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Abstract

Traditional robotic systems require specific training data for each task, environment, and robot form
(known as embodiment). While recent advancements in machine learning have enabled models to gener-
alize across new tasks and environments, the challenge of adapting these models to entirely new embodi-
ments remains largely unexplored. This master’s thesis addresses this by investigating the generalization
capabilities of the RT-1-X robotic foundation model to embodiments unseen during its training.

The research begins with a comprehensive series of zero-shot experiments on a new embodiment,
followed by fine-tuning the model on a small dataset specific to the target embodiment, and comparing
the resulting performance. The findings reveal that RT-1-X does not generalize zero-shot to the tested
embodiment. However, fine-tuning significantly improves performance, enabling faster convergence dur-
ing training and better outcomes compared to training from scratch on the same dataset. Despite these
improvements, the model still fails to transfer skills or object knowledge from the pre-training dataset
to the new embodiment.

These results demonstrate that even state-of-the-art foundation models trained on a diverse set of
embodiments are unable to generalize to new embodiments in a zero-shot setting. While fine-tuning
enhances adaptability, substantial limitations persist.
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Chapter 1

Introduction

Recent breakthroughs in machine learning and artificial intelligence suggest that training on large, diverse
datasets can lead to highly adaptable models, which often exceed the performance of models developed
for specific tasks using smaller datasets [1]. Traditional approaches to robotic leaning have required
task-specific datasets tailored to each individual task, environent, and robot, limiting the scalability
and flexibility of robotic applications. As a result, the field has been exploring more generalizable
models that can adapt to new scenarios with minimal retraining. Recent advancements like Transformer
architectures and robotic foundation models have led to models like Google’s RT-1 [2], which demonstrate
the potential for robots to generalize across various tasks and environments. However, one critical area
remains underexplored: the ability of these models to generalize across entirely new robotic embodiments.

This thesis addresses this gap by investigating the cross-embodiment generalization capabilities of
the RT-1-X model. By implementing this model on a new robotic platform—the UMI-RTX robot at
the University of Amsterdam’s Intelligent Robotics Lab—this research seeks to understand how well the
model can transfer its learned knowledge to a robot with different physical characteristics and operational
contexts. Both zero-shot generalization, as well as adaptation to the new embodiment with minimal fine-
tuning, are explored.

The findings show that zero-shot generalization to the new embodiment is not possible. By fine-
tuning the model on a small dataset from the target embodiment, generalization could be significantly
improved, although still not reaching the performance achieved on the original embodiments.

1.1 Problem statement

One of the most significant challenges in the field of robotics is the acquisition of suitable datasets
for training machine learning models [1]. Traditional approaches to robotics require large amounts of
data tailored to each specific robot, task, and environment. This data is often expensive and time-
consuming to create, as it typically involves engineering-heavy autonomous operations or costly human
demonstrations. Furthermore, because of the vast diversity in robotic embodiments—each with unique
physical characteristics and operational contexts—datasets are rarely reusable across different robots.
This limitation hampers the scalability and adaptability of robotic systems, making it difficult to develop
versatile models that can operate effectively across various settings without extensive retraining. [1]

The high cost and limited reusability of robotic datasets have driven the search for more generaliz-
able models that can be adapted to new environments, tasks, and, crucially, new robotic embodiments
with minimal additional effort. Significant advancements in machine learning have recently enabled
a paradigm shift across various domains, including computer vision and natural language processing
(NLP), by moving away from highly specific datasets and models toward more general models based on
broad, task-agnostic datasets. These high-capacity foundation models, pre-trained on large-scale, diverse
datasets, provide a robust platform for a wide range of downstream tasks, such as semantic reasoning,
problem solving, and visual interpretation. The ability of these models to generalize across tasks and
environments without requiring task-specific datasets offers tremendous advantages in robotics, where
the generation of datasets is even more costly than in other domains.

Recently, Google’s RT-1 model has exemplified a significant shift toward generalization in robotics.
Leveraging large-scale, task-agnostic datasets and an efficient Transformer architecture, RT-1 has demon-
strated remarkable capabilities in generalizing to new tasks, objects, and environments that were not
part of its original training dataset. Another major advancement in this area has been the introduction
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of the Open X-Embodiment dataset [1], the first of its kind due to its unprecedented diversity in robotic
embodiments. This dataset combines a vast number of embodiment-specific datasets, encompassing
over one million robot trajectories from 22 different robots. The diversity and scale of the Open X-
Embodiment dataset have significantly enhanced the RT-1 model, enabling it to outperform traditional
task-specific models by wide margins and showcasing its potential for broad application across various
tasks and environments [1].

However, while the RT-1 model in combination with the Open X-Embodiment dataset has shown
considerable success in generalizing across unseen tasks, objects, and environments, the challenge of
generalizing to entirely new robotic embodiments has been much less explored. Generalizing across
embodiments is particularly complex because each robot can have different physical structures, sensors,
and modes of interaction with the environment. If a model can effectively transfer its learned knowledge
to a completely new robot embodiment without significant degradation in performance, it would reduce
the need for extensive, embodiment-specific datasets and enable more flexible deployment of robots
across different platforms, thereby lowering costs and expanding the applicability of robotic systems. On
a larger scale, advancing embodied Al in this way is a crucial step toward achieving artificial general
intelligence, as it comes closer to developing systems that can adapt and function effectively in a wide
range of physical contexts, much like humans do [2].

Currently, there is a significant gap in our understanding of how these foundation models perform
when faced with new robotic embodiments. While the X-Embodiment dataset includes a variety of
robots, the ability of these models to generalize to embodiments not included in the training set has not
been empirically demonstrated. This leaves open critical questions about the practicality of using these
models in real-world scenarios where robots might differ significantly from those in the training data.

This master’s thesis aims to address this gap by focusing on the generalization capabilities to unseen
embodiments. Specifically, the research will involve implementing and evaluating the RT-1-X foundation
model on a new, previously unseen robotic embodiment—the UMI-RTX robot at the University of
Amsterdam’s Intelligent Robotics Lab. The primary objective is to investigate the model’s ability to
adapt to this new embodiment, which was not part of its original training dataset, and to identify any
potential performance trade-offs or limitations that may arise.

By exploring the model’s ability to generalize to a completely new embodiment, this thesis will
contribute to the understanding of robotic foundation models and their adaptability to diverse hardware
platforms. The findings from this research contribute valuable insights into developing more adaptable
models that could potentially be deployed across various robotic systems with reduced need for extensive
retraining. This work aims to support the ongoing advancement of foundation models in robotics, helping
to facilitate their broader application and enabling the use of advanced robotic technologies in a wider
range of domains.

1.1.1 Research questions

Building on the challenges identified in the problem statement, this thesis aims to explore the general-
ization capabilities of the RT-1-X model, particularly its ability to adapt to new robotic embodiments.
To structure this investigation, this thesis focuses on two central research questions:

RQ1: Can the RT-1-X model generalize to a completely unseen robotic embodiment,
without any additional data, utilizing knowledge learned from the Open X-Embodiment
dataset?

This question investigates whether the RT-1-X model can effectively transfer its learned knowledge from
the diverse set of robotic embodiments in the Open X-Embodiment dataset to a new, previously unseen
robot without requiring any additional training or data. The goal is to assess the model’s ability to
perform tasks on the UMI-RTX robot solely based on its prior training, thereby evaluating the feasibility
of zero-shot generalization to new embodiments.

Building on the findings of RQ1, the second research question explores the potential for improving
the model’s performance through fine-tuning:
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RQ2: Can fine-tuning RT-1-X on a small number of demonstrations from a new robotic
embodiment improve its performance, and what are the benefits of using a pre-trained
model?

To get a nuanced understanding of the different performance aspects, this question is further divided
into three subquestions:

¢ RQ2.1: How does the fine-tuned RT-1-X model perform on the specific task for which
it was fine-tuned?

This subquestion focuses on the in-distribution performance of the fine-tuned model, evaluating
its effectiveness on the task that was included in the fine-tuning dataset. The objective is to
understand how well the model can learn and execute a specific task on the new embodiment.

e RQ2.2: Can the fine-tuned RT-1-X model transfer concrete knowledge learned during

Open X-Embodiment pre-training to the new embodiment and maintain performance
when faced with changes in the demonstration environment?
This subquestion examines the model’s ability to transfer concrete skills learned during the Open
X-Embodiment pre-training step to the fine-tuning domain. It also assesses whether the fine-
tuned model can maintain performance when exposed to environment factors that were unseen in
fine-tuning.

e RQ2.3: What benefits does pre-training on the Open X-Embodiment dataset provide

when fine-tuning RT-1-X on a new embodiment?
This subquestion investigates the advantages of using a pre-trained foundation model as a basis for
fine-tuning, instead of training from scratch for the new embodiment. It seeks to determine how
Open X-Embodiment pre-training impacts the model’s ability to adapt to the new embodiment
and improve its overall performance.

1.1.2 Research Method

The research conducted in this thesis follows a systematic approach designed to explore the cross-
embodiment generalization capabilities of the RT-1-X model step-by-step. The process began with
setting up the necessary components and gradually moved toward more complex experimentation and
analysis. The methodology was designed to address the research questions, with each step building on
the previous one.

Component Preparation and System Integration

The research began with the necessary preparatory work to ensure that the essential components—the
UMI robot and the RT-1-X model—were operational. Integrating these two components proved to be
more challenging than anticipated. The UMI robot, in particular, presented unexpected issues that
required significant effort to resolve. This included extensive bug fixing and quality work in the control
code to ensure reliable operation. Hardware challenges that occurred due to the age of the robot also
needed to be addressed to achieve full functionality throughout the project. On the RT-1-X side, the
code from the original open-source repository [3] — designed as a basic inference demonstration with
dummy data — had to be developed into a complete inference loop using real inputs from the UMI
environment. Finally, integrating RT-1-X with the UMI robot presented its own set of challenges, as it
was necessary to ensure that the model’s outputs could be accurately interpreted and executed by the
robot, taking into account the unique characteristics and intricacies of the UMI platform.

As the final step of system integration, the full pipeline was validated to ensure that the model’s
behavior was not influenced by any factors introduced during this stage, which could distort the experi-
mental results and compromise their accuracy, representativeness and reproducibility.

Once these components were fully functional and integrated, the stage was set for the first set of
experiments, addressing the first main research question.

Experiments addressing RQ1

With the UMI robot and RT-1-X model fully operational after overcoming initial integration challenges,
the next step was to conduct a comprehensive series of experiments focused on investigating the model’s
zero-shot performance on the new robotic embodiment, directly addressing RQ1. The primary objective
was to determine whether RT-1-X could generalize to the UMI robot without any additional training,
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leveraging the knowledge it had acquired from the Open X-Embodiment dataset.

These experiments systematically altered various factors, including task description, target object,
workspace layout, but also technical aspects like model output interpretation, to assess their impact on
the model’s performance and behavior. The aim was to comprehensively explore how these variables
influenced the model’s behavior and to assess the feasibility of achieving zero-shot transfer with the RT-
1-X model on the new embodiment. This approach was designed to thoroughly investigate the model’s
capabilities across a range of environmental and technical conditions, seeking to understand any potential
for generalization to the UMI robot.

UMI Dataset Creation and Model fine-tuning

Building on the insights gained from the zero-shot experiments, the next stage of the research was focused
on preparing everything needed to answer RQ2. This involved adapting the RT-1-X model to the UMI
robot through fine-tuning and preparing the necessary baseline models for comparison.

To begin, a method for teleoperating the UMI robot was developed, which enabled the collection of
a new demonstration dataset. This dataset consists of 100 demonstrations of one simple task performed
by the UMI robot. A fine-tuning pipeline for RT-1-X was then built and validated, similar to the system
integration stage, to ensure that the model’s behavior was not distorted due to training issues. RT-1-X
was fine-tuned on the UMI dataset to adapt it to the specific characteristics of the UMI robot.

In addition to fine-tuning RT-1-X, other models necessary for answering RQ2 were also trained. This
included training RT-1 from scratch on the UMI dataset, and fine-tuning another Open X-Embodiment
based foundation model on the UMI dataset. The training pipelines for these models was developed,
and again validated. These preparations ensured that all required models were ready for the subsequent
experiments aimed at evaluating the performance and capabilities of RT-1-X in the context of the new
robotic embodiment.

Experiments Addressing RQ2

With the RT-1-X model now fine-tuned on the UMI dataset and ready for inference, the next phase
involved conducting a series of experiments to systematically address the subquestions of Research Ques-
tion 2 (RQ2). These experiments were designed to evaluate the model’s performance across several key
dimensions:

Addressing RQ2.1: In-Distribution Performance. The first set of experiments was conducted
to assess the fine-tuned model’s performance on the specific task it was trained on during fine-tuning.
This involved running multiple trials where the UMI robot, guided by the fine-tuned RT-1-X model,
executed the task under controlled conditions. Performance metrics such as success rate and accuracy
were recorded and analyzed to determine how effectively the model could execute the task within the
new embodiment after the fine-tuning process.

Addressing RQ2.2: Knowledge Transfer and Generalization. Following the evaluation of in-
distribution performance, the experiments shifted focus to assessing the model’s ability to transfer knowl-
edge from the pre-training phase to the UMI embodiment. This was done by selecting specific tasks and
objects that were present during the Open X-Embodiment pre-training, but not in fine-tuning, and
testing the model’s performance on these elements with the UMI robot. Additionally, environmental
alterations were introduced to evaluate how the performance on the in-distribution task is impacted by
these changes.

Addressing RQ2.3: Ablation Studies and Comparisons The final set of experiments involved
ablation studies and baseline comparisons to isolate and examine the effects of specific components of the
RT-1-X model. In these experiments, the performance of the fine-tuned RT-1-X model was compared with
that of baseline models, including the RT-1 model trained from scratch on the UMI dataset and another
architecture pre-trained on the Open X-Embodiment dataset and fine-tuned on UMI. Each model was
subjected to the same tasks and environmental conditions, with performance metrics carefully recorded
and analyzed. This comprehensive evaluation aimed to identify the specific benefits of pre-training on the
Open X-Embodiment dataset and to understand the influence of the RT-1 architecture on the model’s
overall performance.
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1.2 Contributions

Besides the experimental results, this research makes the following contributions:

1. A ROS2 package for running inference using RT-1-X [4]

2. A fine-tuning pipeline for adapting RT-1-X to new Embodiments [5]

3. Updated control code for the UMI robot [6] and a dataset of demonstrations with the UMI robot,
along with training checkpoints of RT-1 and RT-1-X!

4. A contribution to the author’s original training code, addressing an issue found during research?

1.3 Outline

Chapter 2 equips the reader with the necessary background, starting with a general introduction to
robotic learning, followed by a presentation of the three main components this thesis is based on: The
RT-1 Transformer model, the Open X-Embodiment dataset, and the UMI robot embodiment. Chapter
3 describes the process of setting up these components, both individually, as well as the required infras-
tructure to bring them together for this thesis. During the preparation of the individual components,
several problems were encountered, which are also described here. Chapter 4 deals with the evaluation of
the RT-1-X model on the unseen UMI robot: It is described in detail which experiments were conducted,
how they were conducted, and why. In Chapter 5, the process of fine-tuning the RT-1-X model for the
UMI robot is discussed, explaining how the UMI dataset was collected and the fine-tuning pipeline was
built. This chapter also describes the experiments conducted with the fine-tuned model, as well as with
related baseline models that were necessary to get performance comparisons. Chapter 6 finally presents
the results of the evaluation of both the zero-shot model, as well as the model fine-tuned for the UMI
robot. The implications of these results is discussed in Chapter 7. This chapter interprets the findings
in the context of the research questions, providing answers based on the experimental data. It also
considers the broader implications of the results for the field of robotic learning and model generaliza-
tion. Additionally, it discusses additional findings made along the way that, while not directly related
to the research questions, are still relevant. Chapter 8 explores related works in the field. It places the
research conducted in this thesis within the broader context of robotic learning, offering an overview of
other relevant approaches and comparing the results obtained here with those reported in the literature.
Additionally, this chapter provides perspectives on alternative methods and emerging trends, broadening
the scope of the discussion and highlighting potential future directions for research. Finally, the work
is concluded in Chapter 9, where the most important findings are summed up and an outlook on future
work is given.

Thttps://drive.google.com/drive/folders/1HYkzqaRuEKcKRUAf XVvH1UKBjGdKGZgf Pusp=sharing
’https://github.com/google-deepmind/open_x_embodiment/pull/84
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Chapter 2

Theoretical Background

Before starting with the actual research, this chapter provides an introduction to the key concepts and
prior work necessary to understand the context of this master’s thesis. It begins with definitions of the
terminology that will be used throughout the thesis, followed by an overview of fundamental concepts in
(robotic) machine learning. Finally, the chapter introduces the three core components that this research
is based on: the RT-1 model, the Open X-Embodiment dataset, and the UMI robot.

2.1 Terminology

This section aims to introduce the machine learning concepts that are commonly used in modern robotics
research. It starts by defining some basic terms that will be used throughout this thesis:

e Embodiment: The physical form or structure of a robot, including its sensors and actuators, which
defines how it interacts with its environment. Different robots have different embodiments, leading
to variations in how they perceive the world and act upon it.

e State: The current situation or condition of the robot and its environment, as perceived through
its sensors. The state includes all relevant information that the robot can use to make decisions.

e Action: A specific command or set of commands that the robot can execute to change its state or
interact with its environment, such as moving an arm or adjusting a gripper.

e Trajectory: The sequence of states and actions taken by the robot throughout an episode. A
trajectory represents the path that the robot follows from the beginning to the end of an episode.

e Policy: A strategy or function that maps states to actions. In robotic learning, a policy determines
what action the robot should take when it encounters a specific state.

e Inference: The process of applying a policy to a state to decide the next action. Inference is how
the robot makes decisions in real-time based on its learned policy.

e Episode: A complete sequence of interactions between the robot and its environment, starting
from an initial state and ending when a specific goal is reached or a stopping condition occurs. An
episode consists of multiple steps where the robot state is observed, an action is taken (either by
the policy during inference, or by a human during manual control), and the embodiment transitions
to a new state.

2.2 Machine Learning in Robotics

This section introduces machine learning in the domain of robotics. The topic of machine learning is
extremely broad and highly complex, and there are many different fields of robotics where it has been
applied. The domain is also constantly expanding, with new work published very regularly. To stay
within the scope, this introduction will be organized around RT-1-X and its position within the robotic
learning field.

2.2.1 End-to-end Models

Machine learning has had a significant impact on various areas of robotics, including computer vision,
motion planning, and manipulation. Traditionally, robotic systems have relied on modular approaches
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where each component—such as vision, planning, and grasping—is handled separately, often using a
combination of deterministic algorithms and specialized machine learning models [7-9]. This modular
approach, while effective in many scenarios, can present challenges in integration, as each module must be
individually trained, carefully tuned to work together, and errors in one module can propagate through
the system, potentially degrading overall performance.

In contrast, end-to-end learning in robotics has emerged as a powerful alternative. In this approach,
raw sensor data from the robot (e.g. camera images) is used as input, and the desired robotic actions
are directly issued by the model. This method simplifies the system architecture by eliminating the need
for separate, hand-engineered modules, allowing the model to learn a direct mapping from perception to
action. [10, 11]

One of the primary challenges is the requirement for large amounts of labeled data to train the model
effectively. Unlike modular approaches where each component can be trained independently with smaller,
task-specific datasets, end-to-end models often require extensive datasets that capture the full complexity
of the task and environment. This need for vast amounts of data can be a bottleneck, particularly in
robotics, where data collection is time-consuming and expensive. Furthermore, this leads to much bigger
models, the training of which can have high hardware requirements. [12]

2.2.2 Foundation Models

Foundation models are a significant advancement in machine learning, representing large-scale, pre-
trained models designed to serve as versatile platforms for a wide range of downstream tasks. Unlike
traditional models that are trained for specific applications, foundation models are pre-trained on exten-
sive, diverse datasets, enabling them to generalize across various tasks and environments. This concept,
which has gained prominence in fields like natural language processing (NLP) with models such as GPT-3,
is now making its way into robotics. [12]

In robotics, foundation models enable the development of systems that can quickly adapt to new
tasks by leveraging the extensive knowledge acquired during pre-training. This adaptability reduces
the need for extensive task-specific data collection and training, making it easier to deploy robots in
varied and dynamic environments. The pre-training step itself requires large datasets, which are much
less available in robotics compared to fields like NLP, and is computationally intensive. Despite these
challenges, foundation models promise the ability to be fine-tuned with relatively little data and lower
computational resources. [11, 13]

2.2.3 Imitation Learning

Imitation learning is a technique in machine learning where a model is trained to mimic the actions of an
expert by learning from demonstration data. In the context of robotics, this typically involves collecting
a dataset of demonstrations where a human operator manually controls the robot to perform the desired
task.

In contrast to imitation learning, reinforcement learning (RL) is another widely used strategy in
robotics. RL involves an agent that learns to make decisions through trial and error, receiving rewards
for actions that move it closer to a specified goal and penalties for actions that do not. Over time, the
agent optimizes its behavior to maximize cumulative rewards.

However, this trial-and-error approach often requires numerous iterations, which can be challenging to
execute safely and efficiently in real-world robotic systems. Additionally, designing a reward mechanism
that accurately evaluates the outcome of each trial can be difficult, especially in complex or nuanced
scenarios.

Imitation learning, on the other hand, directly leverages expert knowledge, making it a more practical
choice for tasks that are difficult to formalize with a reward structure. Its effectiveness, however, relies
heavily on the quality and diversity of the demonstration data, as the model’s ability to generalize to
new situations depends on the breadth of experiences captured during training. [7]

2.3 RT-1

The RT-1 model [2, 14] was presented as a joint effort between Robotics at Google, Everyday Robots,
and Google Research, at the end of 2022. The motivation is the following: End-to-end robotic learning
generally relies on task-specific datasets that are narrowly tailored towards the robots intended tasks.
This is similar to the traditional supervised learning approach in fields like computer vision and NLP,
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where data is collected, labeled, and then utilized to train a model for specific tasks, with minimal inter-
action between the different tasks. In recent years however, there has been a shift in those areas, moving
away from isolated, small-scale models and datasets towards large, general models that are pre-trained
on extensive, diverse datasets. These models are able to absorb experience from large datasets to learn
general patterns across tasks, allowing highly improved generalisation to unseen tasks compared to the
traditional approach. While removing the need for task specific datasets is generally appealing in many
domains, it is of very high significance in robotics, where the collection of datasets is typically very costly
due to the need of either engineering-heavy autonomous operation or expensive human demonstrations.
The purpose of RT-1 is therefore to investigate if it is possible to train a single, capable, multi-task
model on data consisting of a wide variety of robotic tasks, and to find out if such a model brings the
same benefits observed in other domains, namely zero-shot generalization to new tasks, environments,
and objects.

With RT-1, the authors present a model architecture along with a significant training dataset that
fulfills those requirements, as well as demonstrate the success of this model. The basic function of RT-1
can be observed in Figure 2.1: The model takes a natural language instruction, along with a history of six
RGB images, as input, and returns a eleven-dimensional action description as output: seven dimensions
for arm movement, three dimensions for base movement, and one dimension for terminating an episode.
Note that the three dimensions for base movement are irrelevant for this thesis, as a stationary robot
is used, it is only dealt with the seven-dimensional arm movement vector (and the termination signal)
from here onwards.

The following section describes how this is done, including a summary for each of the used components,
a description of how they interact, and an overview of the results the authors achieved with RT-1.

2.3.1 Foundations

The architecture of RT-1 involves several existing components, which are introduced here.

Transformers

Transformers are a type of deep learning model architecture that has significantly impacted various
fields of artificial intelligence since their introduction in 2017 [15]. Transformers are built around the self-
attention mechanism, which allows them to analyze and prioritize different parts of input data relative to
one another, regardless of sequence order. This makes them particularly powerful for capturing complex
relationships and patterns within data. While they initially revolutionized natural language processing
tasks such as translation and text generation, enabling recent break throughs like e.g. ChatGPT, their
versatility extends far beyond language. Transformers have also been successfully applied in areas like
computer vision , where they enhance image recognition and generation [16], and in time-series forecasting
, where they improve predictions by modeling dependencies across time steps [17].

Transformers have also been proposed for application in robotics, and have shown great success
especially in approaches using language instructions for task specification [18-20]. RT-1 goes one step
further than previous approaches, by treating the mapping of language and vision observations to robot
actions as a sequence modelling problem, and using a Transformer to learn this mapping.

EfficientNet

EfficientNet is a family of Convolutional Neural Networks (CNNs) introduced in 2019. The key innovation
of EfficientNet is a method called compound scaling: CNNs are often developed at a fixed resource budget,
and eventually scaled up for better accuracy, once more resources are given. Traditional methods scale one
network dimension at a time and independently of the others (depth, width or resolution). EfficientNet’s
compound scaling scales all three dimensions uniformly, using a simple yet highly effective compound
component. Based on this, the authors develop a family of models (EfficientNet-B0 (5.3M params) to B7
(66M params)), which achieve much better accuracy and efficiency than any previous CNNs. In RT-1,
the B3 version of EfficientNet is used. It is pre-trained on ImageNet, a large-scale image dataset [22].
21]

Universal Sentence Encoder

The Universal Sentence Encoder (USE) is a pre-trained model introduced in 2018, designed to convert
sentences into high-dimensional embedding vectors. It is specifically targeted towards transfer learning
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to other NLP tasks, meaning that its goal is to provide a general-purpose embedding that can be used
in a wide range of NLP applications. It produces fixed-length embeddings of 512-dimensional vectors,
regardless of the input sentence length. The embeddings can be used to determine the semantic similarity
between short pieces of text. [23]

FiLM

Feature-wise Linear Manipulation (FiLM) is a conditioning method for neural networks introduced in
2018. It works by introducing additional layers to a CNN. FiLM layers carry out simple, feature-wise
affine transformations on a network’s intermediate features, conditioned on an arbitrary input. This
significally alters the CNN’s behavior depending on the conditioning input, allowing the overall model
to carry out a variety of conditioning tasks. In the case of RT-1, it is used to extract task-relevant image
features based on the language instruction. [24]

TokenLearner

Presented in 2021, TokenLearner is a neural network module designed to improve the efficiency of vision
Transformers by dynamically generating a small subset of tokens from the input.

In the case of vision Transformer, each input image needs to be split up into smaller parts that
can be processed by the Transformer, called tokens. Traditionally, images are tokenized by dividing
them into thousands of parts of equal importance, which can make Transformers intractable for larger
images or videos. TokenLearner is a learnable module that takes images as input, determines which
parts of the image are "worth processing”, and based on that generates a small set of tokens. In RT-
1, it works by selecting relevant image tokens based on their information, and passing only important
token combinations on to the subsequent Transformer layers [2]. By doing so, it saves memory and
computation by more than half, without impacting classification performance. [25] While these tokens
can technically be extracted and interpreted to further understand which parts of the image are passed
to the Transformer layers, this is complex in practice due to the end-to-end design of RT-1

2.3.2 Method

One of the main contributions of RT-1 is its network architecture. It is designed to help the model
achieve its goals of being efficient and generalizable. This section gives an overview of its architecture,
the reason why the different components where chosen and the way they work together.

Two aspects are of high importance for effective robotic multi-task learning: On one hand, a high-
capacity model is needed. For this reason, a Transformer model was chosen as the central part of the
architecture: These types of models excel particularly when the goal is to learn many tasks conditioned,
like in this case, on a language instruction. The second aspect is efficiency: To effectively control a robot,
a model must be able to run inference in real time, presenting a major challenge for Transformers. This
is addressed by encoding the high-dimensional inputs and outputs (language instruction, camera images,
robotic actions) into compact token representations to be used by the Transformer. In the following, the
different parts of the architecture are discussed in detail. Figure 2.1 shows the model inputs, outputs,
and a simplified version of the architecture.

Input Tokenization

The model takes two input types: A history of six RGB camera images on one hand, and a natu-
ral language instruction on the other hand. The images are tokenized by passing them through an
EfficientNet-B3, pre-trained on ImageNet, which takes six images of resolution 300x300 as input and
returns a spatial feature map of shape 9x9x512 per image. This feature map is then flattened into 81
visual tokens, which can be passed to the later layers of the network.

To include the natural language instruction, it is first embedded using the universal sentence encoder,
which transforms it to a vector of length 512. This vector is then used as an input to identity-initialized
FiLM layers, which are added to the pre-trained EfficientNet to condition the image encoder, to extract
task-relevant image features early on. Inserting FiLM layers into the interior of a pre-trained network
would normally disrupt the intermediate activations and thereby negate the benefits of using the weights
obtained by pre-training the EfficientNet on ImageNet. To avoid this, the weights of the FiLM’s dense
layers, which produce the FiLM affine transformation, are initialized to zero, which allows the FiLM
layers to intitally act as identities, preserving the function of the pre-trained weights.
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Figure 2.1: A simplified version of the RT-1 architecture, showing the input of an image
history and language instruction, application of the various modules, and the robot action
output format.
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The output after the image and instruction tokenization is 81 vision-language tokens per image. To
further speed up inference, the number of tokens that the Transformer needs to attend over is further
compressed using TokenLearner. From the 81 tokens that come out of the FiLM-conditioned EfficientNet,
TokenLearner derives only 8 final tokens.

Transformer

These eight tokens are then concatenated with the tokens of the other images in the history and the
positional encoding required for the Transformer is added, forming 48 total tokens with are finally
passed on to the Transformer layers. A decoder-only sequence model with 8 self-attention layers and
19M total parameters is used, outputting action tokens. To calculate loss, a standard categorical cross-
entropy entropy objective and causal masking are used, which has been proven successful in previous
Transformer-based controllers [26, 27].

Action Tokenization

RT-1 considers 11 dimensions of robotic action: seven variables for arm movement (x, y, z, roll, pitch,
yaw, gripper opening), three variables for base movement (x, y, yaw), and a discrete variable to switch
between the modes base movement, arm movement, and terminate episode. The continuous action space
of every variable us discretized into 256 bins, for efficient use in the Transformer. The bins are uniformly
distributed within the bounds of each variable.

2.3.3 Training Data

The main goals while gathering training data was to make the model able to generalize to new tasks,
backgrounds and to handle various distractors. To achieve this, a large, diverse dataset of robot trajec-
tories was collected, consisting of around 130k robot demonstrations including different tasks, objects
and environments. Mobile manipulators from EverydayRobots are used as the robot embodiment. The
data collection was conducted in a series of office kitchens, using teleoperation with two virtual reality
remotes. The tasks include picking, placing, opening and closing drawers, getting items in and out of
drawers, placing elongated items up-right, knocking them over, pulling napkins and opening jars.

2.3.4 Performance

The authors test RT-1 on multiple aspects, against two baseline state-of-the-art architectures: Gato [26]
and BC-Z (as well as an extended version of BC-Z, called BC-Z XL) [28]. For the tests, both of these
models are trained on the data collected for RT-1, so the comparison only considers the performance
of the actual model architecture, and not the dataset, giving the baseline models an advantage, as the
RT-1 dataset is assumed to be better than the individual ones.

The models are compared on the performance on seen tasks, and the generalization capabilities to
new tasks, distractors and backgrounds. It is found that RT-1 outperforms both Gato and BC-Z in
all aspects: On seen tasks as well as on novel tasks, RT-1 performs around 25% better than the next-
best baseline. On distractors and changed backgrounds, it performs 36% and 18% better than the next
baselines, demonstrating impressive degrees of generalization and robustness of RT-1. The performance
in a realistic kitchen scenario is then tested, where novel tasks, distractors, and backgrounds come
together. RT-1 once again outperforms the baseline models.

The authors then investigate the possibility of improving RT-1 by incorporating data from heteroge-
nous data sources. To do so, they test two scenarios: Incorporating training data from a simulated
version of the Everyday Robots manipulator, and incorporating data from an entirely different robot
embodiment. For the simulation data, the authors find that there is a significant increase in performance
on tasks and objects that are only seen in the simulation data, while there is no performance loss at all
compared to only using the real training data. For testing incorporation of data collected on another
robot, a KUKA ITWA is used. This robot is different from the Everyday Robots manipulator in ap-
pearance, action space, and environment, as well as the demonstrations being collected by an RL agent
instead of a human. With the combined training data, a significant performance increase on tasks that
are only in the KUKA dataset is observable, while original task performance in minimally reduced. Also,
the authors show that RT-1 trained exclusively on KUKA data has a 0% success rate when evaluated on
the same tasks on the Everyday Robots manipulator, confirming that it is difficult to transfer behavior
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from another robot morphology. However, these tests indicate that RT-1 is able to acquire new skills
through observing other robot’s experiences.

Finally, the authors evaluate the importance of dataset diversity vs dataset size, as this plays an
important role in the field of robotic learning, where data collection is particularly expensive. To do so,
they first remove the number of examples per task, to reduce dataset size. A general trend of performance
decrease is observable, as well as a steeper trend of decreasing generalization. To reduce data diversity,
it is simply the number of tasks that is reduced. With that, the decrease of performance as well as
generalization is much steeper. This shows that data diversity is more essential than data quantity.

2.4 Open X-Embodiment and RT-1-X

Recent advancements in machine learning have shown that large-scale training on diverse datasets can
lead to general-purpose models that even outperform their narrowly targeted counterparts, trained on
smaller, task specific data, by leveraging the benefits of positive transfer between domains. Increasingly,
the go-to approach to tackle a given narrow task e.g. in vision or NLP, is to adapt a general-purpose
model. In the previous section, findings from RT-1 were presented, which show that this approach could
also work in robotics. In this domain however it is hard to apply on a larger scale, since as previously
discussed, datasets for robotic interaction are hard to come by. Even the largest existing robotic datasets
are a fraction of the size of their vision or NLP counterparts, in addition robotic datasets are very
often still narrow along some axes of variation, either all collected on a single environment, or only
demonstrating a small set of tasks and objects.

2.4.1 Method

Open X-Embodiment addresses this issue by gathering a number of robotic datasets collected at many
different labs, on different robots and in different environments, and assembling them into one unified
dataset. While each individual dataset might be too narrow to train general purpose policies, the
union of many such datasets can drastically improve coverage. The authors also provide open-source
tools to facilitate further contributions to Open X-Embodiment, aiming to get closer to the dataset
scale and diversity of other domains in the future. To evaluate the resulting dataset as well as the
potential of positive transfer in robotics, the authors train several state-of-the-art models with the Open
X-Embodiment data and compare the performance to the baseline of training only on task-specific data.

Dataset Composition

At the time of publishing, the Open X-Embodiment dataset consisted of over 1M real robot trajecto-
ries, collected from 22 different robot embodiments. It was constructed by gathering 60 existing robot
datasets from 34 robotic research institutions around the world. Since then, more datasets have already
been added. All datasets are converted into a consistent format: The RLDS (Reinforcement Learn-
ing Datasets) format was used, which accommodates the various action spaces and input modalities of
different robot setups. This format also allows for efficient data handling in all major deep learning
frameworks.

Figure 2.2 shows a breakdown of the datasets, scenes and trajectories by robot embodiment, dataset
skills, and dataset objects. While not being equally distributed, it shows a great diversity along all axes.

RT-1-X

To evaluate the performance benefits of Open X-Embodiment training, models with enough capacity
to productively make use of such large and heterogeneous datasets are necessary. The authors use the
previously discussed RT-1, and its derivative RT-2. In this section, the main focus lies on the model
based on RT-1, as this is the one used in the course of this thesis. RT-2 is further discussed in Section
8.3.1.

The architecture of RT-1 has already been discussed in the previous section. Compared to the original
implementation, the authors of Open X-Embodiment use a history of 15 images as model inputs, instead
of the original 6. There is no reason given for this change. However, other researchers working on the
RT-1 model after its release have also used a history of 15 images, stating that it helps accommodate
longer episode length.
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Figure 2.2: The Open X-Embodiment dataset features a large variety of embodiments,
skills and objects. The composition of the datasets is shown here. [1]

One challenge in training models on the heterogeneous X-Embodiment dataset is the significant vari-
ation in observation and action spaces across robots. To address this, a coarsely aligned action- and
observation space is used across datasets: From each dataset, one camera view is selected, resized to a
common resolution, and used as model input. Camera observations naturally vary substantially across
datasets, as they are using different camera positions, scenes and embodiments. The dataset’s action set
is converted to a 7 DoF end-effector action and normalized, so the model’s output can be interpreted dif-
ferently depending on the embodiment. The action space is however not aligned across datasets, meaning
action values can either represent relative positions, absolute positions, or even velocities, according to
the original control scheme of the robot. The same output actions can therefore induce very different
motions for different robots.

2.4.2 Performance

The authors want to test the models trained on their X-Embodiment data in three aspects: Positive
transfer between robots, generalization to new tasks, and the influence of different design dimensions. It
should be noted that for the evaluation of their X-Embodiment trained models, the authors use a data
mixture from only 9 different embodiments, as this was all available data at the time of the experiments.

Firstly, it is evaluated if policies can benefit from positive transfer, meaning that co-training on data
from different robots improves performance on the training task. The authors find that in domains that
have only small-scale domain specific datasets, co-training with X-Embodiment data leads to significant
performance improvements, showing that these domains benefit substantially from positive transfer.
On domains where there are already large-scale datasets available, RT-1-X does not show significant
improvement over the performance on RT-1 trained only on the domain specific data.

The evaluation of generalization capabilities and influence of different design decisions is done only
using the RT-2-X model. It is therefore unclear how the findings translate to RT-1-X. However, the
experiments show that generalization to new objects, backgrounds and environments is not influenced
by the addition of the X-Embodiment data. On the other hand, it is shown that the model running
on one robot is able to execute skills that were only present in the dataset of another embodiment,
demonstrating that incorporating the data from other robots into the training improves the range of
tasks of a robot. When experimenting with different design dimensions, the main findings are that using
a history of images as input instead of a single image significantly improves generalization performance,
and that a higher model capacity enables a higher degree of transfer across robotic datasets.
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2.5 UMI RTX Robotic Embodiment

The robot used in the course of this thesis is the RTX model from Universal Machine Intelligence Ltd.
(UMI). This section will give an overview of the technical aspects of the robot, and also give insights
into the history and previous use cases. It should be noted that outside this section the UMI RTX robot
will be referred to as the UMI robot or just the UMI, in order to avoid confusion with the RT-X models
(RT-1-X and RT-2-X) from Open X-Embodiment.

2.5.1 History and Use Cases

The RT series is a family of robots that was first introduced in the mid 1980’s, by the British company
Universal Machine Intelligence Ltd., under the technical direction of Tim Jones. The goal was to develop
a robot that sits between the two types of robots that were available on the market at that time: On one
hand the cheap but incapable toy robots, on the other hand powerful, but highly expensive industrial
machines [29]. The original plan was to develop a mobile unit called the R-Theta, which was developed in
1983 [30]. It was soon realized that there wasn’t an immediate market for a mobile personal robot, which
is why UMI instead released a low-cost, stationary version of their arm, called the RTX. According to
Jones, this was the first ”co-bot” in existence [31], as it was capable but still safe to use around humans
due to its low-powered motors and belt drives, which were meant to act as mechanical fuses [32]. UMI,
which was later acquired by Oxford Intelligent Machines (OxIM) and even later by the French Afma
Robotics, went on to develop further iterations of the RTX: The RT100 was similar in design but more
robust, targeted towards light industrial applications, with a higher reach and payload capacity and the
RT100+, its more powerful update. With the RT200, the working envelope was greatly extended with
the addition of a new axis: The entire assembly was placed on a linear rail system, available in lengths
up to 6m. It was additionally improved in terms of speed and accuracy. [33, 34]

Right after its introduction, the RTX was widely adapted in research settings, with multiple institu-
tions using it for teaching [35] and experimentation with different technologies [32, 36-38]. The RTX was
especially popular in the domain of rehabilitation and healthcare robotics: A survey from 1990 shows
that the UMI RTX was the most widely used robot worldwide in the area of rehabilitation robotics at
the time [39]. This was due to its unique market position inbetween educational and industrial robots
[39], and its wide range of movement and safety features [40]. Among other use cases, the RTX and its
successors were used to support patients with tetraplegia in France [41] and as a voice-controlled work-
station for disabled programmers by the Boeing company in Seattle [42, 43], as well as in various other
research projects related to rehabilitation [44—46]. More applications of the UMI robots can be found
in the dissertation of Hillman from the year 1992 [47]. A custom robot, similar in architecture to the
RT models, was built by UMI to efficiently feed Icelandic cod from a conveyor belt to a fish beheading
machine [33, 48].

After the 2000’s, not much work was done with the UMI RT robots. It is unclear how many of them
are still in working condition. At KU Leuven, two master’s theses were done in the years 2015 [49] and
2016 [50], in which the authors worked with a UMI RTX robot that seems to be or have been in working
order at KU Leuven. Since 2022, there have been efforts to "revive” the UMI RTX at the University
of Amsterdam Intelligent Robotics Lab, which was first used in 1992 to play chess [51], and later as a
plotter [52]. Control code that runs on modern Linux distributions was written by Visser [53]. This
was extended by Garde and Massa, who built a ROS2 interface around the control code, as well as a
graphical user interface to easily control the robot and some computer vision capabilities [54, 55].

2.5.2 Technology

The UMI RTX is a robot of the SCARA (Selective Compliance Assembly Robot Arm) type with the
addition of vertical travel. It has 7 degrees of freedom: The rotation of the elbow and shoulder joints,
yaw, pitch, and roll of the wrist (end effector), the height of the entire arm assembly (z axis), and the
opening of the gripper. Figure 2.3 shows the UMI robot at the Intelligent Robotics Lab, which will be
used for this thesis. Due to its SCARA layout, the range of motion of the robot is kidney-shaped. A
specific design choice is that the elbow joint and the wrist’s yaw joint are driven through a combined
spindle, meaning the wrist yaw always stays the same in relation to the robot base when moving the
elbow joint. With certain yaw orientations, this leads to the wrist hitting its end stops when moving the
arm in certain directions, causing the belts to skip. The official manual acknowledges this and states that
such movements should be avoided, unfortunately without giving further information about the issue.
[56]
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Figure 2.3: The UMI robot used in this thesis, in its setting at the Intelligent Robotics
Lab of the University of Amsterdam.

The control code used in the course of this project is the ROS2 interface by Garde and Massa, Garde
and Massa, who use the code by Visser for low level controls and serial communication to the robot [53].
There were however some issues with parts of this code which were fixed in the course of this project.
This will be discussed in later parts of this thesis.
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Chapter 3

System Integration

To conduct experiments with the RT-1-X model and the UMI robot, it is first necessary to set up all
required components, and build the necessary interfaces between them. There are three main areas that
require consideration:

e Robotic control: All components that are responsible for receiving robotic commands and reliably
and accurately execute them on the UMI robot. This includes software as well as hardware.

e Model inference: The RT-1-X model must be able to run inference with pictures from the environ-
ment camera, and output actions that are suitable for the UMI.

e Infrastructure: Robotic control and model inference need to be brought together in a way that
allows for easy debugging, changing of variables for experimentation, and ideally, the ability to
adapt to other robots and models.

Most components for robotic control and model inference are already available in a basic form.
However, there are many adaptations required to reliably make them work for this use case. This
chapter explains the process of getting the individual components ready and finally connecting them. A
special emphasis is placed on the verification of all components, to mitigate any errors that could distort
the results of later evaluations. Most of the components presented in this chapter are also made available
for reproduction and further research.

3.1 Robotic Control

To enable the robot to be controlled by the RT-1-X model, a control interface needs to be established.
Even though the UMI RTX is a rather old robot that has never been in widespread use, it has been well
maintained in the Intelligent Robotics Lab at the University of Amsterdam and there is modern code
for it available. A driver was written by Visser in 2022', and a ROS2 interface for it was developed in
2023 in the course of an internship by Garde and Massa [54]. While these components provide a good
starting point for this project, on closer inspection it became apparent that there were some issues with
them, especially the ROS2 interface:

e The ROS2 interface was bundled together with a computer vision, simulation, and GUI component,
which added much overhead and unnecessary dependencies. Also, it did not support Ubuntu 22.

e There were issues in the control logic of the ROS2 interface, including race conditions.

e The inverse kinematics component in the ROS2 interface code did not use the entire robot workspace,
as well as leading to glitches when using values close to the movement limits. This often led to
collisions.

e The Z Axis limit was too high, meaning the robot could not reach all the way down to the workspace,
making it impossible to pick up small objects.

To address these issues, a fork of the existing ROS2 interface repository was created [6], with the goal
of turning it into a minimal, correct ROS2 interface for the UMI robot. This section discusses how the
various problems were addressed, to allow for further development of this project without limitations
from the robot layer.

Thttps://github.com/physar/umi-rtx
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CHAPTER 3. SYSTEM INTEGRATION

3.1.1 Removing unneeded dependencies

As it is, the LAB42_RTX _control bundles multiple functionalities, which is also described in its project
report [54]. The main ones are:

e Arm control: The code necessary to move the actual robot, including inverse kinematics and
communication with the hardware

e Computer vision: Robot is able to detect a banana in the workspace and pick it up

e ROS2 communication: Receiving and sending messages with ROS2

e GUI: a simple graphical interface that allows controlling the robot

While the arm control and ROS2 communication components are essential for the robot to work, the
computer vision functionality is not needed for a minimal ROS2 node. Additionally, this part of the code
requires a specific version of CUDA to be installed which is not compatible with the version of TensorFlow
used in RT-1-X, and it also uses the ZED camera, which leads to conflicts when using it in the RT-1-X
code. In the forked repository, the computer vision code is removed, as well as its dependencies.

The GUI component is helpful for manually experimenting with the robot, although it constantly
publishes ROS2 robot instructions, which makes it impossible to control the robot with other nodes
while the GUI is running. To circumvent that, and enable the functionality of switching back to GUI
controls at any time, an additional button called "ROS publishing” is added to the GUI. This button
allows to temporarily deactivate the GUI controls, a second click of the button instantly reengages the
GUI controls.

3.1.2 Bugs in control logic

The repository contained multiple bugs in the raw control logic of the robot, which prevented reliable
control of the robot via the ROS2 interface. Most issues did not occur when controlling the robot via
the GUI, indicating that the ROS2 interface was not tested with external control nodes. As the goal
is to have a universal ROS2 control interface that can be controlled externally, those bugs need to be
addressed.

3.1.3 Inverse Kinematics

Inverse kinematics describes the process of computing the motor commands required to bring the end
effector to a certain position. This is not a trivial process, as for a single end effector coordinate, there
can be one, multiple, or no solutions. The LAB42_RTX_control has a component which solves this inverse
kinematics problem using Pinocchio, a popular rigid body dynamics library [57]. When experimenting
with the robot using manual controls, it became apparent that there were issues coming from this inverse
kinematics implementation.

The cause of this issue is that the entire UMI control code, including the inverse kinematics implemen-
tation, handles robot coordinates in the cartesian format. The UMI robot however has a kidney-shaped
range of motion, which cannot be trivially described in cartesian coordinates. Figure 3.1 shows the UMI’s
range of motion.

It is also difficult to define the minimum and maximum values for one single coordinate, as this
is dependent on the other coordinates. This is not handled in the UMI control code: When choosing
coordinates that are outside the limits of movement of the UMI robot via the ROS2 interface or the
GUI, the inverse kinematics lead to glitching, returning nonsensical motor commands, which often lead
to very different end effector positions and even collisions.

Also, when providing the robot arm with coordinates that are close to its own base, it occasionally
fails to reach these coordinates, despite being physically capable of doing so. This problem however only
occurs when the target is not reachable in a simple move from the start position, meaning the robot
would have to change its position entirely to be able to reach its target. This problem is illustrated
in Figure 3.2, based on a simulation of the UMI. For both pictures, the same target coordinates were
given to the robot, shown by the yellow star symbol. The only difference is that on the left picture,
the arm was in a start position where the elbow was bent to the right, making it possible to get to the
coordinates easily. In the right image, the start position had the elbow bent to the left. To get to the
desired coordinates, the arm would have to straighten out first, moving away from the target, before
then bending to the right, to make it able to reach the target. The inverse kinematics does not do this,
and instead settles on a position that is somewhat close to the target, as shown in the picture.
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total travel 948 1814 ‘ N

Figure 3.1: The UMI robot features a kidney-shaped range of motion, which makes kine-
matics in cartesian coordinates a challenge. [58]

Figure 3.2: Despite identical target coordinates (indicated by the yellow star), the UMI
takes on different positions depending on its starting position, and fails to reach the correct
pose when starting from a disadvantageous position (right).
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Figure 3.3: Certain parts of the UMI robot wear down fast due to its age. Left: Shoulder
assembly with the broken belt highlighted with the arrow. Right: Broken pulley, destroyed
by the remaining metal parts of the belt.

Further, certain combinations of movements output by the inverse kinematics lead to the control
belts slipping, which leads to imprecise following movements as well as wearing down the hardware.

It was tried to find a solution to those issues, to improve or replace the inverse kinematics node, but
it was ultimately decided that this is outside the scope of this thesis. To avoid problems stemming from
this in the course of this project, the coordinate space will be reduced to a space that was found to work
without any problems through experimentation. The minimal and maximal coordinate values that were
determined though experimentation can be found in Appendix A.1.

3.1.4 Hardware Issues

The UMI robot uses timing belts that connect the motors to the respective joints. After around three
months of continuous experimentation, the belt on the shoulder joint wore out, making it unusable. The
metal reinforcement strands in the belt also destroyed the associated pulley. Figure 3.3 shows the two
broken parts.

Enough replacement pulleys were available in the Lab, and the pulley could quickly be replaced. Two
spare belts in the correct size were available in the Lab, however after replacing the first belt, the other
two only held up for several days. This is presumably due to them not being moved and used in over 40
years, making the rubber loose flexibility and become brittle. To continue this project, it was therefore
necessary to find suitable replacement parts.

As the UMI company is no longer existent, getting original spare parts was out of the question. The
maintenance manual did not give any information on the belt specification, apart from an internal part
number, the belts themselves had no information written on them as well. The old belts were measured,
resulting in a measured width of 6mm, a tooth count of 175, and a pitch (distance between two teeth) of
2mm. Research on available standard parts yielded two results: The GT2 standard, a belt widely used
in consumer 3D printers, and the MXL standard, a more specialized type, both fitting the specification.
The only difference between the two types is the GT2 has a pitch of 2mm, whereas MXL has a pitch of
2.03mm, which made it impossible to reliably determine by measuring.

Both of these belt types are not commonly available in a belt length of 175mm, the only available
products had a shipping duration of multiple weeks, which was close to the deadline of this project. In
an effort to repair the robot faster, open-ended belts of both types were ordered, which were available
within a few days. When testing them manually on the pulley, it was found that the MXL type belt was
the correct one. It was then tried to glue the belts to the correct size, which unfortunately only worked
for a few tries before the glue point broke. Finally, the problem could be solved with the 175mm belts,
as soon as they arrived.
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3.2 Model Inference

The authors of Open X-Embodiment provide a minimal example for running inference with the RT-
1-X model from a pre-trained checkpoint. This example however does not consider input and output
processing: Arbitrary arrays are used as model inputs instead of real images and language instructions,
model outputs are not scaled to a robot action space, and only one inference step is run. The following
section describes the steps that were necessary to process inputs from the UMI environment to run
inference correctly. To assess the correctness of the inference pipeline before running inference with the
UMI robot and to observe the effects of different factors, inference is run with the images and instructions
from an existing dataset from Open X-Embodiment.

Notably, two different implementations of the RT-1-X model, along with their respective checkpoints,
are available in the official repository: A version based on Tensorflow, which was initially published
along with the Open X-Embodiment paper, as well as a version based on the Jax framework that was
published months after the initial release. Neither the paper nor the repository description clearly outlines
the differences between the two versions. During initial experimentation, it was found that both versions
deliver similar output. Since training examples are only available in a Jax based implementation, the
work in this thesis is based on this version of the RT-1-X model implementation.

3.2.1 Model Inputs

The RT-1(-X) model takes two different kinds of input: Images from the environment, and natural
language instructions. The processing of these inputs before inference is crucial, as it was found that even
slight differences in input processing leads to meaningless inference output. Unfortunately, the inference
example does not show how this processing is done, and there is no further documentation available.
The correct processing steps were determined by studying the model code, as well as consulting other
developers working with RT-1-X via GitHub?3. This subsection details how images are processed and
used in the inference code.

Image Processing

Correct image processing is essential before running inference. It has been found that when not processed
correctly, even slightly misformatted images have big negative impact on model performance. While
neither the RT-1-X inference code, nor the according paper give information about the exact required
image format, it can be reconstructed by observing how processing is done in the training code.

Firstly, a picture is taken with the ZED camera module, which returns a four channel image in the
BGRA format. This is converted into the required RGB image array by first converting it to three
channel RGB with OpenCV, and then converting it into a numpy array. Two transformations then need
to be applied with the TensorFlow image module: First, the image is resized with padding to a size of
320x256, the result is then resized again without a pad to 300x300. While the RT-1 model requires an
image size of 300x300, it is unclear why the first resizing is applied. However, as this is how the images
are processed in training, the same needs to be applied for inference. For completeness, it was tried to
run inference without this additional scaling, which negatively impacted performance.

History of Observations

RT-1-X uses a history of the last 15 observations for each step of inference. This is not considered in
the inference example, as each inference step is run with random data. While it is relatively clear how
to assemble the observation history from the shape of the example inputs, it is unclear how the history
should be handled at steps 1-14 of inference, where a full history of 15 images is not yet available. The
options are either to instantiate the image history with 15 images of the initial workspace with the robot
in its initial position, or simply to initialize the history as an array of zeroes. Both variants were tried,
no difference in performance could be found between them.

3.2.2 Model Outputs

The RT-1-X model outputs an 8-dimensional action vector, which is then used to control the robot. The
Open X-Embodiment datasets that RT-1-X is trained on are however not aligned in their action spaces:

’https://github.com/google-deepmind/open_x_embodiment/issues/61
Shttps://github.com/google-deepmind/open_x_embodiment/issues/57
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Figure 3.4: The RT-1-X model is run on images from its pre-training dataset, to validate
the inference pipeline. Output of RT-1-X run with images from BridgeData [59] is shown
in red, compared actions from the dataset (ground truth) in blue.

their action values describe either absolute or relative positions or velocities, as well as each dataset using
different coordinate ranges. This poses issues when using the model for a robot it has not been trained
on. There is no certainty over which interpretation or scaling should be used.

Action Interpretation

To account for different action interpretations, both absolute and relative position control will be consid-
ered in the zero-shot evaluation. Velocity control is not considered, since only a small amount of datasets
use this action interpretation, and controlling the UMI by velocities would require new control logic.

Action Scaling

Before training, each datasets actions are scaled to a unified range, which is (-2, 2) for positional values,
and (-7, §) for rotational values. To use the model output actions as absolute positions for the UMI,
the values need to be scaled from this coordinate range to the UMI coordinate range. Scaling the values
for controlling relative positions is less clear, as there is no constant maximum for a movement. It is
assumed that the maximum movement at every step is half the action space for the respective axis. More
information on the different movement ranges can be found in Appendix A.1

3.2.3 Validation

Before connecting the model to the UMI robot and evaluating the performance of RT-1-X on a new
embodiment, it is crucial to verify the quality of the inference pipeline. There are multiple factors that
can lead to incorrect inference output, such as misformatted inputs, incorrect processing, or bugs in
the inference code, all of which can lead to poor evaluation results that are not representative of the
model’s actual performance. To ensure that the inference pipeline is working correctly, the model is run
on a dataset of images and instructions from Open X-Embodiment, and the output is compared to the
expected output. The dataset used for this validation is part of the model’s training data, which should
ensure that the model performs well on it. The same mode of validating the inference pipeline was used
in the original Open X-Embodiment code*.

The test is run with the Bridge dataset [59], one of the biggest datasets in Open X-Embodiment. The
inference output compared with the ground truth (actions from the demonstration) is shown in Figure
3.4. Tt shows that the inference pipeline is working as expected, and is ready to start experimentation.

3.3 Infrastructure

The final step in the system integration process involves seamlessly integrating the robotic control and
model inference components in a manner that supports easy debugging, experimentation, and future
adaptability to other robots and models. This was achieved by developing a ROS2 node [4] that interfaces
with the UMI environment, taking in images and instructions, performing inference using the RT-1-X
model, and then sending the appropriate commands to the UMI robot.

To ensure flexibility and maintainability, the node was designed with a clear separation between the
inference logic and the robot control code. This decoupling allows the inference code to be easily replaced
or updated with alternative implementations, which is particularly valuable for ongoing experimentation

4nttps://colab.research.google.com/github/google-deepmind/open_x_embodiment/blob/main/colabs/Minimal_
example_for_running_inference_using RT_1_X_TF_using_tensorflow_datasets.ipynb

24


https://colab.research.google.com/github/google-deepmind/open_x_embodiment/blob/main/colabs/Minimal_example_for_running_inference_using_RT_1_X_TF_using_tensorflow_datasets.ipynb
https://colab.research.google.com/github/google-deepmind/open_x_embodiment/blob/main/colabs/Minimal_example_for_running_inference_using_RT_1_X_TF_using_tensorflow_datasets.ipynb

CHAPTER 3. SYSTEM INTEGRATION

and potential future enhancements. The use of standard ROS messages for communication further
enhances this flexibility, making the node readily adaptable to different robot types and configurations
in future projects.
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Chapter 4

Evaluating RT-1-X Zero-Shot on the
New Embodiment

4.1 Introduction

After all required components have been set up and connected in the previous chapter, the performance
of the RT-1-X model zero-shot on the unseen UMI embodiment will be investigated in this chapter. This
directly addresses RQ1: Can the RT-1-X model generalize to a completely unseen robotic embodiment,
without any additional data, utilizing knowledge learned from the Open X-Embodiment dataset?

Answering this question is a fundamental part in exploring the capabilities of RT-1-X on new em-
bodiments. RT-1-X has already shown abilities of performing zero-shot in changed environments, e.g.
with changed backgrounds and added distractors. Performance on completely unseen embodiments has
not been investigated yet, even though a model that allows zero-shot generalization to new embodiments
would be very meaningful in the landscape of robotic learning.

During initial experimentation, it became clear that the model failed to complete tasks meaningfully,
highlighting potential limitations in its ability to adapt to novel physical embodiments. Recognizing
these limitations, the focus shifted to exploring various environmental variables that might influence
the model’s performance. This included adjustments to camera positioning, task instructions, target
objects, and background settings. The rationale behind this approach was to identify any factors that
could potentially trigger signs of task completion or to understand better how different variables impact
the model’s behavior, to ultimately determine if the RT-1-X model can transfer any skills it learned from
the Open X-Embodiment dataset, to the UMI environment.

This Chapter mainly explains the experimentation process. First, the experimentation environment
is presented, it is discussed which properties are constant and which ones can change. Then, the process
of experimentation is discussed, including how the model is used, how results are logged, and how they
are evaluated. The result of this chapter is a set of 48 experiments, coming from a combination of these
factors:

2 Tasks x 2 Objects x 8 Camera Positions x 2 Action Interp. x 2 Test Runs = 48 Experiments

The individual factors will be further explained in the course of this chapter. The results of these
experiments will be presented in Chapter 6, and their implications are further discussed in Chapter 7.

4.2 Experiment Design

This section goes into detail about how the experiments were designed to address the goals formulated
in the previous section. First, it is discussed which factors are considered for investigation. Then, the
method of conducting the experiments is explained, and finally, it is discussed how the results of the
experiments will be assessed, and when an attempt will be considered successful.

4.2.1 Considered Variables

When trying to evaluate the effects different factors have on model performance, it is important to get
an overview of all properties of the environment. They can be separated into factors that are constants
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of the environment, factors that can be controllably varied, and factors that change, but cannot be
controlled.

Constant Properties

Firstly, one single embodiment, the UMI RTX robot, will be used for all experiments. While the term
”embodiment” technically only describes the physical robot itself, the terms ”"embodiment” and ”en-
vironment” are closely related in this context, and cannot be completely separated in the course of
experimentation. The ”environment” that is observed by the camera consists of the embodiment it-
self, the workspace (background), target object, possible distractors, lighting conditions and any other
elements that are visible on the observations. Using the UMI embodiment while keeping the rest of
the environment constant to the pre-training data is not possible without having access to one of the
training environments. Furthermore, the UMI is a large robot, permanently installed in a workspace at
UvA’s Intelligent Robotics Lab. In most real world applications, each robotic embodiment will have its
own environment as well, differences in environment are part of the embodiment gap that needs to be
bridged. The UMI robot permanently installed on a worktable, and this table has a fixed position in
UvA'’s Intelligent Robotics Lab. This position and base workspace are taken as constant for this thesis.

Uncontrollable Properties

Environment properties that change, but cannot be controlled, are dangerous to the experiments as
they could have an uncontrollable influence on the results. Only one factor of such category could be
identified, and measures were taken to minimize its impact on experiment outcome.

The fixed position of the robot brings a challenge due to its position close to a window: The workspace
lighting cannot be fully controlled. The window offers semi-transparent blinds, which diffuse the incoming
light, preventing harsh shadows and uneven lighting, those blinds will be used for all experiments, as
well as the room lighting turned on. Also, all experiments will be conducted between 10am and 5pm
during the summer months, to get similar amounts of daylight each time. All of these measures lead
the lighting being roughly similar in all scenarios. However, depending on the time of day as well as the
weather, lighting can still vary slightly.

Controllable Properties

These are the environment properties that can be controlled during the experiments. It is their influence
on model performance that should be evaluated by the experiments, they are therefore the most important
factors. All of the identified controllable properties are described below.

Task and Target Object. The task, given as a natural language instruction, along with the target
object, are arguably the most important factors of the setup, as they define what the robot is supposed
to do in an experiment run. As the goal of these experiments is only to investigate generalization to
new embodiments, it is essential to exclusively evaluate on tasks and objects that are present in the
Open X-Embodiment training data. Simultaneously, the task must be reproducible with the resources
available in the Intelligent Robotics Lab.

Pick-and-place tasks are very common in Open X-Embodiment as well as easily reproducible, which
is why two tasks of this kind are chosen for evaluation: The first language instruction is simply ”Pick up
X7, with X being replaced by the target object. The second evaluation task is slightly more complex,
”Place X in the pan”. As a toy kitchen environment is used in many of the training settings, two objects
from this category are chosen as target objects: A toy banana and a coke can. These objects are among
the most common objects in the entirety of Open X-Embodiment.

Workspace Setup. Besides the robot itself and the target object, the workspace that is observed by
the camera consists of a background, as well as possible distractors. The basic setup used here is a black
tabletop surrounded by a white curtain. As the UMI is fixed to this tabletop, changing the workspace is
very limited. It is experimented with covering the tabletop with a white cloth, as well as placing more
objects on the workspace as distractors.

Camera Position. A change to the camera position alters the model input significantly, as changing
the position even by a few millimeters alters all pixels in the resulting image. Three different camera
positions are therefore considered for evaluation, based on the camera positions of the training setups:
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Figure 4.1: Multiple camera positions were evaluated, as changes in the camera perspective
can change the entire perception of the environment. F.l.t.r: Camera position ”Side”,
”Front”, and ”Shoulder”.

e Frontal: Camera exactly opposite to the robot and looking down at an angle of 45 degrees.

o Shoulder: Camera looking ”over the shoulder” of the robot: Placed to the side of the robot, looking
down on the workspace.

e Side: Camera on the opposing side of the robot, but on the corner of the workspace, looking down.

Figure 4.1 shows sample images from all camera perspectives.

Action Interpretation. As the different training datasets come with different interpretations of action
values, it cannot be clearly determined if the model outputs should be used as absolute coordinates or
relative coordinates; this predicament has already been discussed in Chapter 3. To make sure that the
model performance is not falsely rated as poor, experiments are conducted with both variations of action
interpretation.

4.3 Experimentation Method

To ensure consistency and comparability across all experiments, a standardized method was established.
This section outlines the key aspects of the experimental procedure, beginning with the technical con-
siderations for running inference, followed by the approach to logging and classifying experiment results,
and concluding with details on the sequence and structure of the experiments.

4.3.1 Technical Properties

Several variables of the inference process itself need to be set:

Inference Frequency. This is the frequency at which a picture is taken and a new action is predicted
by the model. Due to the delay between commands and movements of the dated UMI robot, a control
frequency of 0.2Hz (five seconds between actions) is used, which is enough time for the robot to
execute model actions before the next inference step is run.

Sample Size. To prevent random flukes to be rated as good performance, it is crucial to run each
experiment more than once. However, as each experimentation run takes a significant amount of time
(e.g. one run of 50 steps at 0.2Hz takes over 4 minutes, excluding preparation and analysis), increasing
the sample size drastically increases the duration of experimentation. Therefore, each experiment is run
twice.

Result Logging. The main observation will be by physically watching the robot during the experiment
runs. However, to get a deeper understanding of the movements it executes and to be able to reliably
compare different runs, the model outputs will be logged in three different ways:

e A plot of all output dimensions, including a picture of the environment and the language instruction,
for an overview of the entire experiment and its outcome

e A heatmap visualizing the X and Y position of the robot after every inference step, to check if the
robot gets close to the target object

e A CSV file containing the raw output values in case other visualizations are required

Figure 4.2 shows an example of the overview plot (left) and the heatmap (right).
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Figure 4.2: Two visualizations are generated for every evaluation run, to record behavior
of the model and compare between different runs: Output plots (left) and heatmap (right).

4.3.2 Definition of Success

Before starting the experiments, it is important to define how success is measured, and what to look out
for in the outcome of the experiments. The definition of a successful experiment is simple: The outcome
of an experiment will be considered a success, if the robot successfully executes the task it was given.
Each experiment will be ran for around four minutes, or 50 steps of inference. If the robot does not fulfill
the task within that timeframe, the run is classified as ”failure”.

However, as early experimentation has indicated that successful task execution by the model is not
likely, classifying experiment runs into "success” and ”failure” alone does not offer much value. It is
important to also check for behavior that ”goes in the right direction”, meaning it executes some of
the steps necessary for successful task execution, but not all of them. This allows to get a deeper
understanding of the ”failed” attempts, and to separate productive behavior from complete failures.

All evaluation tasks within the experiments are of pick-and-place nature, meaning the first step
towards a successful execution always consists of picking up a target object. This pick up can be further
separated into steps that always need to be executed in any case: First, the robots end effector needs
to move towards the target object. Then, the gripper needs to be open and positioned so that the
target object is between its two sides. Finally, the gripper needs to be closed and the end effector moved
upwards. Then, and only then, the pickup process is successful.

To evaluate tasks that are not fully completed, the level of completion of this series of steps can be
considered. For each failed experiment, it can be determined how many of the required sub-goals were
reached:

1. End effector is moved towards the general area of the target object
2. Gripper is opened

3. Gripper is moved to the exact area of target object

4. Gripper is closed

5. End effector is moved upwards

Notably, these goals must be fulfilled exactly in this order to qualify as signs of success, as e.g. moving
the end effector upwards before any of the other steps are executed is not a meaningful attempt.

Experimentation showed that different variables led to different amounts of movement: In some runs,
the robot made movements spanning the entire range of motion, in others, it stood completely still.
While no statement about performance can be made just from the amount of movement, this will still
be recorded in the testing protocol.

4.3.3 Selection of Experimental Runs

With the experimentation process established and the key variables identified, the next step is to de-
termine the specific set of experiments to be conducted. While testing many different values for each
variable would be ideal, the time-intensive nature of each experiment necessitates a more focused ap-
proach. For instance, 50 steps of inference at 0.2 Hz require over four minutes per run, making exhaustive
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testing impractical.

To balance thoroughness with feasibility, two values were selected for each variable, with the excep-
tion of camera perspective. Early experiments indicated that camera perspective has the most signifi-
cant impact on model behavior; therefore, three different camera angles were chosen for testing. Each
combination of variable values will be tested against all other combinations, resulting in a total of 48
experiments.

The results of the experiments will be presented in Chapter 6, as well as discussed and connected to
the research questions in Chapter 7
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Chapter 5

Improving RT-1-X for the UMI
Robot

5.1 Introduction

The experiments described in the previous chapter have investigated the ability of RT-1-X to perform
on new embodiments without any additional training. Similar large, Transformer based foundation
models from various domains have shown that minimal fine-tuning on domain-specific data can signif-
icantly improve the performance of pre-trained foundation models in new domains [11, 60, 61]. The
ability to leverage existing data like the Open X-Embodiment dataset to reduce the required amount of
embodiment-specific demonstrations would be highly relevant in robotics, where gathering data is costly
and tedious.

The aim of this chapter is to investigate this, directly addressing RQ2: Can fine-tuning RT-1-X on
a small number of demonstrations from a new robotic embodiment improve its performance, and what
are the benefits of using a pre-trained model?

The structure of this chapter is the following: First, the process of creating a dataset of UMI demon-
strations is described, starting with the selection of a task and environment setup, establishing manual
robot control, and storing the data. The next section is about the training process: A fine-tuning pipeline
is built around the pre-trained RT-1-X model, different hyperparameters are discussed. Two more mod-
els are trained in the course of this section, which shall serve as performance comparisons: A version of
RT-1 exclusively trained on UMI data, and a version of the more recent pre-trained Octo model [62],
fine-tuned on UMI data. Finally, the last section describes the experiments that will be conducted with
the fine-tuned model and the baseline models, and how they address the research question. The results
of these experiments can be found in Chapter 6, and will be discussed thoroughly in Chapter 7.

This chapter will deal with multiple models and versions of those models that are quite similar to
each other. For reference, an overview of them is provided in Table 5.1. Their purpose will be explained
in the course of this chapter.

Name Model Architecture | Initial Training Fine-Tuning
RT-1 RT-1 none none
RT-1-UMI RT-1 UMI none
RT-1-X RT-1 Open X-Embodiment | none
RT-1-X-UMI | RT-1 Open X-Embodiment | UMI
Octo-X-UMI | Octo Open X-Embodiment | UMI

Table 5.1: Many different combinations of model architecture, pre-training data and fine-
tuning data are used within this thesis, to compare the influence of different aspects on
performance. Note that the names contain all information about the respective training
data ([Architecture]-[Pre-Training]-[Fine-Tuning]).
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5.2 UMI Dataset

The first step to fine-tuning RT-1-X on the UMI embodiment is to gather a set of demonstrations on the
robot. This section describes the process of creating the dataset, going into detail about the task that
was demonstrated and the environment it was demonstrated in, how the robot was manually controlled,
and how the data was processed and saved for further training use.

5.2.1 Demonstration Scenario

To evaluate the fine-tuning potential of RT-1-X, it was fine-tuned on a single scenario from the UMI
environment, meaning one task, one object, and one workspace setup. As with the zero-shot evaluation,
object and task are chosen based on the ones that are already represented in Open X-Embodiment:
The task is simply picking up an object from the workspace, the target object being a banana, which is
amongst the most common items in Open X-Embodiment

For the workspace setup, values are chosen that led to large amounts of movement in the zero shot
evaluation runs. As discussed in Chapter 4, large amounts of movement in a trial run do not necessarily
indicate better model performance over a run with little movement, however it increases the chances of
observing patterns in the movement. Therefore, the ”Side” camera position is chosen (see Section 4.2.1).
For simplicity during demonstration recording, absolute movement values are used for fine-tuning.

5.2.2 Robot Teleoperation

To demonstrate task execution on the UMI, a mode for manually controlling the robot needs to be
established. While the UMI control software provides a graphical user interface that allows manual
control of the robot, executing tasks repeatedly with this mode of operation is not intuitive and takes a
long time. For the purpose of task demonstrations, the robot will therefore be controlled with a gamepad
in the form of a PlayStation controller, which allows for intuitive, efficient control. A further discussion
of the teleoperation strategy along with a comparison to other datasets from Open X-Embodiment can
be found in Appendix B.1.

5.2.3 Data Processing

On the software side, the aim was to collect demonstrations that are similar in format to the datasets
in Open X-Embodiment, in order not to increase the embodiment gap further than necessary. The
previously mentioned input delay of the UMI also adds some challenges here.

The aim was therefore to create episodes of around 30 steps, which is the average of BridgeData,
the biggest relevant dataset [59]. To achieve that with the UMI robot, which is very slow in movement
compared to other embodiments, actions were logged every five seconds, or at a frequency of 0.2Hz.

It is to be noted that due to the mode of teleoperation, the gathered action data is much less ”organic”
than with VR controls. With the UMI and gamepad, the mode of operation is giving a control input,
waiting for the robot to execute it, and then giving the next control input, while with VR teleoperation
as in the bridge dataset, the control input is much more dynamic, as the robot executes it almost in real
time.

After each demonstration run, an episode is saved in a simple NumPy file format. RT-1-X uses
Google’s RLDS dataset format. One of the researchers behind Open X-Embodiment published a tool
to build such datasets®, this code was adapted and used to convert the demonstrations to the correct
format.

5.2.4 Validation

To prevent any issues that stem from false or inaccurate action recording, code was written that loads
the demonstration episodes one-by-one and replays the actions in a simulated environment. This allowed
to inspect each demonstration run and to make sure that the correct movements were stored.

Thttps://github.com/kpertsch/rlds_dataset_builder
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5.3 Fine-Tuning RT-1-X

The demonstration dataset is now ready to be used for fine-tuning. This section explains how it was used
to fine-tune the pre-trained RT-1-X model. It describes the development of a fine-tuning pipeline based
on the available training code and discusses various parameters of the fine-tuning process. Furthermore it
describes the training of two additional models that shall be used as baselines for performance comparison:
On one hand, the non-pre-trained RT-1 model will be trained exclusively on the UMI dataset, which
means that the Open X-Embodiment pre-training is ablated. On the other hand, the more recent Octo
model architecture, also pre-trained on Open X-Embodiment, is fine-tuned on UMI data, in order to
ablate the RT-1 architecture.

5.3.1 Building the Fine-Tuning Pipeline

While there is no fine-tuning code available, the authors of Open X-Embodiment provide an example of
the code they used to train the model from scratch, with the entire Open X-Embodiment dataset. This
code was used as a basis for finetuning.

There are several approaches to fine-tuning Transformer based models that only fine-tune certain
layers, or even add additional layers to the pre-trained model that are then fine-tuned [62]. For this
thesis, it was experimented with freezing the first Transformer layers and fine-tuning only the last 3 of
the total 8 Transformer blocks. This did not seem to make a difference in outcome, it was decided to
fine-tune the whole model for further experimentation.

5.3.2 Hyperparameters

There are multiple variables that have an influence on the training process, for which it is necessary to
find suitable values. As a baseline, the values from the inital training code are used. By changing the
values based on suggestions from literature, it is investigated if the fine-tuning process can be optimized.

Batch size

A batch size of 1024 was used during the Open X-Embodiment pre-training. Using a batch size of
this size is not possible due to memory constraints: The machine available for training has a vRAM of
24GB. Additionally, it is common practice when fine-tuning foundation models to use a batch size much
smaller than the one used during the initial training, as the fine-tuning dataset is much smaller [61].
By experimentation, it was found that the largest possible batch size on the available hardware is five
episodes. This is because each episode contains multiple images, together with language embeddings and
output actions.

When comparing the training process with a batch size of 2 and a batch size of 5, it shows that the
training is quicker and more constant with a bigger batch size. Figure 5.1 shows a comparison of the
training loss curves. It shows much less noise in the training curve of the higher batch size, suggesting
that training could be further improved with a higher batch size.

Learning rate

One of the main parameters of the training process is the learning rate. RT-1 uses the Adam optimization
algorithm [63] for training. One of the main contributions of this algorithm is the dynamic adaptation
of the learning rate, which leads to it typically requiring little tuning of the hyperparameters [63]. In the
published RT-1-X training code, the learning rate is set to le-4. Looking at other Transformer-based
foundation models, the learning rate for fine-tuning is typically lower than the one used for initial training
[64]. Tt was experimented with a variety of different learning rates, the training loss curves of some of
them are shown in Figure 5.2. Ultimately, a learning rate of 5e-6 was chosen, which led to the most
success.

Training Steps

Finally, it is important to train the model for a suitable amount of steps, allowing it to learn the behavior
of the task without overfitting the training data. Through experimentation and comparison to similar
fine-tuning setups, it was established that the best performance could be achieved at around 50.000 steps.
Notably, the training process is quite noisy due to the encountered batch size limitations. To achieve the
best possible performance, a training checkpoint was saved every 1000 training steps. Before running
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Figure 5.1: Using different batch sizes in training had significant effects on the noise in the
loss curves. Compared here are training loss curves for batch size 5 (red) and batch size 2
(blue), with all other parameters unchanged. The biggest usable batch size in this research
is five, due to hardware limitations.
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Figure 5.2: The choice of the learning rate proved to be essential for the quality of the
training process. The chart shows the comparison of different learning rates when fine-
tuning RT-1-X on the UMI dataset. A learning rate of 5e-6 was ultimately chosen.
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Figure 5.3: Inference is run with images from the UMI fine-tuning dataset to verify that
fine-tuning was effective. Output of RT-1-X run with images from the UMI dataset is
shown in red, compared to actions recorded during demonstration (ground truth) in blue.

the experiments, all checkpoints from step 40.000 to step 60.000 were evaluated. The best checkpoint
was found to be at 55.000 training steps, this was then used to run the experiments.

5.3.3 Validation

To verify that the fine-tuning process was successful, inference is run with the images and language
instruction from an episode of the training dataset. Figure 5.3 shows the original actions in the recorded
episode (blue) and the predicted actions by the fine-tuned model (red).

5.4 Baseline Models

Two baseline models will be trained with the UMI dataset, allowing a further analysis of the performance
of RT-1-X-UMI in two different aspects:

e RT-1, trained on UMI data: This version of RT-1 is not trained on Open X-Embodiment, but
exclusively on the UMI dataset. Comparing it to RT-1-X-UMI will give insights into the benefits
that can be achieved with Open X-Embodiment pre-training compared to training the same model
from scratch.

e Octo, pre-trained on Open X-Embodiment, fine-tuned on UMI data: With the same
training process and data as RT-1-X-UMI, this comparison will allow discussion and comparison
of the RT-1 model architecture itself.

5.4.1 RT-1 trained on UMI Data

The from-scratch training pipeline given in the Open X-Embodiment repository is used, all hyperpa-
rameters are left unchanged with the exception of the batch size, which is set to the hardware-limited
maximum of five.

Training is run for 100.000 training steps, where the loss curve reaches a clear convergence and
training loss values are similar to the ones of the fine-tuning. As with the fine-tuning process, the best
checkpoint between 90.000 and 110.000 steps is manually evaluated.

5.4.2 Octo fine-tuned on UMI Data

The Octo model architecture was presented in 2024 by Deepmind. It has many similarities to RT-1,
although it focused much more on adaptability and tunability, and has been demonstrated to work well
in fine-tuned settings. Octo will be further discussed in Section 8.1.2. A ready-to-use fine-tuning pipeline
for the Octo model is provided by the authors. This pipeline is taken as-is, with the only exception of
the batch size: It was found through experimentation that the maximum usable batch size constrained
again by hardware limitations is 8.

5.5 Experiment Design
With the RT-1-X model now fine-tuned on a number of demonstrations from the UMI environment, this

section describes the process of running the experiments necessary to evaluate the performance of the
fine-tuned RT-1-X-UMI on the UMI robot. The results from the experiments can be found in Section
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6.2 as well as a thorough discussion of them in Chapter 7. The evaluation can be separated into three
general categories:

e In-distribution Performance: How does the model perform on the task it has been fine-tuned
on?

e Generalization/Transfer Performance: Does the model generalize to new tasks and objects
that were seen during pre-training, but not during fine-tuning?

e Ablations/Baseline Comparisons: How does the performance compare to other model setups?

The impact of fine-tuning on model performance can be evaluated by comparing the results with the ones
of the zero-shot evaluation in Chapter 4. To assess also the impact of pre-training on model performance,
all experiments will be also executed with a version of RT-1 that has been trained exclusively on UMI
data.

5.5.1 In-distribution performance

The aim is to find out how well RT-1-X performs on the task it has been fine-tuned on, as well as to
investigate if the model benefits from the initial training on Open X-Embodiment. The banana pickup
task is ran 30 times, in the exact same configuration as in the training dataset. The position of the
target object is changed between each experiment so that the positions are evenly distributed along the
entire workspace. This is to prevent bias in the results that could stem from using ”successful” positions
multiple times.

Each experiment is run until the model outputs the signal to terminate the episode. An evaluation
run is interrupted and counted as failure after 50 steps of inference if there is no progress towards the
goal recognizable. The run is counted as a success if the robot picks up the banana from the workspace
and then terminates the episode. Additionally, complete failures and "near miss” failures are recorded
in the testing protocol. An evaluation run is counted as ”"near miss” if the robot executes a correct pick
up procedure (opening gripper, moving down to workspace, closing gripper, moving up) where the X
and Y positions are not accurate enough, meaning it is away a maximum of 5cm from the banana.

This experiment is also run 30 times with the RT-1-UMI model, to achieve a comparable performance
baseline. The results of these experiments are shown in Chapter 6. A complete testing protocol with
descriptions of notable observations can be found in Appendix B.

5.5.2 Generalization/Transfer performance

The goal is to evaluate if RT-1-X-UMI is able to generalize to new objectives on the UMI by leverag-
ing knowledge learned on other embodiments, during Open X-Embodiment pre-training. This will be
evaluated in three dimensions. Each dimension will be tested with one experiment setup:

e Generalization to new objects: The same pick up task will be run, only this time with an
apple instead of the banana. The apple is the most common food object in Open X-Embodiment.

e Generalization to new tasks: The new task will be ”"Place the yellow banana in the pan.”.
Pick-and-place tasks are very common in Open X-Embodiment, as well as the pan object.

¢ Generalization to environments: The color of the workspace table will be white instead of
black.

Each of these experiments will be conducted ten times, with the target object in random positions on
the workspace. For the generalization to new objects and new environments, ”near miss” attempts will
again be recorded. For the new task, near miss attempts are harder to classify, as the task is more
complex and there are multiple stages where accuracy is required (pick up, placement). This experiment
will therefore be rated as either fail or success, although detailed observations about the robots exact
behavior are logged in the test protocol in Appendix B.2
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Chapter 6

Results

The following chapter presents the experimental results obtained during the course of this research. These
results are structured to address the key research questions outlined earlier, focusing on the performance
and adaptability of the RT-1-X model when applied to new robotic embodiments, particularly the UMI
robot.

The chapter begins by presenting the outcomes of the zero-shot experiments, which evaluate the
model’s ability to generalize to a new embodiment without any additional training. This is followed by
a detailed examination of the results from the fine-tuning process on the UMI robot. This is done by
first addressing the model’s performance on tasks specifically demonstrated in the fine-tuning dataset,
and then exploring the potential for transferring knowledge learned during the Open X-Embodiment pre-
training to the new embodiment. Additionally, the sensitivity of the model to changes in the environment,
as compared to the original fine-tuning conditions, is analyzed. Finally, the chapter investigates the
overall impact of the Open X-Embodiment pre-training and the influence of the RT-1 model architecture
on the model’s performance. Full procotols of the experiments can be found in Appendix B.2.

Table 6.1 presents an overview of all the experiments conducted, listed in the order in which their
results are presented in this chapter. Each section provides both quantitative and qualitative analyses of
the experimental data, highlighting key patterns, successes, and limitations observed during the testing
process. The results presented here form the foundation for the subsequent discussion, where these
findings are interpreted and contextualized within the broader scope of robotic learning and model
adaptation.

6.1 Zero-Shot Experiment Results

In the first step of this research, the performance of the RT-1-X model zero-shot on the unseen UMI
embodiment was investigated. As first trial runs indicated that no successful task executions were
possible, the focus of experimentation was laid upon investigating the effects different environment

Experiment | Relevant RQ | Model Version Evaluation Objective

EX1 RQ1 RT-1-X Zero-shot generalization to new embodiment
EX2 RQ2 RT-1-X-UMI Performance on fine-tuning scenario

EX3 (a&b) RQ2 RT-1-X-UMI Object knowledge transfer from Open

X-Embodiment to fine-tuning domain
EX4 RQ2 RT-1-X-UMI Task knowledge transfer from Open X-Embodiment
to fine-tuning domain
EX5 RQ2 RT-1-X-UMI Sensitivity to changes in environment
EX6 RQ2 RT-1-UMI Benchmark performance without Open
X-Embodiment pre-training

EXT7 RQ2 Octo-X-UMI fine-tuning performance of RT-1 architecture

Table 6.1: Many different experiments were conducted to evaluate different aspects of
generalization performance.
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factors had on performance and general model behavior.

The RT-1-X model was evaluated on the UMI embodiment in a variety of environment setups, involv-
ing different objects, backgrounds, camera perspectives, tasks, and instructions. A series of 48 structured
experiments was conducted. The result of these experiments were zero successful pickup attempts. The
model behavior can be described as random in all cases, showing no clear attempts by the robot to reach
its intended goal.

No performance improvements could be observed by changing environment variables. Some changes
in general behavior were observed when changing certain variables: While for some setups the model
output very similar values at each inference step, other setups showed much more variation in output
between each step. This was especially prominent when switching between the camera positions ”Side”
and ”Shoulder”: Evaluation runs with the ”Side” camera position showed significantly more variation
with the model outputs spanning almost the entire action space on some axes, while for the ”Shoulder”
camera position, outputs are always very close to zero (or the middle of the robot action range after
conversion). Figure 6.1 shows output logs of trial runs with the two camera positions.

"Pick up the yellow banana fruit.", Frequency = 0.2Hz "Pick up the yellow banana fruit.", Frequency = 0.2Hz
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Figure 6.1: Camera position was found to have the biggest effect on model behavior.
Camera position ”Side” (left) shows significantly more variation than ”Shoulder” (right).

Despite this observation, the results of the experiments with the zero-shot model are clear: The
RT-1-X model shows no successful knowledge transfer to the unseen UMI embodiment.

6.2 Fine-Tuning Results

The second step of this research was to investigate if the performance could be improved by fine-tuning the
model on demonstrations from the UMI robot. The RT-1-X model was fine-tuned with a dataset of 100
manual demonstrations of the UMI executing a simple task (picking up a banana from the workspace).

6.2.1 In-Distribution Performance

The first experiment evaluated the performance of the fine-tuned model on the demonstrated task. In this
experiment, a success rate of 23% could be achieved. In most of the non-successful evaluation runs, the
robot executed the correct movements, and was off from the target object by less than five centimeters.
Experiment runs where the robot executes the correct sequence of actions and is off by less than five
centimeters are classified as "near miss”. All evaluation runs that resulted either in success or a near
miss combined make up 80% of all evaluation runs. Table 6.2 shows the outcome of the experiments.

Observation | Amount
Success 7
Near Miss 17
Failure 6
Total 30

Table 6.2: Results of the fine-tuned model on the demonstration task

38



CHAPTER 6. RESULTS

Notably, the model shows signs of being biased towards certain positions on the workspace. When
repeating a near miss run with the target object position unchanged, the robot typically executes a near
miss in the exact same position. When moving the target object to this position, the robot is able to
successfully pick it up. Possible reasons for this behavior are discussed in Chapter 7.

6.2.2 Transfer and Generalization

RT-1-X has been shown to transfer knowledge across embodiments within its pre-training dataset, as
well as to generalize well to changes in environment. Experiments were conducted to evaluate if these
abilities can be extended to the new embodiment through fine-tuning.

Transfer of Object Knowledge

The first experiment aimed to investigate if objects that were only seen in Open X-Embodiment during
pre-training are recognized on the UMI, by the fine-tuned model. A coke can, which is a common object
in Open X-Embodiment, was placed on the workspace and the model was instructed to pick it up. As a
second part to this experiment, the coke can and the original banana were placed on the workspace, the
robot had to decide which one to pick up.

Table 6.3 shows the results of the experiment with only the can present in the workspace. A success
rate of 10% and a success or near miss rate of 60% was achieved. When both the coke can and the
banana object were placed on the workspace, the results were significantly worse, with no successful pick
ups. To capture the object recognition abilities of the model, these experiments are classified as either
near miss attempts on the coke can, near miss attempts on the banana, or no significant attempts at
either of the objects. The results of this are shown in Table 6.4.

Observation | Amount Observation Amount
Success 1 Coke pick up attempt 5
Near miss ) Banana pick up attempt 3
No attempt 4 No attempt 2
Total 10 Total 10

Table 6.4: Results of can pick up with
can and banana in workspace

Table 6.3: Results of can pick up with
only can in workspace

Transfer of Task Knowledge

To investigate the transfer of task knowledge to the new embodiment, the model was prompted to place
the known target object into a cooking pan. No meaningful attempts of executing the task successfully
were observed. In most of the cases, the robot executed pick up attempts for either the banana or the
pan, and terminated after the pick up attempt, no effort was made to place the object somewhere else.

Observation Amount
Pan pick up attempt 7
Banana pick up attempt 2
No attempt 1
Total 10

Table 6.5: Results of banana-in-pan task

Sensitivity to Environment Changes

To investigate how the model handles changes to the environment, the environment observed by the
model was altered: The black workspace was covered with a white tablecloth. This lead to a dramatic
loss of performance, with the model only achieving one near miss attempt, all other trial runs resulted
in either random movement or pick up attempts far away from the target, as shown in Table 6.7.
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Observation | Amount
Success 0
Near miss 1
No attempt 9
Total 10

Table 6.6: Results of changing the workspace background

6.2.3 Ablations

The RT-1-X foundation model consists of two main components: The RT-1 model architecture, and the
Open X-Embodiment pre-training. The following two experiments were designed to ablate each of those
components, to investigate the roll they play in the performance and training efficiency of RT-1-X-UMI.

Ablating Open X-Embodiment Pre-Training

To evaluate the effect that the Open X-Embodiment pre-training has, a version of RT-1 is trained
exclusively on the UMI dataset, which allows for comparison of the learning process as well as of the
performance.

The training process shows that the behavior on the UMI embodiment can be learned much faster
with Open X-Embodiment pre-training. To compare the performance, the same evaluation on the
demonstrated task as before is run with the from-scratch model. This version of the model shows
significantly less success than the fine-tuned variant, with a success rate of 10% and an accumulated
success or near miss rate of 33%.

Observation | Amount
Success 3
Near miss 7
No attempt 20
Total 30

Table 6.7: Results of RT-1 trained on UMI without pre-training

Ablating the RT-1 Model Architecture

To investigate the fine-tuning suitability of the RT-1 architecture, it is compared to another model
architecture which has been proven to be well suited for fine-tuning on new embodiments, the recently
introduced Octo model. It is similarly pre-trained on Open X-Embodiment, and fine-tuned on the UMI
dataset. In the fine-tuning process, this model proved to be more resource efficient, allowing to use a
larger batch size, which also led to a less noisy training process.

When evaluating its performance on the demonstrated UMI task, this model showed good perfor-
mance on object recognition and location, however no pick up attempts were observed, as the robot
never opened its gripper or moved low enough to the workspace. This however is likely a problem in
the training setup, this issue will be further discussed in Chapter 7. The results for this experiment are
therefore not counted as valid, and not used for comparison.
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*Likely issues in training of Octo, results not comparable

Table 6.8: A comparison of the results of all experiments conducted. For additional results
that are not comparable across all experiments, see the respective sections in this Chapter.
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Chapter 7

Discussion

Following the presentation of methodology, experiments and results in the previous chapters, this discus-
sion synthesizes the findings, relates them back to the research questions, and reflects on their broader
implications within the field of robotic learning. The main part of this Chapter explores the results of
the experiments, and based on them, critically examines the performance and limitations of the RT-1-X
model. This will be organized around the key research questions posed in the thesis. Secondly, additional
findings that were made in the course of research are presented. While they do not relate directly to the
research questions, they still hold valuable information about the process and its components. Lastly,
threats to the validity of the findings and limitations of this research are discussed.

7.1 Main Findings

Can the RT-1-X model generalize to a completely unseen robotic embodiment,
without any additional data, utilizing knowledge learned from the Open X-
Embodiment dataset?

RT-1-X has previously been shown to generalize very well to unseen objects, backgrounds and environ-
ments, as well as the ability to transfer tasks learned on one embodiment to other embodiments within
the training data [1]. Generalizability to unseen embodiments however has not been shown yet. The
aim of the first part of this thesis was to find out if RT-1-X is able to generalize to new embodiments
out-of-the-box. A complete control pipeline was build around RT-1-X for the UMI robot, including robot
control logic, infrastructure to communicate between the model and the robot, and the inference code
itself. All parts of the pipeline were carefully tested and validated, to eliminate any issues that could
distort the outputs of RT-1-X.

The zero-shot performance of RT-1-X was found to be lacking. Early experimentation revealed
that the model’s performance was far from achieving successful task execution. As a result, the focus
shifted toward systematically experimenting with all factors of the robotic environment to understand
their influence on model behavior and to explore whether any specific setup could facilitate progress
in task execution. Over 200 exploratory trial runs were conducted, followed by a set of 48 systematic
experiments. Despite these extensive efforts, no successful task executions were observed. Although the
experiments were designed so even small progress towards the goal would be reflected in the results, no
behavior that suggested any meaningful attempt to reach the goal was observed.

Altering certain environmental factors had one noticeable effect on the model’s behavior: in some con-
figurations, the model produced significantly greater variety in its outputs, resulting in more robot move-
ment. This raises the question of whether increased movement necessarily indicates a better-performing
environment setup compared to scenarios with minimal movement. No discussion about this could be
found in literature. Despite further experimentation with the configurations that generated the most
movement and attempts to connect this increased variation in model output to existing research, no
definitive conclusions could be drawn. Consequently, it can be stated that despite this observation, no
improvements in task performance were observed through extensive experimentation with environmental
setups.

This leads to the following clear finding addressing RQ1:
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Finding 1: RT-1-X is not able to generalize any of the knowledge learned on Open X-
Embodiment to the unseen UMI robotic embodiment out-of-the-box.

Since zero-shot generalization was tested on only one embodiment (the UMI), it remains possible that
RT-1-X could perform effectively on other embodiments out of the box. However, this example proves
that RT-1-X is not universally generalizable to new embodiments.

The lack of real change in model performance when altering multiple environmental factors during
experimentation makes it difficult to narrow down the specific aspects of the new embodiment that cause
the failure. As RT-1-X has previously shown strong generalization to new objects, tasks, environments,
and distractors, this finding calls into questions which factors of the embodiment gap are responsible
for the complete lack of zero-shot performance. The fact that RT-1-X handles significant environmental
changes yet fails entirely in adapting to a new embodiment also leads to further discussion on the
fundamental differences between adapting to a new environment versus a new embodiment.

Although, strictly speaking, an embodiment refers to the robot’s physical form, including its sensors
and actuators, in practice, the embodiment and its environment are closely intertwined. The ”envi-
ronment” observed by the robot’s camera includes not only the workspace, background, target objects,
and possible distractors but also the robot’s own embodiment as a visible part of the scene. In these
experiments, efforts were made to replicate many factors from the datasets used in Open X-Embodiment
and avoid introducing additional distractors. The camera perspectives and objects were selected based
on common examples from Open X-Embodiment, and neutral backgrounds were chosen to mirror typical
setups in the pre-training dataset. Nevertheless, significant differences remain in the environment that
are not strictly related to the embodiment itself.

When looking at the robotic embodiment itself, the main difference between the UMI and all other
embodiments from Open X-Embodiment is the robot type: The UMI is a robotic arm of the SCARA
type, no other robots of this type are present in Open X-Embodiment. RT-1-X is built to control robots
directly via end effector coordinates, meaning the difference in control logic between SCARA and other
robots are not within the scope of the model. However, a SCARA robot is different in appearance from
other embodiment types, and movements are executed differently. The same end effector position can
therefore look very different on the image that is used as model input.

While these are some dfferences that could be part of the reason RT-1-X is not able to generalize to
the new embodiment, narrowing down the concrete factors that differentiate embodiment transfer from
simple changes in environment is an objective for further research.

RQ2: RQ2: Can fine-tuning RT-1-X on a small number of demonstrations
from a new robotic embodiment improve its performance, and what are the
benefits of using a pre-trained model?

Given the failure of zero-shot performance, the research shifted focus to whether RT-1-X could be fine-
tuned to work effectively on the UMI robot. While achieving zero-shot generalization to new embodiments
would be highly significant as it would enable universal robot control by RT-1-X, the ability to fine-tune
with minimal effort is still highly valuable, as it allows a robot to learn a large number of skills without
an extensive data gathering and training process. The experiments explored gathering demonstrations
on the UMI robot and the fine-tuning process, the impact of pre-training on Open X-Embodiment, and
the transferability of task and object knowledge from the pre-training phase to the fine-tuning domain.

RQ2.1: How does the fine-tuned RT-1-X model perform on the specific task for which it
was fine-tuned?

When evaluated on the in-distribution task, the fine-tuned model shows a success rate of 23% over 30
experiment runs. This is a significant achievement compared to the non-existent zero-shot performance
and shows that it is possible to further improve the RT-1-X model for specific embodiments by fine-
tuning.

This number is however still low when compared to the performance of RT-1-X on embodiments
that were part of its pre-training. A comparison between the success rates of pre-training environments
and the fine-tuned UMI results is given in Table 7.1. Also listed is the number of demonstrations that
each dataset consists of. It is probable that with a higher number of episodes, the success rate of the
fine-tuned scenario would also increase.
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Setting Episodes | Success Rate
RT-1-X-UMI on UMI robot | 100 23%
Jaco Play 976 63%
Berekley Cable Routing 1482 56%
NYU VINN 435 80%
Berekley Autolab UR5 896 45%
Freiburg Franka Play 3242 2%
Berekley Bridge 25460 27%
Original RT-1 73499 73%

Table 7.1: RT-1-X shows varying amounts of success even within setups from its training
data. RT-1-X-UMI scores the lowest, however it also has the lowest amount of episodes in
its dataset. [1]

When looking at the failed evaluation runs, the test results show that 77% of all failed attempts are
near misses, meaning the robot executed the correct sequence of actions to pick up the target object,
however it was off on the X and Y coordinates by a small margin. This means that 80% of evaluation
runs led to a result of either success or near miss, showing that while the model managed to pick up the
behavior patterns of the UMI robot, it is struggling with the accuracy of its movements.

A possible reason for this is the method of collecting the training dataset. The manual demonstrations
were conducted by looking directly at the robot and not at the camera image, meaning the position of
the gripper could be observed from multiple perspectives, allowing for far more accurate positioning than
with only the camera perspective. Furthermore, no ”corrections” were part of the training data: When
the robot, controlled by the model, starts a pickup attempt which is off by only a few centimeters, it
does not know how to correct the position, as all pickup attempts in the training data were accurate
on the first try. This lack of knowledge about correcting mistakes and inaccuracies is well known in the
field of imitation learning.

An interesting phenomenon observed during experimentation is that the robot apparently has ”pre-
ferred” pickup spots. These are specific target object locations that consistenly lead to successful pick
up. This behavior was confirmed through an additional experiment: After an initial experiment where
the pick up attempt is a few centimeters away from the target, the target object is placed at the exact
location where the robot tried to pick it up before. Subsequent trials with this new location are then
typically successful. This could indicate that the model is overfitting its training data, by achieving a
high success rate for locations that are part of the training demonstrations, and lower success for lo-
cations that are unseen. While overfitting could be caused by training the model too fast or too long,
it was experimented with both of these aspects (see Chapter 5), no improvements were observed with
slower or shorter training. This issue is therefore likely a symptom of the rather small training dataset.

Finding 2.1: The performance of RT-1-X can be improved on a new embodiment by fine-tuning,
although it does not reach the same level as for the pre-training embodiments. The main issue is
accuracy, with most failed attempts being less than 5cm off.

RQ2.2: Can the fine-tuned RT-1-X model transfer concrete knowledge learned during Open
X-Embodiment pre-training to the new embodiment and maintain performance when faced
with changes in the demonstration environment?

To take the investigation of the effects of pre-training one step further, it was investigated if concrete
skills learned on the pre-training embodiments can be transfered to the new domain. It has been
shown that RT-1-X is able to take skills that were learned on one embodiment and transfer them to
another embodiment. This has however only been within the embodiments that are part of the Open X-
Embodiment pre-training mix. This series of experiments investigated if tasks learned during pre-training
could be transferred to the new fine-tuning embodiment.

The first experiment investigated if the model recognizes objects that were only seen in pre-training.
After initial success with using a coke can as the target object instead of the banana, an additional
experiment was conducted to investigate the models object recognition capabilities: When running the
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pick up task with both the banana and the coke can on the workspace, the model did not show capabilities
of reliably identifying the correct object. In around half the attempts, the robot tried to pick up one of
the two object, the other half of the experiments did not show any significant pick up attempts. This
implies two things: First, knowledge about other objects is not transferred from the pre-training data.
The second, unexpected observation is that the model is also not able to reliably identify the object it
has been fine-tuned on as soon as there is another object on the table. The model has only learned to
pick up an object from the workspace, but has no further understanding of what the object is.

When investigating the transfer of new tasks to the UMI, a similar observation can be made. The
task is to place the banana in the pan, while on the workspace there is the banana and a cooking pan. As
in the previous experiment, the model tries to pick up one of the objects in around half of the attempts.
This time it is almost always the pan that the model tries to pick up. This shows again that it has
no capabilities of object recognition. Furthermore, after the pick up attempt of either the banana or
the pan, the model sends the termination signal, it makes no effort to place the object somewhere else.
This shows that it has no understanding of the new task, and only executes the pick up task it has been
fine-tuned on.

To investigate the effect of changes in the environment, the black workspace is covered with a white
tablecloth while leaving everything else about the setup as-is. This led to a dramatic decrease in perfor-
mance, with only one significant pick up attempt, and all other trial runs resulting in random movements.
This indicates that the fine-tuning process adapts the model very closely to the fine-tuning domain. Mi-
nor changes to the environment making the scene appear differently than in the demonstrations instantly
disrupt the performance.

Finding 2.2: Concrete knowledge about tasks and objects learned during pre-training is not
transferred to the new embodiment during fine-tuning, and slight changes to the environment
reduce performance drastically. Only the skills learned during fine-tuning, in the environment
used during fine-tuning, can reliably be reproduced.

RQ2.3: What benefits does pre-training on the Open X-Embodiment dataset provide when
fine-tuning RT-1-X on a new embodiment?

The previous discussion has shown that the model is generally able to be adapted to the UMI robot. It
has however not been investigated yet what the actual benefit of fine-tuning a pre-trained foundation
model is, compared to simply training a model from scratch.

To do so, a version of RT-1 was trained from scratch and exclusively on the UMI dataset. This
allows a comparison between two versions of the exact same model (RT-1), one version being a ”simple”
end-to-end control model trained on a specific embodiment, and the other version being the RT-1-X
foundation model with Open X-Embodiment pre-training.

The from-scratch training was initially conducted using the same exact training parameters as for
the fine-tuning process. Figure 7.1 shows the loss curves of the from-scratch training and the Open
X-Embodiment based fine-tuning. For the fine-tuning, the training loss drops significantly faster than
for the from-scratch training. This indicates that the knowledge learned from Open X-Embodiment does
indeed help to learn the correct model behavior for the UMI embodiment, and can significantly speed
up the training process.

To get a performance comparison, the learning rate for the from-scratch training was increased
and training was run for twice as long, to account for the observed slower learning. The same exact
experiments as with the fine-tuned model were rerun, leading to lower performance with a success rate of
10%, and a cumulated near miss and success rate of 33%. This indicates that not only the training speed
can be improved by choosing the foundation model over training from scratch, but also the resulting
performance is better.

These observations show that the use of the pre-trained foundation model is able to both speed up
the training process, and improve the results that can be achieved with a small training dataset.

So far, it was found that RT-1-X can be improved for the UMI robot, although with significant
limitations in accuracy and generalizability. I was also found that the Open X-Embodiment pre-training
significantly improves the learning of new embodiment behavior. What hasnot been investigated so far
is the influence of the RT-1 model architecture, which is the basis of the RT-1-X foundation model. An
effort was made to investigate this by comparing it to the very recent Octo model, which is also available
pre-trained on Open X-Embodiment. A detailed presentation of Octo can be found in Chapter 8. In
comparison to RT-1-X, there is a ready-to-use fine-tuning pipeline available, which was used to fine-tune
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Figure 7.1: Learning from scratch exclusively on UMI data (green) is significantly slower
than when using Open X-Embodiment pre-training (red). Exponential smoothing was
applied to the loss curves for clarity.

Figure 7.2: While the Octo model fine-tuned on the UMI (red) generally fits the training
data (blue) well, the gripper dimension seems unaffected by training, and the Z coordinate
never goes all the way down to the workspace.

the model on the UMI demonstrations.

The fine-tuning runs much more memory efficient and allows the use of a higher batch size and
therefore a smoother learning process. When running inference with the fine-tuned model on sample
data, the model shows very promising behavior. Overfitting to the training data seems to be less of
a problem than with RT-1-X. However, the model seems to have problems with two of the output
dimensions: The gripper is never actuated, and the z-axis never goes down far enough to pick up the
target object. Figure 7.2 illustrates this, running inference with images from the UMI dataset: While
most dimensions show accurate predictions, the z axis never goes down, and the gripper is not actuated.
This behavior is confirmed when running the fine-tuned Octo model on the actual UMI robot: In all
attempts, the arm moves to the correct x and y axis positions quickly and very accurately, but then does
not open its gripper and does not move down to the workspace. Interstingly, while all axes seem to fit the
training data more accurately the longer the training is run, the gripper coordinate does not improve,
and the z coordinate actually gets worse. It was experimented with different training parameters and
scaling, but this situation could not be improved.

While due to this problem the Octo model technically showed a 0% success rate, it is highly likely
that this issue is training related and does not stem from the embodiment or the model architecture.
Therefore, no conclusions about the performance of the Octo model can be made at this point, and the
comparison of Octo and RT-1 fine-tuning is left for further reserach.

Finding 2.3: While no concrete knowledge is transferred, using the pre-trained model over
training a model from scratch still offers advantages in training speed and resulting performance.

7.2 Additional Observations

In the process of working on this thesis, one of the biggest challenges was to bring a great variety of
technologies together, from the 40 year old UMI robot to the state-of-the-art RT-1-X model that came
out last year. This involved getting familiar with each technology and making them work individually,
before finally connecting them and integrating the entire system. This revealed challenges and intricacies
of the different parts of the system, the lessons learned about them shall be presented in this section.
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7.2.1 Working with the UMI RTX

The UMI RTX is very different to robot embodiments that are typically used in research. Most of the
differences can be attributed to its age: It was produced in the 1980s and 1990s, a very low number of
UMI robots is still in use today. There are multiple challenges that were found to arise from working
with such an embodiment.

The first issue is that compared to other, standardized embodiments, it was never built to be used
with modern robotic tooling like ROS. Using it in modern research scenarios and together with modern
components, e.g. the RT models, requires custom code to make it work. Two such custom tools were
build for the UMI robot at UvA: On one hand, low-level control code, providing an interface to control
individual joints of the robot. The other part is a software package building a ROS2 interface around that
interface, together with code for inverse kinematics, GUI, path planning and object detection. While
this package includes many features, it was build for a single research project by two students which are
no longer present at UvA. The limited use of the UMI robot outside this research project (neither at
UvA nor at other institutions) led to lack of testing and generalization of this software. At the start of
working on this thesis, it turned out that the ROS2 interface for the UMI was much less complete than
expected. Getting it to work reliably required much experimentation and debugging. The result is a
new, minimal ROS2 interface for the UMI, which does not support previous features like path planning
and object detection, but offers simple ROS2 controls for the UMI. There are still limitations to this,
as the inverse kinematics logic does not reliably work at the edge of the robot’s action space. While for
this project, the robot movement was simply limited to the area where the inverse kinematics work, for
future work with the UMI robot, it would make sense to rework the inverse kinematics logic.

On the mechanical side, the age of the UMI leads to issues as well. Most joints of the UMI are
controlled with toothed belts, which get worn down over time. This wear is increased by two factors:
The age of the belts, especially the spare parts, which have been in storage without being moved for over
40 years. This leads to the plastic material losing flexibility and becoming brittle. In the calibration
procedure, the UMI moves all joints to their physical stops, causing a large force especially on the shoulder
belt. Additionally, due to the design of the UMI, certain movements lead to the shoulder belt to jump,
this is a known limitation of the design [58]. This leads to heavy wear on the old, brittle belts. In the
course of this thesis, the shoulder belt had to be replaced three times. This leads to the next issue: The
lack of available spare parts posed the additional challenge of identifying an off-the-shelf belt that would
fit the UMI pinions. Through measuring the remaining spare parts and experimentation with various
standardized belt sizes, a suitable replacement for the original spare part was found, guaranteeing the
continued availability of spare parts for the UMI, and extending its life even further.

7.2.2 Working with RT-1-X

The public availability of the RT-1 code, the Open X-Embodiment dataset, pre-trained checkpoints
and training code is an invaluable contribution to the robotics research community. However, there are
certain issues that arise when trying to run the code, as well as difficulties when adapting it.

First of all, there is no formal documentation given along with the code, and comments in the
code are very rare. This leads to uncertainties in the process of working with the code. There are
two implementations for running inference with a trained model checkpoint, one based on Tensorflow
and one based on Jax. Even before actually working with the code, it is unclear why there are two
implementations, if there are differences between them, and which should be chosen. In the course
of this thesis, both implementations were used to run inference, and no differences in outcome could
be observed. Notably, all code that goes beyond running simple inference, e.g. the training example,
is only available as a Jax implementation, which is why in the further course of this thesis, the Jax
implementation was used.

Once all dependencies were set up and all parts of the code ran successfully, switching from the dummy
data used in the published code to real inputs, meaning actual images and language instructions, posed
the next challenges. It was not documented which image formatting the model expected exactly, requiring
delving into the actual RT-1 and RT-1-X code to find out what processing steps should be applied to the
images before running inference. Also, it was unclear how to handle the required history of 15 images
during the first 14 steps of inference, where only a history of 1-14 images is available. Debugging both of
these issues was tedious, as the only symptom of mistakes were ”strange” outputs of the model, which
were impossible to trace back to specific issues. Setting up the whole pipeline and verifying that the
model behaved as it should was therefore a long and tedious process. However, in the end, all issues were
found and mitigated, and the model inference behavior was verified by running inference with images
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from the training datasets as inputs, and comparing the outputs to the actual movements.

The lack of documentation also posed challenges when creating the fine-tuning pipeline. An example
of training the model from scratch on the original dataset was available, which served as the core for the
fine-tuning logic. An issue that was found during the first training runs was that the training code only
considered the first ten demonstrations from every dataset. It is probable that this was implemented
intentionally by the authors to increase training speed and use less resources for demonstration purposes.
However, there was no comment about it at the relevant part of the code, and no other mention of this
anywhere else.

Another issue that was encountered when assembling and evaluating the fine-tuning pipeline was a
bug in the loss calculation of the training code. This bug lead to wrong scaling of model outputs in
the loss function, which in turn lead to wrongly scaled and clipped values when running inference. As
this happened at a low level of the training logic, and was combined with other (intentional) scaling
effects, realizing and tracking down this issue was a challenge, but the problem was found and fixed. As
this is a clear bug in the provided training code, a pull request was filed on the Open X-Embodiment
GitHub repository'. At the date of finishing this thesis, there has been no reaction from the authors yet,
although the hope is that this contribution will be accepted to improve the training example.

The lack of documentation and low code readability are common problems in the open source com-
munity [65] as well as with scientific software in general [66, 67], where reproducability of results is often
not possible due to issues with the published code [68].

7.2.3 Working with Open X-Embodiment

The Open X-Embodiment datasets could also benefit from more documentation. While there is a Google
sheet available that lists all datasets of Open X-Embodiment along with important variables as episode
amount, embodiment type, data collect method and much more, some useful dimensions are missing.
When designing the demonstration collection process for the UMI robot, it would have been helpful
to have more information about the actual data recording process, meaning information about which
datasets use absolute positions, relative positions or joint velocities, as well as the action space, data
recording frequency (time passed between datapoints in an episode) and average episode length. Having
this data would have been useful to keep the non-physical embodiment gap as small as possible. Acquiring
this information from each dataset can be done, but is very time consuming [69].

7.3 Threats to Validity

Throughout this research, significant efforts were made to obtain representative and reproducible results,
explore multiple perspectives on performance, and validate experiment setups and training processes at
each step. However, several threats to validity remain that must be considered when interpreting the
findings.

Single Embodiment Limitation. The primary objective of this research was to evaluate the model’s
ability to generalize to new robotic embodiments. However, this capability was assessed using only one
embodiment, the UMI robot. Evaluating generalization on a single embodiment imposes significant
limitations, as it does not allow for broad conclusions about the model’s performance across different
types of robots with varying physical characteristics and sensor configurations. While the results from
the UMI robot provide valuable insights, they cannot fully represent how the model might perform on
other embodiments. Nevertheless, the poor performance observed on the UMI robot, especially in the
zero-shot setting, is critical, as it conclusively demonstrates that universal generalization—where the
model would work seamlessly across all new embodiments without any modifications—is not possible.

Environmental and Embodiment Interdependencies. Another threat arises from the difficulty in
strictly isolating differences in embodiment from environmental factors, as certain parts of the environ-
ment are inherently tied to the specific embodiment being tested. Although the scope of the investigated
embodiment gap was thoroughly discussed, the inability to fully separate these factors needs to be
considered when interpreting the results.

Ihttps://github.com/google-deepmind/open_x_embodiment/pull/g4

48


https://github.com/google-deepmind/open_x_embodiment/pull/84

CHAPTER 7. DISCUSSION

Experiment Sample Size. The number of experiments conducted could also be a threat to validity.
While the main experiments were run 30 times and smaller experiments 10 times, a larger number
of repetitions would provide more representative results. However, the time-consuming nature of each
experiment, which requires active monitoring, limited the feasibility of running more trials. Additionally,
this constraint made it challenging to test a broader range of tasks, objects, and environments, potentially
limiting the comprehensiveness of the findings.

Observer Bias in Result Interpretation The interpretation of results often relied on subjective
observation, particularly in assessing whether the robot made general progress toward a goal. While
efforts were made to quantify these observations, the possibility of observer bias remains, which could
affect the consistency and objectivity of the conclusions drawn.

Fine-Tuning Process and Demonstration Dataset. The fine-tuning process itself presents a threat
to validity, as no established guidelines or examples for fine-tuning RT-1-X were available. Despite
thorough experimentation with the fine-tuning pipeline and hyperparameters, fine-tuning is an intricate
process with many variables. While optimizing the fine-tuning process was beyond the scope of this
thesis, it is possible that the results could be further improved with a more refined approach.

Similarly, the process of recording demonstration tasks for fine-tuning poses a validity concern.
Demonstrations were only collected once, for a single task, in one environment. The strategy for gath-
ering these demonstrations also differed from other approaches due to the UMI’s input delay. Given the
time-intensive nature of collecting 100 demonstrations, it was not feasible to experiment with different
demonstration setups, potentially limiting the diversity and generalizability of the training data.
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Related work

Throughout this research project, a substantial amount of literature was reviewed: initially, to gain an
overview of the field; during the project, to clarify concepts and guide the process and experimentation;
and after obtaining results, to put them into context and deepen the understanding. This section brings
together the most important works in this area, highlighting key studies and recent developments that
are relevant to this research and showing the direction in which the field is moving.

Robotic learning is a rapidly evolving area, with a constant flow of new research. Given the vast
amount of work available, this literature review focuses mainly on generalization to new embodiments,
as it is the main focus of this thesis. For those interested in a broader view of the field, several recent
literature surveys offer comprehensive overviews of foundation models in robotics, covering a wide range
of topics beyond the scope of the literature review presented in this thesis [10-13, 70].

8.1 Approaches Similar to RT-1-X

This thesis investigated the generalization of RT-1-X, a Transformer-based foundation model using imi-
tation learning, to new embodiments. A number of similar approaches was identified, and it was analyzed
which aspects of generalization they explore. To assure comparability, these are only approaches where
a model is trained end-to-end, and with imitation learning using robot demonstrations. Approaches
that differ from this are discussed in Sections 8.2 and 8.3. Table 8.1 shows an overview of all approaches
that were found to be similar to RT-1-X. Two approaches which are especially relevant for this thesis
are further presented.

50



CHAPTER 8. RELATED WORK

Publication Date | Using | Gen. to Zero Shot | Fine-
Trans- | new to new Tuning to
former | objects/ embodi- new em-

tasks/ ments bodiments
environ-
ments

BC-Z: Zero-Shot Task 2022 | No zero shot not tested not tested

Generalization with Robotic
Imitation Learning [28]

Polybot: Training One Policy 2023 | No Zero not tested not tested
Across Robots While shot/fine-

Embracing Variability [71] tuned

Robot Learning with 2023 | Yes fine-tuned not tested yes
Sensorimotor Pre-training [72]

Mobile ALOHA: Learning 2024 | Yes fine-tuned not tested not tested

Bimanual Mobile
Manipulation with Low-Cost
Whole-Body Teleoperation [73]

On Bringing Robots Home [74] | 2023 | No fine-tuned not tested not tested

What Matters in Language 2022 | Yes zero shot not tested not tested
Conditioned Robotic Imitation
Learning Over Unstructured
Data [75]

BAKU: An Efficient 2024 | Yes not tested not tested not tested
Transformer for Multi-Task
Policy Learning [76]
Perceiver-Actor: A Multi-Task | 2022 | Yes not tested not tested not tested
Transformer for Robotic
Manipulation [77]

RoboAgent: Generalization 2024 | Yes zero shot not tested not tested
and Efficiency in Robot
Manipulation via Semantic
Augmentations and Action
Chunking [78]

* Octo: An Open-Source 2024 | Yes ZEro No Yes
Generalist Robot Policy [62] shot/fine-

tuned
VIMA: General Robot 2023 | Yes zero shot not tested not tested
Manipulation with Multimodal
Prompts [79]
* Pushing the Limits of 2024 | Yes not tested Yes not tested

Cross-Embodiment Learning
for Manipulation and
Navigation [69)

* Presented in detail below

Table 8.1: An analysis of approaches similar to RT-1-X shows that generalization to new
embodiments is far less studied than generalization to new tasks, objects and environment,
highlighting the relevance of this thesis in the field.

8.1.1 Pushing the limits of Cross-Embodiment Learning

This work follows a similar approach as RT-1-X by using a Transformer-based, end-to-end policy trained
via imitation learning to investigate cross-embodiment transfer through the use of diverse datasets.
However, the authors explicitly explore the extent of the embodiment gap that still allows for effective
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knowledge transfer between different embodiments. While RT-1-X focuses primarily on manipulation
tasks, utilizing almost exclusively robotic arms performing tabletop manipulation, this study broadens
the scope by incorporating both navigation and manipulation datasets. For manipulation, the same
subset of the Open X-Embodiment dataset used in RT-1-X is employed.

In contrast, the navigation data is drawn from a diverse set of datasets, including those involving
mobile bases, quadrupeds, and even quadcopters. The training process is carefully balanced, with a
50/50 split between navigation and manipulation data.

One of the research questions particularly relevant to this thesis is: Can heterogeneous cross-embodiment
policies generalize zero-shot to new embodiments? To address this, the policy is evaluated on the Mobile
Aloha platform—a robotic arm mounted on a mobile base, which was not included in the training set.
Remarkably, when tested on a simple pick-and-place task, the robot achieves a 50% success rate. This
result is especially impressive given that both the embodiment and the environment were entirely unseen
during training.

Several factors may contribute to the greater success in zero-shot generalization compared to RT-1-X.
First, the authors took a more rigorous approach to aligning the action spaces across the different Open
X-Embodiment datasets, manually verifying and adjusting them in a labor-intensive process. Addition-
ally, rather than using language instructions to specify goals, they utilized goal images depicting the
desired outcome. This likely simplifies zero-shot execution, as goal images inherently convey substantial
information about the environment. However, the use of goal images is less convenient for human users,
a limitation the authors themselves acknowledge.

While these factors may partially explain the improved zero-shot generalization to new embodiments,
it is highly plausible that the broader variety of embodiments included in training, compared to RT-1-X,
plays a significant role in facilitating transfer to an unseen embodiment. Nevertheless, further research is
needed to determine the exact impact of these factors on zero-shot performance and to confirm whether
this assumption holds true.

8.1.2 Octo

One of the most recent advancements in the field is Octo, introduced in May 2024 through a collaborative
effort between UC Berkeley, Stanford, Carnegie Mellon University, and Google DeepMind. Many of the
same researchers behind Open X-Embodiment and the RT models contributed to Octo’s development.
Similar to RT-1-X, Octo is a large, Transformer-based policy trained on a vast number of trajectories
from the Open X-Embodiment dataset. However, Octo was specifically designed to facilitate transfer to
new robotic setups through fine-tuning, and it has proven to be highly effective in this regard. Given its
relevance to the aims of this thesis, Octo will be discussed in detail in the following section.

Octo shares several similarities with RT-1-X, but it introduces key innovations that enhance its
adaptability. One of the main differences is the implementation of changeable readout heads on top of
the Transformer, allowing the model to be adapted to new input or action modalities by only altering
the readout head layer, rather than re-training large portions of the model. This feature makes it
significantly easier to adapt Octo to robots with different action and observation spaces. Additionally,
Octo supports goal specification through either language instructions or a goal image, offering greater
flexibility in defining tasks. Octo is also trained on a much larger subset of the Open X-Embodiment
dataset, benefiting from the expanded data available after RT-1-X was published. Consequently, Octo
significantly outperforms RT-1-X in comparable scenarios.

One of Octo’s primary advantages is that it is specifically designed with fine-tuning in mind. The
fine-tuning process is optimized to run efficiently on consumer hardware, and the model’s action heads
allow it to be fine-tuned to robots with different action spaces. Furthermore, Octo can incorporate
additional sensor data, such as force-torque inputs, making it more versatile. The authors demonstrated
the model’s ability to adapt to new embodiments using a dataset of just 100 demonstrations, achieving
an average success rate of 72%, even in domains with new sensor inputs or action spaces.

Like RT-1-X, Octo’s code is available as open-source software. However, the authors have provided a
sophisticated, ready-to-use fine-tuning pipeline that is highly configurable. This pipeline addresses many
of the challenges that had to be manually developed for this thesis. While it’s unfortunate that Octo
was released after this work began—meaning it could not be utilized within this thesis, which would
have allowed more focus on evaluating performance rather than building and optimizing the fine-tuning
process—it also highlights the relevance of the work done within this thesis. Additionally, it provides an
opportunity for a meaningful comparison between the RT-1 and Octo architectures.
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Figure 8.1: When decomposing the embodiment gap, it is found that changes in camera
position and table texture have the highest impact on model performance. [80] This aligns
with the findings of this thesis.

8.1.3 Exploring the Embodiment Gap

One of the key questions investigated in this thesis was the composition of the embodiment gap—the
specific factors that influence a model’s ability to generalize to new robotic embodiments. Through
systematic experimentation, various factors were tested to determine their impact on model performance.

A recent study [80] addresses this question specifically: What makes generalization hard for imitation
learning in visual robotic manipulation? Using the RT-1 model, the authors systematically alter envi-
ronmental factors to assess how each change affects performance. Their findings, summarized in Figure
8.1, indicate that the factors with the most significant negative impact on performance are table texture
and camera position.

These findings are particularly relevant to this thesis, as they align closely with the results observed
here. In the experiments conducted, camera position was identified as having the most substantial
influence on model behavior (Section 6.1), while changing the color of the table led to a dramatic
decrease in pickup performance (Section 6.2.2). The consistency between the findings of this study and
those of this thesis reinforce the validity of the results.

The authors also demonstrate that the performance decrease by such factors can be limited by tech-
niques like data augmentation and pre-training on visual representations, techniques that are discussed
in the following section.

8.2 Related Work in Different Directions

This section aims to explore research that is still in the area of generalization, following, however,
slightly different approaches than RT-1-X and the works presented in the previous section, to give a
broader overview of the domain.

Reinforcement Learning. A line of work investigates the same area of universal robotic learning as
RT-1-X, but is based on reinforcement learning instead of imitation learning [81-86]. Many reinforcement
learning approaches were found to perform well when fine-tuned on new embodiments, although no
success was found zero-shot [87, 88].

Explicit transfer of knowledge. In contrast to simply fine-tuning pre-trained models on demonstra-
tions from a new embodiment, some approaches tackle the embodiment gap more directly. Conditioning
a model on the physical hardware properties of embodiments has shown to give the model more un-
derstanding of the differences in embodiment, allowing for successful transfer between robots [89, 90].
Additionally, learning the transfer of a policy from one domain to the other has also been proven effective
[91, 92]. Another promising strategy involves combining multiple existing embodiment-specific policies
into a single, unified policy capable of handling multiple robots [93].

Although not directly related to generalization between robotic embodiments, two other significant
transfer challenges have been extensively explored in research:
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¢ Human-to-robot: Transferring skills from videos of humans executing a task to robot policies.
This approach is valuable due to the vast amount of such demonstrations available online, offering
a rich resource compared to specific robotic datasets [94-99].

e Sim-to-real: Transferring skills learned in simulated environments to physical embodiments. This
area has been thoroughly investigated because training in simulation is typically faster, cheaper,
and safer than training in the real world [100-103].

Multiple Components. While this thesis focuses on end-to-end learning, other approaches concen-
trate on using models for specific components of the robotics pipeline, which are then combined to
create a complete robotic control system. Some of these approaches demonstrate strong adaptability
to new embodiments by modifying certain embodiment-specific components of the pipeline [104, 105].
Another line of research emphasizes learning generalizable visual representations, where fundamental
scene understanding is shared between robots and can be used as a foundation for further fine-tuning
[106-109]. Other approaches in this area explore chain-of-thought reasoning [110], navigation [18], and
object detection [111].

Datasets. Open X-Embodiment presents the largest robotic demonstration dataset to date, as it com-
bines many of the previously largest datasets into one resource [1]. It is widely used in various works
within robotic manipulation research [62, 69].

However, one notable dataset not yet included in Open X-Embodiment is RH20T, which contains
over 110,000 demonstrations of 150 different high-dexterity skills. The authors of RH20T emphasize high
accuracy, employing specialized teleoperation setups with force feedback and calibrated camera systems.
A unique feature of this dataset is the inclusion of corresponding human demonstrations—where a human
manually performs the same task as the robot in the same environment—making it particularly valuable
in human-to-robot learning. The exclusion of RH20T from Open X-Embodiment remains unexplained,
and incorporating it could advance research in this area.

In addition to large-scale datasets, an interesting approach to increasing data diversity is artificial
data augmentation. This technique involves expanding the dataset by manipulating images, such as
adding distractors to improve environment generalization [78, 112], or even masking out the robot’s
embodiment in one dataset and replacing it with a target embodiment [113]. These methods offer a
promising approach for enhancing generalization without the need for massive datasets.

8.3 Beyond RT-1-X

One of the most recent advancements in robotics research involves the development of multimodal models.
These models go beyond traditional robotic data, leveraging knowledge from other domains, such as large
language models [114, 115] and vision-language models [26]. As a result, these models are capable of
performing tasks beyond robotic control, e.g. semantic reasoning [116] interactive dialogue [26].

Given that the RT-2 model [116] is a direct successor to the RT-1 model discussed in this thesis, it
will be introduced in more detail here.

8.3.1 RT-2

Introduced by Google DeepMind in 2023, RT-2 builds on the foundation of RT-1, integrating a vision-
language model trained on large-scale internet data into a robotic control system. The goal is to enhance
generalization capabilities and enable additional semantic reasoning. The resulting model is called a
vision-language-action model (VLA), as it extends the vision-language model with the ability to output
robotic actions.

RT-2 leverages existing state-of-the-art models like PaLI-X and PaLM-E, which are capable of tasks
such as image captioning and visual question answering. In RT-2, robotic actions are treated as text
tokens and integrated into the training dataset alongside natural language tokens. This approach allows
the model to be co-fine-tuned on both robotic trajectory data and large-scale vision-language tasks, en-
abling it to benefit from the generalization and semantic understanding already present in the underlying
models.

While RT-2 performs similarly to RT-1 on seen tasks, it shows significant improvements when dealing
with unseen objects, backgrounds, and environments. The inclusion of vision-language models leads to
better generalization, as well as emergent capabilities, where the model can transfer semantic and visual

54



CHAPTER 8. RELATED WORK

concepts from web data into robotic tasks. Notably, RT-2 excels in understanding symbols, reasoning,
and human recognition, significantly outperforming RT-1 and other baselines across these categories.

These generalization abilities improve even further when pre-training RT-2 on the Open X-Embodiment
dataset, resulting in the RT-2-X model [1]. Generalization of RT-2 or RT-2-X to new embodiments, zero-
shot or fine-tuned, has however not been investigated yet, although the generalization properties to new
environments makes this very interesting.

Currently it is not possible to investigate this as the code for RT-2 is not public, and it is unclear if it
will be released in the future. Furthermore, due to its integration of a large vision-language model, RT-2
is significantly larger than RT-1 making training on consumer hardware impossible, large TPU clusters
were used in training the model [1, 116]. Still, it would be very interesting if the generalization to new
embodiments can also benefit from the incorporation of internet-scale data, and this will be an exciting
future path of research.
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Conclusion

This thesis explored the generalization capabilities of the RT-1-X model, particularly its ability to adapt
to new robotic embodiments. The research began with an evaluation of the model’s zero-shot performance
on the UMI robot, an embodiment not included in its pre-training. Based on the outcomes of these
initial experiments, the focus then shifted to fine-tuning the model to enhance its performance on the
UMI platform. Throughout the process, various factors influencing the embodiment gap were examined
to gain a clearer understanding of the challenges involved in transferring robotic skills across different
platforms. This chapter brings together the key findings from each stage of the research, discusses their
implications for the field of robotic learning, and reflects on the insights gained. Finally, the chapter
addresses the study’s limitations and proposes directions for future work.

9.1 Key Findings

The research started with an in-depth analysis of the zero-shot performance of RT-1-X on the UMI robot,
a new embodiment not included in the model’s training data. The results clearly have demonstrated that
RT-1-X is not capable of universal generalization to unseen embodiments without additional training.
Despite extensive experimentation with various environmental setups, the model failed to exhibit any
meaningful progress toward task completion in the zero-shot setting. This finding underscores the limi-
tations of current end-to-end models in achieving true cross-embodiment transfer without any additional
data.

Following the zero-shot experiments, the focus shifted to evaluating the model’s adaptability through
fine-tuning. A dataset of demonstrations was collected using the UMI robot, and a fine-tuning pipeline
for RT-1-X was developed. The fine-tuning process effectively enhanced the model’s performance on the
new embodiment and the learned task, although accuracy issues were observed, and the performance did
not reach the levels achieved on the embodiments seen during pre-training.

Additionally, it was found that no concrete knowledge about tasks and objects was transferred from
the pre-training dataset. However, fine-tuning the pre-trained model still resulted in better performance
and faster learning compared to training from scratch. This underscores the value of fine-tuning as a
practical approach for adapting pre-trained models to specific robotic setups, despite its performance
limitations.

9.2 Future work

9.2.1 Investigating Zero-Shot Transfer

RT-1-X has demonstrated the ability to transfer to new environments in a zero-shot manner, but this
research has shown that it struggles to generalize to new embodiments in the same way. This raises
important questions about the differences between embodiment transfer and environment transfer. An
interesting direction for future research would be to completely decouple the embodiment from the envi-
ronment. This could involve exactly replicating an environment from Open X-Embodiment (or ideally,
conducting experiments in the original demonstration environment) while changing only the actual robot
embodiment. This could even extend to only modifying specific components of the embodiment, such as
the gripper or its color, to better isolate the effects.

56



CHAPTER 9. CONCLUSION

To gain deeper insights into what the model perceives and whether it correctly identifies key parts of
the image on the new embodiment (e.g. the end effector), it would be valuable to visualize the parts of
the images the model attends to. Although this was beyond the scope of this thesis, as it would require
modifications deep within the model architecture, adding this feature to the inference pipeline could be
a valuable improvement.

9.2.2 Optimizing Fine-Tuning

This research has demonstrated that fine-tuning the RT-1-X model from Open X-Embodiment to the
UMI robot is feasible, though not without limitations. This finding lays a solid foundation for further
research aimed at enhancing the fine-tuning process.

Several approaches could be pursued: First, the fine-tuning pipeline itself could be optimized by
adjusting hyperparameters, experimenting with training specific layers, or even incorporating new layers
into the model.

Secondly, the application of the generalization apporaches discussed in the related works, such as
policy transfer learning [91], could be applied to RT-1-X to investigate the effectiveness on the UMI
robot.

Another approach for improvement could focus on increasing the efficiency of the fine-tuning process,
particularly to achieve a larger batch size, which was a bottleneck in this research. Recent studies suggest
that fine-tuning robotic transformer models can be made significantly more efficient [117].

Additionally, further experimentation could be conducted with the fine-tuning dataset itself: explor-
ing the impact of fine-tuning on multiple tasks instead of just one, increasing the number of demonstra-
tions, or applying data augmentation techniques [78, 112, 113] to enhance the fine-tuning dataset and
potentially improve the model’s generalization capabilities.

9.2.3 Other Models and Embodiments

This thesis focuses on adapting a single model to a single new embodiment. The literature study done
within this thesis (Section 8.1) has shown that compared to generalization to new tasks and environ-
ments, generalization to new embodiments is much less explored. This presents an opportunity for
future research to apply the same methodology used in this thesis to other target embodiments to deter-
mine if the results differ, or to experiment with different models to assess their impact on embodiment
generalization.

The recently published Octo model [62] is particularly noteworthy in this context, as it is specifically
optimized for fine-tuning. additionally, exploring embodiment generalization in vision-language-action
(VLA) models like RT-2(-X) [1, 116] could be valuable, as these models leverage multimodal, internet-
scale data, which may enhance their ability to generalize across different embodiments.

9.3 Final Remarks

In conclusion, this thesis has contributed to a better understanding of the challenges involved in gen-
eralizing robotic learning models, particularly in adapting pre-trained models like the RT-1-X to new
robotic embodiments. The findings provide valuable insights that could inform future work in making
robots more adaptable and efficient across different platforms. Although this research has highlighted
some challenges, it also points to areas where further improvements can be made.
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Appendix A

Integration

A.1 Action Scaling

Table A.1 shows the determined minimal and maximal coordinate values for the UMI robot, along with
the respective value range of the RT-1-X model.

Axis UMI min UMI max UMI range RT-1-X min RT-1-X max
X -0.5 0.5 1 -2 2
0.2 0.7 0.5 -2 2
Z 0.2 0.7 0.5 -2 2
Yaw (rot x) 45 135 90 —7/2 /2
Pitch (rot y) 0 90 90 —7/2 /2
Roll (rot z) 0 90 90 —m/2 /2
Grip 0.02 (fully closed) | 0.08 (fully open) 0.06 1 (fully closed) | -1 (fully open)

Table A.1: Actions need to be scaled from the model range to the range of movement of
the UMI robot.
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Appendix B

Experiments

B.1 Selection of the Teleoperation Strategy

Two qualities are important when choosing an approach for this task: It needs to be accurate enough
to execute pick-and-place tasks reliably, and it needs to be efficient, to allow the collection of a large
amount of demonstrations in a suitable timeframe. For those reasons,

When looking at the datasets in Open X-Embodiments, 13 different methods of robot control are
used, see Figure B.1. The majority of demonstrations are collected via human virtual reality control
and similar approaches. VR has established itself as a well suited mode for robotic teleoperation due
to the immersive experience it provides to the human operator [118, 119]. It is however not trivial to
implement, requiring specific hardware and software, the setup of which would go beyond the scope of
this thesis.

Furthermore, the UMI robot comes with the additional challenge of having a significant delay between
receiving a command, and executing the respective motor movements. This control problem is well
known, although it does not have much relevancy in today’s robotics landscape, as robots have become
much faster and are able to operate in de-facto real time [120, 121]. Due to its age, the UMI still suffers
from this issue, and this delay in inputs renders the advantages of VR teleoperation useless, as the UMI
movements would be significantly slower than the human operator.

There are some datasets in Open X-Embodiment that use simpler methods of data collection, e.g. a
joystick or keyboard. When evaluating those options, it was decided to use a gamepad in the style of
a PlayStation controller for gathering demonstrations on the UMI: It features two joystick-style inputs
as well as a variety of buttons, combining the advantages of joystick and keyboard control, the joysticks
enabling small, accurate movements, and the buttons providing enough inputs to control all axes. Ad-
ditionally, many people are at least somewhat familiar with the use of a gamepad in this style, making
the robot control more intuitive than with a specialized device.

B.2 Experiment Protocol

This section contains the detailed protocols written during the execution of the various experiments.
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# Task Target Object | Camera Position | Action Outcome | Amount
Interpretation of
Movement

1.1 Pick up the X Banana Frontal Absolute failure low
1.2 Pick up the X Banana Frontal Absolute failure low
2.1 Pick up the X Banana Shoulder Relative failure high
2.2 Pick up the X Banana Shoulder Relative failure low
3.1 Pick up the X Banana Side Absolute failure high
3.2 Pick up the X Banana Side Absolute failure high
4.1 Pick up the X Banana Frontal Relative failure low
4.2 Pick up the X Banana Frontal Relative failure low
5.1 Pick up the X Banana Shoulder Absolute failure high
5.2 Pick up the X Banana Shoulder Absolute failure low
6.1 Pick up the X Banana Side Relative failure high
6.2 Pick up the X Banana Side Relative failure low
7.1 Pick up the X Coke Can Frontal Absolute failure low
7.2 Pick up the X Coke Can Frontal Absolute failure high
8.1 Pick up the X Coke Can Shoulder Relative failure low
8.2 Pick up the X Coke Can Shoulder Relative failure low
9.1 Pick up the X Coke Can Side Absolute failure low
9.2 Pick up the X Coke Can Side Absolute failure low
10.1 || Pick up the X Coke Can Frontal Relative failure low
10.2 || Pick up the X Coke Can Frontal Relative failure high
11.1 || Pick up the X Coke Can Shoulder Absolute failure low
11.2 || Pick up the X Coke Can Shoulder Absolute failure low
12.1 || Pick up the X Coke Can Side Relative failure high
12.2 || Pick up the X Coke Can Side Relative failure high
13.1 || Place the X in the pan. | Banana Frontal Absolute failure low
13.2 || Place the X in the pan. | Banana Frontal Absolute failure low
14.1 || Place the X in the pan. | Banana Shoulder Relative failure low
14.2 || Place the X in the pan. | Banana Shoulder Relative failure low
15.1 || Place the X in the pan. | Banana Side Absolute failure high
15.2 || Place the X in the pan. | Banana Side Absolute failure high
16.1 || Place the X in the pan. | Banana Frontal Relative failure low
16.2 || Place the X in the pan. | Banana Frontal Relative failure low
17.1 || Place the X in the pan. | Banana Shoulder Absolute failure low
17.2 || Place the X in the pan. | Banana Shoulder Absolute failure low
18.1 || Place the X in the pan. | Banana Side Relative failure high
18.2 || Place the X in the pan. | Banana Side Relative failure high
19.1 || Place the X in the pan. | Coke Can Frontal Absolute failure low
19.2 || Place the X in the pan. | Coke Can Frontal Absolute failure low
20.1 || Place the X in the pan. | Coke Can Shoulder Relative failure low
20.2 || Place the X in the pan. | Coke Can Shoulder Relative failure low
21.1 || Place the X in the pan. | Coke Can Side Absolute failure high
21.2 || Place the X in the pan. | Coke Can Side Absolute failure high
22.1 || Place the X in the pan. | Coke Can Frontal Relative failure low
22.2 || Place the X in the pan. | Coke Can Frontal Relative failure low
23.1 || Place the X in the pan. | Coke Can Shoulder Absolute failure low
23.2 || Place the X in the pan. | Coke Can Shoulder Absolute failure low
24.1 || Place the X in the pan. | Coke Can Side Relative failure high
24.2 || Place the X in the pan. | Coke Can pide Relative failure high

Table B.1: Protocol of EX1: RT-1-X zero-shot on the UMI embodiment




APPENDIX B. EXPERIMENTS

# || Target Position | Outcome | Terminated | Steps | Observations

1 left, middle success yes 23

2 left, middle near miss | yes 38

3 left, middle fail no 50 completely off

4 left, middle success yes 32 first, already banana in gripper, moved
away before closing. then second attemt
successful. termination only after the
actual successful attempt.

5 left, back near miss | yes 39

6 left, middle success yes 22

7 left, middle near miss | yes 22

8 left, middle success yes 34

9 left, front success yes 43

10 || left, front near miss | yes 43 slightly too far back

11 || left, front near miss | yes 57 slightly too far back

12 || right, middle fail no 50 completely stuck after a few steps

13 || right, middle near miss | no 50 moved to the middle last minute when
already between grippers

14 || right, middle success yes 50 first, grab attempt far away from target,
but no terminate. second try success and
then terminate

15 || right, back near miss | yes 24

16 || right, back near miss | yes 28

17 || right, middle fail no 50 first seemingly random movement, then a
few attempts, but never close enough

18 || right, back fail no 50 pick up attempt around step 40, but too
far away

19 || right, front near miss | no 50

20 || right, front near miss | yes 46 two near miss attempts, terminate after
second one

21 || right, front fail no 50 just froze after step 3

22 || middle, back near miss | yes 23 off to left

23 || middle, back near miss | yes 22 off to left

24 || middle, back near miss | yes 24 off to left

25 || middle, middle | near miss | yes 23 off to right

26 || middle,middle success yes 20

27 || middle,middle near miss | yes 23 near miss attempt, but more than 5cm
away

28 || middle, front near miss | yes 25

29 || middle, front near miss | yes 25

30 || middle, front fail no 50 one near miss attempt, but too far away

Table B.2: Protocol of EX2: RT-1-X-UMI evaluated in the fine-tuning scenario
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# || Target Position | Outcome | Terminated | Steps | Observations

1 left, back near miss | yes 34 very very close around step 18, then a
few worse attemts

2 left, back fail no 50 attempt very far away

3 left, back fail no 50 attempt very far away

4 left, middle fail no 50 attempt very far away

5 left, middle fail yes 20 close attempt, but did not open gripper

6 left, middle fail no 50 a few attempts, but very far away and
not opening gripper

7 left, middle fail no 50 seemingly random movement

8 left, front fail no 50 attempt far away and without opening
gripper

9 left, front near miss | yes 18

10 || left, front fail no 50 attempt far away

11 || middle, back near miss | yes 15

12 || middle, back success yes 16

13 || middle, back fail no 50 near miss attempt after 15 steps, but no
termination

14 || middle, middle | fail no 50 somewhat near miss attempt, but a bit
far away and no termination

15 || middle, middle | fail no 50 2 near miss attempts but no termination

16 || middle, middle | fail no 50 movements close to target object, but no
real attempt

17 || middle, middle | success yes 15

18 || middle, front fail no 50 froze after step 20

19 || middle, front fail no 50 movement close to target

20 || middle, front fail no 50 froze after step 30

21 || right, back fail no 50 movement close to target

22 || right, back fail no 50 movement close to target

23 || right, back fail no 50 movement close to target

24 || right, middle fail no 50 somewhat near miss attempt, no
termination

25 || right, middle near miss | yes 34

26 || right, middle near miss | yes 20

27 || right, middle success yes 35 success on second attempt

28 || right, front near miss | yes 21

29 || right, front near miss | yes 19

30 || right, front fail no 50 attempt, but a bit far away

Table B.3: Protocol of EX6: RT-1-UMI (without Open X-Embodiment pre-training) eval-
uated on the fine-tuning scenario
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B SubsetRT-1-X Restof Open X-Embodiment

Human VR 32
Expert Policy 14
Human Kinesthetic 3

Human Spacemouse 3

VR Teleop, trained state-based BC
policies, and trajectory replay with

Human Joystick 1
Scripted 15

Human Puppeteering 4

Human teleoperation using Shared
Control Templates

Human collection using tools 1

Directly collected on human body with
mocap devices and aruco markers

Human writes preferred object J
placements in text form

Human Keyboard 1

0 10 20 30

Figure B.1: The methods of data collection used in the different datasets of Open X-
Embodiment. The red parts indicates the subset of Open X-Embodiment that was used in
the training of RT-1-X.

# || Object Target Position Outcome | Termination | Steps | Observation
1 Pick up the coke can | left near miss | yes 29
2 Pick up the coke can | left fail no 50 tries to pick it up

multiple times, but
without termination

3 Pick up the coke can | left fail no 50 near miss at 28 but
does not terminate

4 Pick up the coke can | middle fail no 50 near miss at 25 but
does not terminate

) Pick up the coke can | middle near miss | yes 31

6 Pick up the coke can | middle fail no 50 froze

7 Pick up the coke can | middle near miss | yes 33 moved to the right
position but from
the side, so target
object was pushed
out of the way

8 Pick up the coke can | right success yes 25

9 Pick up the coke can | right near miss | yes 30

10 || Pick up the coke can | right near miss | yes 39

Table B.4: Protocol of EX3a: RT-1-X-UMI evaluated on a target object from Open X-
Embodiment (coke can), only the target object on the workspace
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# || Object Target Position Outcome | Termination | Steps | Observation

1 Pick up the coke can | banana left, coke fail yes 29 tries banana
right

2 Pick up the coke can | banana left, coke fail no 50 seems to oscillate
right between the two

objects

3 Pick up the coke can | banana left, coke fail no 50
right

4 Pick up the coke can | banana left, coke fail yes 30 tries banana
right

) Pick up the coke can | banana left, coke fail yes 23 tries banana
right

6 Pick up the coke can | banana right, coke near miss | yes 24
left

7 Pick up the coke can | banana right, coke near miss | yes 29
left

8 Pick up the coke can | banana right, coke near miss | yes 25
left

9 Pick up the coke can | banana right, coke near miss | yes 32
left

10 || Pick up the coke can | banana right, coke near miss | yes 30

left

Table B.5: Protocol of EX3b: RT-1-X-UMI evaluated on a target object from Open X-
Embodiment, target object and fine-tuning object on workspace
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# || Task Target Positions Outcome | Steps | Termination | Observation
1 Place the yellow pan left, banana fail 50 no tries to pick up pan
banana in the pan. right multiple times (does
not get a grasp)
2 Place the yellow pan right, banana fail 50 no tries to pick up pan
banana in the pan. left multiple times (does
not get a grasp)
3 Place the yellow pan left, banana fail 32 yes picks up banana,
banana in the pan. right then terminates
4 Place the yellow pan right, banana fail 50 no tries to pick up pan
banana in the pan. left multiple times (does
not get a grasp)
5 Place the yellow pan left, banana fail 50 no tries to pick up pan
banana in the pan. right multiple times (does
not get a grasp)
6 Place the yellow pan left, banana fail 50 no tries to pick up
banana in the pan. right banana
7 Place the yellow pan right, banana fail 50 no tries to pick up pan
banana in the pan. left multiple times (does
not get a grasp)
8 Place the yellow pan left, banana fail 50 no movements between
banana in the pan. right the two objects
9 Place the yellow pan right, banana fail 50 no tries to pick up pan
banana in the pan. left multiple times (does
not get a grasp)
10 || Place the yellow pan right, banana fail 50 no tries to pick up pan
banana in the pan. left multiple times (does
not get a grasp)
Table B.6: Protocol of EX4: RT-1-X-UMI evaluated on a task from Open X-Embodiment
# || Target position | Outcome | Termination | Steps | Observation
1 left no 50 pickup attempt very far away
2 left no 50 random movement
3 left no 50 random movement
4 middle yes 21 movement around the right area
5 middle yes 24 pickup attempt very far away
6 middle yes 24 random movement, then termination
7 midde yes 27 pickup attempt very far away
8 right near miss | yes 37
9 right yes 9 kind of near miss, but didnt open gripper
10 || right no 50 froze

Table B.7: Protocol for EX5: RT-1-X-UMI

environment
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