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1 Introduction

Legged robotics offer important advantages over their wheeled counterparts for real-life applications. Due
to their ability to have a small selection of contact points, they are better capable to pass obstacles, making
them much more suitable to thread through rough terrain. Until recent years, research on learning-based
methods for locomotion has mostly been limited to simulation. One of the primary reasons research
on real-world systems has remained marginal is that learning on real robots is both slower and more
expensive than simulation training. Where simulations can be reset if models fail, on the real robots failure
can result in the destruction of expensive robotics components. The cost component is exacerbated by
the nature of learning-based approaches, which require a lot of exploratory movements during the early
stages of learning, which increases the chances of damaged components.

When learning-based methods are applied to real robots, a common practice is the use of robots that
contain state-of-the-art actuators and sensors [Hwangbo et al., 2019; Lee et al., 2020], such as the ANYmal
[Hutter et al., 2016]. Although high-end components increase the accuracy of the actuator control, it limits
research to well-funded research groups. Recent work by [Rahme et al., 2020b], however, showed that
learning-based models can be robust enough to apply to hobby robotics. By randomizing the dynamics of
the robot and the environment in simulation, their approach named D2-GMBC bridged the sim-to-real
gap on a variation of the open-source robotics project SpotMicroAI1. However, the used Reinforcement
Learning (RL) algorithm called Augmented Random Search (ARS) consists of only a single-layer Neural
Network.

In this report, the effect of more complex RL techniques on the D2-GMBC framework is evaluated.
To this end, the Soft Actor-Critic (SAC) algorithm from [Haarnoja et al., 2018a] is applied, since its
underlying entropy maximizing approach has been shown to provide both robust models and fast learning.
We evaluate the two approaches in three ways. Firstly, by comparing the learning trajectory of the agents
during simulation training. Secondly, by comparing the walking speed of the agents on the real robot and

1https://spotmicroai.readthedocs.io/en/latest/

https://spotmicroai.readthedocs.io/en/latest/


comparing their performance against the fixed gait situation. Lastly, a broader evaluation is performed on
video material of the gaits to understand the benefits and the downsides of the agents.

The experiments show a much lower reward for the ARS agent than for the SAC agent. However, since
the ARS agent is able to leverage parallel roll-outs it is not clear if this performance is mainly due to the
increased computation. From the experiments on the real robot we found that although neither of the
agents was faster than the baseline gait, the RL agents did display dynamical falling prevention behavior.
This behavior was most visible in the SAC agent, but also seemed to be the cause of the reduced traversal
speed.

1.1 Related work Background

In this section, a short overview will be given of the research area that is involved with transferring
policies learned in simulation to the real world, known as sim-to-real. For each work, we will lay out
important learning aspects for locomotion such as the observation space, action space, RL agent, as well
as other training parameters that are important for the results of the papers.

A popular approach to limit the sim-to-real gap focuses on increasingly accurate simulations. One of
the most notable successes came from [Hwangbo et al., 2019], which applied simulation pretraining for
real-world quadrupled locomotion. Applied on the ANYmal robot, a dog-sized quadrupled, an RL policy
was learned to output the desired joint state of each actuator. To achieve accurate simulation training,
the actuators in the simulation are modeled by a separate neural network that is trained beforehand on
joint encoder data from the real actuators. Their trained model allowed the ANYmal robot to walk more
efficiently, increasing the walking speed by 25% compared to previous implementations.

Because high-precision modeling of the actuators is expensive and often unattainable, the work of [Peng
et al., 2018] proposes an alternative method. Instead of handpicking the right actuator characteristics in
simulation, or training a separate network to model the actuator, their work demonstrated that randomizing
the dynamical characteristics of robotics systems can increase robustness. Hereby, the policy is trained to
work under a wide range of dynamics, which reduces overfitting on the simulation, and allows for better
adaptation to the dynamics of the real robot.

Based on this work, [Tan et al., 2018] apply dynamics randomization and perturbation forces during
the training of the Minitaur robot in simulation. The policy network is trained using Proximal Policy
Optimization (PPO), an RL algorithm that has been shown to increase on-policy stability and allow for
easy parallelization [Hafner et al., 2017]. The model returns the eight motor angles, and the reward
is chosen to increase the speed whilst reducing high energy consumption, to create the optimal gait.
Lastly, the authors identify two other components to reduce the sim-to-real gap. Firstly, they find that
the latency between sending the motor command and receiving the sensory change of this action is of
great importance and thus worth fine-tuning. Secondly, the authors find that their model increased in
robustness by reducing the observation space. This was achieved by removing the sensory data from the
joint encoder, and only taking as observation the data from the Internal Measurement Unit (IMU). The
IMU sensor provides information about the orientation and accelerations of the body.

Instead of pretraining in simulation, the work of [Haarnoja et al., 2018a] addresses the problems of
real-world training by using a sample-efficient deep RL network based on the Soft Actor-Critic (SAC)
algorithm of [Haarnoja et al., 2018b]. By training only on the real robot, their model achieves a stable
gait from scratch within 2 hours. SAC is an RL algorithm that minimizes the maximum entropy and has
been shown to produce robust policies. However, SAC contains a temperature parameter that determines
the level of exploration, and in the original implementation of [Haarnoja et al., 2018b] it needs to be
manually tuned. To circumvent this tuning, the temperature parameters are taken as a hyperparameter
and optimized using dual gradient descent. Although this optimization process does not guarantee to
converge to a global optimum, empirical evidence substantiates the efficacy of their method. Similar to
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[Tan et al., 2018], the Minitaur is used and the model takes as input the IMU values and joint encoder
sensory information. The action space, however, consists of the swing angle and extension of each leg,
which are used to compute the joint states of the actuators through inverse kinematics.

More recently [Lee et al., 2020] introduced a novel approach to increase the robustness of locomotion
on the ANYmal robot. Where previous models only take the current state as observation, their work used
a Temporal Convolutional Network to leverage the history of proprioceptive observations. To address the
difficulty of learning locomotion policies in rough terrains, privileged learning was applied to reduce the
sparsity of the supervised signal. Hereby the policy of the student was trained to align with the policy
of the teacher, which has privileged information about the environment not available in the real world.
During inference on the real robot, only the student policy is used to control the motion. Their action
space follows the work of Policies Modulating Trajectory Generators (PMTG) as introduced in [Iscen
et al., 2018]. In the PMTG algorithm, a baseline gait is provided and the agent outputs a set of actions that
modify this gait in different ways.

Inspired by the popularity of the open-source project SpotmicroAI2, the work of [Rahme et al., 2020b]
applies a sim-to-real framework on a home-build, slightly modified version of the Spotmicro. Their
method uses Dynamics and Domain Randomization for Gait Modulation with Bezier Curves (D2-GMBC).
By using these two types of randomization and reducing the observation to only the IMU data, a more
than 4x higher survival rate is achieved on the real robot, compared to fixed open-loop gait. Contrary to
PMTG which modifies sine trajectories, D2-GMBC, extends gait modulation to a broader class of gait
trajectories, by modifying Bezier Curves. The policy consists of a simple single-layer neural network
that is trained using Augmented Random Search (ARS). By using a simple agent they highlighted the
significance of their D2 approach. However, an important question that remains is how the D2 competes
with more complex RL algorithms.

This work builds upon D2-GMBC and researches the importance of RL algorithm complexity to the
sim-to-real gap of gait modulation methods for locomotion learning. From previous work, [Sutton and
Barto, 2018], it is apparent that more complex RL algorithms can increase robustness. At the same time,
other works found that reducing the complexity of the model by reducing the observation space also
decreases the sim-to-real gap. In this report, we inspect the influence of the complexity of RL algorithms
on the sim-to-real gap. To achieve this the SAC algorithm from [Haarnoja et al., 2018a] is applied to
model the framework of D2-GMBC, and compared against ARS.

2 Method

2.1 Problem Statement
The locomotion task of the quadrupled is formulated as a Partially Observable Markov Decision Problem
(POMDP). A POMDP is defined by a tuple (S,A,O, r(s, a), P (s′|a, s)), consisting of the state space
S, the action space A, the observation space O, a reward function r(s, a) and the transition probability
P (s′|a, s). The policy of the model, π as parameterized by the learnable parameters θ, is then tasked to
find the best action for each state to maximize the expected reward. For each observation o ∈ O, the agent
takes the action a ∈ A based on the policy, formalized as a = πθ(o). Because the model is applied to the
gait modulation task, the current state of the gait is included in this observation space.

2.2 Gait Modulation
The open-loop gait from D2-GMBC is used and computes a trajectory path for each foot using 12-point
Bezier curves. Their model, based on the work of [Hyun et al., 2014], combines multiple 2D gaits
into one 3D gait, which allows for flexible control of cyclical movements of the legs’ extremities. As
depicted in Figure 2, the 2D curve of each foot contains two phases, the swing (purple), when the leg is
lifted into the air, and the stance (red), when the foot remains in contact with the ground. For each foot

2https://spotmicroai.readthedocs.io
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Figure 2: The 2D gait and foot placement parameters from Rahme et al. [2020b]

l ∈ {FL,FR,BL,BR}3, these phases are determined by the phase generator Sl(t) ∈ [0, 2), where the
leg is in stance for Sl(t) ∈ [0, 1), and swing for Sl(t) ∈ [1, 2).

To adjust this open-loop gait a set of parameters is provided. The first two parameters are scalars that
influence the trajectory of all legs. These are the clearance height ψ, which determines how high the leg
lifts during the swing phase, and the virtual ground penetration δ, which is responsible for how high the
respective shoulder of each leg is lifted during the stance phase. To adjust the position of the individual
legs, a 3-dimensional residual position is defined by ∆f lxyz ∈ R3, resulting in the total residual set ∆fxyz .
The residual position adjusts the 3D foot position away from the current place in space as determined by
the Bezier curve. The policy returns these parameters to adjust the underlying Bezier gait:

∆fxyz, ψ, δ = πθ (ot) (1)

The last input for the Bezier curve generator Γ, are the external motion commands ζ = [ρ, ω̄, Lspan].
From these inputs, Lspan defines the stride length, ρ rotational angle relative to its momentum, and ω̄, the
yaw velocity. During training the motion commands are fixed for Lspan = 0.034 and ρ = 0, and an ω̄ is
computed in real-time so that the direction of the robot is always straight. The curve generator determines
the foot positions by:

f tgxyz = Γ(S(t), ζ, ψ, δ) (2)

After adding the residuals, the final position of all the foot endpoints is:

fxyz = f tgxyz +∆fxyz (3)

After the foot positions have been determined, Inverse Kinematics (IK) is used to calculate the joint angles
for each of the three actuators of a leg. Firstly note that the foot position from the gait generator Γ, is the
position with respect to the shoulder corresponding to each leg. The IK then determines what angle each
actuator of a leg should have to achieve this position, under the range constraints of the actuators.

2.3 Observation

Since we can only observe a small set of parameters that determines the current state of the robot, the
problem is considered a Partial Observable Markov Decision Problem (POMDP). For the observation
space, only the sensory data from the IMU of the robot is used. By keeping the observation to a minimum,
we hope to reduce overfitting and ease hardware/sensory restrictions on the real robot. The data taken
from the IMU consists of the roll r and the pitch p angles, the 3D angular velocities ω, and the 3D linear
accelerations v. The yaw measurements are excluded because they tend to drift fast [Haarnoja et al.,
2018a]. The last part of the observation consists of the current internal phase of each leg and is thus
not dependent on external factors of the environment. In total, the observation space consists of the
12-dimensional tuple [r, p, ω, v, S(t)]. As mentioned above the action space consists of 14 dimensions,
namely the 3D foot position residual of each leg, and the shared scalars delta and psi.

3Corresponding to the legs: front left, front right, back left, back right
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2.4 Reward
For the reward and training setup, we follow the procedure of [Rahme et al., 2020b] with a few adjustments.
To reduce the training computation, we reduce the maximum length of an episode from 5000 steps to 2000
steps, which translates to 20 seconds per episode. An episode is terminated prematurely if the robot hits
the ground or exceeded a roll or pitch of 60 degrees. The reward function for each time step as described
in the paper of D2-GMBC is defined as:

rt = ∆d− 10(|r|+ |p|)− 0.03
∑
|ω| (4)

The term ∆d is the distance traveled in the forward direction in one step, and the penalty terms for r and
p encourage the robot’s body to remain perpendicular to the ground. The ω term further promotes a stable
walk by punishing any angular motions of the body.

However, the code implementation as provided by the authors [Rahme et al., 2020a], uses d in the
reward instead of ∆d. This difference makes sense since the roll and pitch are many orders of magnitude
larger than the traversed distance per step, ∆d, which is in meters. The downside of this approach is
that the reward per step for a given state becomes infeasible to determine with decent accuracy, since
the reward at the end is much higher than at the beginning, and the time is not observed by the agent.
To illustrate this problem, consider a speed of 0.2 m/s, the distance part of the reward can differ by 4.0
between the beginning and end state of an episode. This is in the same range as the roll and pitch reward.
For the training of the ARS agent, his discrepancy is not a problem because, as the following sections
explain, the policy is updated only by the total reward of an episode. Contrary, the SAC agent updates its
policy based on the reward obtained at each step. For better comparison of the RL agents we train them
with the same objective and modify the reward to be:

rt = 100∆d− 10(|r|+ |p|)− 0.03
∑
|ω| (5)

This scaling factor was chosen to put the distance reward in the same range as the orientation penalty, and
resulted in the best convergence on both agents during early experiments.

2.5 Soft Actor Critic
An Actor-Critic algorithm is an off-policy method that computes both the policy and the value function
over states. As mentioned, the policy defines a distribution over the actions for a given state. The
value function V (s) estimates the expected return for each state, under the current policy. Similarly, the
Q-function estimates the expected return of each state-action pair and relates to the value function by
V (s) = Ea∼π(s)Qπ(s, a).
Typically dynamical programming is used for the Policy iteration algorithm to find the optimal policy by
breaking the optimization process up into two steps. The first step is policy evaluation, where the value
function is computed for the current policy. Then during policy improvement, the new value function is
used to optimize the policy. In the Actor-Critic algorithm, these functions are updated simultaneously.
In this report, we apply the Soft Actor-Critic (SAC) algorithm as proposed by [Haarnoja et al., 2018a],
where the critic is the Q-function. For SAC an extra constraint is introduced to the optimization of the
value and policy function, whereby the entropy H is maximized. Entropy is a measurement of how
uncertain the policy is to choose an action for a given state. This means that if the policy is deterministic,
the entropy of the policy would be minimal. Maximizing the entropy, therefore, encourages exploration of
the state space, which in turn reduces the risk that the policy gets stuck in a local optimum.

During each step of training, the replay buffer D stores the step tuple (st,at, st+1, rt). After enough
steps have been stored, a batch of steps is sampled from the buffer to update the functions. A common
problem with learning a Q-function is the influence of a positivity bias, where the model puts more
emphasis on positive rewards than negative rewards. To minimize the positivity bias and improve learning
speed, double Q-learning is applied, a method where two Q-functions are trained in parallel, parameterized
by µ1, µ2. More specifically we apply the double Q-learning procedure as proposed in [Fujimoto et al.,
2018], by using the minimum value of the two Q-functions for the value gradient. Minimizing the loss:

JQ(µi) = E(st,at,st+1,rt)∼D

[
(Qµi (st,at) − (rt + γVµ1,µ2 (st+1)))

2
]

(6)
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This loss minimizes the squared error between the current state-action value and what it should be
according to the minibatch, namely the real reward plus the state value of the next state, according to the
current policy. The value function in equation 6 is implicitly defined by the policy and the Q-function as:

Vµ1,µ2(st) = Eat∼πθ

[
min

i∈{1,2}
Qµi (st,at)− α log πθ (at | st)

]
(7)

The policy is learned by minimizing the Kullback-Leibner distance between the action distribution
and the state-action distribution, for a sampled minibatch of states. This policy loss as defined below is
the same as the policy loss of the original SAC [Haarnoja et al., 2018b] but uses the explicit temperature
parameter α, which relates to the entropy.

Jπ(θ) = Est∼D,at∼πθ

[
α log πθ (at | st)− min

i∈{1,2}
Qµi (st,at)

]
(8)

Because the action batch is sampled from the policy, the loss could not be backpropagated to update θ,
therefore the action is sampled using the reparameterization trick, where the stochasticity of the sampling
arises from an external sampled noise variable. Given this noise variable, the action outputted by the
policy is obtained in a deterministic manner. Lastly, the temperature parameter is updated by minimizing:

J(α) = Est∼D,at∼πθ
[−α log πθ (at | st)− αH] (9)

A summary of the algorithm automatic entropy adjusting SAC algorithm is shown in Algorithm 1

Algorithm 1 Soft Actor-Critic with Automatic Entropy Adjustment from [Haarnoja et al., 2018a]

1: for each iteration do
2: for each environment step do
3: at ∼ πµ(at|st)
4: st+1 ∼ p(st+1|st, at)
5: D ← D ∪ {(st, at, r(st, at), st+1)}
6: end for
7: for each gradient step do
8: µi ← µi − λ∇̂µJQ (µi) for i ∈ {1, 2}
9: θ ← θ − λ∇̂θJπ(θ)

10: α← α− λ∇αJ(α)
11: end for
12: µ̄i ← τµi + (1− τ)µ̄i for i ∈ {1, 2}
13: end for

2.6 Augmented Random Search
Where standard RL algorithms can never know which set of parameters would be better in a stochastic
environment, ARS applies different rollouts in parallel, where the sampled environment variables remain
the same. In simulation training, this means that for each episode, 16 rollouts are performed under the
same sampled parameters for the dynamics and the domain. Each rollout thus contains a slightly different
permutation of the previous best policy. The policy function of ARS consists of a single layer Neural
Network θ, that maps from the observation space to the action space. Each rollout i uses its own policy
θ̄i = θ + ∆θi, by sampling a set of residual parameters ∆θi from a normal distribution with mean 0
and standard deviation 0.05. The best policy then updates the current policy with a learning rate of 0.03.
The implementation details of ARS remain the same to [Rahme et al., 2020b]. From the provided code
implementation4 we gather that an additional action filter was used for the implementation of ARS. To
illustrate this filter, let new action be the action as determined by the policy in the current state, and

4https://github.com/OpenQuadruped/spot_mini_mini
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old action be the action applied by the agent in the previous state. The action that is then applied in the
current state is:

action = α ∗ old action+ (1− α) ∗ new action (10)

This filter reduces the risk of abrupt motions during training, but offers the agent no way to get a good
set of actions at the start of an episode. The agent is therefore kept fixed for the first 20 steps of each
episode so that the action values have time to get to a decent baseline. To improve the quality of the
comparison between the training procedures of ARS and SAC, we wanted to keep the observation space,
the environment, and the action space the same for the ARS and SAC models. However, early experiments
showed that training SAC using the alpha filter prevented learning. An explanation for this learning failure
is that the alpha filter breaks the Markov Property, which states that each next state is only dependent on
the current state, action, and observation, and independent of other previous states and actions. But the
alpha filter makes the model dependent on the older actions as well. Conversely, training ARS without the
alpha filter also resulted in failed learning. Therefore, we keep the alpha filter for the ARS implementation
and remove it for the SAC implementation.

2.7 The Robot

(a) Simulation (b) Real robot

Figure 3: The constructed SpotMicroAI in Pybullet simulation and the physical robot

2.7.1 The physical robot
The body of the robot is 3D printed from Polylactic Acid (PLA) material except for the feet, which
are made of rubber for better shock absorption. To handle the weight of the robot all the servos have a
maximum torque of 20kg/cm. Although plenty of schematics of the Spotmicro are available online, there
is no good solution that merges the Jetson Nano with the actuators and IMU sensor. Through careful
examination, a new schematic is created which is displayed in Figure 4. In early experiments a Jetson
Nano broke and to prevent further problems with the power supply of the servos and the Jetson, they are
given their separate power supply. The actuators are powered by a battery that supplies 5v at a max of
20A, and the Jetson is powered through an adapter at the Barrel Jack with 10W. During experiments, the
cable is lifted loosely close to the body to minimize weight or drag hindrances caused by the cable. Lastly,
the top back component is left out because the Jetson extended too high, and to compensate for the extra
weight of the Jetson.

2.7.2 Simulation specifics
All simulation training is performed on the physics simulator Pybullet [Coumans and Bai]. The 3D model
of the Spotmicro in simulation is transferred from the mesh used to 3D print the components and therefore
allows for faithful reconstruction of the real robot. Additional weight is placed inside the robot to mimic
the weight influence of the Jetson Nano and the battery. The inertia values of each component are left
at the default of (100, 100, 100). Although it is known that it is a very crude approximation of the real
inertia, finding the correct values is labor intensive, and by the different randomization factors of the
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Figure 4: Schematic of the electronics components of the SpotMicro

training, we hope to reduce the side effects. The motor parameters are transferred from D2-GMBC, and
the height is modified to keep the body 18cm above the ground.

3 Results & Discussion

3.1 IMU comparison

Before the quality of the RL agents on the real robot can be inspected we first compare the IMU data
between the simulation and the real robot. To achieve this comparison, we use IK to make the robot apply
a roll in both directions followed by a pitch in both directions. In Figure 5 three of the eight measurements
are displayed. For a full comparison of the measurements see Appendix A. All displayed values were as
returned by the IMU, except for the linear acceleration, which was reduced by a factor of 10 to match the
values in the simulation. As seen from the Figures, the roll and pitch measurements are similar to those in
the simulation. The angular twist also follows the same values as the simulation, but already contains a lot
more noise, especially in the z-direction. Lastly, the linear acceleration looks much more chaotic in real
life than in simulation but importantly has spikes at the same points in the graph which suggests it still
contains useful information. Even though the angular twist and linear acceleration contain more noise on
the real sensor than in the simulation, the results in the simulation also show erratic behavior, we thus
expect the agents to put more weight on the values of the roll and pitch. From these results, we conclude
that the sensor data provided by the IMU is faithful enough for the sim-to-real transfer of the RL agents.

(a) Roll (b) Pitch (c) Angular twist: x-direction

Figure 5: IMU results of the same movement in simulation and on the real robot. In red are the results of the real
robot and in blue are the results of the simulation. The performed movement consisted of a negative and positive
pitch movement, followed by a positive and negative roll movement
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3.2 Simulation

The training performance of the SAC and ARS agents in different environments is shown in Figure
6. Experiments of both agents were performed over the same three random seeds. The mean of these
experiments is represented by the dark line and the lighter area represents the standard deviation. Similar
to the figure of the D2-GMBC paper, we publish the moving average window over 50 episodes. Since
the ARS agent uses an action filter and remains stationary for the first 20 time steps there is a training
discrepancy that makes direct comparison of the rewards unattainable. Therefore the episode reward
as depicted in Figure 6 starts when the agent commences walking and stops T-20s later. So for ARS
20s-5000s, and for SAC from 0s-4980s. Note that this is only for illustrative purposes, the reward used in
learning for ARS and SAC was based on the entire run and not this specific selection.

From the learning curves in Figure 6 we see that although the starting reward of SAC is much lower, it
learns much faster than ARS. This is in line with our expectations since ARS only updates its policy once
per episode and SAC after each episode step after the replay buffer is full enough. However, we see that
ARS achieves a much higher reward than SAC and that the reward of ARS always increases over time.
Both this non-decreasing reward and the much higher reward of ARS training are a result of the multiple
rollouts. For each of the episodes, one of the 16 rollouts will likely lead to a policy with a higher reward.
To estimate the quality of these networks we need to investigate if ARS retains its advantage beyond the
benefit of its privileged information through the rollouts. Therefore the next section evaluates both models
on our own built version of the Spotmicro.

(a) SAC (b) ARS

Figure 6: Training curves in simulation for the two agents using D2 randomization. Left in green the agent trained
with SAC, right in red is the agent trained with ARS.

3.3 Sim-to-real transfer

To inspect the efficacy of the sim-to-real transfer of the different models we replicate one of the experiments
of [Rahme et al., 2020b] and compare how fast the robot walks a track of one meter. Because the legs of
the real robot broke off on multiple occasions during early experiments, the track consists of a slightly
flexible thin mat with a height of 0.5 cm, to reduce the impact when the legs touch the floor. The robot
is tasked to walk this path ten times for each RL agent and for the baseline model which uses the fixed
gait. Since the used mat is of limited width, the experiment was paused when the robot walked off the
mat and the robot was moved to the middle of the track whilst maintaining the same distance from the
start position. Table 1 summarizes the results of the experiments. For each agent, the mean and standard
deviation of the results are shown. For each RL agent, one run was considered failed because the robot
became stuck in continual erratic behavior that prevented it to go forward.

From table 1 we notice that neither of the agents was able to improve the forward walking speed above
that of the baseline. When looking at the standard deviation we do note that the ARS agent has a more
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Mean Standard deviation Failed Runs

Baseline 15.20 2.56 0
ARS 15.33 0.94 1
SAC 21.22 1.47 1

Table 1: The results of real-world experiments of traversing one meter. The columns represent the mean and
standard deviation of the time it took each agent.

predictable walking speed, as indicated by the low standard deviation. The SAC agent is significantly
slower than the other two and has an average walking speed of 21 seconds per meter compared to the 15
seconds per meter of the other two models. However, the walking speed was only one part of the reward
signal, so to evaluate the walking stability we need to inspect the quality of the walk itself.

3.3.1 Video analysis
To further analyze the different implementations we supply three short representative clips of the robot
walking the track, see video5. Even though the robot parameters are tuned to optimize the fixed bezier
gait without an agent, this baseline implementation still demonstrates a suboptimal walk. Even after
meticulous calibration and reconfiguration of the servos, the robot falls through its hind legs on multiple
occasions, likely due to the larger weight of the body arising from the Jetson Nano and the Battery. The
robot still seems to achieve forward locomotion but the video material suggests the baseline gait can still
improve much.

The ARS video shows adaptive behavior when the robot threatens to fall backward or forward. However,
in the video it is also visible that the agent sometimes overcompensates, causing the body to swing from
left to right or from front to back. Therefore we hypothesize that the reduced traversal time likely arises
from the falling prevention behavior.

The SAC agent displays even more complex falling prevention behavior. In the video, this is visible
when the roll or pitch becomes too high, causing the agent to stand still for a short term. Thus the agent can
not only modify one or two legs based on the body angles but when the IMU values diverge significantly
enough, the agent even seems to halt all movement. However, from the start of the SAC clip, we see this
falling prevention can hinder the gait significantly since it has troubles with starting the gait. Yet, after the
agent has achieved a stable gait, the SAC agent demonstrates significant adaptive behavior.

4 Conclusion

In this report, we extended the work of [Rahme et al., 2020b] on open-loop Bezier gait modulation and
evaluated how deeper RL methods hold up against their ARS implementation. During simulation training
of the agents, ARS seemed to achieve a much higher reward than our SAC implementation. After further
investigation, this advantage is suspected to be mainly due to the 16 parallel roll-outs of the ARS agent
which makes it hard to compare training efficiency. From the experiments on the real robot we found that
although neither of the agents was faster than the baseline gait, the RL agents did display adaptive falling
prevention behavior. This behavior was most visible in the SAC agent, but also seemed to be the cause of
the reduced traversal speed. A potential solution for this behavior is to increase the traversal speed in the
reward so the agent is less concerned with minor deviations in the body orientation.
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(a) Roll (b) Pitch

(c) Angular twist: x-direction (d) Angular twist: y-direction

(e) Angular twist: z-direction (f) Linear Acceleration: x-direction

(g) Linear Acceleration: y-direction (h) Linear Acceleration: z-direction

Figure 7: IMU results of the same movement in simulation and on the real robot. In red are the results of the real
robot and in blue are the results of the simulation. The performed movement consisted of a negative and positive
pitch movement, followed by a positive and negative roll movement
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