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Abstract

This thesis develops a computer vision methodology for detecting building elements in streetview
imagery to support the Netherlands’ climate initiative of renovating 1.5 million homes by 2030.
The approach addresses the critical challenge of limited labeled training data in domain-specific
building element detection by leveraging self-supervised Vision Transformers (ViTs) in a few-
shot learning framework.

The methodology extracts patch-level embeddings from streetview images using pre-trained
Vision Transformers, then trains lightweight classifiers to distinguish patches containing target
building elements (solar panels, dormers, chimneys, roof windows, roof ventilation, parapets,
and balconies) from background patches. Being effective with only 3-21 labeled examples per
element, the approach achieves reliable detection performance despite severe data constraints.

Key technical contributions include: (1) demonstrating that general-purpose self-supervised
representations (DINOv2) outperform specialized domain-specific retraining when paired with
sophisticated classifiers; (2) developing an adaptive cropping strategy that improves patch se-
lection by aligning bounding box annotations with ViT patch grids, increasing positive patch
yield by up to 10x for small elements; and (3) introducing Random Forest Mixture of Experts
(RF-MoE) for patch embedding classification, achieving superior performance over other clas-
sifiers.

Experimental evaluation on Dutch streetview imagery demonstrates the methodology’s effec-
tiveness, with the DINOv2 + RF-MoE configuration achieving 0.969 Average Accuracy and
Precision (AAP) across all building elements. Per-element analysis reveals excellent perfor-
mance for larger, visually distinct elements (perfect scores for dormers and roof windows) while
highlighting challenges with smaller features.

The research validates the practical application of self-supervised Vision Transformers in spe-
cialized domains with limited labeled data, providing a scalable solution for automated building
feature extraction that directly supports climate action initiatives through enhanced renovation
planning capabilities.
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Chapter 1 – Introduction

This thesis was written during an internship at TNO, contributing to a national initiative known
as the ”contingentenaanpak” 1 (Dutch for contingent approach or batch approach). This strat-
egy aims to accelerate energy-efficient building renovations in the Netherlands by identifying
homes suitable for standardized renovation solutions. Rather than inspecting individual build-
ings to assess applicability, the approach relies on collecting address level data about the Dutch
housing stock and using artificial intelligence to automatically identify homes that match the
criteria for energy-saving renovations.

TNO’s Clustertool is the heart of this methodology, which is a classifier using over 50 building-
related, address level features, such as energy performance, gas usage, facade composition,
and demographics. These features allow the classifier to identify buildings that are suitable
for specific renovation solutions. For buildings that qualify, owners will be approached with
lowered-cost renovation offers, thanks to standardized solutions, and bulk acquirement of labor
and materials. This approach directly supports the Netherlands’ climate goals of renovating
1.5 million homes by 2030. The objective of this thesis is to expand the address-level dataset
with detectable building elements extracted from streetview imagery.

The central contribution of this thesis is a computer vision methodology to detect spe-
cific building elements in streetview images from Google Maps or Cyclomedia to add to
the per address features and enhance the Clustertool’s predictive capabilities. Specifically, the
method aims to detect the key elements: solar panels, dormers, chimneys, roof windows, para-
pets, and balconies, for which their presence will subsequently be encoded as boolean features
in the Clustertool input.

However, implementing this computer vision methodology presents significant technical chal-
lenges. The primary obstacle is the scarcity of labeled training data for domain-specific building
elements, which are rarely represented in conventional computer vision datasets. To address
this limitation, the proposed approach leverages a self-supervised Vision Transformer (ViT)
combined with a lightweight classifier in a few-shot learning framework.

The methodology employs a self-supervised ViT, pre-trained on large-scale unlabeled imagery,
which has learned local and meaningful image representations in the form of patch embeddings.
Using only 3 to 21 labeled examples per architectural element, a lightweight classifier is trained
to distinguish whether a given patch embedding corresponds to the element of interest. This
ViT-classifier combination can then process new, unlabeled streetview images by extracting
patch embeddings and classifying them to detect the presence of target building elements.
This approach achieves reliable detection performance despite the severe constraints on labeled
training data, making it practical for real-world deployment where extensive manual annotation
is prohibitively expensive.

1https://www.tno.nl/nl/newsroom/insights/2024/11/contingentenaanpak-bewijst-effectiviteit/
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Chapter 2 – Background Research

This work proposes a method of using self-supervised vision transformers (ViTs), and perform-
ing classification on their patch embeddings. This approach will be implemented for detecting
building elements in street-view images under a few-shot learning setting. The combination of
self-supervised ViTs dense embeddings and few-shot detection explored in this thesis was in-
spired by several key research directions. In recent years, self-supervised ViTs have emerged as a
foundation for significant advances across a wide range of computer vision tasks. Notably, Kaim-
ing He, X. Chen, et al. (2021) and Caron et al. (2021) demonstrated that transformer-based
self-supervised models can learn rich and generalizable visual representations from large-scale
unlabeled data, rivaling or even surpassing supervised baselines in various downstream appli-
cations. These models have been successfully used in dense prediction tasks such as semantic
segmentation and object detection, where patch-level representations enable fine-grained image
understanding. Self-supervised ViTs can in some cases be applied directly without additional
training, as demonstrated in LOST (Siméoni et al., 2021), or serve as a foundation integrated
within complex pipelines such as Grounding DINO (Liu et al., 2024). This work focuses on
developing a method that leverages self-supervised ViTs into an adaptable methodology to
detect highly domain specific elements in a few-shot setting.

2.1 Emerging properties from Self-Supervised Vision Trans-

formers

Self-supervised ViTs have become common technology in modern computer vision, providing
versatile and powerful image representations. Even without any modifications, self-supervised
ViT methods show themselves to be directly usable, as in segmentation.

DINO DIstillation with NO Labels (DINO) is a self-supervised learning framework for learn-
ing image representations (Caron et al., 2021) using a Vision Transformer (ViT) (Dosovitskiy
et al., 2021). A ViT is trained through a student-teacher distillation setup where both networks
share the same architectures but receive different input views. The training process begins with
a multi-crop augmentation strategy that generates global crops (covering > 50% of the image)
and local crops (covering < 50% of the image) from each input image. The teacher network
only processes the global crops, while the student network receives all crops including both
global and local views. During forward passes, both networks output feature representations
from their [CLS] tokens, which are then passed through projection heads and normalized using
a temperature-scaled softmax. The core learning objective is a cross-entropy loss computed
between the student’s outputs and the teacher’s outputs, excluding identical crop pairs. The
student network is optimized through backpropagation and gradient descent, while the teacher
network parameters are updated using an exponential moving average of the student’s weights.
This setup forces the student to learn local-to-global correspondences, enabling the ViT to
develop robust visual features without requiring labeled data. As a result, the model learns to
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produce similar representations not only for different views of the same image, but also for se-
mantically or visually similar images, effectively grouping them together in the learned feature
space based on shared visual characteristics.

Remarkably, Caron et al. (2021) demonstrate that through this training setup, the self-attention
maps from the final [CLS] token naturally highlight important regions which is visualized
in Figure 2.1, effectively segmenting primary objects in object-centric datasets without any
supervision. This emergent behavior is a first step toward automatic segmentation, enabling
the model to isolate meaningful structures in the image without any supervision.

Figure 2.1: Caron et al. (2021) figure 1, displaying [CLS] token self-attention maps.

DINOv2 Oquab et al. (2023) introduces DINOv2, which applies the same self-distillation
principles as the original DINO, but is trained on a much larger and more diverse dataset
(LVD-142M) with improved and more robust training routines. As a result, DINOv2 produces
more general and transferable visual representations, achieving state-of-the-art performance
across a wide range of downstream tasks.

Figure 2.2: Darcet et al. (2024) figure 1, displaying [CLS] token attention maps for large scale
vision transformers with and without registers.

DINOv2 with registers Darcet et al. (2024) discovered that scaling up vision transformers
leads to artifacts in feature maps, where high-norm tokens appear primarily in low-informative
background areas of images. These artifacts are illustrated in Figure 2.2 which, on the left
side, shows attention maps from vision transformers without register tokens. The high-norm
background tokens correspond to tokens that are repeatedly used for internal computations,
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resulting in noisy and spatially unstable attention maps. This behavior limits the model’s ability
to form coherent and smooth representations, particularly for downstream tasks. The authors
argue that this phenomenon arises because of a lack of space to process global information,
causing it to accumulate in semantically meaningless background tokens. To mitigate this
issue, they introduce register tokens, learned tokens similar to the [CLS] token, which act
as explicit storage units for global information. These register tokens absorb the high-norm
activations that would otherwise contaminate background regions, leading to cleaner and more
interpretable attention maps, as shown in the right-hand side of Figure 2.2. This modification
leads to improved performance, particularly on dense visual prediction tasks that depend on
consistent dense ViT outputs, which Darcet et al. (2024) demonstrates on the aforementioned
method called LOST (Siméoni et al., 2021).

2.2 Taming self-supervised vision transformers

Although self-supervised vision transformers, particularly in DINOmodels, demonstrate promis-
ing capabilities, their generated masks tend to be coarse and noisy, primarily designed for
object-centric datasets, and are not readily applicable in practical scenarios. Research efforts
such as LOST (Siméoni et al., 2021), MOST (Rambhatla et al., 2023), STEGO (Hamilton et al.,
2022), and U2Seg (Niu et al., 2024) have aimed to ”tame” these ViTs to produce finer-grained
predictions without the need for retraining. A shared characteristic of these methods is their
reliance on dense patch-level representations extracted from the final layers of ViTs, which are
subsequently refined using clustering algorithms and patch embedding similarity measures.

Object discovery Siméoni et al. (2021) and Rambhatla et al. (2023) demonstrate that by se-
lecting patches whose key vectors (from the transformer’s attention mechanism) are maximally
dissimilar from the rest, one can reliably identify patches corresponding to foreground objects,
essentially segmenting out foreground objects as instances. The underlying assumption is that
object regions manifest as distinct modes in the attention feature space.

While their use of dense ViT features without any retraining is inspiring, this thesis focuses
on detecting elements based on semantic understanding of their visual properties. In this
regard, the approaches LOST and MOST fall short, as they are class-agnostic, making them
unsuitable for tasks involving semantics. This limitation motivates the exploration of methods
that can move beyond generic object discovery toward interpretable and semantically structured
segmentation outputs.

Fully Self-Supervised Segmentation The approaches of STEGO (Hamilton et al., 2022)
and U2Seg (Niu et al., 2024) demonstrate promising results for fully self-supervised semantic
segmentation. Both methods utilize clustering techniques applied to ViT features, subsequently
aligning the resulting pseudo-labels with ground truth classes in the training dataset.

STEGO produces final segmentation masks through a multi-stage process: it first extracts dense
patch-level features from a DINO-pretrained ViT, then applies a segmentation head to project
these features into a lower dimension, and finally employs contrastive learning to form compact
clusters that correspond to semantic regions. The method uses feature correspondence tensors
to establish pixel-level relationships across image crops, enabling the clustering algorithm to
group semantically similar pixels into coherent segments.
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U2Seg takes a more comprehensive approach by generating masks for multiple segmentation
tasks simultaneously. It first creates high-quality discrete semantic labels by clustering instance
masks obtained from MaskCut and DINO features, then combines these ”things” pixels with
”stuff” pixels generated by STEGO to produce comprehensive pseudo semantic labels for every
pixel in the image. The final universal segmentation model, a ResNet50 based model (Kaiming
He, Zhang, et al., 2015), is trained on these pseudo-labels, resulting in a unified framework
capable of producing instance, semantic, and panoptic segmentation masks from a single in-
ference pass. The final step to create a practically useful model involves matching the masks
produced by the segmentation models based on pseudo-labels to ground truth labels, which
both STEGO and U2Seg accomplish through Hungarian matching (Kuhn, 1955).

While these achievements are impressive in their ability to produce detailed segmentation masks
without human supervision, for this research the clustering approaches are particularly inter-
esting for accurately detecting the presence of architectural elements, where detailed perfectly
outlined segmentation masks are not necessary. The key insight from these works is that patches
displaying similar visual content exhibit strong correspondence in the feature space, which is
visualized in Figure 2.3. This supports the hypothesis that dense patch representations inher-
ently encode semantic information about the elements present within each patch. This leads
to the idea that dense patch representations from ViTs may also be directly utilized to iden-
tify elements of interest within images, without requiring the complex segmentation pipelines
created by STEGO and U2Seg.

Figure 2.3: Figure 2 from Hamilton et al. (2022) showing DINO patch correspondence of regions
that correspond to the blue, red, and green cross.

Retraining ViTs to Enhance Patch Embedding Quality Rather than externally modi-
fying a ViT’s behavior, NeCo (Pariza et al., 2025) introduces a dense post-pretraining approach
that refines patch-level representations through continued self-supervised learning. As illus-
trated in Figure 2.4, NeCo employs a teacher-student framework where both models process
different augmented views of the same image, with the teacher model using exponential moving
averages of the student’s parameters to ensure stable learning dynamics.

NeCo operates through a systematic four-step process:

1. Augmented Views and Encoding: A pretrained Vision Transformer (e.g., DINOv2
with 4 register tokens) is used to encode augmented views of input images. These views
are processed by both student and teacher models.

2. Feature Extraction and Neighbor Computation: Dense patch-level features are
extracted from each model. For every patch, nearest neighbor relationships are computed
with respect to reference patches sampled from other images in the batch.
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Figure 2.4: Figure 1 from Pariza et al. (2025) showing the training pipeline of NeCo. An input
image is augmented into two views, processed by student and teacher encoders. Features are
aligned and compared to reference features from other images. Pairwise distances are computed
and sorted to enforce nearest neighbor consistency across views using the NeCo loss.

3. Differentiable Sorting: The patch-wise distances are sorted using a differentiable sort-
ing mechanism to obtain ordered lists that preserve fine-grained spatial similarity infor-
mation.

4. Patch Neighbor Consistency Loss: The core objective, Patch Neighbor Consistency
Loss (LNeCo), enforces consistency between the student and teacher ordered neighbor lists,
promoting robust patch-level representations invariant to augmentation.

The core innovation lies in how NeCo computes and enforces consistency in patch-level nearest
neighbor relationships. Given augmented views V1 and V2 of an input image, the student and
teacher models ϕs and ϕt extract spatially aligned dense features Fs ∈ RN ′×d, Ft ∈ RN ′×d

respectively.

For each patch feature, distances are computed using cosine similarity relative to reference
patches Fr ∈ RR×d sampled from the batch:

Ds(i, j) = 1− ⟨F i
s , F

j
r ⟩

∥F i
s∥ ∥F

j
r ∥

, Dt(i, j) = 1− ⟨F i
t , F

j
r ⟩

∥F i
t ∥ ∥F

j
r ∥

for i = 1, . . . , N ′ and j = 1, . . . , R.

Rather than using hard sorting (which is non-differentiable), NeCo applies a differentiable
sorting algorithm to convert each row of the distance matrices Ds and Dt into soft permutation
matrices :

Qi
s, Q

i
t ∈ RR×K

Each (r, k)-th entry of Qi
s (or Qi

t) denotes the probability that reference patch r is the k-th
nearest neighbor to patch i.

The loss for enforcing bidirectional consistency between the sorted neighbors ensures hat the
teacher’s view of which reference patches are most similar (i.e., ordering in Qt) is mirrored by
the student’s ordering Qs, and both Qt → Qs and Qs → Qt are penalized if inconsistent. The
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loss is defined as:

LNeCo =
N ′∑
i=1

[
LCE(Q

t
i, Q

s
i ) + LCE(Q

s
i , Q

t
i)
]

where the cross-entropy loss LCE is given by:

LCE(Q
t
i, Q

s
i ) = −

∑
j,k

Qt
i(j, k) logQ

s
i (j, k)

This formulation ensures that nearest-neighbor rankings remain consistent across both teacher
and student models over different views, providing richer supervision compared to binary con-
trastive learning. The differentiable sorting mechanism enables gradient flow through the per-
mutation process, facilitating learning of nuanced spatial relations while maintaining the se-
mantic ordering of patch similarities.

NeCo’s post-pretraining process produces a refined feature space where patches representing
the same semantic content exhibit similar embeddings, while patches from different semantic
categories demonstrate distinct embeddings. This enhanced patch-level discrimination proves
particularly valuable for tasks requiring fine-grained spatial understanding, as it improves the
model’s ability to identify and distinguish between different visual elements within complex
scenes. The approach effectively bridges the gap between general-purpose pretrained features
and task-specific requirements for precise patch-level understanding, establishing a promising
foundation for accurate patch-level classification in domain-specific element detection tasks.

2.3 Patch Embedding Classification

Research has demonstrated that patch-level classification can be highly effective for few-shot
learning scenarios. Recent work by Jiang, Cui, and Kun He (2024) proposes selecting class-
relevant patch embeddings by calculating similarity between class embeddings and patch em-
beddings, retaining only the top-ranked patches to form comprehensive image representations.
Similarly, Hao et al. (2023) introduce class-aware patch embedding adaptation that makes
patch embeddings class-relevant through constant interaction with class-aware embeddings,
demonstrating significant improvements on benchmark datasets. These research methods both
employ MLPs in their patch embedding-based image classification approaches, with theoretical
foundations showing that patch-level routing in mixture-of-experts can provably reduce sample
complexity by filtering label-irrelevant patches.

While their methodology is not specifically designed for few-shot settings, Pariza et al. (2025)
utilize k-means clustering and an MLP together with Hungarian matching (Kuhn, 1955) to
bridge the gap between their meaningful patch embeddings and assigning class labels to ViT
patches. The Hungarian algorithm serves as a critical component for resolving the label as-
signment problem inherent in clustering approaches, where cluster identifiers do not inherently
correspond to semantic class labels.

These MLP-based approaches provide a solid baseline for comparison in patch embedding
classification, establishing the effectiveness of neural network classifiers for patch-level feature
discrimination. However, our investigation extends beyond traditional neural network classi-
fiers to explore more sophisticated methods including ensemble techniques like Random Forest
Mixture of Experts (RF-MoE) and support vector machines, which may offer enhanced per-
formance in few-shot learning scenarios by leveraging different classification paradigms and
ensemble strategies.
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Support Vector Machine (SVM) with Radial Basis Function (RBF) kernel Support
Vector Machines with Radial Basis Function (RBF) kernels provide a systematic approach for
classifying high-dimensional patch embeddings. The theoretical foundation for SVMs is com-
prehensively covered in Bishop’s ”Pattern Recognition and Machine Learning” (Bishop, 2006).

Kernel Transformation and Feature Mapping. The RBF kernel transforms the input
space into a higher-dimensional feature space using:

k(x, x′) = exp

(
−∥x− x′∥2

2σ2

)
where γ controls the kernel width. This kernel function implicitly maps the input vectors into
an infinite-dimensional feature space through the ”kernel trick,” allowing the SVM to operate
in this high-dimensional space without explicitly computing the feature mapping φ(x) (Bishop,
2006).

The kernel represents the inner product k(x, x′) = φ(x)Tφ(x′) in the transformed space, en-
abling non-linear decision boundaries in the original input space.

Optimization Problem with Regularization. The SVM finds the optimal separating hy-
perplane by solving the constrained optimization problem:

min
w,b,ξ

&
1

2
∥w∥2 + C

n∑
i=1

ξi

subject to yi(w · xi + b) ≥ 1 − ξi, i = 1, . . . , n & ξi ≥ 0, i = 1, . . . , n, where C is the
regularization parameter controlling the trade-off between margin maximization and training
error minimization (Bishop, 2006). The slack variables ξi allow for misclassified points, making
the SVM robust to outliers.

Dual Formulation and Support Vectors. Using Lagrange multipliers, the optimization
problem transforms into its dual form, where the solution depends only on the support vectors
(training points with non-zero Lagrange multipliers αi). The decision function becomes:

f(x) = sign

(
n∑

i=1

αiyi k(xi, x) + b

)

where only support vectors contribute to the classification decision (Bishop, 2006).

This approach leverages the kernel trick to handle non-linearly separable data while maintaining
computational efficiency through the sparse representation using support vectors. The RBF
kernel’s ability to create smooth decision boundaries makes it particularly interesting candidate
for the classification of distinguishing between patches of different building elements.

Random Forest Mixture of Experts (RF-MoE) The Random Forest Mixture of Experts
(RF-MoE) represents a hybrid architecture that combines the ensemble strength of random
forests with the specialization capabilities of mixture of experts frameworks. As illustrated in
Figure 2.5, this approach employs multiple random forest experts coordinated through a clus-
tering based gating mechanism that routes patch embeddings to the most appropriate expert
based on their feature vectors.
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Figure 2.5: Schematic illustration of a Mixture of Experts architecture with clustering-based
routing. The feature space is partitioned into distinct clusters, each assigned to a specialized
expert responsible for predictions within that region. In this visualization, a feature vector
located within the green cluster is routed to the corresponding green expert for classification.

The theoretical foundation for expert specialization is well-established in recent research. For
example, Nielsen et al. (2025) demonstrate that sparse mixture of experts covering semantically
distinct areas of the feature space achieve both fast convergence and true expert specialization
within their respective regions. This principle is particularly relevant for patch embedding
classification, where patches containing similar architectural elements may cluster together
in the feature space, while patches representing different element types (e.g., balconies ver-
sus chimneys) are expected to naturally separate into distinct regions. The MoE framework
demonstrates robustness across different granularities of class separation in the feature space,
enabling the deployment of specialized experts to handle distinct regions and leading to more
focused and effective classification models.

Random Forest classifiers have proven their effectiveness when working with Vision Transformer
representations. Research on ViT CLS token classification shows that Random Forest classifiers
achieve competitive performance alongside SVMs (Strano Moraes et al., 2025). This effective-
ness naturally extends to patch-level classification, where Random Forest’s inherent ability to
handle high-dimensional feature vectors and provide robust ensemble predictions makes it ide-
ally suited for processing ViT patch embeddings.

The RF-MoE architecture specifically addresses critical challenges in few-shot learning scenarios
through three key mechanisms. First, the gating network enables routing of patch embeddings
based on their presence in the feature space, ensuring each expert can be trained toward their
specialized feature space region. Second, the Random Forest component provides inherent ro-
bustness against overfitting (Breiman, 2001), a crucial advantage when working with limited
training examples typical in few-shot learning contexts. Finally, the dual ensemble nature
of both the MoE framework and individual Random Forest experts creates multiple levels of
prediction aggregation, potentially improving generalization performance across diverse patch
embeddings from building elements occupying different semantic regions of the feature space.

While there is limited explicit research specifically combining mixture of experts architectures
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with clustering-based gating mechanisms and random forest classifiers, the theoretical founda-
tions and practical intuitions discussed earlier suggest that this hybrid approach holds signif-
icant promise. Given the strengths of random forests in handling high-dimensional data and
the specialization capabilities of mixture of experts frameworks, it is an interesting and valu-
able direction to empirically investigate how such an RF-MoE model performs, particularly in
scenarios involving patch embedding classification.
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Chapter 3 – Methodology

The overall approach in this project is best described as the detection of building elements in
a few-shot setting with self-supervised vision transformers and the classification of its patch
embeddings.

The methodology of this project, as visualized in Figure 3.1, follows the following steps process:

• Annotated images with a certain element of interest (a dormer in Figure 3.1) are fed
through a vision transformer.

• When cutting image in a grid style to produce patches, each patch with element of interest
in it based on the annotation is selected as positive, others are negative.

• The ViT processes the patches and produces meaningful embeddings for each patch.

• For each architectural element, the ViT is run on 3 to 21 annotated images, and all
positive and negative patch embeddings are collected.

• A classifier is then trained in the patch embedding space to distinguish between patches
containing the element of interest and those that do not.

• The same ViT and a now trained classifier are subsequently applied to new, unseen images
to identify patches likely to contain the target building element.

Figure 3.1: Schematic overview of the proposed pipeline using a dormer annotation as an
example. From left to right: The annotated image is divided into 14×14 pixel patches. Patches
containing the element of interest are labeled as positive samples (green), while those without
are labeled as negative (red). The ViT outputs a meaningful embedding for each patch. A
classifier is then trained in this embedding space to distinguish between positive and negative
patches.
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This pipeline enables robust detection of specific building elements with minimal labeled data,
leveraging the representational power of self-supervised ViTs and the efficiency of lightweight
patch embedding classifiers in a few-shot setting.

3.1 Patch Selection

The goal of this project is to enrich address-level data for a defined set of addresses in the
Netherlands by extracting features from street-view imagery. A team of experts from the
Building Energy Systems department at TNO has created a ranked list indicating the expected
impact of having data on each specific building feature. Based on this list, a selection was made
of features considered relevant for this project, specifically, those with a detectable presence in
imagery and expressible as a boolean indicating whether or not the feature is present on the
building. The building elements identified as important for detection are defined as: ”solar
panel”, ”dormer”, ”chimney”, ”roof window”, ”roof ventilation”, ”parapet”, and ”balcony”.
For each of these elements of interest, up to 21 street view images were to be annotated. The
annotation process happened manually and finding the right strategy is essential.

(a) Polygon t=0.7 annotation (b) Bounding box annotation (c) Bounding box annotation
with adaptive cropping

Figure 3.2: A visualization of different annotation styles influencing how patches are selected
for their embeddings to be included in positive samples for (in this case) the elements of solar
panel and roof ventilation.
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3.2 Annotation and Patch Selection

Obtaining a sufficient number of patch embeddings for the elements of interest is highly desir-
able for the effectiveness of this few-shot detection approach. The well-known machine learning
principle that ”more data leads to better performance” certainly holds true in this context.
However, beyond quantity, the quality of annotations is equally important. The quality of
annotation can be described by whether an annotation truly contains an element of interest.
Both the annotation process and the strategy used for selecting patches have a strong influence
on the number of patches that are collected, and the areas in the image covered by the col-
lected patches. In this section the development of the annotation and patch selection strategy
is discussed.

An element of interest in an image can be annotated with a polygon or a bounding box. A
polygon can more accurately outline an element of interest, but takes a long time to annotate
with. A bounding box is faster to annotate with, but may be a rough outline of an object.
Figure 3.2a and Figure 3.2b show manually annotated images in polygon and bounding box
style respectively. In the polygon style annotation, patches are selected when they have an
threshold (t=0.7), a minimum intersection over union threshold. For the bounding boxes, only
patches that fall within the bounding boxes are selected as positives. The positive patches are
highlighted in green.

Adaptive cropping Performing classification on patch embeddings with only a few annota-
tions limits the available training data for the patch embedding classifier. It is therefore crucial
to maximize the number of patch embeddings extracted from each image that accurately cover
areas of interest, ensuring that enough patch embeddings per element of interest are collected.

In many cases, the image and its associated bounding boxes are poorly aligned. A bounding
box may be too small to contain even a single 14×14 pixel patch, or it may be misaligned with
the fixed 14 × 14 patch grid. As a result, many relevant patches are excluded from the set of
positive example embeddings. Conversely, when patches are included based on an area-overlap
threshold, they may extend beyond the object of interest and capture irrelevant regions. These
issues result in both undersampling and oversampling of the patch embeddings corresponding
to the target object.

Figure 3.3 illustrates a proposed adaptive cropping strategy for aligning bounding boxes with
the grid of ViT patches. In the standard patch grid overlay, the grid lines of the patch bound-
aries of the ViT do not align properly with the bounding boxes containing the elements of
interest. As a result, patches that only partially cover the object would either be discarded
or included. Discarding comes at the cost of including valuable training data for the patch
classifiers, and including patches partially covering the object of interest comes at the cost of
capturing excess background. The aligned grid overlay shows the result of the adaptive crop-
ping approach. For every bounding box, the image is cropped to be realigned with the ViTs
grid of 14x14 pixel patches from the top-left corner. It is also ensured that at least one patch is
selected from a bounding box, also if it is smaller than the bounding box. Adaptive cropping
ensures the number of relevant patches is maximal, and it reduces the inclusion of irrelevant
surrounding area.

As shown in Table 3.1, annotation style and patch selection strategy strongly affect the number
and diversity of positive patch embeddings for each building element. Polygon (with t=0.7)
annotations work well for large elements like balconies, but yield very few positives for small
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Figure 3.3: Visualization of the adaptive cropping strategy. In the standard grid overlay, the
ViT patch grid does not align well with the bounding boxes of elements of interest. For each
bounding box the images are cropped to improving coverage and alignment.

elements such as chimneys or roof ventilation.

Table 3.1: Count and ratio of positive patch embeddings per class across different annotation
styles. ”Count” represents the number of positive patch embeddings obtained, while ”Ratio”
indicates the proportion of positive embeddings relative to the total number of sampled patches.

Class Polygon Polygon t = 0.7 Standard BB BB Adaptive Crop
Count Ratio Count Ratio Count Ratio Count Ratio

Solar Panel 145 0.0073 269 0.0135 103 0.0066 244 0.0132
Dormer 148 0.0074 244 0.0122 234 0.0148 539 0.0286
Chimney 9 0.0004 50 0.0025 0 0.0000 57 0.0029
Roof Window 8 0.0004 37 0.0018 2 0.0001 69 0.0036
Roof Ventilation 1 0.0000 7 0.0003 8 0.0005 75 0.0039
Parapet 170 0.0086 282 0.0142 107 0.0068 530 0.0275
Balcony 827 0.0431 1107 0.0569 368 0.0233 867 0.0453

Bounding box annotations, especially when combined with adaptive cropping, greatly improve
representation for smaller elements. Adaptive cropping ensures at least one patch is extracted
per annotation, even for small or misaligned elements, leading to a substantial increase in posi-
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tive samples for challenging classes. For example, roof ventilation positives rise from 1 (polygon)
and 8 (standard box) to 75 with adaptive cropping; chimneys increase from 9 (polygon) and 0
(standard box) to 57.

This is crucial in few-shot learning, where annotated data is limited. Adaptive cropping maxi-
mizes relevant training patches, particularly for less prominent elements, and reduces irrelevant
background by aligning the patch grid with the object. Although adaptive bounding box
cropping does not always yield the highest total number of positive samples, it consistently
produces more positives for classes with smaller annotations because it ensures each annota-
tion contributes at least one patch, improving representation for less prominent object classes.

In summary, adaptive cropping is highly effective for patch selection in this few-shot framework,
ensuring sufficient and representative patch embedding training data and directly supporting
robust classifier training.

3.3 Retraining with NeCo

Patch embeddings should meaningfully represent the visual content of each patch and ensure
that patches depicting similar elements or spatial regions are close in the embedding space. To
improve this property, the NeCo post-pretraining methodology (Pariza et al., 2025) was applied
on a DINOv2 ViT base model with 4 register tokens and 768-dimensional embeddings. The
model was trained for 50 epochs on a dataset of approximately 20,000 streetview images.

(a) Patch embeddings (PCA reduced) before re-
training.

(b) Patch embeddings (PCA reduced) after re-
training.

Figure 3.4: PCA visualization of patch embeddings before and after ViT retraining using NeCo
for 50 epochs on 20,000 streetview images. The left subfigure shows embeddings prior to
NeCo retraining, while the right subfigure shows embeddings post-retraining. All 7 elements of
interest are visualized as points with a different color for each.

To assess the effect of NeCo retraining, the patch embeddings are visualized for each building
element using PCA (Pearson, 1901), as shown in Figure 3.4. The left panel displays patch
embeddings from the original DINOv2 model, while the right panel shows embeddings after
NeCo retraining. Before retraining, certain classes—such as ”dormer” and ”solar panel”—are
already well separated in the embedding space. After NeCo training, we observe that classes
which typically appear in similar spatial regions (e.g., ”dormer” and ”solar panel”) are pulled
closer together, resulting in more overlap between their embeddings. In contrast, elements that
tend to occur in different regions of the image (such as ”dormer” and ”balcony”) seem to be
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pushed further apart.

This behavior demonstrates that the NeCo methodology effectively encourages spatially sim-
ilar elements to have more similar patch embeddings, enhancing spatial consistency in the
learned feature space. However, this also introduces a potential trade-off: while NeCo increases
the proximity of spatially related classes, it may also make it more challenging to distinguish
between visually or spatially similar elements during downstream classification, as their em-
beddings become less separable.

3.4 Patch Classification

In this work, patch classification refers to the process of assigning a binary label to each patch
embedding extracted from a Vision Transformer, indicating whether it contains the building
element of interest or not. Given that each streetview image is divided into a large number of
patches, it is essential that the chosen classifiers are lightweight and capable of rapid inference
to efficiently process many patches per image.

A variety of lightweight classifiers are considered, each with distinct characteristics that may
be advantageous depending on the structure of the patch embedding space. These include
clustering-based methods, neural network models, kernel-based approaches, and ensemble tech-
niques. The classifiers are used in a binary setting: for each element of interest, a separate
classifier is trained to distinguish between positive patches (those containing the element) and
negative patches (all other patches, including those from other classes).

To ensure scalability and fast inference—especially when processing large batches of images—GPU-
accelerated libraries such as cuML(Team, 2023) are employed for algorithms like K-Means and
Random Forest, significantly reducing classification time compared to CPU implementations.
This is particularly important for applications requiring real-time or large-scale analysis, as it
allows for efficient deployment of patch-based classification pipelines.

By comparing a diverse set of lightweight classifiers under identical binary classification con-
ditions, this study aims to identify which approach is most effective for few-shot detection of
architectural elements in streetview imagery, while maintaining the computational efficiency
necessary for practical use.
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Chapter 4 – Experimental Setup

The experimental setup chapter provides an overview of the datasets, model configurations,
classifier choices, and evaluation metrics used to assess the proposed few-shot building element
detection methodology. This setup is designed to enable reproducibility and provide justifica-
tion for each choice within the context of few-shot learning for architectural element detection.

4.1 Dataset Construction and Preparation

The methodology and evaluation strategy of this project required the construction of a custom
streetview dataset, designed to support few-shot learning for building element detection. The
dataset is composed of three distinct subsets, each serving a specific role in the experimental
pipeline:

Training set : 19,085 unlabeled Google Street View images, randomly sampled from ad-
dresses across the Netherlands. This set provides the basis for self-supervised Vision Trans-
former pretraining and representation learning.

Example set : For each architectural element of interest (solar panel, dormer, chimney, roof
window, roof ventilation, parapet, balcony), up to 21 bounding box–annotated and 10 poly-
gon–annotated images are included. These examples represent the few-shot learning constraint
and are used to extract positive and negative patch embeddings for classifier training.

Test set : At least 100 images per element of interest, each labeled with a binary indicator
denoting the presence or absence of the element. The test set is balanced for each class, con-
taining a minimum of 49 positive and 49 negative examples, totaling approximately 700 images
across all elements.

The foundation of the dataset is a diverse collection of streetview images. This carefully con-
structed dataset supports both the development and rigorous evaluation of few-shot building
element detection methods in a realistic, address-level context.

4.2 Backbone Model Configurations

Two primary Vision Transformer backbones are evaluated to assess the impact of specialized re-
training versus general-purpose representations. The NeCo backbone has the same architecture
as DINOv2 model, but is retrained using the Patch Neighbor Consistency Loss methodology,
with configurations trained for both 10 and 50 epochs on the 20,000 Dutch streetview images.
The architecture incorporates 4 register tokens and maintains a 768-dimensional embedding
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space, following the architectural specifications established by (Darcet et al., 2024). The DI-
NOv2 backbone serves as the foundation model, utilizing the pretrained weights on the large-
scale LVD-142M dataset (Oquab et al., 2023), without additional domain-specific retraining.
This configuration enables direct assessment of whether general-purpose self-supervised rep-
resentations suffice for domain-specific architectural element detection, or whether specialized
retraining provides measurable improvements.

4.3 Patch Classifier Configurations

A set of lightweight classifiers was selected to ensure efficient binary classification of patch
embeddings, given the large number of patches per image and the need for rapid inference.
The classifiers were configured as follows:

• K-Means: In the configurations of 300 and 500 clusters.

• MLP: Single hidden layer with 64 units, trained for 50 epochs.

• SVM: RBF kernel and standard settings in cuML library.

• Random Forest: 250 estimators, maximum depth of 5.

• Mixture of Experts (MLP and RF): 10 experts initialized with experts being set up like
the MLP and SVM above.

• XGBoost: Standard implementation xgboost python library (T. Chen and Guestrin,
2016).

Hyperparameters for each classifier were selected based on a series of trial-and-error runs to
balance performance and computational efficiency. To accelerate inference and ensure scal-
ability for large-scale patch classification, GPU-enabled libraries such as cuML are used for
K-Means and Random Forest implementations. This configuration allows for fast and practical
deployment of patch-based classification pipelines in real-world scenarios.

4.4 Evaluation Metrics: Average Accuracy and Preci-

sion (AAP)

In the domain of this project evaluation of a final model has to be done on two critical criteria:
precision and overall performance. Precision ensures that when a positive prediction is made,
it is likely correct, thereby minimizing false positives (Davis and Goadrich, 2006). However,
relying solely on precision can lead to overly conservative models that miss many true instances.
To address this, the F1 score is often used. It is defined as the harmonic mean of precision and
recall, and is a metric of positive class performance:

F1 =
2 · precision · recall
precision + recall

=
2TP

2TP + FP + FN
(4.1)

The F1 score excludes true negatives (TN), offering no insight into the model’s ability to
correctly identify negative cases. An F1 score can remain unchanged even when negative class
performance deteriorates (Opitz, 2024). Balanced accuracy offers a more holistic view of model
performance by incorporating both sensitivity and specificity:
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Balanced Accuracy =
Sensitivity + Specificity

2
=

TPR + TNR

2
(4.2)

Balanced accuracy gives equal weight to both positive and negative class performance, making
it especially valuable for imbalanced datasets (Brodersen et al., 2010).

To evaluate overall model quality and precision in a single metric, this project introduces the
Average Accuracy and Precision (AAP) metric. Defined as the arithmetic mean of balanced
accuracy and precision, AAP combines reliable positive predictions and accurate classification
across positive and negative classes:

AAP =
Balanced Accuracy + Precision

2
(4.3)

This metric provides a simple basis to combine two important aspects of model performance:
balanced accuracy and precision. AAP is used to streamline model selection with one num-
ber. However, for a more complete understanding of model behavior, the individual metrics,
precision, recall, and balanced accuracy, are also reported and discussed in relevant sections of
chapter 5.
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Chapter 5 – Results

This chapter presents a structured evaluation of results of different Vision Transformer back-
bone and patch classifier combinations for few-shot building element detection. The findings
are organized into the sections of: a comparison of backbone-classifier configurations, perfor-
mance analysis when varying the numbers of few-shot examples, per element of interest evalu-
ation of the best performing model, an ablation study examining critical pipeline components,
and qualitative assessment of model predictions. The evaluation demonstrates that strategic
combinations of feature extraction methods and classification approaches significantly impact
performance in few-shot learning scenarios for building element detection tasks.

5.1 Vision Transformer & Patch Classifier Evaluation

The results for different Backbone + Patch Classifier configurations are presented in Table 5.1.
This table shows performance metrics for setups using 21 examples per element of interest,
with average scores reported across all elements. The highest performing configuration is the
DINOv2 backbone paired with the RF-MoE patch classifier, achieving an AAP of 0.969. This
result demonstrates the effectiveness of combining DINOv2’s robust feature representations
with the ensemble capabilities of Random Forest Mixture of Experts for patch embedding
classification.

Baseline vs Others The results reveal several key insights about backbone and classifier
combinations. Among the baseline NeCo configurations, the MLP patch classifier consistently
outperforms clustering-based approaches, achieving the highest balanced accuracy (0.931) and
AAP (0.924) in the baseline category. However, multiple backbone + classifier configurations
outside of the baseline surpass its performance, with seven different setups exceeding the best
baseline AAP score.

Simple Patch Classifiers vs Others Simple clustering-based classifiers (K-means with 300
and 500 clusters) generally underperform compared to more sophisticated classification meth-
ods across both backbones. The K-means approaches achieve modest AAP scores ranging from
0.807 to 0.880, while advanced classifiers like RF-MoE, SVM, and MLP consistently deliver
superior performance. This pattern suggests that the rich feature representations from both
NeCo and DINOv2 backbones require more complex classification strategies to fully exploit
their discriminative capabilities. Notably, ensemble methods and traditional machine learn-
ing classifiers demonstrate significantly better precision-recall trade-offs compared to simple
clustering approaches.

NeCo vs DINOv2 Backbone The DINOv2 backbone shows remarkable versatility across
different classifiers. The RF-MoE configuration not only achieves the highest overall AAP but
also maintains strong recall (0.922), indicating robust performance across all evaluation met-
rics. The standard Random Forest classifier with DINOv2 achieves perfect precision (1.000) but
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Table 5.1: Baseline: NeCo backbone with k-means (300 and 500 cluster) or MLP patch
classifiers. The baseline follows a similar implementation as (Pariza et al., 2025) and is compared
to Ours: DINOv2 backbone with various patch classifiers. The baseline is set up like (Pariza
et al., 2025) has done. The average performance scores are reported from a setup with 21
examples per 7 elements of interest.

Backbone Patch Classifier Precision Recall Bal Acc AAP

B
as
el
in
e NeCo K-means 300 0.849 0.962 0.902 0.876

NeCo K-means 500 0.850 0.976 0.909 0.880
NeCo MLP 0.917 0.950 0.931 0.924

O
u
rs

NeCo RF 0.995 0.830 0.926 0.961
NeCo SVM 0.950 0.950 0.950 0.950
NeCo RF-MoE 0.956 0.910 0.936 0.946
NeCo XGBoost 0.821 0.948 0.882 0.852
NeCo MLP-MoE 0.847 0.973 0.905 0.876
DINOv2 K-means 300 0.800 0.989 0.891 0.846
DINOv2 K-means 500 0.750 0.984 0.863 0.807
DINOv2 MLP 0.920 0.963 0.940 0.930
DINOv2 RF 1.000 0.812 0.928 0.964
DINOv2 SVM 0.944 0.974 0.958 0.951
DINOv2 RF-MoE 0.982 0.922 0.956 0.969
DINOv2 XGBoost 0.806 0.966 0.880 0.843
DINOv2 MLP-MoE 0.802 0.981 0.888 0.845

with lower recall (0.812), suggesting a more conservative classification approach. Conversely,
the SVM classifier provides the best balanced accuracy (0.958) while maintaining competitive
performance across other metrics.

Interestingly, clustering-based approaches (K-means with 300 and 500 clusters) show contrast-
ing behavior between backbones. While NeCo with K-means achieves reasonable performance
(AAP of 0.876 and 0.880), DINOv2 with K-means demonstrates notably lower AAP scores
(0.846 and 0.807) despite maintaining high recall rates. This suggests that DINOv2’s patch
feature space requires more sophisticated classification approaches to fully take advantage of
its representational capabilities. It provides a stronger foundation for more complex classi-
fiers. This is evidenced by the superior performance of ensemble methods like RF-MoE and
traditional machine learning classifiers like SVM when paired with DINOv2 rather than NeCo.

5.2 Evaluation per Number of Examples

To assess the scalability and data efficiency of different backbone-classifier combinations, we
evaluate performance across varying numbers of training examples per element of interest, as
illustrated in Figure 5.1. This figure displays different ViT + Patch Classifier combinations,
where different ViTs are indicated through line style and different patch classifiers through line
color. The figure plots number of examples on the horizontal axis against AAP score on the
vertical axis. Note that two versions of the NeCo ViT are included: one trained for 10 epochs
and another trained for 50 epochs on the 20 000 Dutch housing images.

Observable Patterns As illustrated in Figure 5.1, the overall trend demonstrates that per-
formance scores increase with additional example images. However, there is a notable anomaly
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Figure 5.1: Per-model resulting Average Accuracy and Precision (AAP) versus Number of
Examples are visualized. For a range of ViT backbones (indicated through line style) and
Patch classifier (indicated through line color) combinations, results are plotted with AAP on
the horizontal axis and the number of examples on the vertical axis. The scaling of the vertical
axis is adjusted to better highlight small differences.

where almost all configurations show higher performance at 5 examples compared to 10 ex-
amples, creating a characteristic dip in the performance curves. This counterintuitive pattern
likely results from the inclusion of particularly high-quality examples in the 5-example subset,
while the expansion to 10 examples introduces additional lower-quality samples that temporar-
ily degrade performance before the benefits of increased data volume become apparent at higher
example counts.

Another trend we observe is that the performance spread between different configurations de-
creases as the number of examples increases from 3 to 21. The DINOv2 with RF-MoE model
demonstrates the strongest performance on all numbers of examples, even with only three ex-
amples, while K-means-based models show considerably weaker results in low-data regimes.
The K-means approaches only achieve acceptable performance levels when paired with NeCo-
50 and provided with the full 21 examples. This pattern highlights the critical importance of
selecting robust backbone-classifier combinations for few-shot learning scenarios, where data
scarcity impacts performance differently across classifier types.

Together with the results in Table 5.1, it must be concluded that the overall best performing
model is the DINOv2 + RF-MoE model, as it achieves the best balance of precision and
balanced accuracy in terms of AAP.
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5.3 Evaluation per Element of Interest

After selecting the best model based on overall performance, the DINOv2 + RF-MoE config-
uration, we examine its performance per element of interest as presented in Table 5.2. This
analysis serves as an important step in gaining a deeper understanding of the methodology’s
behavior and capabilities. The results are based on approximately 50 positive and 50 negative
test images per class, totaling around 700 images.

The per-class analysis reveals significant performance variation across different building el-
ements, closely correlating with their visual characteristics and detectability in street-view
imagery. The model achieves perfect performance (1.000 AAP) for both dormers and roof win-
dows, indicating that DINOv2 patch embeddings from these elements are highly distinct and
the RF-MoE can easily differentiate between patch embeddings belonging to these classes versus
those not belonging to these classes. Chimneys also demonstrate excellent performance with
0.995 AAP, showing near-perfect precision (1.000) with only minor recall limitations. These
elements share the common characteristic of being relatively large, so that they remain clearly
visible and recognizable even in 640×640 street-view images.

The most challenging element proves to be roof ventilation, achieving the lowest performance
across all metrics (0.896 AAP, 0.732 recall). This significant performance drop can be at-
tributed to the visual characteristics of roof ventilation systems, which appear as small black
tubes or vents on rooftops. In 640×640 street-view images, these elements are often small and
highly pixelated, making detection challenging. A roof ventilation element, being small in size,
often does not cover more than one patch, and when the element falls on the boundaries of
multiple patches, this results in an even lower chance of accurately identifying those patches
as belonging to that class. The low recall (0.732) compared to relatively high precision (0.953)
indicates that while the model frequently misses instances caused by the small size of these
features, it correctly identifies roof ventilation when detected.

Overall, the per-element analysis demonstrates that the methodology performs exceptionally
well for architecturally distinct elements with sufficient size and visual contrast (dormers, roof
windows, chimneys, solar panels), while facing greater challenges with smaller or more subtle
features (roof ventilation) and elements that may be confused with similar architectural com-
ponents (parapets). This performance distribution aligns with the limitations of patch-based
classification in street-view imagery, where element size and visual distinctiveness are critical
factors for successful detection.

Table 5.2: Best Ours based on AAP score: DINOv2 RF-MoE per class performance.

Category Precision Recall Bal Acc AAP
Solar Panel 0.981 0.981 0.980 0.981
Dormer 1.000 1.000 1.000 1.000
Chimney 1.000 0.981 0.990 0.995
Roof Window 1.000 1.000 1.000 1.000
Roof Ventilation 0.953 0.732 0.856 0.896
Parapet 0.976 0.800 0.906 0.941
Balcony 0.963 0.982 0.961 0.962
Mean 0.982 0.922 0.952 0.967
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5.4 Ablation study

To understand the individual and combined contributions of the methodology’s key components,
a systematic ablation study focusing on three critical design choices is conducted: annotation
style, resampling strategy, and adaptive cropping. These components were selected based on
their potential impact on patch quality and class balance in few-shot learning scenarios. The
experiments were conducted with 10 examples per element of interest instead of 21, due to time
constraints and the time-consuming task of producing polygon annotations. The results of this
ablation study are presented in Table 5.3 and will be discussed in the next paragraphs.

Table 5.3: Ablation study setup and results for the example-patches collection strategy. The
results were obtained using a DINOv2 backbone with the RF-MoE patch classifier with 10
examples per class. The performance scores are given as an average over the 7 elements of
interest.

Ablation setup Performance Scores

Annotation
Style

Resampling Adaptive Crop Precision
Balanced
Accuracy

AAP

Polygon t = 0.7 ✓ - 0.962 0.919 0.941
Polygon t = 0.7 × - 0.838 0.869 0.853
Bounding Box ✓ ✓ 0.971 0.943 0.957
Bounding Box ✓ × 0.569 0.737 0.653
Bounding Box × ✓ 0.975 0.926 0.950
Bounding Box × × 0.569 0.737 0.653

Annotation Style The annotation style significantly impacts performance across all met-
rics. Polygon annotations achieve competitive results when combined with resampling (0.919
balanced accuracy, 0.941 AAP) but show substantial degradation without this preprocessing
step (0.853 AAP). Note that polygon annotations are not supported with an adaptive crop-
ping implementation due to their irregular shape. Bounding box annotations demonstrate the
highest potential, yielding the best overall performance when combined with adaptive crop-
ping (0.957 AAP). However, bounding box annotations are highly dependent on the adaptive
cropping methodology, such that without it, they underperform significantly (0.653 AAP).

Resampling Resampling involves undersampling negative patches to maintain at least 1 %
positive samples of the element of interest in the training set. The results demonstrate that
resampling provides substantial benefits for polygon annotations, improving AAP from 0.853 to
0.941, indicating its effectiveness in addressing class imbalance issues. However, for bounding
box annotations, resampling shows mixed results depending on the presence of adaptive crop-
ping. When adaptive cropping is absent, resampling maintains consistent performance (0.653
AAP in both cases), while with adaptive cropping enabled, resampling provides only marginal
improvements (0.957 vs 0.950 AAP). Looking back at Table 3.1, the bounding box annotation
style without adaptive cropping yields minimal patch counts for certain elements of interest.
In these cases, the absolute lack of positive patches cannot be adequately addressed through
resampling alone, as the fundamental issue remains the insufficient number of training examples
rather than class imbalance.

Adaptive Cropping Adaptive cropping demonstrates the strongest individual impact on
performance. For bounding box annotations, it provides dramatic improvements, increasing
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AAP from 0.653 to 0.950 when used without resampling, and from 0.653 to 0.957 when combined
with resampling. This substantial improvement occurs because adaptive cropping addresses the
fundamental issue of insufficient positive patches by actively including regions containing the
elements of interest, thereby increasing the absolute number of training examples rather than
merely adjusting class ratios.

Key Findings The ablation study reveals that preprocessing strategies are crucial for few-
shot architectural element detection. Adaptive cropping for bounding box annotations emerges
as the most impactful component, while resampling provides complementary benefits for poly-
gon annotations. The optimal configuration combines bounding box annotations with both
adaptive cropping and resampling, achieving 0.957 AAP. These findings highlight the impor-
tance of addressing both patch quality (through adaptive cropping) and class balance (through
resampling) in few-shot learning scenarios.

5.5 Qualitative Results

In this section, we present qualitative results by inspecting test set images on which inference
was performed. The images are displayed with a mask overlay that highlights, in red, the
patches where the model has detected the element of interest. To avoid overloading this section
with images, only the first three elements of interest, ”solar panel” (Figure 5.2), ”dormer”
(Figure 5.3), and ”chimney” (Figure 5.4), will be discussed here. Qualitative results for the
remaining four elements are included in section A.1, along with a brief analysis for each. For
every element of interest, a figure is provided with up to 6 subfigures (if available). For every
element of interest, a figure is provided with up to 6 subfigures (if available). Per element
of interest, the top row of images provide qualitative results for the first model: the NeCo +
K-means 300 (baseline) model, and in the bottom row, the best-performing model: DINOv2 +
RF-MoE (our) from Table 5.1. This setup enables direct comparison of model performance. In
each row, a ”True Positive”, ”False Positive”, and ”False Negative” example is shown. For each
case, the first test image is used to prevent cherry-picking. ”True Negatives” are not included,
as they offer limited value for qualitative evaluation. A true negative represents an image
without the element of interest, correctly ignored by the model. Although all configurations
identify many true negatives, these contribute little to understanding model behavior or failure
modes.

Qualitative Results for Solar Panel Detection Solar panels are relatively large architec-
tural elements that are therefore clearly visible when present in images captured from reason-
able distances. Their presence in any given image is influenced by several factors including the
viewing angle, roof configuration and orientation, as well as their positioning, which determine
whether they are visible from the street perspective.

The true positive patches in the baseline model are less frequent than in our model, where
certain image areas containing solar panels are not identified as such. Our model occasionally
includes patches that contain only a small portion of a solar panel, indicating that the model
employs a less restrictive boundary for solar panel patch embeddings, though both the baseline
and our approach only highlight patches where solar panels are actually present.

The false positive in the baseline model incorrectly flags a region as containing a solar panel,
which has no visual similarity to solar panels beyond the fact that solar panels typically ap-
pear in the upper portions of buildings. Our model produces only one false positive, a black
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Figure 5.2: Qualitative results for Solar Panel. The columns of this figure display: TP /
FP / FN, the top row displays the results for NeCo + K-means300 and the bottom row
shows results for DINOv2 + RF-MoE patch classification.

tar roof reflecting light in a manner similar to that commonly observed on solar panels. This
same error occurs in the baseline model, but is not visualized here as the first image in the
sequence of test images flagged as false positive by the baseline appears before our false positive.

The false negative in the baseline clearly displays solar panels that should have been detected.
It shows a standard image of a house with solar panels clearly present on the roof. Our model
again has only one false negative, which is an image where the solar panel is positioned in a very
unusual manner: mounted on the side of a house wall. Due to this unconventional placement,
even a human observer must closely inspect the image to determine with certainty whether this
is actually a solar panel or not.

Qualitative Results for Dormer Detection Dormers are also relatively large architectural
elements. Their greater volume compared to solar panels makes them more prominent, and
although they may not be present in a streetview image when located at the back of the house
or under specific perspectives, the probability of capturing them in a streetview image when
present is expected to be higher.

Inspecting the true positives highlighted by the baseline and our model reveals that again, our
model appears to have a more relaxed fit for dormer patches. It wrongfully highlights a patch
that does not actually contain the dormer, a patch of blue sky. The baseline model demon-
strates a more precise fit of the dormer in this example, concisely highlighting patches that
encompass the dormer.

The example of a false positive by the baseline shows a patch on a house that is in the correct
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Figure 5.3: Qualitative results for Dormer. The columns of this figure display: TP / FP /
FN, the top row displays the results for NeCo + K-means300 and the bottom row shows
results for DINOv2 + RF-MoE patch classification.

spatial region of the house, but clearly does not display a dormer. This patch should not have
been flagged as positive and our model correctly does not do this.

In the background of the false negative from the baseline’s dormer prediction, a dormer can be
observed. This is a more challenging image, and may not be important for the use case of this
project, given the focus on the foreground of streetview images. However, when compared to
our model, which does not have any false negatives, this means that it has correctly identified
the dormer in this image.

Qualitative Results for Chimney Detection Chimneys are small architectural elements
in streetview images. However, due to their location at the top of a roof, they are almost always
visible in a streetview image when present on a house.

The true positives of the baseline and our model do not have very noteworthy differences, as
the only distinction is one additional patch highlighted as a chimney in the baseline model with
only a small portion of the patch actually containing a chimney.

The false positive displayed by the baseline model is a difficult case, where the object flagged
resembles a chimney, but it is not a classic brick one. Close inspection reveals that it may be a
ventilation shaft. If it were a chimney, this type of chimney is not present in the example set,
which only consists of brick chimneys, and the aim is, to have a model that searches for the
specific examples provided to the model.

The false negatives by the baseline and our model are both examples of images with small
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Figure 5.4: Qualitative results for Chimney. The columns of this figure display: TP / FP /
FN, the top row displays the results for NeCo + K-means300 and the bottom row shows
results for DINOv2 + RF-MoE patch classification.

chimneys in the background of the image. These cases show the inherent difficulty in detect-
ing small architectural elements that appear at a distance, where limited pixel resolution and
prominence make accurate detection difficult in both models.

Overall, it can be concluded that the baseline model exhibits more significant failures than our
model across all architectural elements discussed in this section. Our model appears to have
learned a more robust and precise representation of what each element of interest visually looks
like, showing better adherence to the specific examples provided during training. Other than
that, it becomes clear that with qualitative inspection, the approach of this thesis is highly
interpretable. Overlaying an image with masks of classified patches from ViT + Classifier
combinations clearly visualizes whether a good representation of an element of interest was
learned or not.
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Chapter 6 – Conclusion

This thesis successfully demonstrates that self-supervised Vision Transformers combined with
few-shot learning provide an effective solution for building element detection in streetview
imagery. The DINOv2 backbone paired with Random Forest Mixture of Experts (RF-MoE)
achieves 0.969 AAP, detecting seven different building elements using only 3-21 labeled exam-
ples per element.

The research establishes three primary contributions. First, DINOv2’s patch embeddings prove
superior to the specialized retraining approaches like NeCo for domain-specific detection tasks
when paired with a complex classifier. Second, adequate labeling strategies are key in ensuring
high performance scores. Together with the right patch selection mechanism, it ensures proper
alignment between annotations and the ViT’s patch grid, increasing AAP from 0.653 to 0.950.
Third, the RF-MoE classifier effectively exploits the rich representations from self-supervised
ViTs, outperforming simple clustering approaches across all evaluation metrics.

The methodology directly supports TNO’s Clustertool and the Netherlands’ contingentenaan-
pak initiative, providing a scalable solution for enriching address-level building data. Results
on the impact of integrating the obtained features in the TNO Clustertool are presented and
discussed in A.1. The ViT + Classifier approach achieves reliable detection with minimal su-
pervision, making it practically deployable without expansive annotation costs. Performance
analysis reveals excellent results for certain building elements (perfect scores for dormers and
roof windows) while highlighting challenges with smaller features like roof ventilation.

The patch-based approach faces inherent limitations with very small architectural elements
that may not span complete 14×14 pixel patches. Future research could explore multi-scale
patch processing.

This work validates the practical value of self-supervised Vision Transformers in specialized
domains with limited labeled data, contributing to both computer vision research and cli-
mate action initiatives. By enabling automated identification of renovation-relevant building
features, the methodology supports the Netherlands’ ambitious goal of renovating 1.5 million
homes by 2030, demonstrating how a computer vision technique can ultimately lead to positive
environmental impact.
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Appendix A – Appendix

A.1 More Qualitative Results

Qualitative Results for Roof Window Detection The qualitative analysis of roof win-
dow detection highlights clear differences in performance between the K-means baseline and
the RF-MoE classifier. The K-means model often fails to identify all patches corresponding
to the roof window, missing several regions that contain parts of the element. Additionally,
it incorrectly flags unrelated areas on the roof as containing a roof window, resulting in false
positives. Notably, the K-means classifier also overlooks background roof windows that are
successfully detected by the RF-MoE model.

In contrast, the RF-MoE classifier demonstrates more precise localization, accurately covering
the majority of patches that contain the roof window. It is able to identify both prominent and
background roof windows, indicating a more reliable detection. Overall, these results illustrate
that RF-MoE provides superior patch-level discrimination for roof window detection, reducing
both missed detections and false activations compared to the K-means approach.

Qualitative Results for Roof Ventilation Detection The qualitative results for roof ven-
tilation detection reveal distinct behaviors between the K-means and RF-MoE classifiers. The
K-means classifier tends to over-predict, labeling many patches as positive for roof ventilation
even when they do not correspond to actual roof vents. This results in numerous false posi-
tives. The model does not produce any false negatives, suggesting that its definition of roof
ventilation is overly broad and lacks specificity.

In contrast, the RF-MoE classifier is more selective, typically identifying only the true roof
ventilation patches in true positive cases. However, in the false positive example, it incorrectly
classifies the top part of a chimney as a roof vent—likely due to visual similarity between these
elements. The RF-MoE classifier shows a conservative approach, occasionally failing to detect
roof vents even when they are present, resulting in false negatives. This limitation is likely due
to the small size of roof ventilation elements in street view images, which makes them more
challenging properly cover in the ViTs patches.
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Figure A.1: Qualitative results for Roof Window. The columns of this figure display: TP
/ FP / FN, the top row displays the results for NeCo + K-means300 and the bottom
row shows results for DINOv2 + RF-MoE patch classification.
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Figure A.2: Qualitative results for Roof Ventilation. The columns of this figure display:
TP / FP / FN, the top row displays the results for NeCo + K-means300 and the bottom
row shows results for DINOv2 + RF-MoE patch classification.
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Qualitative Results for Parapet Detection In parapet detection, both the K-means and
RF-MoE classifiers perform similarly in true positive cases, successfully identifying parapets
when they are clearly visible. In the false positive examples, the K-means classifier is confused
by a visually similar structure: a window shade is flagged as a parapet, likely due to its similar
appearance from a distance. The RF-MoE incorrectly identifies a brick wall as a parapet. The
K-means model also fails to detect parapets in certain apartment-style buildings, which may be
due to underrepresentation of such examples in the annotation set. In contrast, the RF-MoE
sometimes misses parapets that are partially obscured by objects like plants or cars, indicating
sensitivity to occlusion.

It is important to note that in several images where the K-means classifier made errors, the
RF-MoE correctly identified the parapet. However, these cases are not shown in the qualitative
results, as the first misclassified images in the alphabetic test set were selected for visualization.
This highlights that while both models have specific failure modes, the RF-MoE often succeeds
where K-means fails, particularly in more challenging or ambiguous cases.

Figure A.3: Qualitative results for Parapet. The columns of this figure display: TP / FP /
FN, the top row displays the results for NeCo + K-means300 and the bottom row shows
results for DINOv2 + RF-MoE patch classification.

Qualitative Results for Balcony Detection The qualitative assessment of balcony detec-
tion reveals differences and challenges for both classifiers. In the true positive example, the
K-means classifier tends to classify more patches as balconies compared to the RF-MoE, indi-
cating a less selective approach.

In the false positive scenario, K-means incorrectly classifies the top of a roof segment as a
balcony, while the RF-MoE mistakenly identifies a piece of railing attached to a building as
a balcony. For the false negative case, the K-means classifier fails to detect a balcony in the
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background, and the RF-MoE does not identify a typical balcony present in the image.

These observations underscore the diversity of balcony types and appearances across different
housing styles, which poses a significant challenge for both models. The variability in balcony
design suggests that further separating different balcony styles in annotation could improve
detection performance when targeting specific types.

Figure A.4: Qualitative results for Balcony. The columns of this figure display: TP / FP /
FN, the top row displays the results for NeCo + K-means300 and the bottom row shows
results for DINOv2 + RF-MoE patch classification.

A.2 TNO Clustertool Results

The TNO Clustertool evaluation in Table A.1 reveals important insights about how visual
features from streetview imagery impact renovation solution prediction accuracy. The results
demonstrate varying effectiveness of implicit features (PCA-reduced DINOv2 CLS tokens), ex-
plicit features (detected building elements with DINOv2 + RF-MoE), and their combination
across different renovation solutions.

The most substantial improvements occur for renovation solutions with high visual correlation
to detectable building elements. Roof Insulation shows a large explicit feature improvement
(+4.8 percentage points), reaching 63.4 % balanced accuracy. This aligns with the roof-related
element detection (dormers, roof windows). Similarly, Pitched Roof Insulation benefits sig-
nificantly from explicit features (+1.7 percentage points), demonstrating that the many roof-
related elements provide valuable additional information towards the improvement of the Clus-
tertool.
Parapet detection yields particularly interesting results. For Parapet House classification, ex-
plicit features achieve the best performance (78.8 %, +5.9 percentage points), confirming that
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Table A.1: Balanced accuracy of the TNO Clustertool in predicting the applicability of ren-
ovation solutions. Img Features indicates which image inputs are included: none (no image
features), implicit (PCA-reduced DINOv2 CLS token from street view images), explicit (seven
elements of interest from street view images), or combined (implicit and explicit). Balanced
accuracy is shown with its margin of error, and the top score per renovation solution is in bold.
The Significant column flags statistically significant changes due to visual features; the Change
column reports magnitude of significant change in percentage points.

Renovation Solution Img Features Bal Acc Significant Change
Solar Panels none 64.2 ± 0.1

implicit 63.2 ± 0.1 YES -1
explicit 64.2 ± 0.1 NO
combined 63.3 ± 0.1 YES -0.9

Insulating Glass none 53.7 ± 0.2
implicit 52.5 ± 0.2 YES -1.2
explicit 53.8 ± 0.2 NO
combined 52.7 ± 0.2 YES -1

Floor Insulation none 62.3 ± 0.1
implicit 61.4 ± 0.1 YES -0.9
explicit 62.2 ± 0.1 NO
combined 61.5 ± 0.1 YES -0.8

Cavity Wall Insulation none 63.1 ± 0.1
implicit 63.5 ± 0.2 YES 0.4
explicit 63.1 ± 0.1 NO
combined 63.2 ± 0.2 YES 0.1

Hybrid Heat Pump none 56.6 ± 0.3
implicit 52.7 ± 0.2 YES -3.9
explicit 56.8 ± 0.3 NO
combined 52.6 ± 0.2 YES -4

Roof Insulation none 58.6 ± 0.5
implicit 62.0 ± 0.5 YES 3.4
explicit 63.4 ± 0.6 YES 4.8
combined 63.2 ± 0.5 YES 4.6

Pitched Roof Insulation none 50.3 ± 0.4
implicit 50.3 ± 0.2 NO
explicit 52.0 ± 0.4 YES 1.7
combined 50. ± 0.3 NO

Window Frames none 49.8 ± 1.1
implicit 49.7 ± 1.1 NO
explicit 49.7 ± 1.1 NO
combined 49.8 ± 1.1 NO

Parapet House none 72.9 ± 0.6
implicit 77.6 ± 0.6 YES 4.7
explicit 78.8 ± 0.5 YES 5.9
combined 78.7 ± 0.6 YES 5.8

Parapet Apartment none 55.8 ± 1.9
implicit 67.4 ± 1.7 YES 11.6
explicit 56.6 ± 1.5 NO
combined 66.6 ± 1.6 YES 10.8
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direct parapet detection from streetview imagery effectively identifies relevant building types.
However, Parapet Apartment classification shows a different pattern—implicit features perform
best (+11.6 percentage points), while explicit features show no significant improvement. This is
also in line with expectations, as in the labeling process, no examples of parapets on apartment
buildings were provided.

Several renovation solutions show minimal or negative impact from visual features. Solar Panel
prediction accuracy remains unchanged with explicit features (64.2%), despite successful so-
lar panel detection in the few-shot experiments. This may be attributed to the fact that a
streetview image may detect a solar panel on the roof of a neighboring house. This issue does
not arise when detecting parapets, which is an element that is usually also present in entire
streets when present in one of the buildings.

The comparison between implicit and explicit features reveals task-dependent effectiveness. For
renovation solutions directly related to detectable building elements (roof insulation, parapet
houses), explicit features generally outperform implicit features. However, for more finegrained
architectural classifications (Cavity Wall) or solutions requiring assessment of building charac-
teristics not captured by the seven explicit elements, implicit features from DINOv2’s general
representations prove more valuable. Cavity Wall Insulation shows a modest but significant
improvement with implicit features (+0.4 percentage points), suggesting that wall construction
characteristics are better captured through general visual representations than through specific
building element detection.

These results validate the practical value of integrating building element detection into renova-
tion planning tools. The methodology demonstrates clear benefits for renovation solutions with
strong visual correlations to detectable elements, while showing appropriate restraint (no false
improvements) for solutions requiring non-visual assessment criteria. The neighbor-consistent
performance for parapet detection supports the scalability of streetview-based approaches for
neighborhood-level renovation planning.

The mixed results across renovation types provide valuable guidance for deployment priorities.
Importantly, implicit features serve as an effective indicator of whether relevant visual infor-
mation is present in streetview imagery, and when that implicit signal is explicitly captured
through targeted element detection, performance typically increases further. This pattern sug-
gests that implicit features can guide the development of explicit detection models by identifying
which building characteristics are learnable from streetview images.
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