
Revolve: An Evolutionary Robotics
Toolkit

Elte Hupkes
Master’s Thesis Computational Science

Graduate School of Informatics, Faculty of Science, Universiteit van Amsterdam
Department of Computer Science, Faculty of Science, Vrije Universiteit Amsterdam

2016

Revolve: An Evolutionary Robotics Toolkit

Elte Hupkes

ABSTRACT

The Robot Evolve Toolkit consists of a set of software utilities designed to facilitate
evolutionary robotics research. It builds on top of the widely used Gazebo robotics
simulator, providing adequate performance for simulating populations of average sized
robots in real time, specifically with on-line, embodied evolution and artificial life
scenarios in mind. As such it serves as an aid in evolutionary robotics research regard-
ing the Evolution of Things [20], in which entities evolve in real-time and real-space.
The toolkit is centered around the Revolve Specification, which assumes a robot body
space consisting of basic building blocks that can be chained together to form a robotic
organism. With the tools included, an abstract representation of such an organism
can be conveniently turned into a format suitable for simulation with Gazebo. Addi-
tional utilities provide monitoring and control over the simulation environment. This
thesis presents the Revolve Toolkit, applying it in practice to explore the grey area
of evolutionary robotics between off-line and on-line, embodied evolution. The most
prominent difference between these two types of systems is found to be the means of
evaluation, which is one-off and serial in off-line scenarios whilst being continuous in
on-line, embodied scenarios. The fact that the performance of robots changes over
time results in different evolutionary dynamics in the latter approach.

SUPERVISOR: A.E. Eiben
SECOND READER: A. Visser
KEYWORDS: Evolutionary Computing, Evolutionary Robotics,

Artificial Life, Robotics Simulation

Acknowledgements

First and foremost I should thank Gusz Eiben, whose vision and passion for evolving
robots is indispensable for the subject. Furthermore I thank Josh Auerbach, creator
of RoboGen, which served as an inspiration for many areas of this work.

I also thank my friend Ove Danner for providing support and a voice of reason when
the mountain would at times seem too high to scale. Finally I’d like to express some
gratitude to my other friends, family and in particular the guys at work for being
patient with my progress while reminding me that at some point, enough really is
enough.

5

Contents

Abstract . 3
Acknowledgements . 5

1 Introduction 9
1.1 Research Goals . 10

2 Background 13
2.1 Evolutionary Computing . 14
2.2 Evolutionary Robotics . 14
2.3 Evolution of Things . 15
2.4 Artificial Life . 15
2.5 Off-Line, On-Line and Embodied Evolution 16
2.6 Computer Models . 17
2.7 The Reality Gap . 18

3 Related Work 19
3.1 Dynamics Engines . 20
3.2 Research Projects and Educational Tools 21
3.3 Robotic Simulation Platforms . 21
3.4 Similar Research . 23

4 The Revolve Toolkit 25
4.1 Gazebo . 26
4.2 The Revolve Specification . 27
4.3 Revolve Libraries . 28

4.3.1 Python Libraries . 28
4.3.2 Gazebo Plugins . 29
4.3.3 The Body Analyzer . 30

4.4 Revolve Angle . 30
4.4.1 Genome . 31
4.4.2 Phenome . 31
4.4.3 Genotype to Phenotype Conversion 31
4.4.4 Restrictions . 32
4.4.5 Robot Generation . 33

7

8 CONTENTS

4.4.6 Evolution . 33

5 Experimental Setup 37
5.1 Body Part Types . 37

5.1.1 Core Component . 38
5.1.2 Fixed Brick . 38
5.1.3 Parametric Bar Joint . 39
5.1.4 Active Hinge Joint . 39
5.1.5 Passive Hinge Joint . 39
5.1.6 Touch Sensor . 40
5.1.7 Light Sensor . 40

5.2 Neuron Types . 40
5.3 Viability Criteria . 40
5.4 Scenarios . 41

5.4.1 Computational Performance . 41
5.4.2 Baseline . 41
5.4.3 Evolution . 42

5.5 Simulation Parameters . 44
5.6 Data Gathering . 44

6 Results 45
6.1 Computational Performance . 45
6.2 Evolution . 46

6.2.1 Fitness . 46
6.2.2 Robot Characteristics . 50
6.2.3 Robot Morphologies . 54
6.2.4 In Summary . 56

7 Conclusions and Discussion 65
7.1 Utility . 65

7.1.1 Experimental Design . 65
7.1.2 Computational Performance . 66

7.2 Experiments . 66
7.2.1 Off-Line versus On-Line . 66
7.2.2 The Reality Gap . 67

7.3 Motivating the Design of Revolve . 67

8 Recommendations and Future Work 71
8.1 State of Revolve . 71
8.2 Future Research . 72

1
Introduction

The work presented in this thesis is a result of the desire to progress the field of
Embodied Artificial Evolution (EAE) [18], a branch of Evolutionary Robotics (ER),
as part of the grand challenges for evolutionary robotics as presented by Eiben et al.
[16]. Recent technological advances in rapid manufacturing technology are providing
a basis for experiments in which robots evolve in real time and real space, otherwise
known as the Evolution of Things [20]. While this grand vision is aimed towards
experiments involving real physical robots, the cost of such research both timewise
and financially is still high. Therefore, rather than disregarding simulation entirely as
something that is not part of the end result, it is embraced as a tool to bootstrap this
kind of work, supplying researchers with a low cost means of realizing a proof of concept
or exploring a hypothesis before committing to a larger investment. Recognizing this
facilitating role, a good simulation tool should lower the threshold to perform exactly
these kinds of tasks. The software toolkit outlined in this document aims to fulfill that
requirement for at least a large body of potential research projects.

The primary driver for the work described in this thesis are the difficulties encoun-
tered with the simulation efforts in the work that precedes it at the Computational
Intelligence (CI) group 1 of the Vrije Universiteit in Amsterdam, predominantly the
work by Weel, et al. from 2014 [42]. This described a simulation of an open ended
artificial ecosystem with physical robots with co-evolving minds and bodies. Imple-
menting the Triangle of Life [17] framework, it provided a step forward towards open
ended physical robot evolution.

However, the simulations, which made use of the Webots [31] robotic simulator, were

1http://www.cs.vu.nl/ci/

9

http://www.cs.vu.nl/ci/

10 CHAPTER 1. INTRODUCTION

not without issues, as was noted in the Master’s thesis [12] from which the publication
followed. First of all, Webots is a commercial and closed-source platform, requiring a
license for each computational unit running the software. This meant scaling the sim-
ulations towards the resources desired for running computationally expensive robotic
scenarios would become increasingly expensive, a particularly pressing issue given that
the simulations ran at a prohibitive approximate 11% of real time speed. The closed
source nature meant it was hard to analyze and improve these performance issues,
as well as the unexpected software instabilities that were found to occur. Finally,
constraints in Webots limited the number of individuals that could be simulated, re-
gardless of performance. Even though the system was designed with reusability in
mind, its use as a foundation for future research project therefore became question-
able. This work represents the result of the decision to take a small step back to realize
an alternative foundation.

1.1 Research Goals

The software toolkit developed as part of this work, Revolve, aims to provide a basic set
of tools that can be used to jump start simulating an evolutionary robotics scenario.
It builds on top of an openly available robotics simulation platform, Gazebo [28],
attempting to provide a good trade-off between flexibility, ease of implementation and
performance.

Realizing that without an actual use case it is generally hard to create something
useful, the purpose of this thesis is twofold: to describe the design and uses of the
Revolve Toolkit, and to use it to answer a research question. The first part, which
explains Revolve and its components, is considered in Chapter 4, following chapters 2
and 3 which provide a brief background on the subjects involved and an overview of
the platforms considered to construct Revolve respectively.

This part is followed by a series of experiments, described in Section 5.4, designed to
assess the performance of Revolve as a research tool both quantitatively and qualita-
tively, focusing on the simulation of on-line, embodied artificial evolution scenarios.
The matter of computational performance is addressed first, to see what population
sizes can feasibly be simulated on regular hardware. Building on these results, a num-
ber of simulations are performed to address the following research question:

− What are the differences between off-line and on-line evolutionary robotics sys-
tems?

The terminology of this question should be interpreted in the context of Section 2.5.
This matter is explored by examining the outcomes of simulations of both types of
scenarios that share many characteristics. More concretely, the robotic structures
resulting from these simulations are compared in terms of fitness and complexity,

1.1. RESEARCH GOALS 11

defined by several measures such as their number of extremities and the size of their
brains.

Given these results, not only do these experiments show that Revolve is up to the task
for which it was designed, they also provide some insight into what happens at the
‘edge’ of common present-day evolutionary robotics and the envisioned Evolution of
Things. To the best of the author’s knowledge, this type of analysis has not yet been
performed at the time of this writing.

2
Background

As Karl Sims so adequately stated in his landmark 1994 paper [38], the field of robotics
suffers from a complexity versus control trade-off. In essence this means that the
possibilities for creating complex physical (robotic) structures exceed the human ability
of designing satisfactory control systems for such structures. Even when the desired
behavior can be qualitatively described, controlling a complex physical system has
been found to simply involve too many inter-playing variables to employ a top down
designing approach. The same problem arises not only for control systems but also
for robot hardware, as the desire for robots to perform increasingly demanding tasks
in possibly hostile and unknown environments makes it hard to design a physical
structure for a robot well suited to the objective. To quote another early paper on the
subject: “Interesting robots are too difficult to design” [26].

Evolution can provide a solution to this dilemma, by borrowing from the apparent
concepts with which ourselves and the other living entities around us have come to be
as they are today. Instead of regarding the system as a whole, a bottom up approach
is taken by comprising one of separate parameterized modules, allowing for a wide
array of possible behaviors. When evolutionary processes are allowed to operate on
multiple of the hereby arising ‘individuals’, producing new individuals that exhibit
increasingly desired behavior can in many cases be accomplished by selecting the
fittest ones (i.e. the ones currently most suitable to the task) and let them have
offspring. This Darwinian process of refinement through selection and reproduction
can be repeated indefinitely, and has for centuries been widely applied in any area
involving living organisms, such as livestock and agriculture.

13

14 CHAPTER 2. BACKGROUND

2.1 Evolutionary Computing

In computing, the use of evolutionary techniques is nothing new, the principal idea
being as old as the computer itself [40]. In the decades following its theoretical con-
ception, several branches emerged in what would later be known as evolutionary com-
puting. The essence of solving a problem using evolution is to capture candidate
solutions in a data structure that is capable of undergoing evolutionary operations
such as genetic recombination and mutation. Such a genotype may directly or indi-
rectly be expressed as a phenotype, terminology which has been conveniently borrowed
from its biological counterparts. The phenotypic expression provides a solution that
can be evaluated for a certain measure of quality, referred to as the solution’s fitness.
Selection takes place based on this value. The main advantage of this approach is
that no deep understanding about the intricacies of a problem are required to arrive
at a high quality solution, which may to a human observer be regarded as unintuitive
and original [19]. The downside is that the way in which such a solution is reached
cannot always be entirely understood, nor is it necessarily optimal [14]. Nevertheless
its versatile applicability has led this principle to be successfully applied to a wide
range of subjects, as aptly summarized in [20]. This article also emphasizes that the
rise of Darwinian techniques in computing essentially marks a transition of evolution
from real world ‘wetware’ to digital software, an emphasis reiterated here because of
its relevance to what follows.

2.2 Evolutionary Robotics

From the field of evolutionary computing emerged in the early 1990s the field of evo-
lutionary robotics, a term coined in 1993 [11] which can be defined as ‘a method for
the automatic creation of autonomous robots’ [32]. An adequate overview of the emer-
gence of and progression within this field can be found in several review papers on the
subject [3, 23]. Evolutionary techniques were initially applied to find effective control
systems for predesigned robots to perform a specific task, such as moving around as
fast as possible while avoiding obstacles [24] or evolving a walking gait [2]. Although
some works allowed for minor variations in e.g. sensor position [11], hardware limita-
tions caused most research to refrain from also evolving robot morphologies. This did
not hold back Karl Sims from experimenting with the principle in a couple of papers
from 1994, one of which was mentioned earlier in this introduction [37, 38]. In his
work he used a directed graph genome that could be represented as a physically real-
istic structure comprised of 3D primitives with a neural network brain, an approach
that has served as an inspiration for the work presented in this thesis. Although the
experiments were limited to simulation - the resulting creatures could not actually be
constructed in real life - they did allow for exploring the interplay of coevolution of
brains and morphologies. This holds significance because of the generally accepted
notion in artificial intelligence that the mind and the body have a strong influence in

2.3. EVOLUTION OF THINGS 15

shaping each other, a principle known as embodied cognition [3, 33]. Sims’ modular
approach has since then inspired several projects involving realistically constructible
robots, aided by technological advances such 3-D printing. Lipson and Pollack made
important progress by evolving robots consisting of basic components in simulation
and verifying the resulting designs by producing the ‘fittest’ individuals in real life [34].
Along with these efforts, the work in simulation of Bongard and Pfeiffer [4] is cited as
influential for the conception of RoboGen [1], a tool designed for educational purposes
that is of particular significance to this work. Organisms in RoboGen are represented
using genetic programming trees [30], phenotypically corresponding to 3D printable
components for structure and electronic components for computation, actuation and
sensory input.

2.3 Evolution of Things

Analogous to the transition from wetware to software, recent developments thus see
evolution slowly make a transition back into the real world, this time embodied in
synthetic hardware rather than organic wetware. This concept of (autonomous) robotic
evolution in real-time and real-space, involving both morphologies and controllers,
is otherwise known as the Evolution of Things [16, 20, 21]. Important progress in
this area was recently achieved by Brodbeck et al. [9]. In this work robotic agents
were designed, evolved, constructed and evaluated by a robot without any human
intervention, providing all the principal components required for fully autonomous
evolution in hardware.

2.4 Artificial Life

The basis of the evolutionary principle makes it interesting not only from an engi-
neering standpoint, but also from a biological and perhaps even philosophical point of
view. For a long time attempts to understand the world and the organisms within it
have resorted to a reductionist approach, in which larger entities are dissected into the
smaller components that make up their inner workings. It would seem however that
many properties of complex systems only arise from an intricate interplay of all parts
involved in the system and its environment - the whole is indeed greater than the sum
of its parts. These phenomena can therefore not be sufficiently understood using a
reductionist approach, much less can a satisfactory explanation be given for how they
came to be. If the evolutionary process can in some way be reproduced under compre-
hensible terms and conditions, a much better understanding of the inner workings of
biologic (eco)systems may be acquired. The branch of scientific research focusing on
trying to mimic life with artificial systems is commonly referred to as Artificial Life,
or ALife. Unlike many evolutionary computing projects, this branch of research is not

16 CHAPTER 2. BACKGROUND

primarily about optimization but rather about gaining an understanding of living sys-
tems by reproducing their properties in synthetic form, and as such relates closely to
the subject of Computational Biology. The lack of an optimization to perform is often
expressed in the absence of an explicit fitness function, and scenarios may be open
ended. An early example of such an artificial ecosystem is Tierra [35], in which the
individuals are computer programs competing for resources such as CPU and mem-
ory. Worth pointing out is the fact that the agents in this and other simulated agent
based artificial ecosystems like Polyworld [43] and SugarScape [22] are not robots by
any stretch of the definition but rather unspecified entities exchanging information.
An example of an artificial ecosystem involving robots can be found in the work by
Bredeche et al. [8] which concerns a population of simple e-puck robots that can move
around within an arena. The robots can spread the genotype of their controllers only
to other robots that are within a radius of 25cm. It should be noted that the lack of
an explicit fitness function in this and other scenarios does not exclude the presence
of implicit fitness, as the basis on which selection and reproduction are performed
may very well favor individuals with certain traits. These traits may arise as a result
of a given task or from an individual’s adaptation to the environment. In case of
the aforementioned paper, it turns out that the proximity requirement results in the
genomes that allow for their hosts to move around fast while avoiding getting stuck
to be prevalent, as it increases the potential population over which their genotype is
spread.

As previously mentioned, artificial ecosystems involving physical robots are to some
part of the grand vision for Evolutionary Robotics [16]. A further elaborated approach
to such research is the Triangle of Life [17] framework, dividing lifespan of a robot into
Birth, Infancy and Maturity, briefly summarized as the construction, learning and
(potential) reproduction period of the robot. Research in this area however is still
scarce, with the previously cited motivator for this thesis [42] being the only published
result thus far.

2.5 Off-Line, On-Line and Embodied Evolution

The usual approach to evolutionary robotics is what could be called disembodied and
off-line evolution, in which individuals are centrally generated, evaluated and repro-
duced in a serial manner in separate processes. While this approach may be logical
in an entirely digital setting, it does not necessarily make sense when regarding real
physical robots in the real world. In contrast, Embodied Evolution (EE) as introduced
by Watson et al. [41] is an approach in which the evolutionary process takes place
within a population of real robots. Eiben et al. further differentiate EE into systems
that are on-line and on-board [6]. On-line indicates that evolution takes place during
the robots’ operational period, rather than the serial evaluation sketched before. On-
board refers to the execution of the evolutionary algorithm taking place exclusively

2.6. COMPUTER MODELS 17

inside the hardware of the robots, rather than inside some external governor. It should
be noted that this latter concept, while important, is of little immediate practical sig-
nificance in pure simulation scenarios, where in general the simulation is carried out
by a central agent. Caution should however be used to prevent the use of information
in such simulations that would not be available in real life.

Several consequences arise from on-line, embodied evolution. Because the evolutionary
process takes place during the operational period of a robot, its fitness value (if any)
is no longer constant, but rather varies as a function of the individual’s environment.
These environmental changes are in large part influenced by the other robots in the
same population. Whereas these robots may still be task-driven, a part of the focus
is thereby directed to environmental adaptation of the individuals whilst performing
this task.

The concepts of EE relate closely to ALife. Bredeche et al. [7] classify the differences
and overlap, categorizing EE as being primarily objective driven (with an explicit
or implicit fitness function) and ALife being primarily environment driven. There
are however significant similarities, in that task completion goes hand in hand with
adaptation to the environment. Throughout this work the term On-line Evolution shall
be used to indicate ongoing evolution within an active population of robots (albeit in
simulation), often keeping the ‘embodied’ aspect implicit for brevity where it applies.

2.6 Computer Models

Whereas the key interest of evolutionary robotics clearly lies with real, physical robots,
experimentation with actual hardware is often time consuming and expensive and
therefore only possible to a certain extent. In addition, experimentation with new
technologies before or during their development may be desired. Even if the actual
hardware is readily available, limiting the resources spent on it is generally beneficial.
It is here that computer simulation comes into play, and unsurprisingly they have
played a role in evolutionary robotics since the early days of the field, for instance in
the work by Husbands from 1992 [26].

The exponential nature of the rise in computational power over the past decades has
opened many windows in computational research. The new possibilities it brings along
are of particular interest to the field of evolutionary computing, because the strength
of evolution lies in numbers: it thrives by iterative repetition, and a larger number of
computations is often the most straightforward way to a better result. The field of
robotics on the other hand benefits from this advance by gaining access to faster and
more accurate simulation scenarios, reducing the need for expensive and often tedious
experimentation in real hardware. Both of these concerns combine where evolutionary
robotics simulations are concerned: a desire for a large number of simulations on the
one hand and high performance simulation of robotic structures in both fidelity and

18 CHAPTER 2. BACKGROUND

speed on the other.

The mere availability of the required silicon to address these needs however is not a so-
lution in itself. Between a formed hypothesis and a working computational model with
acceptable performance stands a time consuming process of implementation. Reducing
the threshold of time between idea and experimentation is paramount in accelerating
answering the wide array of open questions in the field. Although implementation code
for existing research projects is increasingly made available to the the public, this code
is often specifically tailored to the specific research scenario for which it was designed,
making adapting or refactoring it to match another’s needs a tedious process. General
purpose robotics simulators on the other hand are available, commercial or otherwise,
such as Webots [31] and Gazebo [28]. A broader overview is provided in Section 3.3.
These packages come with a wide array of capabilities but provide little in terms of
tools for evolutionary robotics.

2.7 The Reality Gap

A notorious problem in evolutionary robotics is the reality gap [27], referring to the
behavioral differences between simulated systems and their real physical counterparts.
While simplification, rounding and numerical instability lead to differences whenever
computer models are involved, this effect is amplified in evolutionary systems. The
reason for this is that evolution, as previously noted, will often solve its set challenges
with unexpected solutions. While this is generally a favorable property, it also means
that the process may eventually ‘exploit’ whatever modeling errors or instabilities are
present, arriving at a solution that is valid only in the context of the simulation. Aside
from careful calibration of the behavior of the simulator, the simplest and therefore
most commonly used approach to counter this problem is to add noise to a virtual
robot’s sensors and actuators. While straightforward, this greatly increases the num-
ber of sensory representations of otherwise similar or identical states, slowing down
the evolutionary process. More complicated approaches may involve alternating fitness
evaluations between simulation and reality [3, 5, 29], but this negates the benefits of
simulation in many scenarios and is infeasible when simulating entire artificial ecosys-
tems. Crossing the reality gap is by no means a solved problem and as always one
should be cautious drawing definitive conclusions from a model.

3
Related Work

This chapter will briefly assess the existing software that may be of value when per-
forming evolutionary robotics research. In addition, Section 3.4 addresses similar
experiments performed to those performed in this work.

Regarding simulation software, a distinction is made between three different categories:

− Dynamics engines. To perform a simulation of physical robots, software is re-
quired to calculate the effects of forces and collisions on the environment. This
is a highly specialized task, for which generally an existing dynamics engine is
used.

− Robotic simulation platforms. A variety of software packages aiding in robotics
simulation is available. These generally incorporate one or more dynamics en-
gines, and may provide a set of low and high level tools ranging from specifying a
robot model and environment to providing control over its sensors and actuators.

− Research projects and educational tools. Existing research projects for which the
source code is available may be used as inspiration or a starting point for other
projects. They are commonly built either directly on top of a dynamics engine,
or making use of a simulation platform.

Relevant existing software in each of these categories is addressed in the sections below.

19

20 CHAPTER 3. RELATED WORK

3.1 Dynamics Engines

The popularity of realistic 3D gaming has the side effect that a wide variety of quality
physics simulation engines have been created over the years which can also be used
for research. One of the oldest and most widely used of such engines is the Open
Dynamics Engine (ODE) 1, a free and open source rigid body dynamics engine
that is still actively maintained and improved. A similar though more recent package
is Bullet Physics 2, which has support for soft body dynamics as well. Bullet also
promises support for GPU acceleration of dynamics, though at the time of this writing
this support is anything but stable, let alone integrated in any of the packages making
use of Bullet. Another example of an open source physics engine is Newton Dynam-
ics 3. While these engines were generally designed with video games in mind, they
provide very functional high fidelity dynamics simulations that make them suitable
for realistic simulations as well. This list is hardly exhaustive, as commercial physics
engines for gaming naturally also exist, like Havok 4, which solely target video games
and are therefore not considered here.

Other packages were designed from the outset as tools for realistic simulation, for
instance the commercial Vortex Dynamics 5, which is often used for simulating equip-
ment for military and industrial use. Open source examples in this category are the
Dynamic Animation and Robotics Toolkit (DART) 6 and SimBody 7. A spe-
cial mention is reserved for Voxelyze [25], supporting soft-body dynamics through
voluminous pixels or voxels. Voxelyze is the result of a smaller research project and
therewith not nearly as mature or well maintained as the other dynamics engines in
this chapter. In addition, having to calculate interactions between many small blocks
make voxel dynamics computationally heavy.

The performance of each of these engines is hard to assess, as it is both a qualitative
matter as well as a quantitative one. Generally some careful parameter tuning is
required to get a stable simulation at minimal computational effort. Performance varies
based on the use case, so having the ability to easily switch between engines, which
many of the simulation platforms from Section 3.3 provide, can prove advantageous.

1http://www.ode.org
2http://www.bulletphysics.org
3http://newtondynamics.com
4http://www.havok.com
5http://www.cm-labs.com
6http://dartsim.github.io
7https://simtk.org

http://www.ode.org
http://www.bulletphysics.org
http://newtondynamics.com
http://www.havok.com
http://www.cm-labs.com
http://dartsim.github.io
https://simtk.org

3.2. RESEARCH PROJECTS AND EDUCATIONAL TOOLS 21

3.2 Research Projects and Educational Tools

Although research projects involving ecosystems with robots evolvable minds and mor-
phologies are scarce, any evolutionary robotics project that shares some characteristics
with the desired setup could in theory be adapted and used if its source code has been
made available. The precursor to this project has freely available source code 8, which
is relatively reusable, albeit targeted most specifically at Roombots, and comes with
the disadvantages sketched earlier. A software tool released by NASA, the NASA
Tensegrity Robotics Toolkit (NTRT) [10], provides simulation of tensegrity robots,
which are structures consisting of ‘tendons’ and small fixed components put together
in such a way that a soft but stable structure results. NTRT includes examples where
the brains of these structures are evolved using off-line evolution, but is not built with
morphology evolution in mind. Ludobots 9 is a small educational tool developed by
Josh Bongard [3], using ODE for dynamics. It allows for experimentation with simple
modular robots with a neural network brain, though these robots are not necessar-
ily realistic. The tool is quite minimal and its source code is minimally documented
and does not appear to be maintained. A final tool which has been touched upon in
the background section is Joshua Auerbach’s RoboGen [1] which involves modular
robots that can be constructed in real life through a combination of 3D printing and
attaching electronics. The robots have a neural network brain that can be evolved as
well as their morphology. The morphology ‘building plan’ leaves room for different
components than those that are used by default. Simulation scenario’s in RoboGen
are entirely off-line, with only one robot evaluation at a time.

3.3 Robotic Simulation Platforms

Before addressing the various simulation platforms, it is worth mentioning the Robot
Operating System (ROS) as it is a term often heard in this context. ROS encompasses
a range of middleware to aid in the development of robot software. Conceptually, a
ROS setup consists of isolated nodes, where each node has a specific task, such as
reading out sensor values or performing computations for a robot’s control system.
ROS provides hardware abstractions and message passing functionality between these
nodes. The modularity of this approach makes it possible to, for instance, swap
out communication to a physical robot with communication to a simulator without
changing the rest of the setup. Many simulators come bundled with ROS integration,
but ROS itself is not a simulator. Depending on the use case, ROS may be a valuable
tool, especially for developing real physical robotic systems. Where pure simulation
is concerned however, it can be argued that the ROS libraries add complexity and
performance overhead. In addition, software integrations with ROS often lag behind

8https://code.google.com/archive/p/tol-project/
9http://www.uvm.edu/~ludobots

https://code.google.com/archive/p/tol-project/
http://www.uvm.edu/~ludobots

22 CHAPTER 3. RELATED WORK

the main versions of simulation platforms because of their independent development.

As mentioned in the introduction, the work directly inspiring the efforts in this the-
sis made use of the Webots robot simulator [31], a commercial simulation platform
powered by the Open Dynamics Engine. It comes packed with many features like hu-
man readable files for specifying scenes and models, interfaces to various programming
languages and ROS integration. Its downsides were also previously touched upon: per-
formance and stability issues, which may be hard to debug or improve because the
source code of the platform has not been made available. In addition, Webots requires
a costly commercial license.

Another commercial simulator is Coppellia Robotics’ V-REP [36]. Although com-
mercial, licenses for V-REP are available that allow use of the simulator free of charge
for students and employees of educational institutions, as well as having its source
code available. The simulator provides a high degree of extensibility through plugins,
scripting and API bindings with several different programming languages. ROS inte-
gration is also available. Four different engines are supported for physics simulation:
Bullet Physics, ODE, Vortex Dynamics and Newton Dynamics. In addition, a ver-
satile user interface allows creating and modifying scenes and robots. A downside of
V-REP is the binary format that is used for storing scene and model configurations,
making it hard to alter these without the use of the platform itself.

A package similar to V-REP is Gazebo [28], which is maintained by the Open Source
Robotics Foundation (OSRF) 10, the same organization behind ROS. It should there-
fore come as no surprise that Gazebo generally provides the most up-to-date ROS
integration. Gazebo is entirely open source and the source code is available under the
permissive Apache 2.0 license. Model and environment configurations are specified in
an XML based format. Integration with the simulator is possible through either a
publisher / subscriber based messaging API or through compiled plugins. Support is
included for four dynamics engines: Bullet Physics, ODE, DART and SimBody. The
simulator comes bundled with an optional user interface providing scene visualizations,
control and simple editing capabilities.

The final simulator discussed here is MORSE [15], which to quote its website 11, is a
‘generic simulator for academic robots’. It is built on top of Blender 12 for its rendering
and dynamics simulation, which is in turn powered by Bullet Physics. MORSE com-
municates with Blender through Python bindings, and is itself written predominantly
in Python. The combination of Blender and Python makes for a developer friendly
experience, but does impose some limitations on fine grained control over simula-
tion performance. MORSE simulations and robots are specified as a combination of
Blender objects and Python code. It can be integrated using several middlewares, in-
cluding ROS or a simple socket connection. Being based on Blender, MORSE always

10http://www.osrf.org
11https://www.openrobots.org/morse
12http://www.blender.org

http://www.osrf.org
https://www.openrobots.org/morse
http://www.blender.org

3.4. SIMILAR RESEARCH 23

requires an instance of Blender to run for its simulations, even if visualizations are not
required. An interesting property of MORSE is its potential for multi-node simulation
13. This distributes the calculations and sensor readings performed for each robot over
a number of computational nodes, while synchronizing the actual resulting scene.

3.4 Similar Research

The background section of this thesis has addressed the past and current work in the
field of Evolutionary Robotics and ALife. Off-line ER research is plentiful, whereas
[42] is presently the only concrete example of an on-line artificial ecosystem evolving
both morphologies and bodies (albeit in simulation). Although it is recognized in [8]
that a trait such as increased speed can arise in the absence of an explicit fitness
function, little is known about what happens at the ‘edge’ of these two scenarios -
where evolution is on-line in an active population, but still governed by a central
agent. The type of experiment performed in this thesis is therefore new, to the best
of the author’s knowledge.

13https://www.openrobots.org/morse/doc/stable/multinode.html

https://www.openrobots.org/morse/doc/stable/multinode.html

4
The Revolve Toolkit

The Robot Evolve Toolkit, developed as a part of this thesis, is a set of Python and
C++ libraries created to aid in setting up simulation experiments involving robots
with evolvable bodies and/or minds. It builds on top of the Gazebo simulator, com-
plementing this simulator with a set of tools that aim to provide a convenient way to
set up such experiments. The design of Revolve is motivated in Section 7.3. Revolve’s
philosophy is to make the development of simulation scenarios as easy as possible,
while maintaining the performance required to simulate large and complex environ-
ments. In general this means that performance critical parts (e.g. robot controllers
and parts relating to physics simulation) are written in the C++ language, which is
highly performant but can be tedious to write, whereas less performance focused parts
(such as world management and the specification of robots) are written in the slower
yet more development friendly Python language. The bulk of the logic of a simulation
setup commonly falls in the latter category, which means the experimenter will be able
to implement most things quickly in a convenient language. Revolve’s source code can
be found at https://www.github.com/ElteHupkes/revolve.

This chapter starts with a description of Gazebo, and continues to describe the prop-
erties of the Revolve Toolkit in more detail. For more information about the Gazebo
simulator, please refer to its website at http://ww.gazebosim.org.

25

https://www.github.com/ElteHupkes/revolve
http://ww.gazebosim.org

26 CHAPTER 4. THE REVOLVE TOOLKIT

4.1 Gazebo

As mentioned in Section 3.3, Gazebo is an open source, multi-platform robotic sim-
ulation package that is available free of charge. It provides both physics simulation
and visualization of rigid body robotic structures and their environments. Abstraction
wrappers are available for four well established dynamics engines, meaning that, in
theory, it is possible to run simulations using any of these physics engines by changing
a single parameter. The caveat is that implementation details cause behaviors to be
slightly different between engines, meaning there is generally a need for parameter
tweaking to get simulations to behave desirably.

In order to describe robots and environments, Gazebo uses the Simulation Description
Format (SDF) 1, which allows an end user to specify anything from the texture of
the terrain to the physical and visual properties of robots in an XML-based format.
Because XML can be cumbersome to write for human beings, the sdf-builder 2

Python package was developed concurrently with Revolve to provide a thin, structured
wrapper over this format that aids with positioning and alignment of geometries, and
calculation of their physical properties.

What makes Gazebo particularly useful is the means by which it allows programmatic
access to observing and modifying the simulation. It provides two main interfaces to
do this:

− A messaging API. Gazebo comes bundled with a publisher / subscriber mes-
saging system, in which any component can subscribe to and / or publish on so
called topics. Many aspects of the system can be controlled using these messages,
which are specified in Google’s Protocol Buffers (Protobuf) format 3. Because
this communication happens over TCP sockets, access to this interface is quite
straightforward from most programming languages.

− The plugin infrastructure. It is possible to load shared libraries as a plugin
for several types of Gazebo components, providing programmatic access to the
simulation using Gazebo’s C++ API. As an example, one can specify a certain
piece of compiled C++ code to be loaded with every robot that is inserted into
the world.

Revolve makes use of both of these interfaces to provide its functionality.

1http://sdformat.org/
2https://github.com/ElteHupkes/sdf-builder
3https://developers.google.com/protocol-buffers/

http://sdformat.org/
https://github.com/ElteHupkes/sdf-builder
https://developers.google.com/protocol-buffers/

4.2. THE REVOLVE SPECIFICATION 27

4.2 The Revolve Specification

The basic goal of Revolve is to provide a set of libraries that facilitate describing robots
in terms of a set of predefined parameterized base parts, converting these descriptions
into a format that can be simulated by Gazebo and providing control and feedback util-
ities with regard to this simulation. The mechanism to construct arbitrary robots from
predefined parts, known as the Revolve Specification, is heavily inspired by RoboGen
[1] and boils down to the following principles:

− A robot consists of one or more parts pi of type τi ∈ T where T is the set of all
possible part types. A part type specifies at least:

· A number of connection slots c(τi). Physically speaking, these are the
positions at which parts can be attached to other parts.

· A number of inputs and outputs, each corresponding to one numerical value.
Although the user is free to choose the function of these inputs and outputs,
generally inputs will be used to specify sensor values, while outputs specify
actuator values.

· Zero or more numeric parameters p(τi), which allow for specifying variation
within body part types.

− A robot is defined by a labeled tree graph R, where each node rj specifies at
least:

· A body part type τi ∈ T .

· A list of values πi for the numeric parameters p(τi).

· A set of labeled node edges C, describing how this body part is attached to
other body parts. Each connection ci ∈ C is a tuple (rj, f, t) where rj ∈ R
defines a child node and f and t are the from and to slots of the connection
respectively. To describe a valid robot, these slots must be supported by
the respective nodes’ part types. Because R is a tree, C is not allowed to
form any cycles in the node graph.

· An orientation ω encoding the orientation of the body part relative to its
connection slot, or to the world if its node is the root of the tree.

Knowing the tree graph that describes a robot provides a blueprint that, combined with
information on the actual physical properties of the parts, allows for construction of the
robot. Note that the Revolve Specification only prescribes the syntax of this blueprint,
it does not make any assumptions about these parts’ physical structure or function.
This blueprint syntax is captured in a Protobuf message, which is straightforward to
generate from many programming languages and is easy and efficient to communicate
over the network if required. Any robotic body space that maps onto the specification
can in principle be implemented in - and simulated with Revolve. This allows the

28 CHAPTER 4. THE REVOLVE TOOLKIT

specification to be conveniently extended with other properties and for instance be
used as a genome, as will become apparent later in this work.

4.3 Revolve Libraries

At the heart of Revolve lie a set of general purpose tools, which can be roughly
separated into Python components and Gazebo C++ plugin components. A certain
layering is present in the provided tools, ranging from anything between closely related
to the specification to more practical tools that can be used to quickly implement an
actual experiment. The most ‘opinionated’ part of Revolve, called Revolve.Angle,
provides everything for a complete robot evolution experiment short of the actual body
parts being used and is discussed in Section 4.4.

4.3.1 Python Libraries

The most basic Python libraries include functionality to:

− Create a body specification, specifying a body space in terms of components. A
Revolve component is a Python module that wraps over the structure classes
in the previously mentioned (Section 4.1) sdf-builder library. In addition to
the physical and visual properties of the body part, to be given in terms of SDF
elements, it should specify where the attachment slots are located and what
sensors and / or actuators the body part implements.

− Describe actual robots in terms of this body space by making use of the Revolve
Specification messages. Rather than using the Protobuf messages directly, robots
can be specified in a more user Python object notation, or in the YAML 4 format.
Tools are included to convert between these formats.

− Given a body specification, convert a robot description into an SDF representa-
tion that can be loaded into Gazebo.

− Generate a random robot body from a specification, with the possibility to pro-
vide certain constraints.

− Observe and modify the state of a running simulation in Gazebo. Revolve makes
use of the pygazebo library 5 in order to interface with Gazebo’s messaging
API (mentioned in Section 4.1). The most common functionalities, such as
inserting and removing robots, logging their positions and pausing or resuming
the simulation are encapsulated in a WorldManager, which can be used as a basis
on top of which more advanced system behaviors are built.

4http://yaml.org/
5https://github.com/jpieper/pygazebo

http://yaml.org/

4.3. REVOLVE LIBRARIES 29

These previous functionalities all fail to address an important part of any functional
robot: its brain. Recognizing that many different types of brains may be desired
depending on the use case, an attempt has been made to make the body specification
as broadly applicable as possible. That being said, Revolve does include functionality
to work with one specific brain type, which is a recurrent neural network. The libraries
written for this purpose allow one to:

− Specify the basic properties of a neural network, for instance the neuron types
(i.e. the type of used activation function) and range limits of the weights.

− Describe a neural network in terms of its neuron types and connection weights.
This again uses a Protobuf message as the central format, with converters from
and to more readable formats.

− Generate a random neural network from an interface, within given constraints.
A separately generated robot body can be used as an interface, turning all its
specified sensor and motor values into input and output neurons respectively.
One of these formats is XML-based and can be used to add the description of
the neural network to the SDF contents sent to Gazebo.

Note that the actual control of a robot will have to take place inside the simulation,
for which at least some code is required. The neural network plugin currently available
in Revolve that does this is addressed in Section 4.3.2.

4.3.2 Gazebo Plugins

In order to actually control a robot in simulation, Gazebo has to be told what sensor
values to read, what joints to control, et cetera. While it is possible in principle to
provide most of these functionality through the messaging API, when it comes to
controlling a robot the code is closely related to the simulation, runs often and is
therefore more apt to be considered as a high performance aspect to be written in
C++. Revolve supplies a base robot controller plugin to deal with this aspect of the
simulation setup. When the SDF contents of a robot are produced for simulation, a
reference to this plugin is included alongside information about its sensors, actuators
and brain. Gazebo supports many types of sensors, all of which are accessed in a
different fashion. Revolve wraps over a number of often used sensors and unifies them
in a generic interface passed to the robot controller. The same holds for actuators,
which control the joints of robots in simulation. Rather than having to specify the
forces that operate on these joints, Revolve allows setting either a position or velocity
target which, combined with a predefined maximum torque, resembles the interface of
a real world servo motor.

The robot controller gathers the sensor and actuator information, constructs the ad-
equate control classes and passes this information to an abstract method that loads

30 CHAPTER 4. THE REVOLVE TOOLKIT

the robot brain. By default, this method loads a controller for the recurrent neural
network as described at the end of Section 4.3.1.

In addition to the robot controller, Revolve also includes a world controller plugin,
which should be included with each loaded simulation world. While using this plugin
is not strictly necessary, it includes some convenient functionality to insert robots into
the world, keep track of their position and remove them.

4.3.3 The Body Analyzer

When dealing with randomly generated, mutated or evolved robots, there is often
no easy way to make sure if a candidate robot is actually valid, that is, realistically
constructible. More specifically it is often useful to know

− if the candidate has any body parts that intersect and

− what the dimensions of the candidate robot are.

To be able to answer these questions about a candidate robot, Revolve comes bundled
with a standalone Body Analyzer. This program is nothing more than an instance
of Gazebo, combined with a plugin that accepts a robot body in a network message,
loads it into the world and communicates is properties back over the network. The
analyzer can be run alongside a simulation experiment to decide whether or not to use
a certain candidate robot.

4.4 Revolve Angle

Alongside the modules to create a wide variety of experimental setups described in the
previous sections, Revolve includes a more opinionated module called revolve.angle,
implementing a specific subset of all possible experimental setups. Its function is
twofold, in that

− it allows for setting up any experiment matching these setup descriptions rapidly
and

− it serves as an example on how to use Revolve.

Revolve Angle implements the following functionality:

− A genome including both a robot’s body and brain.

− A conversion from this genome to a usable SDF robot.

− Evolutionary operators functioning on this genome: crossover and mutation.

− The entire RoboGen body space is included as Revolve Components, though its
use is optional and other body parts may just as well be used with the genome.

4.4. REVOLVE ANGLE 31

This section discusses these properties of Revolve Angle.

4.4.1 Genome

The genome used by Revolve Angle is inspired by what was previously used in Robo-
Gen. It is a single-rooted tree graph encoding the layout of the robot body, extended to
incorporate the robot brain, a fully connected recurrent neural network. The genome
is essentially the Revolve Specification (Section 4.2), where each node is extended with
neural network properties to include:

− Two lists of neuron types and parameters, Noutput and Nhidden. Each is a list
of tuples (t,πneuron), where t ∈ Λ is a supported neuron type (see Section 5.2)
and πneuron is a list of values for the parameters specified by this neuron type.
|Noutput| is determined by the number of outputs specified by the body part type,
|Nhidden| can vary.

− A set of paths Q. Each path qi ∈ Q is a tuple (s, w, o1, t1, o2, t2) with s being
an ordered list positive integers (s0, s1, ...), |s| ≥ 0 and w a numeric weight. Fur-
thermore, t1 ∈ {input, output, hidden}, t2 ∈ {output, hidden} denote the type
of a neuron, with o1, o2 being corresponding integer offset values. Every path q
ultimately encodes a connection in the neural network of the robot.

4.4.2 Phenome

The genome defined in Section 4.4.1 forms a blueprint for a robot, which can be turned
into an actual robot representation only given the set of part types T . While Revolve
Angle optionally includes the RoboGen body space, a different set of body parts can
just as easily be used. The same holds for the robot’s brain, where the default neural
network as used in RoboGen is provided, which can be changed when desired.

The RoboGen body space and neural network are addressed in sections 5.1 and 5.2
respectively.

4.4.3 Genotype to Phenotype Conversion

Construction of an actual robot from a genotype starts at the root node of the tree.
The robot body is constructed by recursively traversing the tree edges attaching com-
ponents at the ‘from’ and ‘to’ slots of the connection. This process aligns the body
parts such that the slot normal vectors point in opposite directions, the slot tangent
vectors point in the same direction and the slot surfaces touch at the slot points.

The interface of the robot’s neural network results directly from parts’ inputs and
outputs, all of which is represented by one respective input or output neuron in the

32 CHAPTER 4. THE REVOLVE TOOLKIT

Parameter Description
|R|max Maximum number of nodes
|R|min Minimum number of nodes
omax Maximum number of outputs in a robot
imax Maximum number of inputs in a robot
hmax Maximum number of hidden neurons in a robot
ν(τ) Function returning the maximum number of nodes with part type τ
Troot Set of possible part types for the tree root node
Tchild Set of possible part types for the tree child nodes
Λhidden Set of possible activation functions for hidden neurons
Λoutput Set of possible activation functions for output neurons

Table 4.1: Genotype restriction parameters

brain. The properties of each node’s output neurons are set to match the values in its
Noutput. For each node, |Nhidden| hidden neurons are constructed with corresponding
type and parameter values.

The fully connected neural network is initialized with zero weights for all connections.
For each node ri, the path portion s of Q is traversed following node edges where the
from slot f matches the path value si, until no si are left upon which point node rj
is reached. The weight of the network connection between ri(t1, o1) and rj(t2, o2) is
then set to the weight portion w of Q, where ri(t, o) denotes the oth neuron of type t
belonging to node ri. If at any point the path cannot be traversed, either because a
node edge at the from slot si is not available or because ri(t1, o1) or rj(t2, o2) does not
exist, the path is simply ignored and no weight is set.

4.4.4 Restrictions

The genome paired with available body parts impose a few natural restrictions on
a genotype, namely the values for τ and V as well as ‘from’ and ‘to’ slot values for
the tree edges. In addition to these restrictions, a genotype is further constrained
by several system parameters, which are listed in table 4.1. Paths in Q that do not
resolve to any node / neuron combination are allowed, they will simply not lead to
any neural connection (see Section 4.4.3).

Furthermore, the phenotype space is usually constrained to containing only robots that
could realistically be constructed, i.e. robots with intersecting body parts are rejected.
The body analyzer (Section 4.3.3) can be used to determine whether a generated or
evolved robot matches this criterion.

4.4. REVOLVE ANGLE 33

4.4.5 Robot Generation

The random generation of robot genotypes is a general feature of Revolve that is
further specified by Revolve Angle. The procedure to generate a random genome tree
works as follows:

− A random number is drawn from N (µparts, σ
2
parts) to determine the targeted num-

ber of body parts for this robot.

− A random part is drawn from Troot to be used as the root of the robot.

− A random free slot on the robot body is chosen along with a part from Tchild and
a random slot on this part. After adding this combination to the tree, this step
is repeated until either the targeted count of body parts is reached, there are
no free slots available or any added body part would violate previously imposed
restrictions on the body. This completes the robot body. The specification for
the body parts determines the input / output interface of the robot’s neural
network.

− A number is drawn uniformly from [0, hmax] to determine the number of hidden
neurons in the robot. This number is randomly distributed over the body part
nodes.

− Activation functions for the hidden and output neurons in the tree are randomly
drawn from Λhidden and Λoutput respectively. Any associated parameters are ran-
domly initialized.

− A neural network connection weight is chosen for all possible neuron combina-
tions N × Nhidden ∪ Noutput. This weight is a random uniform value from [0, 1]
with a probability pconnect neurons and zero otherwise.

The generated genotype resulting from this procedure is not guaranteed to be viable,
because it is generally not possible to determine any intersecting body parts as men-
tioned in Section 4.4.4. The body analyzer can be used to determine this fact.

4.4.6 Evolution

Revolve Angle includes a procedure of evolutionary operators in which two ‘parent’
robots can produce offspring through several operations on their genotype trees. This
section discusses these operation in the order in which they are applied to create a
child robot c from parents a and b.

34 CHAPTER 4. THE REVOLVE TOOLKIT

4.4.6.1 Crossover

In the first step, a node ac from a is randomly chosen to be the crossover point. A
random node bc from b is chosen to replace this node, with the condition that doing so
would not violate the restrictions as given in Section 4.4.4. If no such node is available,
evolution fails at this point and no offspring is produced. If such a node is found, c1 is
created by duplicating a and replacing the subtree specified by ac with the subtree bc.

4.4.6.2 Subtree Removal

This step involves picking a random node from c1 and removing it and its subtree from
c1 to produce c2. Subtree removal happens with a probability premove subtree, which is
an experimental parameter.

4.4.6.3 Subtree Duplication

In subtree duplication, a random node d from c2 is chosen to be duplicated, along
with a random free slot on one of c2’s parts, again only provided that duplicating
this node would not violate robot restrictions. The subtree specified by d is then
duplicated onto the chosen free slot to produce c3. This operation is performed with
parameter probability pduplicate subtree. If no trees could be duplicated without violating
restrictions, this step is skipped and c3 = c2.

4.4.6.4 Subtree Swap

With probability pswap subtree, a random node s1 is chosen from c3. Another random
node s2 is chosen provided it has no ancestral relationship with s1 (i.e. it is not a
parent or child of this node). If no such node is available the step is again skipped,
otherwise s1 and s2 are swapped in c3 to produce c4.

4.4.6.5 Hidden Neuron and Neural Connection Removal

For each node in c4, its hidden neurons Nhidden and paths Q are traversed. For each
hidden neuron, a choice is made to either keep or delete the neuron with probability
premove hidden neuron. The same decision is made for paths in Q, which are removed with
probability premove neural connection. The resulting genotype is c5.

4.4. REVOLVE ANGLE 35

4.4.6.6 Parameter Mutation

Each node in c5 has the parameter set πbody and parameter sets πneuron for each hidden
or output neuron. These parameters π are all iterated, and a new parameter π∗ is
generated with a random uniform draw from within the valid range of the respective
parameter. The parameter is then changed from c5 to c6 to have the value (1−ε)π+επ∗,
where ε is a property that determines the mutation rate.

4.4.6.7 Hidden Neuron and Neural Connection Addition

To prevent the number of hidden neurons from tending to zero over many generations,
hidden neurons are added to c6 to create c7. The number of newly created hidden
neurons in c6 is equal to the expected number of removed hidden neurons between c4
and c5. This is done to keep the number of neurons the same on average, while not
keeping it strictly the same between generations. The type and parameters of newly
created hidden neurons in c7 are randomly generated. A similar process is performed
for each neuron’s paths in Q, which are added in an equal number as that is expected
to have been removed. It should be noted that these paths are initialized to point to
valid neurons, so no broken paths are initially generated. Path weights are randomly
drawn.

4.4.6.8 Part Addition

Again in order to keep robot complexity roughly the same, a new part is added with
a probability proportional to the number of parts that are expected to have been
removed by subtree removal, minus the number of parts expected to have been added
by subtree duplication. The new part is randomly generated with both hidden neurons,
neural connections and all parameters, and attached to a random free slot on the tree
to produce the final robot c. Again, this step is skipped if adding a part would violate
restrictions.

5
Experimental Setup

The experiments described in this work make use of the genotype and evolutionary
operators as specified by Revolve Angle, using the both the body parts and neural
network as they are used in RoboGen. This section discusses the properties of these
body parts (Section 5.1) and neuron types (Section 5.2), as well as the experimental
scenarios performed with them (Section 5.4).

5.1 Body Part Types

This section details the set T of body part types used in the experiments in this
work. In large, these are the same body parts as used by RoboGen at the time of this
writing,1 though improvements and changes to this package are continuously made and
they may no longer match. The parts are therefore detailed briefly for completeness.
Detailed structure meshes suitable for use with a 3D-printer are available for these
body parts, such that these robots could in principle be constructed in real life. Table
5.1 shows a brief overview of each type’s properties as enumerated at the start of this
section, accompanied by a short section dedicated to each part.

1http://robogen.org/docs/robot-body-parts/

37

http://robogen.org/docs/robot-body-parts/

38 CHAPTER 5. EXPERIMENTAL SETUP

Part Slots Inputs Outputs Parameters
Core Component 4 6 0 0
Fixed Brick 4 0 0 0
Parametric Bar Joint 2 0 0 3
Active Hinge Joint 2 0 1 0
Passive Hinge Joint 2 0 0 0
Touch sensor 2 2 0 0

Table 5.1: Body part type properties as described at the start of Section 4.4.2. The
number listed underneath ‘Parameters’ specifies the part specific parameters. In ad-
dition to these parameters, each part has three color parameters (red, green and blue)
which are used for visualization purposes.

5.1.1 Core Component

This component forms the root of every robot and in
real life holds a Raspberry PI powering the robot’s
brain (not displayed on the image). Two sensors are
included on the component: an accelerometer and a
gyroscope. The x, y, z values for both these sensors
result in a total of 6 input values. The component
has four attachment slots: apart from the top and
bottom face other parts can be attached to every
side.

5.1.2 Fixed Brick

The fixed brick is a cubic component containing no
sensors or actuators. Attachment slots are all faces
except the top and bottom.

5.1. BODY PART TYPES 39

5.1.3 Parametric Bar Joint

The parametric bar joint introduces fixed angles
into a robot structure. The part has two param-
eters:
− H, the length of the joint, between 2 and 10

centimeters
− α, the tilt of the joint, between −90 and 90

degrees
The image contains a third parameter, the rotation
β, which is currently constrained to 0 degrees to
enforce planarity of the robots (see Section 5.3).

5.1.4 Active Hinge Joint

A simple hinge joint powered by a servo motor. It
has one output value, which is truncated to the in-
terval [0, 1] and corresponds to a target position be-
tween −45 and 45 degrees.

5.1.5 Passive Hinge Joint

Similar to the active hinge joint, but as the name
suggests the joint is not powered by a servo but
rather moves freely.

40 CHAPTER 5. EXPERIMENTAL SETUP

5.1.6 Touch Sensor

A two-value binary touch sensor. Each sensor covers
half of the total part surface, and outputs a value
that is either 0 or 1 depending on whether touch is
registered.

5.1.7 Light Sensor

It should be noted that the default RoboGen body space also includes a light sensor.
While this sensor is also available as a default Revolve component, at the time of
this writing instabilities in the Gazebo simulator prevent it from being used in the
experiments described in this work. The light sensor is therefore disabled.

5.2 Neuron Types

The neurons in the hidden and output layers of the neural network that is the robot’s
brain have one of three activation functions. The first two, linear and sigmoid, are
common neural network activations whose parameter set πneuron consists of a bias and
a gain value. The third possible type is an oscillator neuron, whose value depends not
on its input values but rather is a sinusoid depending only on the current time. The
three parameters for this neuron type are the wave period, phase offset and gain.

5.3 Viability Criteria

In addition to the restrictions listed in Section 4.4.4, a few other constraints are spec-
ified in the experimental setup:

− Like in RoboGen, robots are forced to be planar, meaning their extremities
extend only in the x-y plane, resulting in more stable structures.

− Because robots are evolved for their ability to move, only robots with at least
one motor unit are considered viable.

5.4. SCENARIOS 41

Parameter Value
|R|max 30
|R|min 3
omax 10
imax 10
hmax 10
µparts 12
σparts 5
premove subtree 0.05
pduplicate subtree 0.1
pswap subtree 0.05
premove hidden neuron 0.05
premove neural connection 0.05

Table 5.2: Parameter values shared across all experiments

5.4 Scenarios

This section enumerates the simulation scenarios that were performed making use of
the robot genome and phenome as described in earlier sections. All these experiments
share a set of values for previously specified parameters, which are specified in table
5.2. Six distinct scenarios are simulated in total: one to measure computational perfor-
mance (Section 5.4.1), two ‘baseline’ experiments (Section 5.4.2) and three scenarios
aimed at comparing off-line and on-line evolution (Section 5.4.3). Each simulation is
repeated 30 times to get reliable results.

5.4.1 Computational Performance

The computational performance of the system in complex simulation scenarios is as-
sessed in a series of experiments similar to scenario 3 as outlined in Section 5.4.3. In
each simulation run a number of random robots is generated and inserted into the
virtual world. The simulation is then started and executed for 10 seconds simulation
time, measuring the real (wall clock) time required to complete this time interval. This
process is repeated for populations of increasing size.

5.4.2 Baseline

In order to evaluate the efficacy of the Darwinian evolution applied in the experiments
to follow, two baseline experiments were performed for comparison, which are similar in
setup to the off-line evolution experiments described in Section 5.4.3. The first makes

42 CHAPTER 5. EXPERIMENTAL SETUP

use of the fitness selection to determine which individuals survive while disabling re-
production, thereby showing the speed at which a population would increase its fitness
if a selection is made out of an increasing random population. The second experiment
on the other hand uses completely random survivor selection, while enabling repro-
duction. This allows ruling out a bias in the reproduction process, i.e. showing that
a population’s fitness doesn’t change by merely reproducing the individuals without
selecting them.

5.4.3 Evolution

In the final three experiments actual evolution is performed, and they mark a first step
into the type of research that Revolve was designed to facilitate. They are simulations
of three different scenarios, each moving a step in the direction of a more on-line exper-
iment. The first two experiments are common off-line scenarios in which individuals
are evaluated in isolation and a population consists of distinguishable generations.
What differentiates these two scenarios is the parent selection method: in the first
scenario 15 new individuals are produced before further selection takes place, whereas
in the second scenario selection happens after each newly born robot. This method
of parent selection is more akin to the final scenario, which is an on-line scenario in
which robots coexist in the environment and are continuously evaluated and selected.

The fitness function for a robot ρ is the same in all of these scenarios, and reads

f(ρ) = v + 5s, (5.1)

where v is the average path velocity of the robot over the last 12 seconds in meters per
second, and s is the average straight line velocity over that same time window. The
path velocity is calculated using the entire distance of the path the robot has traveled
during the time window, whereas the straight line velocity only uses the length of a
straight line between the point where the robot was 12 seconds ago and the point
where it is now. Vertical displacement is ignored for both of these values.

The following table summarizes the three simulation scenarios by their properties:

Scenario 1 Scenario 2 Scenario 3
Scenario type Off-line Off-line On-line
Environment Infinite flat plane. Infinite flat plane. Infinite flat plane.
Evaluation One robot at a

time for 12 sec-
onds.

One robot at a
time for 12 sec-
onds.

All active robots
simultaneously
and continuously.
Fitness is mea-
sured over a 12
second sliding time
window.

5.4. SCENARIOS 43

Population size Constant at 15 per
generation.

Constant at 15 per
generation.

Variable between 8
and 30 (see Death
criterion).

Selection
scheme

15 + 15: Each
generation of 15
robots produces
15 children before
moving on to
survivor selection.

15+1: Each gener-
ation of 15 robots
produces 1 child
before moving on
to survivor selec-
tion.

A new robot is
born every 15 sec-
onds.

Parent selection 4-tournament
selection.i

4-tournament
selection.

4-tournament
selection.

Death criterion
/ survivor selec-
tion

Deterministically
choose the 15
fittest individuals
from the 30.

Determinstically
choose the 15
fittest individuals
from the 16.

At fixed time in-
tervals, all robots
that have a fitness
less than a fraction
0.7 of the matureii

population mean
are killed. A mini-
mum of 8 robots is
maintained to en-
sure variation and
prevent extinction.
If the population
reaches 30 indi-
viduals without
any individuals
matching the
death criterion,
the 70% least fit
robots in the pop-
ulation are killed
regardless of their
fitness to prevent
a simulation stall.

Birth location On the ground at
the origin.

On the ground at
the origin.

Random position
within a circle of
radius 2m around
the origin.

Stopping crite-
rion

After 3000 births,
i.e. 200 genera-
tions of 15 individ-
uals.

After 3000 births. After 3000 births.

44 CHAPTER 5. EXPERIMENTAL SETUP

i In a 4-tournament selection, 4 individuals are chosen randomly from the (mature) population, the
fittest of which is taken to be parent. This process is repeated to select a second parent, which is
forced to be a different robot than the first parent. ii Maturity is reached for all individuals older
than 15 seconds, which is 3 seconds insertion time for when the robot is dropped into the arena
followed by 12 seconds evaluation time.

5.5 Simulation Parameters

Apart from the parameters related to the evolutionary process and experimental setup,
there is a long list of parameters that can be used to alter the behavior of the the simu-
lator and the dynamics engine. These concern the type of solver used for the dynamics,
the length of one calculated time step, error correcting forces, surface friction param-
eters and many more. At each step of the simulation, rounding and discretization
lead to errors of varying degree. It is the interplay of these variables that determines
the overall performance and stability of any simulation, which is also affected by the
size of the simulated structures and the forces acting upon them. Smaller step sizes
generally lead to more stable simulations, at the expense of being more computation-
ally intensive. Determining these parameters is therefore always a trade-off between
the desired performance and realism. The experiments described in this chapter all
use the ODE ‘quick’ solver, with a maximum step size of 0.003 seconds (meaning the
dynamics solver performs about 333 steps of computation for each simulation second).
This step size, alongside with a set of error correcting parameters was decided upon
through a process of trial and error up to a point where this lead to mostly stable
dynamics at acceptable performance. In rare cases undesired behavior is still be ex-
hibited, such as robots breaking apart or moving solely because of error correcting
forces. The effect of these errors has been tried to be kept at a minimum by detecting
robots with unrealistic speeds and assigning them zero fitness.

For all these detailed parameters, the reader is referred to the experiment source code
at https://www.github.com/ElteHupkes/tol-revolve.

5.6 Data Gathering

To analyze the outcome of the experiments, a variety of data is captured during their
execution. First of all, each robot’s genome and ancestry are stored when it is born, as
well as its time and place of birth in case of on-line evolution. During a robot’s lifetime,
its position is tracked 5 times each simulation second. The off-line experiments log
the fitness of each robot once, after its evaluation. The on-line experiment records the
fitness values of the active robot population every 5 simulation seconds (due to the
continuous evaluation, a robot’s fitness value may vary over time). Whenever a robot
is killed in this scenario, the position of that event is logged alongside the simulation
time at which it occurs.

https://www.github.com/ElteHupkes/tol-revolve

6
Results

This section outlines the results of the experiments described in Chapter 5. Compu-
tational performance is addressed first in Section 6.1, after which Section 6.2 presents
the results of the experiments described in Section 5.4.

6.1 Computational Performance

Random populations were simulated with sizes ranging from 5 to 40 individuals, gen-
erated using the default experimental parameters for random robots as given in table
5.2. Each experiment was repeated 20 times for accuracy. The benchmark was carried
out on a computer with an Intel i7-4790K CPU running at 4Ghz, with 16Gb of DDR3
RAM memory, making use of the Ubuntu 14.04.4 operating system. No explicit other
foreground processes were running during the benchmark, though other (system) soft-
ware was present running in the background. Since the experiments only occupied
at most 3 out of the 4 hardware (and 8 virtual) cores of the CPU and these other
processes were running idle, this is not expected to affect the results, which are shown
in Figure 6.1.

Because the dynamics engine calculates the interactions between elements, one would
expect performance to decrease quadratically with the number of bodies to simulate.
Indeed, the figure shows a quadratic regression to fit the measurements quite well.
The most important figure from these results is the capacity to simulate populations
of robots with acceptable speed. At a little under 30 individuals a simulation can still
be performed in approximately real time.

45

46 CHAPTER 6. RESULTS

RTF = 1.0

0.0

2.5

5.0

7.5

10 20 30 40 50
Population size

R
ea

l t
im

e
fa

ct
or

 (
si

m
ul

at
io

n
tim

e
/ r

ea
l t

im
e)

Line

Fitted

Measured

Figure 6.1: Results of the computational performance benchmark. The y-axis shows
the real time factor (RTF), i.e. the amount of simulated seconds per second of real,
wall clock time. The shaded area shows the standard deviation of the measurements.
A fitted line is plotted corresponding to the quadratic regression RTF = −0.26 +
34.78p−1 + 20.41p−2 where p is the population size. A horizontal line shows where the
simulation becomes slower than real time, which in this case happens at around 28
individuals.

6.2 Evolution

This section examines the results of the experiments described in Section 5.4. The plots
differentiate between five different experiments, two being the baseline experiments
without reproduction or without selection, the rest referring to the three evolution
scenarios.

6.2.1 Fitness

The first explored metric is the fitness of each scenario’s final population, which is
defined as the last generation of robots in the off-line experiments and all alive, mature
robots in the on-line experiment. These results are shown in Figure 6.2.

6.2. EVOLUTION 47

●

●

●

●

●

●

●●●

●
●●

●●

●

●
●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●●

0.0

0.1

0.2

0.3

0.4

0.5

No reproduction No selection Scenario 1 Scenario 2 Scenario 3
Experiment

F
itn

es
s

Figure 6.2: Fitness of the final population.

The baseline experiments depict the expected result. Disabling selection leads to
a population of individuals with essentially zero fitness, showing that reproduction
itself does not lead to higher fitness values. Selecting from random individuals does
increase fitness, but only marginally. The three experiments with both selection and
reproduction show a significantly higher fitness than the baseline experiments, which
is relevant as it shows that a nontrivial increase in fitness can not simply be obtained
as an artifact of the reproduction or selection process alone. In the remainder of the
analysis the baseline experiments shall only be discussed where a baseline comparison
is appropriate.

Between off-line scenarios 1 and 2 only a slight difference in fitness is observed, with a
more noticeable difference in fitness variation. Scenario 3 shows a significantly lower
fitness. Scenario’s 2 and 3 perform parent selection without replacing the entire pop-
ulation, which might result in less gene variation. A lack of variation could lead to a
local optimum in fitness values with a failure to improve in the long term. Figure 6.3
which shows the development of fitness in the different experiments over time, appears
to suggest this effect, but no data is available to analyze these progressions past 3000
births. The fitness increase with each newly born robot declines more rapidly in sce-
narios 2 and 3 than it does in scenario 1, although the difference is only profound in
scenario 3. However, Figure 6.4 indicates that the number of ancestors of which genes
are present in the final generation is approximately equal to (scenario 2) or larger than
(scenario 3) the amount in scenario 1. This suggests a larger variation, contradicting
the hypothesis.

48 CHAPTER 6. RESULTS

0.00

0.05

0.10

0.15

0.20

0 1000 2000 3000
of births

M
ea

n
fit

ne
ss Experiment

Scenario 1

Scenario 2

Scenario 3

Figure 6.3: Fitness progressions averaged over all 30 runs. The number of born indi-
viduals is used as a time scale because it is uniform across all scenarios. Error bars are
omitted for clarity. Note that the experimental setups guarantee a monotonically in-
creasing function for the off-line experiments, whereas the non-constant fitness values
in the on-line experiment lead to fluctuations.

The number of ancestors does not directly reflect genetic diversity however, because
ancestors may be related and similar. To provide a more adequate picture, a heuristic
measure is applied to quantify the genetic diversity within robot populations at each
time point. This measure applies a Tree Edit Distance (TED) algorithm as described
by Zhang and Sasha [44] to the genetic trees of pairs of robots that are part of the
same population. The algorithm is applied with the following cost rules:

− Removing a node, adding a node or changing a node to a different type has a
cost of 1.

− Attaching a node to a different parent slot has a cost of 1.

Note that this measure ignores differences in neural network contributions between
nodes, as they are harder to quantify and likely not of much importance (as will be
discussed further ahead). The outcome of the algorithm is included for both the final
populations (Figure 6.5b) and as a progression during the experiments (Figure 6.5a).
This shows an initial rapid decline of diversity in all scenarios, possibly as a result of
‘bad genes’ being eliminated. Diversity decline then slows down, although it decreases
faster in scenario 2 than in scenario 1. This makes sense as the populations that
scenario 2 uses for reproduction are very similar for each birth, which is expected to
decrease variation. The same can be said about scenario 3, but the same effect cannot

6.2. EVOLUTION 49

●
●

●

●

●

●

●

10

20

30

40

50

Scenario 1 Scenario 2 Scenario 3
Experiment

of

 u
ni

qu
e

an
ce

st
or

s
/ #

 o
f r

ob
ot

s

Figure 6.4: The total number of unique ancestors of the final population, divided by
the number of robots in that generation, averaged over all runs.

be observed there, meaning something is keeping diversity relatively high here.

To further analyze possible causes for the differences in fitness and diversity, two other
metrics are examined. The first is the rank ρ(r) of each robot r in the final population,
which is defined as,

ρ(r) =

{
1, if r has no parents

max(ρ(p1), ρ(p2)) + 1 for robot parents p1, p2
, (6.1)

i.e. the starting population has a rank of 1, and a child robot always has a higher
rank than both of its parents. These values are shown in Figure 6.6. The second
metric aims to quantify the rate at which robots make it through survivor selection,
by plotting the fraction of robots still present in the current population after n births
have taken place over the number of births, which serves as a uniform time scale across
all scenarios. This result, here dubbed the retention rate, is shown in Figure 6.7.

The average rank of robots in scenarios 2 and 3 is clearly larger than that of scenario
1, though again the difference is far more pronounced in scenario 3. The ‘family
tree’ for these robots is longer, which matches the previous observation that the final
populations have a larger number of ancestors. The effect is again observed in the
retention rate, the lines of which follow the same (mirrored) pattern as the fitness
progression lines in Figure 6.3, albeit less smooth. A low population retention can
occur either if (a) newly born robots have a high probability of being fitter than
existing robots or (b) fitness values fluctuate, which can only happen in the case of an

50 CHAPTER 6. RESULTS

5

10

0 1000 2000 3000
of births

A
ve

ra
ge

 T
re

e
E

di
t D

is
ta

nc
e

Experiment

Scenario 1

Scenario 2

Scenario 3

(a) Diversity progression over number of
births. Error bars are omitted for clarity.

●

●

●●●

●

●

●

●

●

●●●●●

●●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●●

●●●●

●

●

●

●●

●●

●●●●●●

●

●●●●●●●●●

●

●

●●●

●●●

●

●

●●

●

●

●●●●●●●

●

●

●●●●

●

●

●●

●

●

●●

●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●●

●

●

●●●●

●

●

●

●●

●

●●

●●●●●●●●●●●

●

●

●●●●●●●●●●●●●

●

●●

●●

●

●

●

●

●●●

●

●●●

●

●●

●

●●●

●

●

●

●●●

●●●●

●●

●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

0

5

10

15

20

25

Scenario 1 Scenario 2 Scenario 3
Experiment

A
ve

ra
ge

 T
re

e
E

di
t D

is
ta

nc
e

(b) Diversity of the final populations.

Figure 6.5: Genetic diversity in robot populations using Tree Edit Distance averaged
over all runs.

on-line experiment, where fitness is variable. The decrease of the retention rate slope
over time can be explained by (a), as an increasing population fitness sees a decline
in the odds of producing a fitter individual with each birth. To confirm whether
the large difference observed in scenario 3 can be explained by (b), the variation in
single robot fitness is quantified in Figure 6.8, which indeed shows this variation to
be substantial. The relative fitness of a single robot within the population can thus
vary wildly over time, explaining the previous differences. It should be noted that it
might very well be the case that the robots produced in the on-line scenario are more
qualitatively desirable despite having lower quantitative fitness values. The reason for
this is that the off-line robots are only guaranteed to perform according to their fitness
over the duration of a single evaluation, whereas the continuous evaluation in scenario
3 encourages this performance consistently. In that sense, on-line evolution is less
able to exploit artifacts of the set experimental boundaries, in this case the evaluation
window. Single robot fitness fluctuations could also be caused by robot interactions,
as robots might see their fitness diminish as a result of e.g. moving against each other.
No data is available at this point to investigate the extent of that effect.

6.2.2 Robot Characteristics

Apart from fitness, robots have been analyzed for other phenotypic properties which
are included in this section. The first characteristic is robot size, measured in number
of body parts, which is shown in Figure 6.9. While no big difference in part count
is observed between the three evolution scenarios, an interesting observation can be
made about the size of the robots in the final generation in general. Their number
of parts is significantly larger than the expected number of parts of a robot in the
initial population, which is 12. Growing genotypes are a known phenomenon in Ge-

6.2. EVOLUTION 51

●●

●●
●●●
●●●●●
●●●

●●●
●●●●
●●●●●●

●●●●●●

●

●

●●
●

●

●●

●

●●●

●●●
●●

●

●

●●
●●
●●●

●

●
●●●●
●
●

●●

50

100

150

200

Scenario 1 Scenario 2 Scenario 3
Experiment

A
ve

ra
ge

 r
ob

ot
 r

an
k

Figure 6.6: The average rank (as defined by equation 6.1) of robots in the final popu-
lation.

netic Programming, referred to as bloat or survival of the fattest, the cause of which
is inconclusive [19]. However, a comparison with the baseline experiments shows that
the evolutionary process itself is not responsible for the phenomenon, as the growth
of individuals only starts to occur once selection is enabled. It would therefore appear
that the size of an individual correlates positively with its fitness. A possible expla-
nation for this phenomenon can be found in Figure 6.10, which shows a robot from
the final population of scenario 1. This robot moves by using an actuated joint in
the center of the structure to push off from its left and right sides, where the distance
between these two sides determines the length of the resulting ‘step’. Depending on
the most likely speed of the actuator it might only be capable of taking one such step
during the evaluation time, which means larger robots have an advantage.

The next analyzed property is the number of joints a single robot possesses. Joints are
differentiated between active joints, powered by a servo motor, and passive joints which
move freely within their range of motion. Figure 6.11 shows the average joint counts
within the final populations, with again no big difference between the three scenarios.
A comparison with the baseline experiments seems to suggest that a larger number of
joints results in higher robot fitness. However, as previously noted fitness correlates
also with robot size, so it is perhaps more likely that the joint count correlates with
the total size of the robot. This suspicion is confirmed by Figure 6.12, showing the

52 CHAPTER 6. RESULTS

0.00

0.25

0.50

0.75

0 1000 2000 3000
Number of births

M
ea

n
fr

ac
tio

no
f r

ob
ot

s
st

ill
 a

liv
e

af
te

r
12

0
bi

rt
hs

Experiment

Scenario 1

Scenario 2

Scenario 3

Figure 6.7: Retention rate: The fraction of robots from the active population that is
still alive after n = 120 births plotted over the number of births for each scenario. The
fractions are averages over all runs, error bars are omitted for clarity.

effect is negated by correcting for body size.

Another characteristic that has been examined is the number of extremities a robot has,
which is of particular interest because d’Angelo et al. previously observed a relation
between this number and a robot’s fitness [13], albeit in a different context. In this
work a correlation of a robot’s speed with an increase in the number of extremities
for robots with 2, 3 or 4 extremities was observed, although this speed also correlated
similarly with robot size. No further effect was observed for larger numbers. Figure
6.13a shows no profound difference between the number of extremities in the three
evolution scenarios. Again the larger number of extremities compared to the baseline
experiments can be explained by the size of the robots rather than their benefit to
fitness (Figure 6.13b). When ignoring the experiment labels a similar effect is observed
as by d’Angelo et al., which can be seen in Figure 6.14a. Correcting for robot size
paints a slightly different picture, as a larger number of extremities per body part
actually appears detrimental to robot fitness (Figure 6.14b) beyond having almost no
extremities. In line with previous conclusions it would appear that a larger number of
extremities is advantageous only if they are large.

Finally some characteristics concerning the robot’s sensing and brain are considered,
namely the number of inputs and hidden neurons. Because the core component of each
robot contains six inputs values (three dimensional values for both the accelerometer
and the gyroscope), variation in number of inputs can only be achieved by adding

6.2. EVOLUTION 53

0.0

2.5

5.0

7.5

0.00 0.25 0.50 0.75
Robot max−min fitness / active population max−min fitness

D
en

si
ty

Figure 6.8: Probability density of the difference between the minimum and maximum
recorded fitness of a robot as a fraction of the minimum and maximum fitness of the
active populations it has been a part of, for robots in scenario 3. For instance, if a
robot’s minimum and maximum recorded fitness values are 0.2 and 0.3, and it was
active in populations with fitness values varying between 0.1 and 0.5, it will register
as a 0.3−0.2

0.5−0.1
= 0.25 data point.

or removing touch sensors. Furthermore the total number of input values has been
limited to 10, meaning a robot can only have either 0, 1 or 2 touch sensors (each
touch sensor provides 2 input values). Barring some clear evolutionary advantage to
having these sensors their effect is thus expected to be limited. Figure 6.15 shows
most robots in the final populations to have no touch sensors at all, although all
possible numbers are present in all populations. The random populations are an
exception to this, which is to be expected because body parts are added randomly
to these individuals with equal probability and there is no cost to having a touch
sensor. The ‘no selection’ baseline hints towards the reproduction process being biased
towards removing touch sensors. This is unsurprising, because the limit on number
of inputs favors tree crossover and duplication for genotype subtrees without sensors.
The difference in variation in number of touch sensors might therefore arise simply
as a result of robot rank (Figure 6.6). Whether or not sensors have any influence on
robot fitness remains inconclusive.

The number of hidden neurons is another property that has been limited to a relatively
low value (10) and is therefore expected to be biased down following an argument
similar to the one in the previous paragraph, because hidden neurons duplicate with

54 CHAPTER 6. RESULTS

●●

●

●

●

●

●

●●

●

●

●●●●●●

●●●

●●●

●●●

●●●

●●●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●●●●●●

●●●

●●●

●●●

●●●●●●

●

●10

20

30

No reproduction No selection Scenario 1 Scenario 2 Scenario 3
Experiment

P
ar

t c
ou

nt

Figure 6.9: The average number of parts for a single robot in the final population of
each experiment.

the tree nodes they are assigned to. This bias is confirmed by Figure 6.16 and does
not appear to be countered by evolution. In fact the number of hidden neurons is
distributed perfectly around the values following from initial generation in the random
population, leading to the conclusion that in the current setup hidden neuron presence
does not influence fitness.

6.2.3 Robot Morphologies

Apart from quantitative characteristics it is interesting and important to observe the
evolved organisms qualitatively. This section therefore displays the fittest individuals
taken from across all runs for each of the three scenarios, as well as some of their
ancestors. The displayed ancestry trees only span a couple of levels, because showing
the full ancestry trees would obscure the details of the images. A full ancestry tree
without images is shown in Figure 6.17 as an example.

Figures 6.18, 6.19 and 6.20 show partial ancestry trees of a robot from the final popu-
lations of scenario 1, 2 and 3 respectively. A few similarities are observed between the
portrayed individuals and ancestry trees. As was previously suggested by the data,
the robots have large appendages. Scenario’s 1 and 3 are very similar in that they use

6.2. EVOLUTION 55

(a) (b) (c)

Figure 6.10: A robot from one of the final populations of scenario 1 in three consecutive
stages of its gait.

●●●●●●●●

0

5

10

15

20

No reproduction No selection Scenario 1 Scenario 2 Scenario 3
Experiment

of

 a
ct

iv
e

jo
in

ts

(a) Active joints (motors).

●

●

●

●●●

●

●

●

●

●

●

●

●●●

●

●

●

●●●

●

0

5

10

15

20

No reproduction No selection Scenario 1 Scenario 2 Scenario 3
Experiment

of

 p
as

si
ve

 jo
in

ts

(b) Passive (‘free’) joints.

Figure 6.11: The average number of joints for a single robot in the final population of
each experiment, differentiated between active and passive joints.

a long ‘tail’ for movement. It should be noted that, because of structural stresses, the
ability to physically build this kind of structure is questionable, something which is
discussed further in Section 7.2.2.

At their conception, body parts are assigned a random color which does not undergo
mutation throughout the evolutionary process, which makes it possible to visually
track which parent a body part originates from. This property reveals that the dis-
played individuals only have ‘genes’ from a few of their original parents, even if they
descend from a larger number. The scenario 2 individual is even mostly a recombina-
tion and duplication of parts from one single ancestor. The individuals from scenarios
1 and 3 appear to be a uniform mix of body parts from several parents.

The partial ancestry trees show the last 5 reproduction steps resulting in the final
robot. In each of the scenarios all individuals involved in these final steps are very

56 CHAPTER 6. RESULTS

●

●

●

●

●

●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●
●●●

0.00

0.25

0.50

0.75

1.00

No reproduction No selection Scenario 1 Scenario 2 Scenario 3
Experiment

of

 a
ct

iv
e

jo
in

ts
 p

er
 b

od
y

pa
rt

(a) Active joints (motors).

●

●

●

●

●

●●

●

0.00

0.25

0.50

0.75

1.00

No reproduction No selection Scenario 1 Scenario 2 Scenario 3
Experiment

of

 p
as

si
ve

 jo
in

ts
 p

er
 b

od
y

pa
rt

(b) Passive (‘free’) joints.

Figure 6.12: The average number of joints per body part for a single robot in the final
population of each experiment, differentiated between active and passive joints.

similar, a result which is in line with the low diversity observed in the previous section.

6.2.4 In Summary

A number of metrics were investigated in this section to compare the various simu-
lation scenarios. Table 6.2 provides an overview of these metrics. In addition, some
robot morphologies and ancestry trees were examined in section 6.2.3. Robot fitness
is found to differ significantly between the off-line and on-line scenarios, which can at
least partially be explained by the increased diversity present in the on-line experi-
ment, causing slower convergence. This increased diversity is likely a result of fitness
variability in the on-line population, influencing rank and retention rate. Other metrics
show no clear difference between the scenario types that cannot be explained by other
variables such as fitness, robot size or rank. Disregarding the scenario type, the pheno-
type space appears to prefer large robots, in particular robots with large extremities,
possibly because they can take large ‘steps’ within the evaluation time. This hypothe-
sis is supported by the morphology examinations, which show some robots with large
extremities. The examined ancestry trees of these individuals furthermore shows the
ancestors in the final generations leading up to these robots to be very similar.

6.2. EVOLUTION 57

Metric Description
Fitness The fitness of a robot, as given by Equation 5.1. Fig-

ures 6.2 and 6.3 show final population fitness and fit-
ness progression over time respectively.

Ancestors The number of unqiue ancestors of a single robot, given
averaged over population size in Figure 6.4.

Diversity Genetic diversity measured in Tree Edit Distance,
shown in figure 6.5.

Rank The rank ρ (Equation 6.1) of a robot is defined by the
length of its ‘bloodline’, i.e. the maximum number
of steps to the root of its ancestry tree. Results are
shown in Figure 6.6.

Retention rate The fraction of robots that is still alive after a certain
number of births n. Shown for n = 120 in Figure 6.7.

Fitness variability The expected variability in fitness value for a single
robot in an on-line population. Shown in Figure 6.8.

Number of parts A robot’s average number of components, i.e. body
parts, given in Figure 6.9.

Number of joints The average number of movable parts, i.e. joints, for
a single robot, differentiated between joints with and
without motors. Given as a total count (Figure 6.11)
and relative to a robot’s number of parts (Figure 6.12).

Number of extremities The number of ‘leaf’ bodyparts in a robot, shown both
absolute numbers and relative to robot size in Fig-
ure 6.13a. In addition, this number is plotted against
robot fitness in figure 6.13.

Number of touch sensors The average number of touch sensors in a robot, Figure
6.15.

Number of hidden neurons The number of hidden neurons in a robot’s brain, given
relative to robot size in figure 6.16.

Table 6.2: Metrics investigated in section 6.2.

58 CHAPTER 6. RESULTS

●●

●●●●

●●●

●

●●●

●

●●

●●

●

●●●●●●●●●●●

●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●●●●●●●●●

●●

5

10

15

No reproduction No selection Scenario 1 Scenario 2 Scenario 3
Experiment

of

 e
xt

re
m

iti
es

(a) Absolute numbers.

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●●●●●●●●●

●●●●●●●●●

●●●

●●●●●●●●●

●●●●●●

●●●●●●●●●●●●

●

0.2

0.4

0.6

0.8

No reproduction No selection Scenario 1 Scenario 2 Scenario 3
Experiment

of

 e
xt

re
m

iti
es

 p
er

 b
od

y
pa

rt

(b) Relative to robot size.

Figure 6.13: The average number of extremities for a single robot in the final popu-
lation of each experiment, both in absolute numbers and relative to robot size. An
extremity is defined as a chain of one or more body parts that has exactly one leaf
node in the body tree.

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●●

●

●●●

0.0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 17
of extremities

F
itn

es
s

(a) Absolute numbers.

●●

●
●

●

●

●

●

●

●
●

●

●

●

●●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●
●
●
●

●

●

●

●●●●
●●

●

●
●

●

●
●

●
●●
●

●

●●
●

●

●

●●
●

●

●

●

●●

●

●

●
●

●●

●
●●●●●
●●●●
●●●●●

0.0

0.1

0.2

0.3

0.4

0.5

0 − 0.1 0.1 − 0.2 0.2 − 0.3 0.3 − 0.4 0.4 − 0.5 0.5 − 0.6 0.6 − 0.7 0.7 − 0.8 0.8 − 0.9
of extremities per body part

F
itn

es
s

(b) Relative to robot size.

Figure 6.14: Robot fitness with respect to to the average number of extremities, re-
gardless of experiment.

6.2. EVOLUTION 59

●

●

●

●●

●●●●●●

●●

●

●●

●

●

●●●

●

●

●

●●●●●

●

●●●

●

●●

●●

●

●●

●●

●

●

●

●●

●

●●●

●

●●●●

●●●

●●●●●

●

●

●

●

●

●●

●

●●●

●

●●●

●●●

●

●

●

●

●●●

0

1

2

3

4

No reproduction No selection Scenario 1 Scenario 2 Scenario 3
Experiment

of

 s
en

so
rs

Figure 6.15: The average number of touch sensors for a single robot in the final
population of each experiment.

60 CHAPTER 6. RESULTS

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●●●●●

●●

●●●●●●

●●●

●●●●●●●●●

●●●

●●●

0.0

2.5

5.0

7.5

10.0

No reproduction No selection Scenario 1 Scenario 2 Scenario 3
Experiment

A
ve

ra
ge

 #
 o

f h
id

de
n

ne
ur

on
s

Figure 6.16: The average number of hidden neurons per body part in the brain of a
single robot in the final population of each experiment.

6.2. EVOLUTION 61

Figure 6.17: Complete ancestry tree of a single individual in the final population of
scenario 1. The tree is displayed in ascending order, with the individual of interest at
the bottom.

62 CHAPTER 6. RESULTS

Figure 6.18: Partial ancestry tree for one individual from the final population of
scenario 2, shown at the bottom. The individuals from the initial generation that
were part of this individual’s ancestry are shown above the dotted line.

6.2. EVOLUTION 63

Figure 6.19: Partial ancestry tree for one individual from the final population of
scenario 2, shown at the bottom. The individuals from the initial generation that
were part of this individual’s ancestry are shown above the dotted line.

64 CHAPTER 6. RESULTS

Figure 6.20: Partial ancestry tree for one individual from the final population of
scenario 3, shown at the bottom. The individuals from the initial generation that
were part of this individual’s ancestry are shown above the dotted line. The image is
rotated to fit the page.

7
Conclusions and Discussion

When developing software for any purpose a trade-off always has to be made between
time in development and time in execution. The middle ground is essentially an infinite
plane, making it hard to judge any end result by metrics other than how successful its
use has proven to be in retrospect. This is predominantly a qualitative matter. For a
research tool such as Revolve, this means its quality can really only be assessed once
it has been employed in research projects which are not the product of the original
author. Nevertheless the purpose of this chapter is to assess Revolve by the goals set
out in Section 1.1. This is done rather qualitatively in Section 7.1, which judges the
utility of Revolve in Evolutionary Robotics research. The next section, 7.2, discusses
the results of the experiments performed in this work. Section 7.3 concludes the
chapter with a motivation of the design and implementation of Revolve.

7.1 Utility

7.1.1 Experimental Design

In the process of determining the final experiments to be used in this thesis and
during the development of Revolve, many experimental scenarios were implemented.
It was found to be easy to setup an entirely new scenario or drastically change the
experimental parameters, which was one of the key goals of Revolve. Again the caveat
here is that some knowledge of the system is required for anyone other than the
author, and documentation is currently lacking (more on that in Section 8.1). However,

65

66 CHAPTER 7. CONCLUSIONS AND DISCUSSION

during its development, a team of students following the Computational Intelligence
course at the University of Amsterdam used an early version of Revolve to implement
evolutionary learning using the NEAT [39] algorithm. The successful completion of
this project (the work of which is unpublished) speaks to the potential of the toolkit.

7.1.2 Computational Performance

A more quantitative assessment can be made of the computational performance of
Revolve, using the results of the benchmark found in Section 6.1. It was found that
dynamics in a population of around 28 robots of average complexity could be computed
in real time at sufficient stability. Whether or not this performance is acceptable (and
exactly what qualifies as ‘sufficient stability’) remains highly dependent on the use
case. For experiments with similar complexity as the ones performed and discussed in
this work, it is safe to say that they can be feasibly performed on normal hardware. As
Revolve is piggybacking on existing software packages which are in active development,
this is only expected to improve in the future.

7.2 Experiments

7.2.1 Off-Line versus On-Line

Section 6.2 attempts to reveal the differences between off-line and on-line (embodied)
evolution by running similar experiments of both types. The comparison remains
tricky as the scenario types are fundamentally different, predominantly with regard to
the way in which robots are evaluated. The main conclusion from this chapter is that
the observed differences in robot fitness can be explained by the continuous evaluation
present in on-line evolution. Effects that can be explained as part of robot interaction
or the environment are either not present or too subtle to be noticed over this larger
effect. It should be noted that no specific emphasis has been put on the environment
of the robots in this work, nor have the robots been explicitly equipped to enable
complex interactions. Other sensors and learning might have a significant impact on
these effects, as discussed in Section 8.2.

Because of the more realistic conditions under which on-line robots operate, it is very
well possible that their behavior is more robust. Indeed a constant fitness value for
individuals, as is commonly the result of off-line experiments, is not a very realistic
prospect. Steps can be taken to make off-line results more ‘on-line-like’ however, like
repeating fitness evaluations over varying evaluation times. This would increase the
time required for (simulated) evaluation - but this is even more so the case with on-line
evolution, which is computationally more expensive for the same task. It is exactly the
difference in task description that differentiates on-line evolution experiments, which

7.3. MOTIVATING THE DESIGN OF REVOLVE 67

gives rise to the question whether further evaluation of the exact differences is even
useful, or the scenarios should just be investigated in their own regard.

7.2.2 The Reality Gap

Despite the conceptual nature of the described experiments, realism is an important
goal in simulating on-line embodied evolutionary systems, and an aspect which is
currently lacking in this work. Although the robotic lifeforms are theoretically con-
structable through 3D printing and some amount of manual assemblage, none of the
robots resulting from the experiments have been constructed in real life at this point
due to lack of time and resources. Qualitative analysis of some of the individuals
already revealed some exploitation of simulation artifacts such as error correcting pa-
rameters in order to improve speed, and there are several other areas in which the
reality gap might manifest itself. It is possible that some of the organisms have struc-
tural limitations that prevent them from being physically constructed that are not an
issue in simulation. For instance, forces working on some of the observed ‘long arms’
might cause them to physically break in real life. Several other areas where steps could
be taken to improve the realism of robots such as calibration of frictional parameters
and sensor noise are also out of the scope of this work and part of the future recom-
mendations outlined in Section 8.2. As a result, any conclusions from this work should
be interpreted conceptually first and foremost.

7.3 Motivating the Design of Revolve

The main design decision when conceiving Revolve was a choice between either (a)
building on top of a dynamics engine directly, (b) modifying the code of an existing
research project or (c) using a simulation platform. Out of these (b) and (c) are more
viable options because they take away a large part of the bootstrapping process, and in
addition ensure improvements and fixes to the underlying infrastructure regardless of
development of the toolkit. Investigations were performed with the NASA Tensegrity
and RoboGen source codes, running benchmarks and trying to realize simple artificial
ecosystems using the existing code base. There was a particular focus on RoboGen
as an attractive candidate for a proof of concept, given that its robot body space is
easily constructed using 3D printing, and is subject to an ongoing real-life calibration
process. During the setup of simple scenarios however, it was found that the RoboGen
software suite was too much tailored to its serial, off-line evolution to be conveniently
refactored to the new use case. In addition all code would have to be written in
the C++ language, which provides high performance at the expense of being verbose
and some times tedious to develop. In many cases the high performance would be
attained in areas where it was not at all needed and a more convenient setup would
be preferred. While the choice for the RoboGen body space as a proof of concept

68 CHAPTER 7. CONCLUSIONS AND DISCUSSION

remained, the decision was made to build the Revolve Toolkit on top of a general
purpose simulation platform instead.

Out of the simulation platforms discussed in Section 3.3, only Webots was discarded
beforehand because of the negative experiences addressed earlier. MORSE appeared to
be a suitable candidate, but lacked the ability for high performance C++ integration
that Gazebo and V-REP provided, as well as the ability to work with a choice of
physics engines. An online paper exists performing a comparative analysis between the
last two remaining platforms, ruling in favor of V-REP by a slight margin. However,
the use case examined in this paper differs from the type of research in this thesis. In
addition, a much older version (2.2) of Gazebo was used than was available even at the
time this paper was written, in order to simplify ROS integration. The methodology
used to compare performance is furthermore flawed in that it compares CPU usage
rather than simulation work performed over time. Taking away these points, the
bottom line is that V-REP and Gazebo are very similar platforms in terms of features.
The eventual choice for Gazebo is motivated by its non-commercial nature, its large
online community and the XML format it uses to describe models, which simplifies
creating dynamic robot morphologies from external applications. That being said, V-
REP would likely also have been very suitable as a platform. While Revolve has been
written with Gazebo in mind, large parts are simulator agnostic and could potentially
be used for creating a similar platform for use with V-REP.

For completeness one of the early performance benchmarks used to assess RoboGen
was implemented in Revolve for comparison after its development. In this benchmark,
a population consisting of a varying number of spider-like robots is placed on a grid and
simulated for a fixed time, measuring the real time it takes to perform this simulation.
Setting up such a scenario is rather straightforward in Revolve, as it was designed for
these kinds of tasks. For the RoboGen code, a ‘naive’ approach is taken to obtain the
benchmark, in which the standard robot evaluation task is modified to copy the target
robot multiple times. This is still a far cry from something that can be used to produce
other experiments as well, as addressed in the previous paragraph. The RoboGen
benchmark was later altered to support the latest version of the software suite available
at the time (which underwent some performance optimizations since the first version
of the benchmark), after which both benchmarks were executed with the same system
setup as was used in Section 6.1. These results are presented in figure 7.1, which shows
that for this specific test RoboGen performs better for small populations, whereas
performance is similar for larger population sizes. The relevance of this benchmark
should not be overstated, because important aspects such as optimization, calibration
and development speed are not taken into consideration. It is merely included to
show that the increased development ease of the Revolve platform for these kinds of
scenarios does not necessarily mean performance is adversely affected.

7.3. MOTIVATING THE DESIGN OF REVOLVE 69

0.0

2.5

5.0

7.5

10.0

10 20 30 40 50
Population size

R
ea

l t
im

e
fa

ct
or

 (
si

m
ul

at
io

n
tim

e
/ r

ea
l t

im
e)

Platform

Revolve

RoboGen

Figure 7.1: Results of the comparison benchmark described in section 7.3, in which
populations consisting of spider-like robots placed on a grid were simulated in both
Revolve and RoboGen. The y-axis shows the real time factor (RTF), i.e. the amount
of simulated seconds per second of real, wall clock time. The shaded area shows the
standard deviation of the measurements, each of which was repeated 30 times.

8
Recommendations and Future Work

This section outlines some recommendations for future research relating to the work
in this thesis. It starts by describing the state and challenges to overcome with respect
to the Revolve Toolkit in Section 8.1, followed by recommendations regarding actual
research in Section 8.2.

8.1 State of Revolve

At the time of this writing the functionality available as part of the Revolve Toolkit
should be considered a first version which, while already usable for research, leaves
many desired improvements. The most pressing of these matters is the compatibility
with the Gazebo. During the development of Revolve, several issues of varying severity
were encountered that could only be resolved within the simulator code itself. These
issues have been reported to the Gazebo developers, but in the mean time a fork of
Gazebo has been created with fixes to these issues1. This fork is meant as a temporary
solution until they are fixed in the main Gazebo software, making sure this happens is
important to be able to use up-to-date versions of Gazebo with Revolve in the future.
It was noted in Section 5.1 that light sensors cannot currently be used in many scenario
types, which is a result of a stability issue with Gazebo when many individuals are
added or removed to an environment in a short time span. Fixing this issue is of some
importance as vision in general and light sensors in particular are often interesting

1This fork is available at https://bitbucket.org/ElteHupkes/gazebo/branch/

gazebo6-revolve.

71

https://bitbucket.org/ElteHupkes/gazebo/branch/gazebo6-revolve
https://bitbucket.org/ElteHupkes/gazebo/branch/gazebo6-revolve

72 CHAPTER 8. RECOMMENDATIONS AND FUTURE WORK

tools to employ in robotics research.

As for Revolve itself, the potential improvements are numerous, as is to be expected of a
software package which targets a wide array of possible research. The urgency of these
improvements tends to depend on the specific use case, and it is therefore hoped that
they will be incorporated during future Revolve research projects. Documentation
is a definite point that deserves attention. While the Revolve code contains inline
documentation, the use of the toolkit is not currently described in any way that can
be considered particularly accessible. Having introductory descriptions and tutorials
available is conditional to making Revolve the tool it has set out to be, regardless of
the functionality it provides, and therefore should be prioritized.

It should be noted that no framework or toolkit can likely ever be an end-all be-all
solution to one’s research needs, because a trade-off between performance, accuracy
and rapid prototyping will always be a part of the scientific process. As it stands,
the process of acquiring a simulation with acceptable stability and performance is
very much dependent on parameter tuning of the end user. Revolve should possibly
provide some guidance in this matter, be it through documentation for its most used
parts or through tools for stability analysis and heuristics.

8.2 Future Research

With regard to the research performed in the context of this thesis, there are several
areas in which it can be improved upon. Because the work takes place entirely in
simulation, the risk of a reality gap is significant. Extending the experimental proce-
dures to include real-life validation in some way is therefore an important next step.
Acquiring a clear picture of what the possible differences with reality entail would be
helpful in generalizing the results to physical robotics. Apart from mapping out these
differences, a number of other steps could be taken to minimize the reality gap, such
as sensor and actuator calibration, and the utilization of sensor and actuator noise to
improve robustness. The effect that sensors have on robot performance has not been
investigated in this work and might also be of interest, in particular in conjunction
with real, physical robots where optimizing their use may be desirable. Most of the
analysis in Section 6 has focused on morphology, whereas the co-evolution of brains
with these morphologies is of definite interest.

When making use of the evolutionary processes described in Section 4.4.6, there is
a wide range of parameters to consider. The parameter list used in this work is a
result of both default values taken from RoboGen and a process of trial and error.
Performing a more thorough parameter search over a set of small simulations might
provide for different dynamics.

To further investigate the differences between the off-line and on-line systems found in
Section 6.2, it may be worth designing and simulating a system that bridges scenarios 2

8.2. FUTURE RESEARCH 73

and 3 from Section 5.4. Because of the suggested significance of continuous, dynamic
fitness evaluation, extending scenario 2 with variable simulation times at the same
sliding window size seems logical, because it would potentially encompass different
stages of a robot’s gait cycle. Periodically selecting either all or a subset previously
evaluated robots from the active population for re-evaluation at a different simulation
time length would be a sensible part of this approach. In addition, scenario 2 could be
equipped with a selection process similar to that of scenario 3, resulting in a variable
population size.

Because Revolve was designed explicitly with future research in mind, recommenda-
tions for such projects are numerous. As a first step proof of concept, the scenarios
of Section 5.4 fall just short of the envisioned on-line embodied evolution. Repeating
an experiment similar to the precursor to this work by Weel et al. [42] seems to be
a logical next step. Setting up such an experiment should be straightforward with
the help of Revolve, although finding parameters that provide interesting dynamics in
such a system is a whole new research project in itself. Attempts towards this goal
were in fact made as part of developing Revolve, but were eventually decided to be out
of scope, partially as a result of lack of progress in this area. Something to be wary
of in this context is the ‘bootstrapping problem’, a term used to describe the failure
of a system to evolve into interesting dynamics simply because there are no dynamics
to begin with. Robot learning could be developed and integrated into Revolve as a
potential solution to this problem. This would enable robots to make more rapid and
efficient use of any sensors they have, which is expected to have an impact on the
influence of robot interactions and the environment in which they operate. Varying
environmental properties is also an interesting line of research, in conjunction with for
instance evaluating the robustness and adaptability of robots and robot populations.

References

[1] Joshua Auerbach, Deniz Aydin, Andrea Maesani, Przemyslaw Kornatowski, Ti-
tus Cieslewski, Grégoire Heitz, Pradeep Fernando, Ilya Loshchilov, Ludovic Daler,
and Dario Floreano. “RoboGen: Robot Generation through Artificial Evolution”.
In: Artificial Life 14: Proceedings of the Fourteenth International Conference on
the Synthesis and Simulation of Living Systems. EPFL-CONF-200995. The MIT
Press. 2014, pp. 136–137.

[2] Randall D Beer, Hillel J Chiel, and Leon S Sterling. “Heterogeneous Neural
Networks for Adaptive Behavior in Dynamic Environments”. In: Advances in
Neural Information Processing Systems. 1989, pp. 577–585.

[3] Josh C Bongard. “Evolutionary Robotics”. In: Commun. ACM 56.8 (Aug. 2013),
pp. 74–83. issn: 0001-0782. doi: 10.1145/2493883. url: http://doi.acm.
org/10.1145/2493883.

[4] Josh C Bongard and Rolf Pfeifer. “Evolving Complete Agents Using Artificial
Ontogeny”. In: Morpho-functional Machines: The New Species (2003), pp. 237–
258. doi: 10.1.1.26.4442.

[5] Josh Bongard, Victor Zykov, and Hod Lipson. “Resilient Machines through Con-
tinuous Self-Modeling”. In: Science 314.5802 (2006), pp. 1118–1121.

[6] Nicolas Bredeche, Evert Haasdijk, and Agoston E Eiben. “On-Line, On-Board
Evolution of Robot Controllers”. In: Artifical Evolution. Springer, 2009, pp. 110–
121.

[7] Nicolas Bredeche and Jean-Marc Montanier. “Environment-Driven Open-Ended
Evolution with a Population of Autonomous Robots”. In: Evolving Physical Sys-
tems Workshop (2012), pp. 7–14.

[8] Nicolas Bredeche, Jean-Marc Montanier, Wenguo Liu, and Alan FT Winfield.
“Environment-Driven Distributed Evolutionary Adaptation In a Population of
Autonomous Robotic Agents”. In: Mathematical and Computer Modelling of
Dynamical Systems 18.1 (2012), pp. 101–129.

[9] Luzius Brodbeck, Simon Hauser, and Fumiya Iida. “Morphological Evolution
of Physical Robots through Model-Free Phenotype Development”. In: Plos One
10.6 (2015), e0128444. issn: 1932-6203. doi: 10.1371/journal.pone.0128444.
url: http://dx.plos.org/10.1371/journal.pone.0128444.

75

http://dx.doi.org/10.1145/2493883
http://doi.acm.org/10.1145/2493883
http://doi.acm.org/10.1145/2493883
http://dx.doi.org/10.1.1.26.4442
http://dx.doi.org/10.1371/journal.pone.0128444
http://dx.plos.org/10.1371/journal.pone.0128444

76 REFERENCES

[10] Ken Caluwaerts, Jérémie Despraz, Atıl Işçen, Andrew P Sabelhaus, Jonathan
Bruce, Benjamin Schrauwen, and Vytas SunSpiral. “Design and Control of Com-
pliant Tensegrity Robots Through Simulation and Hardware Validation”. In:
Journal of The Royal Society Interface 11.98 (2014), p. 20140520.

[11] Dave Cliff, Phil Husbands, and Inman Harvey. “Explorations in Evolutionary
Robotics”. In: Adapt. Behav. 2.1 (1993), pp. 73–110. issn: 1059-7123. doi: 10.
1177/105971239300200104. url: http://dx.doi.org/10.1177/105971239300200104.

[12] Emanuele Crosato. “A Robotic Ecosystem with Co-Evolvable Minds and Bod-
ies”. Master’s Thesis. Vrije Universiteit Amsterdam, 2014.

[13] Massimiliano D’Angelo, Berend Weel, and Agoston E Eiben. “HyperNEAT Ver-
sus RL PoWER for Online Gait Learning in Modular Robots”. In: European
Conference on the Applications of Evolutionary Computation. Springer. 2014,
pp. 777–788.

[14] Kenneth A De Jong. “Are Genetic Algorithms Function Optimizers?” In: PPSN.
Vol. 2. 1992, pp. 3–14.

[15] Gilberto Echeverria, Séverin Lemaignan, Arnaud Degroote, Simon Lacroix, Michael
Karg, Pierrick Koch, Charles Lesire, and Serge Stinckwich. “Simulating Com-
plex Robotic Scenarios with MORSE”. In: SIMPAR. 2012, pp. 197–208. url:
http://morse.openrobots.org.

[16] Agoston E Eiben. “Grand Challenges for Evolutionary Robotics”. In: Frontiers
in Robotics and AI 1.June (June 2014), pp. 1423–1451. issn: 2296-9144. doi:
10.3389/frobt.2014.00004. url: http://journal.frontiersin.org/

article/10.3389/frobt.2014.00004/abstract.

[17] Agoston E Eiben, Nicolas Bredeche, Mark Hoogendoorn, J Stradner, Jon Tim-
mis, AM Tyrrell, and Alan FT Winfield. “The Triangle of Life: Evolving Robots
in Real-Time and Real-Space”. In: Advances in Artificial Life, ECAL 2013
(2013), pp. 1056–1063. doi: 10.7551/978-0-262-31709-2-ch157. url: http:
//mitpress.mit.edu/sites/default/files/titles/content/ecal13/978-

0-262-31709-2-ch157.pdf.

[18] Agoston E Eiben, Serge Kernbach, and Evert Haasdijk. “Embodied Artificial
Evolution”. In: Evolutionary Intelligence 5.4 (2012), pp. 261–272. issn: 1864-
5909. doi: 10.1007/s12065-012-0071-x. url: http://link.springer.com/
10.1007/s12065-012-0071-x$%5Cbackslash$npapers3://publication/

doi/10.1007/s12065-012-0071-x.

[19] Agoston E Eiben and James E Smith. Introduction to Evolutionary Computing.
Vol. 53. Springer, 2003.

[20] Agoston E Eiben and Jim E Smith. “From Evolutionary Computation to the
Evolution of Things”. In: Nature 521.7553 (2015), pp. 476–482. issn: 0028-0836.
doi: 10.1038/nature14544. url: http://www.nature.com/doifinder/10.
1038/nature14544.

http://dx.doi.org/10.1177/105971239300200104
http://dx.doi.org/10.1177/105971239300200104
http://dx.doi.org/10.1177/105971239300200104
http://morse.openrobots.org
http://dx.doi.org/10.3389/frobt.2014.00004
http://journal.frontiersin.org/article/10.3389/frobt.2014.00004/abstract
http://journal.frontiersin.org/article/10.3389/frobt.2014.00004/abstract
http://dx.doi.org/10.7551/978-0-262-31709-2-ch157
http://mitpress.mit.edu/sites/default/files/titles/content/ecal13/978-0-262-31709-2-ch157.pdf
http://mitpress.mit.edu/sites/default/files/titles/content/ecal13/978-0-262-31709-2-ch157.pdf
http://mitpress.mit.edu/sites/default/files/titles/content/ecal13/978-0-262-31709-2-ch157.pdf
http://dx.doi.org/10.1007/s12065-012-0071-x
http://link.springer.com/10.1007/s12065-012-0071-x$%5Cbackslash$npapers3://publication/doi/10.1007/s12065-012-0071-x
http://link.springer.com/10.1007/s12065-012-0071-x$%5Cbackslash$npapers3://publication/doi/10.1007/s12065-012-0071-x
http://link.springer.com/10.1007/s12065-012-0071-x$%5Cbackslash$npapers3://publication/doi/10.1007/s12065-012-0071-x
http://dx.doi.org/10.1038/nature14544
http://www.nature.com/doifinder/10.1038/nature14544
http://www.nature.com/doifinder/10.1038/nature14544

REFERENCES 77

[21] Agoston E Eiben and Jim E Smith. “Towards the evolution of things”. In: ACM
SIGEVOlution 8.3 (2016), pp. 3–6.

[22] Joshua M Epstein and Robert Axtell. Growing Artificial Societies: Social Science
from the Bottom Up. Brookings Institution Press, 1996.

[23] Dario Floreano, Phil Husbands, and Stefano Nolfi. “Evolutionary Robotics”. In:
Springer handbook of robotics. Springer, 2008, pp. 1423–1451.

[24] Dario Floreano and Francesco Mondada. “Automatic Creation of an Autonomous
Agent: Genetic Evolution of a Neural Network Driven Robot”. In: Proceedings
of the third international conference on Simulation of adaptive behavior: From
Animals to Animats 3. LIS-CONF-1994-003. MIT Press. 1994, pp. 421–430.

[25] Jonathan Hiller and Hod Lipson. “Dynamic Simulation of Soft Multimaterial
3D-Printed Objects”. In: Soft Robotics 1.1 (2014), pp. 88–101.

[26] Philip Husbands and Inman Harvey. “Evolution Versus Design: Controlling Au-
tonomous Robots”. In: AI, Simulation and Planning in High Autonomy Systems,
1992. Integrating Perception, Planning and Action., Proceedings of the Third An-
nual Conference of. IEEE. 1992, pp. 139–146.

[27] Nick Jakobi, Phil Husbands, and Inman Harvey. “Noise and the Reality Gap:
The Use of Simulation in Evolutionary Robotics”. In: Advances in artificial life.
Springer, 1995, pp. 704–720.

[28] Nathan Koenig and Andrew Howard. “Design and Use Paradigms for Gazebo,
an Open-Source Multi-Robot Simulator”. In: Intelligent Robots and Systems,
2004.(IROS 2004). Proceedings. 2004 IEEE/RSJ International Conference on.
Vol. 3. IEEE, pp. 2149–2154.

[29] Sylvain Koos, Jean-Baptiste Mouret, and Stéphane Doncieux. “The Transfer-
ability Approach: Crossing the Reality Gap in Evolutionary Robotics”. In: Evo-
lutionary Computation, IEEE Transactions on 17.1 (2013), pp. 122–145.

[30] John R Koza. Genetic Programming: On the Programming of Computers by
Means of Natural Selection. Vol. 1. MIT press, 1992.

[31] Oliver Michel. “Webots: Professional Mobile Robot Simulation”. In: Journal of
Advanced Robotics Systems 1.1 (2004), pp. 39–42. url: http :/ /www . ars-

journal.com/International-Journal-of-%20Advanced-Robotic-Systems/

Volume-1/39-42.pdf.

[32] Stefano Nolfi and Dario Floreano. Evolutionary Robotics: The Biology, Intelli-
gence, and Technology of Self-Organizing Machines. MIT press, 2000.

[33] Rolf Pfeifer and Josh Bongard. How the Body Shapes the Way We Think: A New
View of Intelligence. MIT press, 2006.

[34] Jordan B Pollack and Hod Lipson. “Automatic Design and Manufacture of
Robotic Lifeforms”. In: Nature 406.6799 (Aug. 2000), pp. 974–978. issn: 00280836.
doi: 10.1038/35023115. url: http://www.nature.com/doifinder/10.1038/
35023115.

http://www.ars-journal.com/International-Journal-of-%20Advanced-Robotic-Systems/Volume-1/39-42.pdf
http://www.ars-journal.com/International-Journal-of-%20Advanced-Robotic-Systems/Volume-1/39-42.pdf
http://www.ars-journal.com/International-Journal-of-%20Advanced-Robotic-Systems/Volume-1/39-42.pdf
http://dx.doi.org/10.1038/35023115
http://www.nature.com/doifinder/10.1038/35023115
http://www.nature.com/doifinder/10.1038/35023115

78 REFERENCES

[35] Thomas S Ray. “An Approach to the Synthesis of Life”. In: (1991).

[36] E Rohmer, SPN Singh, and M Freese. “V-REP: a Versatile and Scalable Robot
Simulation Framework”. In: Proc. of The International Conference on Intelligent
Robots and Systems (IROS). 2013.

[37] Karl Sims. “Evolving 3D Morphology and Behavior by Competition”. In: Ar-
tificial Life 1.4 (1994), pp. 353–372. issn: 1064-5462. doi: 10 . 1162 / artl .

1994.1.4.353. url: http://dx.doi.org/10.1162/artl.1994.1.4.353$
%5Cbackslash$nhttp://www.mitpressjournals.org/doi/pdf/10.1162/

artl.1994.1.4.353$%5Cbackslash$nhttp://www.mitpressjournals.org/

toc/artl/1/4.

[38] Karl Sims. “Evolving Virtual Creatures”. In: Siggraph ’94 SIGGRAPH ’.July
(1994), pp. 15–22. issn: 10645462. doi: 10.1145/192161.192167. url: http:
//dl.acm.org/citation.cfm?id=192167$%5Cbackslash$nhttp://portal.

acm.org/citation.cfm?doid=192161.192167.

[39] Kenneth O Stanley and Risto Miikkulainen. “Evolving Neural Networks through
Augmenting Topologies”. In: Evolutionary computation 10.2 (2002), pp. 99–127.

[40] Alan M Turing. “Computing Machinery and Intelligence”. In: Mind 59.236
(1950), pp. 433–460.

[41] Richard A Watson, Sevan G Ficici, and Jordan B Pollack. “Embodied Evolution:
Distributing an Evolutionary Algorithm in a Population of Robots”. In: Robotics
and Autonomous Systems 39.1 (2002), pp. 1–18.

[42] Berend Weel, Emanuele Crosato, Jacqueline Heinerman, Evert Haasdijk, and
Agoston E Eiben. “A Robotic Ecosystem with Evolvable Minds and Bodies”.
In: 2014 IEEE International Conference on Evolvable Systems (2014), pp. 165–
172. doi: 10.1109/ICES.2014.7008736.

[43] Larry Yaeger, Virgil Griffith, and Olaf Sporns. “Passive and Driven Trends in
the Evolution of Complexity”. In: arXiv preprint arXiv:1112.4906 (2011).

[44] Kaizhong Zhang and Dennis Shasha. “Simple Fast Algorithms for the Editing
Distance Between Trees and Related Problems”. In: SIAM journal on computing
18.6 (1989), pp. 1245–1262.

http://dx.doi.org/10.1162/artl.1994.1.4.353
http://dx.doi.org/10.1162/artl.1994.1.4.353
http://dx.doi.org/10.1162/artl.1994.1.4.353$%5Cbackslash$nhttp://www.mitpressjournals.org/doi/pdf/10.1162/artl.1994.1.4.353$%5Cbackslash$nhttp://www.mitpressjournals.org/toc/artl/1/4
http://dx.doi.org/10.1162/artl.1994.1.4.353$%5Cbackslash$nhttp://www.mitpressjournals.org/doi/pdf/10.1162/artl.1994.1.4.353$%5Cbackslash$nhttp://www.mitpressjournals.org/toc/artl/1/4
http://dx.doi.org/10.1162/artl.1994.1.4.353$%5Cbackslash$nhttp://www.mitpressjournals.org/doi/pdf/10.1162/artl.1994.1.4.353$%5Cbackslash$nhttp://www.mitpressjournals.org/toc/artl/1/4
http://dx.doi.org/10.1162/artl.1994.1.4.353$%5Cbackslash$nhttp://www.mitpressjournals.org/doi/pdf/10.1162/artl.1994.1.4.353$%5Cbackslash$nhttp://www.mitpressjournals.org/toc/artl/1/4
http://dx.doi.org/10.1145/192161.192167
http://dl.acm.org/citation.cfm?id=192167$%5Cbackslash$nhttp://portal.acm.org/citation.cfm?doid=192161.192167
http://dl.acm.org/citation.cfm?id=192167$%5Cbackslash$nhttp://portal.acm.org/citation.cfm?doid=192161.192167
http://dl.acm.org/citation.cfm?id=192167$%5Cbackslash$nhttp://portal.acm.org/citation.cfm?doid=192161.192167
http://dx.doi.org/10.1109/ICES.2014.7008736

	Abstract
	Acknowledgements
	1 Introduction
	1.1 Research Goals

	2 Background
	2.1 Evolutionary Computing
	2.2 Evolutionary Robotics
	2.3 Evolution of Things
	2.4 Artificial Life
	2.5 Off-Line, On-Line and Embodied Evolution
	2.6 Computer Models
	2.7 The Reality Gap

	3 Related Work
	3.1 Dynamics Engines
	3.2 Research Projects and Educational Tools
	3.3 Robotic Simulation Platforms
	3.4 Similar Research

	4 The Revolve Toolkit
	4.1 Gazebo
	4.2 The Revolve Specification
	4.3 Revolve Libraries
	4.3.1 Python Libraries
	4.3.2 Gazebo Plugins
	4.3.3 The Body Analyzer

	4.4 Revolve Angle
	4.4.1 Genome
	4.4.2 Phenome
	4.4.3 Genotype to Phenotype Conversion
	4.4.4 Restrictions
	4.4.5 Robot Generation
	4.4.6 Evolution

	5 Experimental Setup
	5.1 Body Part Types
	5.1.1 Core Component
	5.1.2 Fixed Brick
	5.1.3 Parametric Bar Joint
	5.1.4 Active Hinge Joint
	5.1.5 Passive Hinge Joint
	5.1.6 Touch Sensor
	5.1.7 Light Sensor

	5.2 Neuron Types
	5.3 Viability Criteria
	5.4 Scenarios
	5.4.1 Computational Performance
	5.4.2 Baseline
	5.4.3 Evolution

	5.5 Simulation Parameters
	5.6 Data Gathering

	6 Results
	6.1 Computational Performance
	6.2 Evolution
	6.2.1 Fitness
	6.2.2 Robot Characteristics
	6.2.3 Robot Morphologies
	6.2.4 In Summary

	7 Conclusions and Discussion
	7.1 Utility
	7.1.1 Experimental Design
	7.1.2 Computational Performance

	7.2 Experiments
	7.2.1 Off-Line versus On-Line
	7.2.2 The Reality Gap

	7.3 Motivating the Design of Revolve

	8 Recommendations and Future Work
	8.1 State of Revolve
	8.2 Future Research

