts: task
reformulation, training setup, evaluation metrics, and benchmarking procedures.

3.3.1 Reframing Detection as Segmentation

Since TerraMind’s architecture is optimized for dense token-level predictions over spatial patches, the ves-
sel detection problem was reformulated from a traditional object detection setup into a semantic segmen-
tation task. Georeferenced binary segmentation masks were generated by applying multiple thresholding
methods to SAR image patches centered on annotated vessels, followed by morphological operations
such as dilation and erosion to refine the shape. Overlapping results were combined to produce the final
binary segmentation maps. This allowed the model to predict dense vessel presence maps, aligning more
naturally with its pretraining objective. Figure 7 visualizes this pipeline of transforming bounding box
annotations into georeferenced binary segmentation maps.

Figure 7: Transformation from bounding box annotations (XML) to binary segmentation maps for SAR
data, enabling semantic segmentation evaluation. The example is based on the VH polarization band,
which was chosen due to its improved contrast between vessel signatures and background clutter in the
Deimos dataset.
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While Figure 7 shows a representative example of the transformation from bounding boxes to segmen-
tation masks, it should be noted that no quantitative metric could be computed to assess the accuracy
of this transformation, as no ground truth segmentation masks were available. The original bounding
boxes were the only provided labels, so validation was instead carried out through visual inspection by
comparing the resulting binary masks with the underlying SAR images.

These inspections indicated that, in most cases, the generated masks correctly overlapped with vessel
signatures in the SAR VH-band imagery. However, challenges did arise in scenes with strong wave
interference or surface clutter, where radar backscatter around the vessel could lead to over-segmentation.
This effect explains why some masks deviate from the expected rectangular boat shapes, and instead
contain irregular or elongated regions. Such ambiguities, although inherent to radar imagery, were
reduced by focusing on the VH polarization band, which empirically provided better vessel-background
contrast than the VV band in the dataset used. The VH channel was therefore selected as the input for
segmentation mask generation throughout this study.

3.3.2 Training Setup and Loss Function Adaptation

TerraMind was fine-tuned on the generated segmentation maps using a dedicated, non-public SAR (GRD)
dataset provided by Deimos3. For comparison, a baseline U-Net model was trained from scratch under
similar experimental conditions.

A challenge identified was the class imbalance and small size of the objects (i.e., vessels) relative
to the background. To address this, a custom binary version of the Seesaw Loss [4] was implemented,
where a mitigation and compensation factor is used to adjust the contribution of easy and hard examples
dynamically. Originally designed for multi-class instance segmentation, Seesaw Loss was adapted to a
binary semantic segmentation context, incorporating class imbalance-awareness on a pixel level instead of
an instance leve, by penalizing dominant background predictions and emphasizing minority class recall.

In this binary version, logits for vessel and background classes were normalized, and the loss empha-
sized penalizing dominant background predictions while promoting vessel detections.

The detailed mathematical reformulation of the Binary Seesaw Loss is as follows:

Logits: zv,i, zb,i (for vessel and background at pixel i).

p̂v,i =
exp(zv,i)

exp(zv,i) + exp(zb,i)
, p̂b,i =

exp(zb,i)

exp(zv,i) + exp(zb,i)
.

Ground truth labels: yi ∈ {0, 1}, where yi = 1 for vessel and yi = 0 for background.

Binary Seesaw Loss: Lbinary seesaw = − 1

|D|
∑
i∈D

[yi log(p̂v,i)Sv,i + (1− yi) log(p̂b,i)Sb,i]

where Sv,i and Sb,i are seesaw multipliers based on class frequency and prediction ratios; they are the
product of mitigation and compensation factors weighting the pixel’s contribution to the loss. Further
details can be found in the original Seesaw Loss paper [4].

3.3.3 Evaluation Metrics

To better evaluate segmentation performance, particularly for sparse and small targets, two task-specific
evaluation metrics were introduced: the relaxed F1 score (allowing small spatial tolerance) and the Scale-
adaptive Intersection over Union (SIoU), which adjusts overlap sensitivity based on object size and is
better suited for evaluating thin or sparse structures [4, 1].

SIoU was originally proposed for small object detection in bounding box regression tasks [4]. It
introduces a dynamic scaling factor that reduces the sensitivity of the IoU metric to small localization
errors for small-sized objects, thereby mitigating high variance in evaluation.

The original SIoU for two bounding boxes b1 and b2 is defined as:

SIoU(b1, b2) = (IoU(b1, b2))
p
, p = 1− γ exp

(
−
√
w1h1 + w2h2√

2κ

)
(1)

3https://deimos-space.com
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where w1, h1 and w2, h2 are the width and height of the two bounding boxes, γ is a scaling parameter
(typically 0.5), and κ controls the rate of scaling with respect to object size.

Since in semantic segmentation no bounding boxes are used, I reformulated SIoU for binary segmen-
tation tasks. In this adaptation, the object size is approximated based on confusion matrix components:

• A = TP+ FN: number of positive pixels in the ground truth,

• B = TP+ FP: number of positive pixels in the prediction,

• s = A+B: total mass of positives,

• snorm = s
Total Pixels : normalized size measure.

The scaling factor p is then computed as:

p = 1− γ exp

(
−
√

snorm
2κ

)
(2)

and the final Scale-adaptive IoU is calculated as:

SIoU(A,B) =

(
|A ∩B|
|A ∪B|

)p

(3)

Furthermore, a relaxed F1 score was applied to account for minor localization inaccuracies in the
segmentation results. This metric was implemented by applying a morphological dilation to the ground
truth mask prior to evaluation, allowing predictions within a small spatial tolerance to be considered
correct. Specifically, the ground truth mask was dilated using a max-pooling operation with a kernel
size of 2× tolerance + 1 pixels. In these experiments, a tolerance of 2 pixels was used.

3.3.4 Benchmarking Setup

In addition to the Deimos SAR dataset, the performance of the TerraMind foundation model was also
evaluated on the High-Resolution SAR Imagery Dataset (HRSID) [5], which provides high-quality SAR
images with vessel annotations. This was motivated by the deficiencies identified in the Deimos data, as
discussed in Section 3.2.

For both datasets, the foundation model’s segmentation performance was benchmarked against a
task-specific baseline architecture: a ResNeXt50 32x4d-based U-Net pretrained on ImageNet. Multiple
loss functions were evaluated, including the adapted Seesaw Loss. This experimental design allowed for
a direct comparison between a general-purpose foundation model and a specialized supervised model
under equivalent training conditions.

3.4 Results

Fine-tuning TerraMind on SAR datasets resulted in reasonable segmentation performance, particularly
when evaluated with relaxed metrics suitable for small target detection. The foundation model was able
to converge in relatively few training epochs and demonstrated satisfactory recall for vessels, particu-
larly under relaxed evaluation settings. While the model trained with Seesaw Loss showed competitive
performance in some cases, as can be seen in Table 3, it did not consistently outperform models trained
with Dice Loss across standard evaluation metrics.

Loss Function F1 ↑ Relaxed F1 ↑ IoU ↑ SIoU ↑ mAcc ↑ mF1 ↑ mIoU ↑

Weighted Cross-Entropy 12.16 34.61 6.47 22.70 97.65 55.11 51.34
Dice Loss 47.44 45.67 31.10 54.75 75.75 73.65 65.40
Focal Loss 41.76 25.26 26.39 50.48 65.79 70.82 63.07
Dice + Focal Loss 35.93 24.22 21.90 45.87 63.67 67.90 60.82
Seesaw Loss 40.45 58.14 25.36 49.00 85.64 70.09 62.40

Table 3: Comparison of model performance metrics (%) for vessel segmentation using different loss functions.

Nevertheless, when compared against a task-specific ResNeXt50 32x4d-based U-Net architecture pre-
trained on ImageNet, TerraMind did not consistently achieve superior segmentation results. Table 4 pro-
vides a detailed overview of the comparative performance between TerraMind and the U-Net baselines

8



across the two SAR datasets. On both the Deimos and HRSID datasets, the U-Net baseline exhib-
ited higher F1 scores and intersection-over-union (IoU) values under standard evaluation metrics. This
indicates that, despite TerraMind’s multimodal pretraining, domain adaptation to SAR-specific dense
segmentation tasks remains challenging.

Model F1 ↑ Relaxed F1 ↑ IoU ↑ SIoU ↑ mAcc ↑ mF1 ↑ mIoU ↑

GRD FM 40.45 58.14 25.36 49.00 85.64 70.09 62.40
GRD U-Net 77.64 – 63.45 – 99.92 83.38 71.49
GRD U-Net Pretrained 83.33 – 71.43 – 99.96 90.59 82.79

HRSID FM 80.55 81.66 67.43 81.32 97.33 90.20 83.57
HRSID U-Net 82.20 – 69.77 – 99.94 95.34 91.10
HRSID U-Net Pretrained 96.53 – 93.28 – 99.94 94.68 89.89

Table 4: Performance comparison of TerraMind foundation model (FM) and U-Net baselines on GRD and

HRSID datasets using Seesaw Loss. Missing values (–) indicate metrics not computed for that configuration.

These results show that, while foundation models offer flexibility and transferability, specialized
architectures trained directly for the target domain can still outperform foundation models.

It is important to note that the experiments presented here were conducted using an early, non-final
version of the TerraMind model and its accompanying codebase. Since that time, further improvements
and refinements have been made to the model architecture, training procedures, and release versions.
Therefore, the reported results may not fully represent the current capabilities of the finalized Terra-
Mind foundation model [2]. Future evaluations using the latest version are expected to yield improved
performance.

3.5 Deliverables

The adapted binary Seesaw Loss implementation was made publicly available on GitHub at https:

//github.com/ESA-PhiLab/SegSeeSawLoss, including documentation and a training example. In addi-
tion, a custom Python script was developed to convert XML annotations from both GRD and SLC SAR
datasets into COCO format. Although not used in the segmentation pipeline, this conversion enables
compatibility with object detection frameworks and supports future experiments on detection-based
models.

A dedicated internal report analyzing the quality of the GRD annotation data was also produced.
This document highlighted annotation inconsistencies (e.g., duplicate files, NaN bounding boxes, and
mislabeled objects) and helped guide the filtering and preparation of the dataset before model training.

Internal benchmarking reports, data transformation pipelines, and configuration files for fine-tuning
TerraMind are open to ESA ϕ-lab. A more detailed comparison of model outputs using segmentation
visualizations and metric outputs might be included in possible future research.

4 Enhancing Small Vessel Detection via Regression-based Se-
mantic Segmentation

4.1 Objective

The objective of this research stream was to explore an alternative modeling strategy for small object
detection in synthetic aperture radar (SAR) imagery. While the previous research approach framed
vessel detection as a classification problem using binary segmentation maps, this investigation sought
to capture scale and object presence through continuous regression targets. The goal was to improve
sensitivity to smaller vessels by using scale-aware spatial outputs rather than discrete class boundaries.

4.2 Methodology

Amodified U-Net architecture was employed, in which the output layer was adapted to predict continuous
regression values instead of binary class probabilities. The regression targets were derived from binary
segmentation masks and encoded both object scale and spatial decay using a Gaussian-like distribution
centered on each vessel, as illustrated in Figure 8, on the HRSID dataset. The objective was to produce
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soft activation maps where high-confidence regions correspond to probable vessel centers, with decreasing
confidence toward the periphery.

Figure 8: Sample SAR image used for evaluating the regression-based vessel detection approach.

This heatmap representation was controlled by two hyperparameters: the sigma factor (σfactor),
which determines the spread of the Gaussian by scaling with the square root of the vessel’s area, and
the weight exponent (wexp), which adjusts the central amplitude inversely with vessel size. As a result,
small vessels are represented with sharper peaks and narrower spatial spread, while larger vessels are
assigned broader, flatter activation profiles. This continuous representation was intended to improve
the network’s sensitivity to small vessels, which may otherwise be lost in traditional thresholded binary
segmentation.

The following pseudocode outlines the process of generating these scale-aware heatmaps from binary
vessel masks:

Algorithm 1 Conversion of Binary Vessel Mask to Scale-Aware Heatmap

1: procedure SegToHeatmap(bin mask, σfactor, wexp,normalize)
2: Label connected components in bin mask as labels, count n
3: Initialize heatmap← zero matrix of same shape as bin mask
4: for comp id← 1 to n do
5: comp← pixels belonging to component comp id
6: A← area of comp
7: if A = 0 then continue
8: end if
9: weight← A−wexp

10: σ ← σfactor ·
√
A

11: d← normalized distance transform of comp
12: blurred← Gaussian blur of (comp · d) with σ
13: heatmap← heatmap+ weight · blurred
14: end for
15: if normalize then
16: Rescale heatmap to range [0, 1]
17: end if
18: return heatmap
19: end procedure

A modified U-Net architecture was implemented to regress continuous heatmaps from SAR image
input, using the ground truth heatmaps as described earlier. The predicted output of the U-Net con-
sists of smooth activation maps that similarly highlight vessel center as the ground truth, as can be
seen in Figure 9. To convert these predictions back into binary segmentation masks, a thresholding-
and-watershed-based approach was applied. First, low-confidence areas were filtered out using a fixed
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probability threshold. Then, local maxima were identified to initialize foreground seeds, and the water-
shed algorithm was used to delineate object boundaries. This postprocessing strategy allowed for more
spatially consistent segmentations and avoided over-fragmentation of small vessel detections.

Figure 9: End-to-end output of the regression-based segmentation pipeline. From left to right: input
SAR image (from the HRSID dataset), original binary segmentation mask, ground truth regression
heatmap, predicted regression heatmap, and final binary mask obtained via thresholding and watershed
postprocessing. The predicted heatmaps produce smooth and scale-aware activations that enhance small
vessel detection.

4.3 Preliminary Results

Initial experiments demonstrated promising results. The regression-based U-Net exhibited notable sen-
sitivity to very small vessels, with the predicted heatmaps capturing smooth, localized activations that
aligned well with vessel centers. As illustrated in Figures 8 and 9, the continuous output produced by
the model effectively highlighted targets that might be missed by conventional binary segmentation.

However, due to the characteristics of the HRSID dataset (specifically, the lack of scenes containing
both small and large vessels within the same tile) it was not possible to rigorously benchmark the re-
gression approach against traditional binary segmentation methods in terms of scale-aware performance.
This limited the ability to quantify improvements in detecting smaller or underrepresented vessel types.
Future work will address this limitation by evaluating the regression-based approach on more suitable
datasets, such as xView3-SAR and SSDD, which offer greater diversity in ship size and context.

4.4 Deliverables

The codebase for the regression-based segmentation pipeline is currently under development and will be
published in a dedicated GitHub repository: https://github.com/Evameijling/. The repository will
include code for generating regression targets, training scripts, and evaluation metrics customized for
small object detection in SAR.

5 Conclusion and Reflection

During the three-month research period, I achieved all of the originally planned deliverables and was
able to extend the work in two new directions. The main objective, which was to develop a semantic
segmentation model for wetland vegetation, was completed successfully and documented, and the results
were submitted to the NCCV 2025 conference. In addition, the dynamic and collaborative environment at
ESA ϕ-lab created the opportunity to explore two additional research topics: benchmarking a geospatial
foundation model for SAR-based detection and developing a regression-based approach for identifying
small vessels in SAR imagery.

While the operational deployment of the wetland segmentation model will be carried out by FREE
Nature and Accenture, the full AI pipeline is publicly available via GitHub at https://github.com/

Evameijling/WetlandSemanticSegmentation, supporting open research and reproducibility.
The three-month period at ESA ϕ-lab in ESRIN (Frascati) was an incredibly valuable learning expe-

rience. It gave me the chance to strengthen my thesis work with input from experts and also to dive into
new areas I hadn’t worked with before, especially foundation models and SAR data. Weekly research
meetings in the Explore Office, combined with informal discussions with other researchers, helped me get
feedback, share ideas, and learn from ongoing work around me. This experience really helped me grow
my knowledge in AI for Earth Observation and gave me a solid foundation to build on in the future.
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