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Abstract

In this thesis, we propose an evolutionary predator-prey robot system which can be generally implemented
from simulation to the real world. The thesis can be separated into two main stages. In the first stage, the
predators are driven by a concise neural network, and the prey is driven by a Gaussian model-based evasion
strategy. We evolve the robot controllers in simulation, followed by evolution on real robots. The evolutionary
search process is driven by a specific fitness function that balances between minimizing the distance to the
prey, while avoiding collisions among predators. The best evolved controllers are further analyzed for their
sensitivity to the initial positions of the robots before choosing the winning pursuit strategy. In the second
stage, robots rely on the camera and the infrared sensors as inputs of controller. Both the predators and prey
are co-evolved with NEAT to develop complicated behaviour. We integrate Gym of OpenAI, ROS(Robot
Operating System), Gazebo to provide a framework such that users only need to focus on algorithms without
being worried about the detail of manipulating robots in both simulation and the real world. Combining
simulations, real-world evolution, and robustness analysis, it can be applied to develop good solutions for the
predator-prey problem. For the convenience of users, the source code and videos of the simulated and real
world are published on Github1.

1https://github.com/chenjiunhan/Predators_and_Prey/

https://github.com/chenjiunhan/Predators_and_Prey/
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Chapter 1

Introduction

Predator-prey is a classical pursuit-evasion problem. A typical scenario is that there are a predator and a prey
in a square arena, the predator must catch the prey within a certain time. The game ends when the predator
catches the prey or time is beyond the limitation. The application of the solution of predator-prey problem
might be used for searching, rescuing, exploration...etc. If we extend the predator-prey problem as multiple
predators to catch a prey. The collaboration among multiple agents strengthen the reliability and scalability
of completing a task.

The training for robots in the real world can be a time-consuming and money expensive task. An alternative
way can be that we train the robots in the simulation world, and then we transfer the well-trained robots to
the real world. Also, in the real world, we can even train the trained robots for a shorter time. The simulation
environment can be created by Gazebo1, which is a widely used 3D real-time simulation physics engine.
Figure 1.1 shows the user inferface of Gazebo.

There are different methods to solve the predator and prey problem. An early work from Bryson and Baron
considered the pursuit-evasion problem as a differential game, it means the solution of the pursuit-evasion
problem can be solved analytically when the map and the pose of the predator and the prey are known[11].
Another the work was from Raboin et al., they invented an algorithm to solve partially observable
pursuit-evasion problem with optimizing the uncertainty of the prey[21]. In the meantime, some researchers
tried to solve this problem with Evolutionary Algorithm for various scenarios. We followed their steps and
tried to explore interesting things from that point.

Our research topics includes that we implement different experimental settings to evolve the predators and
show their advantages and disadvantages. Also, we aim to provide an simulated experimental environment for
the predator-prey task. From an experimental point of view, many aspects should be considered in this task.
We can ask ourselves: ”What’s the number of predators? Can we change the number dynamically? Predators
are controlled by a single controller or multiple controllers? Do we evolve the predators and the prey at the
same time or we use a fixed strategy for one party? Is the environment fully observable or partially
observable?” These questions help us to develop our research.

The research is separated into two stages. In the first stage, we consider the pose of the predator and the prey
can be extracted by a camera on the top of the field, which means that the environment is fully observable.
Thymio II robots are used as the predators and the prey. We coordinate all the predators with a controller
instead of allocating one controller for each predator, because we want to make the number of predators have
scalability. In our result, the predators show collective behaviour like flocking. The prey is controlled by fixed
strategy instead of coevolution for both predators and prey, because coevolution may suffer from ”Red Queen
Effect” which leads to the predators and the prey only try to beat each other with simple behaviour.

After finishing the first stage, we try different somethings in the second stage. we expand our work to a
partially observable environment. Instead of using an overhead camera, the sensors from the robots are used.
For the more powerful sensors, Robobo is introduced in the second stage. The robot has short-range(20cm) IR
sensors and a camera by carrying a mobile phone on itself. In order to reduce the reality gap, we must
simulate the camera and IR sensors in Gazebo. After finishing the evolution in simulation, we can transfer the
evolved agents into the real world to further evolve or examine the performance. Both the predators and the
prey co-evolved, even though the ”arms race” might be not easy to be triggered, which is a key point for

1http://gazebosim.org/
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8 CHAPTER 1. INTRODUCTION

competitive coevolution. Fortunately, ”Hall of Fame” is a technique that can stabilize the competitive
coevolution process. We choose to coevolve the sensor-based predators with an all-knowing prey in the
simulation world, and the sensor-based predators can be transferred to the real world immediately. In the
simulation world, we can access the data which is hard to get from the real world to help the evolution
process. An all-knowing prey might encourage predators to develop better performance. Also, the fitness
function for the predators is computed by the distance between agents, which is hard to get in the real world.

Figure 1.1: Graphical user interface of Gazebo. It shows a part of our experiment. The green robot is prey and
the red robots are the predators.



Chapter 2

Preliminaries

2.1 Fixed Strategy or Competitive Coevolution

To create the predator with higher complexity, should we use a fixed strategy prey or competitive coevolution
between the predators and the prey? The work from Nolfi and Floreano has already answered this
question[18]. They compared the performance of both the predator and the prey from coevolution and simple
evolution, the agents from coevolution outperformed the agents from simple evolution. The reason that simple
evolution fails to beat the coevolution is because of an invalid fitness value, which means the agent with simple
evolution usually get zero for fitness value(1 for win, 0 for loss). We might be able to design an easier
optimized fitness function to help simple evolution, but we can do the same thing for coevolution. Another
challenge for the simple evolution is to design a competitive opponent, in contrast, the coevolution has the
ability to finish the design automatically. This fact shows that the coevolution has the potential to evolve the
agents with higher complexity. However, the competitive coevolution works only if the ”arms race” is
triggered. The arms race here means the predators must become better to catch a better prey, also the prey
must improve to escape from the better predators, and the whole process goes on and on.

2.2 Cooperative and Competitive Coevolution

The cooperative coevolution happens among the predators, the multiple predators must collaborate to catch
the prey, the work from Yong and Miikkulainen[27] evolved the predators with Enforced SubPopulations(ESP)
such that the predators can collaborate without direct communication. Another work from Gomes et al. also
evolved the predators with two approaches, a standard fitness-driven cooperative coevolutionary
algorithm(CCEA) using NEAT and novelty-driven coevolution, and both approaches were successfully
transferred to the real robots. The competitive coevolution happens between the predator and the prey. In
the previously mentioned work from Nolfi and Floreano[18], both a predator and a prey evolved. Miikkulainen
et al. performed competitive and cooperative coevolution at the same time, in other words, there are multiple
the predators to catch one or two prey(s), and all of the agents were evolved[22].

2.2.1 Red Queen Effect

Red Queen effect means that a species must persistently adapt and evolve to survive and compete against also
persistently evolving opposing spices. But it has no too much different change of the relative advantage
between two spices. If the Red Queen effect happens in the coevolution of predators and prey, it means that
the predators and the prey fail to evolve the complex behaviour, but they only change a little to beat the
opponent and were trapped into a cycle to beat each other alternatively. Van Valen named this effect because
of a quote from Through the Looking-Glass: ”Now, here, you see, it takes all the running you can do, to keep
in the same place.”[26] Therefore, to evolve the complex behaviour, the key point is to make the ”arms race”
happen. In practice, the arms race is hard to be triggered. But, there are some techniques that may lead to
the arms race, for example, a method ”Hall of Fame” was proposed from Rosin and Belew[23]. The new
individuals must be competitive against previously saved individuals. Another method is to increase the
complexity of models for encouraging the arms race. An evolutionary algorithm is called NeuroEvolution of
Augmenting Topologies(NEAT), and it can evolve the topologies of a neural network. When one side can
outperform the other side because of the complexity of the model. The only way to beat the opponent is to
increase the complexity too, which causes the arms race.

9



10 CHAPTER 2. PRELIMINARIES

2.2.2 Hall of Fame

An evolving predator or prey should be able to beat the best opponents from earlier generations. Also, we
want to avoid from that the evolution process is trapped into a cycle, so we break the cycle by using the
evolving predator or prey to compete against the best opponents from earlier generations. This technique
called ”Hall of Fame” was proposed by Rosin and Belew to increase the probability of triggering arms race.
The opponents of the evolved target are 10 randomly selected best controllers from previous generations.

2.2.3 Master Tournament

For the coevolution, one question that we must answer is ”How do we know the behaviour of agents becomes
more complicated to beat opponents?” S. Nolfi and D. Florean mentioned ”Master Tournament” in their paper
to answer this question [6], which predator or prey compete against each best competitor of all generations. A
theoretically ideal result should look like in the Figure 2.1. The evolved agents should be able to beat the
opponents from early generations in theoretically. This graph implies that the difficulty for both sides is the
same. However, in our task, one prey must compete with three predators, the difficulty is higher for the prey.
So the graph is different for our experiment. After finishing ”Master Tournament”, we are able to accumulate
the fitness as accumulated score, and the later generations should have higher accumulated scores.

Figure 2.1: Theoretically ideal co-evolution result for one predator versus one prey. The agent from the later
generation should beat the agent from the early generation.

2.3 Homogeneous or Heterogeneous Controller

The multiple predators can be controlled either by a homogeneous controller or multiple heterogeneous
controllers. The former means there is only one controller for all the predators and the latter means that we
allocate the different controller to each predator. When we consider the success rate for the predators to catch
the prey, according to two reports from Haynes and Sen[10], Yong and Miikkulainen[27], the heterogeneous
controllers outperformed the homogeneous controller at least in the prey-capture domain. But the
homogeneous controller still shows interesting behaviour like team formation movement and flocking[1].

2.4 Fully or Partially Observable World to Robots

In a simulation world, we are able to directly access the coordinates of the predators and the prey in the
world, this kind of worlds are fully observable. A fully observable environment makes training and evaluation
easier. In the real world, robots have a limited range of sensor, which makes this world partially observable.
One problem of a partially observable environment is that we must design a new fitness function. Take the
popular fitness in the predator and prey problem for example:
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Fpredator(τ, di, df ) =

{
2− τ

T if prey caught,

max(0,
(di−df )

` ) otherwise

τ is the time to catch the prey, and T is the constant duration of one episode. di and df are initial and final
average distance from the predators to the prey. ` is the fixed edge length of the square arena. This fitness
implies that we can measure the distance between the predators and the prey anytime, but for a partially
observable environment, the predators even cannot be sure that an object in front of themselves is prey.
Fortunately, we can still use a similar fitness function as above in the simulation world to evolved the agents
as if they can only observe part of the world, because most of the data can be easily accessed from the
simulation world. During the evaluation in the real world, we only need the data from robot sensors to make a
controller work.

2.5 Evolutionary Algorithm

Evolutionary algorithm is able to solve various optimization problems. The algorithm is inspired by nature,
including many concepts from the theory of evolution like crossover, mutation, selection...etc. At the
beginning of an evolution process, the algorithm generates a group of candidate solutions for our problem.
Next step, we evaluate the performance of these candidate solutions and assign a score according to a fitness
function. The genes from candidate solutions with higher scores are usually passed to create the next
generation of candidate solutions, at the same time, the genetic mutation may happen. The genes here may
represent as weights and biases of a neural network. Figure 2.2 shows the standard process of evolutionary
algorithm. There are some examples of classic Covariance Matrix Adaptation Evolution Strategy(CMA-ES),
Evolution Strategies(ES), and Bayesian Optimization(BO). In a robotic task, our objective function can be
interfered by many noise sources. According to the work from Hansen and Nikolaus, CMA-ES is especially
suitable to deal with such noisy scenario[8]. Evolution Strategies from OpenAI is also competitive to modern
reinforcement learning technique Trust Region Policy Optimization(TRPO)[24]. In our case, Bayesian
Optimization is able to find an acceptable solution at the early stage, and also dominate the other algorithms.
However, the search process time of Bayesian Optimization largely increases when the number of evaluation
grows. This fact makes us choose CMA-ES as the algorithm that we apply in the real world.

2.5.1 NeuroEvolution of Augmenting Topologies

In our second stage, we use another evolutionary algorithm, which is called NeuroEvolution of Augmenting
Topologies(NEAT). NEAT is able to evolve not only the weights and the biases of a neural network, but also
the topologies of a neural network, which can incrementally grow from the minimal structure of a neural
network[25]. Gomes et al. applied NEAT to cooperative coevolution for a real multi-robot system[7]. They
also applied novelty search[12], and the score of individuals depends on both performance and behaviour
novelty. Both NEAT and novelty search can be transferred to real robots and successfully catch the fixed
strategy prey.

2.6 From Simulation to Real World

Gazebo is a 3D real-time simulation physics engine, robots or objects can be described by URDF or SDF file.
The full name of URDF is called Unified Robot Description Format, URDF is used for describing kinematic
and dynamic properties of a robot, also the relative position between joints or links, in other words, URDF
focuses on the robot level. On the other hand, the SDF can describe not only the robot itself, but also describe
the properties of the world, including the pose of robots, the source of light, the friction of the floor...etc.
There are many works show that evolved robots can be transferred to the real world[15]. The work from
Stefano Nolfi Domenico Parisi evolved the Khepera robot such that it can locate recognize and grasp an
object in simulation, and then transfer the controller into the real world[19]. Although the difference between
the simulation world and the real world causes the difficulty of directly transferring, which is called ”reality
gap”, but the robots are still able to keep a certain degree of functionality. So we trained the controllers of the
robots in the simulation world first, after that, we transfer the better performance controllers into the real
world to evaluate their performance or further evolve the controllers again.

2.7 Summary of Preliminaries

After the review, we know that from the environment perspective, it can be divided into fully or partially
observable to robots, from the type of controller, we can use a homogeneous controller for all predators or
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Figure 2.2: Standard process of evolutionary algorithm

multiple heterogeneous controllers for each predator. For evolving predators, we can use a fixed strategy for
the prey or competitive coevolution. In the first stage, we started from the options with lower complexity,
which includes using a homogeneous controller, a fully observable environment, and a fixed strategy for prey.
In the second stage, we used the opposite setting, including heterogeneous controllers, a partially observable
environment, and competitive coevolution between the predators and the prey. The experimental settings for
two different stages are listed in Table 2.1.

First Stage Second Stage
Sensor An camera above to get the position and the direction of each agent For predators, using sensors of a robot itself.
Predator controller Using a homogeneous controller for all predators Using heterogeneous controllers for each predator.

Prey controller Simple potential function(Fixed Strategy)
In simulation, using a co-evolved all-knowing prey to
help the evolution of the predators. In the real
world, replacing the prey controller with a human player.

Evolution process Evolving one controller for all predators. Co-evolving the predators and the prey alternatively.
Algorithm ES, CMA-ES, Bayesian Optimization NEAT

Table 2.1: Experimental settings for the two stages



Chapter 3

First Stage

3.1 Method

3.1.1 Robot

In our experiment, we use Thymio-II as both the predators and the prey. A Thymio has two wheels, and the
speed and the direction of a Thymio can be controlled by setting the speed of the left wheel and the right
wheel independently. The size of Thymio is around 11cm×11cm. In the simulation world, we need a 3D model
for Thymio, so that we can simulate the evolution process in the Gazebo. Blender is free and open 3D creation
software, it was used to draw the 3D model that can be imported into Gazebo. Figure 3.1a shows Thymio in
the real world and Figure 3.1b in Gazebo.

(a) (b)

Figure 3.1: Appearance of Thymio in the real world and the simulation world.

3.1.2 The Simulation Environment

Our simulation environment is built on Gazebo, which is a well-designed 3D real-time robot simulator. The
robots are able to interact with each other. The arena for pursuit and evasion is a 2m by 2m square world
with walls, and there is no obstacle in the square world as shown in Figure 3.2a, where the green robot
represents the prey and the three red robots are the predators. In the simulated world, we design a similar
robot to the physical Thymio robots in the real world. To reduce the reality gap, appropriate physics
parameters of the simulation are important. In Gazebo, the physics parameters can be defined by SDF files
for robot and world. We executed the preliminary experiments and found that the upper bound of velocity is
one of the important physics quantities in our task. The upper bound of velocity must be coherent in the
simulated world and the real world. This can be achieved by measuring the top speed of the robot in the real
world, and limit the wheel speed in the simulated world. There are other parameters that can be tuned, for
example, the moment of inertia, but we found that appropriate values for the high-level physics quantities
velocity and angular speed are enough for good simulations of our predator-prey task.

3.1.3 The Real World Environment

In the real world, we use the same robots as the simulation, a set of Thymios. To improve the computing
power and the communication between robots we add a Raspberry Pi (that can handle wifi) and an extra

13
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(a) (b)

Figure 3.2: Three predators and a prey in the simulated (a) and the real (b) world. In (a), the red robots are
predators, the green robot is prey. (b) is the overhead photo of the real world. The bounding boxes with texts
are the predators and prey that recognized by the overhead camera.

battery. The field is a 2m×2m square arena as in the simulated world. Instead of using the cameras on the
robots, we choose to use an overhead camera above the arena to provide information for the robot controllers.
For localization in the real world, we develop a color recognition system where the robots are designated by
different colors, such that it is easy to recognize the position and direction of robots. We achieve this by
placing colored papers on the top of the robots and a smaller colored square that indicates the heads (i.e.,
directions). We also put 4 pieces orange square paper at the four the corners as calibration to locate the field
and origin point. The real world setting can be seen in Figure 1b. The bounding boxes indicate robots and
the lines indicate the direction of robots.

3.1.4 Fixed Strategy for Prey

As for the prey, we deliberately use a fixed evasion strategy. To develop this we observed that when predators
are close to the prey, the situation becomes more dangerous for the prey. Also, when the prey stays near the
wall it can be trapped easily. Thus, the main idea behind our prey controller is to model danger zones with
multiple Gaussian functions. Specifically, we use a 2D Gaussian function to model the danger zone around the
predators and a 1D Gaussian function to model the danger zone close to the walls. The predator-induced
danger zone distribution can be expressed as:

Pk(x, y) =
1

2πσ2
p

exp

{
− (x− xk)2

2σ2
p

− (y − yk)2

2σ2
p

}
(3.1)

where xP , yP are the coordinates of the predator, and σP is a hyperparameter. Pk(x, y) returns higher values
for those coordinates that are close to predators, in other words, those coordinates are more dangerous. When
σP is low, the danger zone induced by predators is relatively narrow. This makes the prey “feel in danger”
only when it is relatively close to the predators.
Our experimental arena is a square world with two vertical walls and two horizontal walls. The danger zone
distribution belonging to a vertical wall can be expressed as:

Wi(x) =
1

σw
√

2π
exp

{
− (x− xi)2

2σ2
w

}
, i ∈ {1, 2} (3.2)

where i is the index of the two vertical walls. xi is the coordinate of the two vertical walls in horizontal axis
(x). The danger zone distribution belonging to a horizontal wall is:

Wj(y) =
1

σw
√

2π
exp

{
− (y − yj)2

2σ2
w

}
, j ∈ {1, 2} (3.3)

where j is the index of the two horizontal walls, yj is the coordinates of the two horizontal walls in vertical
axis (y). This model returns higher values besides the wall, because it is easier to be trapped there. When σW
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is lower, the danger zone caused by walls is relatively narrow. This makes the prey “feel in danger” only when
it is relatively close to the wall.
Combining all the danger zone distributions above, the final danger zone distribution is:

d(x, y) =

2∑
i=1

wi(x) +

2∑
j=1

wj(y) + α

Np∑
k=1

Pk(x, y) (3.4)

where the coefficient α determines the relative importance of avoiding predators and avoiding being trapped
nearby walls, Np is the number of predators. For instance, the final danger zone distribution for a random
situation with four predators is shown in Figure 3.3. The value of the heat map represents the level of danger,
higher values means the more dangerous locations for the prey on the map.

(a) (b)

Figure 3.3: The robots distribution and corresponding heat map of the danger level. (a) represents the positions
of the robots in the simulated world. (b) is the corresponding danger level that displayed in heat map. The
green point and line represent the prey and its direction towards the relative safe location.

With the danger zone map, the prey has the navigation towards less dangerous places to avoid the predators.
This can be achieved by moving towards the direction of the descending gradient at the coordinates of the
prey. The direction of the descending gradient can be calculated analytically. The navigation can be applied
in a real-time physics simulation and also in the real world. The escaping direction vector D can be derived as
the following:

g(x) =
∂d(x, y)

∂x

=

2∑
i=1

dWi(x)

dx
+ α

Np∑
k=1

∂Pk(x, y)

∂x

=

2∑
i=1

1
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√

2π
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2σ2
w

}
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σ2
w
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Np∑
k=1

1
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p
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2σ2
p
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2σ2
p

}
· (−x− xp

σ2
p

)

(3.5)

g(y) =
∂d(x, y)
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(3.6)
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D = −(
g(x)√

g(x)2 + g(y)2
,

g(x)√
g(x)2 + g(y)2

) (3.7)

The escaping direction D towards the less dangerous locations can be calculated real-time in the simulated
world and real world. The prey strategy is to move forward when it matches the escape direction (with some
tolerance), otherwise the prey turns left or right until the escape direction is matched.

3.1.5 Homogeneous controller for Predators

To evolve good predator strategies we use neural networks as controllers in the predators, and optimize the
parameters of the neural network with an evolutionary algorithm. We choose to use a homogeneous team of
predators that work with identical controllers. The reason is scalability; with such a system we can vary the
number of predators easily and the optimal number of predators can be determined by the difficulty of task or
cost of hardware.

To keep things simple we use neural networks with one hidden layer and two outputs nodes that drive the two
wheels. As for the inputs we identified three features to be used, one for avoiding collisions with other
predators and two for chasing the prey. The first input is the inverse of the distance from the predator to the
nearest predator, and when the nearest predator is on the left, the first input will be change as a negative
value. The second input is the angle between the orientation of predator and the direction of prey relative to
the predator and the third input is the distance between the predator itself and the prey. Let us note that
these features can be used for any number of predators easily, because the inputs are independent of the
number of predators. We have only 4 hidden neurons and 2 outputs as left and right wheel angular velocity.
Both the hidden and the output layers use hyperbolic tangent as the activation function. The following list
and Figure 3.4 show the details of the predator controllers more clearly.

Input Layer:

• r: The inverse of the distance between predator itself and nearest predator. If the nearest is on its left,
then change it as a negative value.

• ∆θ: The angle difference between the orientation of predator and the direction of prey with relative to
the predator.

• d: The distance between predator itself and prey.

Hidden Layer: 4 neurons.
Hyperbolic tangent as the activation function.
Output Layer:

• ωL: Angular velocity of the left wheel

• ωR: Angular velocity of the right wheel

Hyperbolic tangent as the activation function.

∆θ

r

d

ωL

ωR

input layer
hidden layer

output layer

Figure 3.4: The structure of the neural network for predator controller. r,∆Θ, d are the inputs. ωL, ωR are the
outputs.
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3.1.6 Evolutionary algorithm

The Fitness Function

The predators are homogeneous agents, i.e., the predators have the same controller during an evaluation. The
controllers in different evaluations are evaluated by fitness function. In our experiments, the predators and the
prey are reset to the same starting positions for each evaluation. At the time t of the end of an evaluation
time T , we can calculate the following measurements:

• rit: is the distance between ith predator itself and the nearest predator.

• dit: is the distance between ith predator and the prey.

where i is the index of predators. Considering a situation for two different controllers, the first one captured
the prey at the end of evaluation time. The second one captured the prey at half of the evaluation time and
followed the prey closely at the rest half of the evaluation time. Obviously, we expect the second predator
controller has higher fitness than the first one. We expect the predators to capture the prey as soon as
possible, and follow the prey to keep being close during the evaluation time. Therefore, we evaluate the
predator controller for the whole performance during the evaluation time. We can calculate the average
distance from the predator to the prey as 1

T

∑T
t=0.2 dit, and the average distance from the predator itself to

the nearest predator as 1
T

∑T
t=0.2 rit, where T is the evaluation time (60 seconds in this work) and the time

interval between different time t is 0.2 second. Furthermore, we expect the predator controller can drive the
predators not one of them to capture the prey during an evaluation. we therefore evaluate the predator
controller by considering the performances of all the predators. The fitness function can be expressed as:

fitness =
1

Np

Np∑
i=1

[
1

1
T

∑T
t=0.2 dit

]
+

1

Np

Np∑
i=1

1

T

T∑
t=0.2

rit (3.8)

where Np is the number of the predators.

Figure 3.5: Visualization of the fitness function in Equation 3.8. We slightly encourage the controller to
increase the distance between predators for collision avoidance. Minimizing the distance between the prey and
the predator is more important.

Evolution Framework

To select a good optimizer we compare three algorithms, an evolution strategy (OpenAI), the CMA-ES and
Bayesian optimization using the libraries from Github [16, 17, 5] and the recommended parameter values, e.g.,
from [9]. We evolve 100 generations with population size 13 with all algorithms and repeat this 10 times with
different random seeds. The outcomes of these preliminary comparative experiments are shown in Figure 3.7.
The Bayesian Optimization is able to get high fitness at an early stage, but CMA-ES surpasses Bayesian
Optimization after around 30th generation. Comparing the CPU time, CMA-ES also outperforms other
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Figure 3.6: Flow chart for evolving and selecting the best controller

algorithms as shown in Figure 3.8. Although we have not performed an extensive parameter optimization and
a rigid statistical comparison, the results are sufficiently different to select the CMA-ES.

In the fixed strategy for prey, we introduced three parameters σW , σP and α that determine the danger zone
and the escape direction. Thus, these parameters have a crucial impact on the behaviour of the prey and to
make the prey really hard to catch, their values should be optimized. In order to do this, we carried out an
evolutionary process to obtain good weights for the neural network controller for the predators with 100
generation, and then we did a grid search for the prey strategy on possible values for σW , σP and α against the
evolved predators. The best parameters from this comparison are shown in Table 3.1. The small alpha implies
that the prey must keep the distance from the walls and the corners, in case of being surrounded by predators.
If necessary, it is possible to iterate the whole process, that is, train the predators with a prey and optimize
the prey parameters with the best predators repeatedly, until σw, σP and α converge or the performance gains
diminish. We chose to do the grid search once, and started a new evolution process for the predators.

parameter σw σp α

value 0.2 0.25 0.1

Table 3.1: The value of parameters we used in the Gaussian model-based prey escaping strategy

parameter value

Number of generation 100
Population size 13
Sigma 0.4
Learning rate 0.2
Decay 0.98

Table 3.2: Main parameters of ES
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Figure 3.7: The average of the best fitness of the three algorithms over generations in 10 runs. The blue, red,
green represent the average of Evolutionary Strategy (ES), CMA-ES, Bayesian Optimization (BO) respectively.
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Figure 3.8: The blue, red, green represent the average fitness to evolution time of the best controllers from
Evolutionary Strategy (ES), CMA-ES, Bayesian Optimization (BO) respectively. The evolution time for ES is
8865.05s, CMA-ES is 9196.11s, and BO is 259770.85s.

parameter value

Number of generation 100
Population size 13
Sigma 0.5

Table 3.3: Main parameters of CMA-ES
Population size is computed by default value 4 + int(3 ∗ np.log(N)) from python CMA-ES package. N is the

dimension of problem.
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parameter value

Number of evaluation 1300
ξ 0.01
κ 1.0
Kernel Matern
µ of kernel 2.5
α 10−5

Length scale 0.05
Acquisition function ucb

Table 3.4: Main parameters of BO

3.2 Experiments

3.2.1 Evolution in simulation

In the beginning of an episode, the prey is placed at the center of the square. 3 predators are placed parallel to
each other and perpendicularly to one of the edges, and then set off to chase the prey as shown in Figure 3.2a.
One episode is 60 seconds. The episode is not stopped before 60 seconds even if the prey is trapped, because it
is possible that the prey will escape again and the predators must turn around to chase the prey. Clearly, we
cannot say that the predators are good if the prey has the chance to slip away after being caught.

Fitness and behaviour analysis

As outlined in [4] the fitness functions in ER are more complex than in other areas of evolutionary
optimization. In particular, a good fitness function must reflect desirable behaviour, rather than “just” a given
objective function. This makes an analysis of fitness and behaviour advisable to verify that higher fitness
indeed belongs to better behaviour. In our study, the question is: How do the fitness values given by Equation
3.8 represent the performance of predators?

To answer this question we collect all 1300 controllers generated during an evolutionary run, rank them by
fitness and inspect the behaviour of controllers with fitness around 2.0, 3.0, 4.0 and the overall best fitness of
5.38 by plotting the average distance of the predators to the prey during the evaluation period, the 60 seconds
episode. The results are shown in Figure 3.9. The fitness of the red controller is 5.38, the average distance
from predators to prey is around 0.13m at the end of the episode. Considering that the width of a Thymio
itself is 0.11m and we have multiple predators, 0.13m is small enough to indicate that the predators indeed
caught the prey. For the orange line with fitness 3.03, it was a classic battle between predators and prey that
was almost captured, but could get away twice.

The trajectories of these four controllers can be seen in Figure 3.10. The predators can only follow the trail
of prey with fitness 2.04. When fitness is 3.03, predators use different skill to chase the prey more than just
follow, they even can change team formation alternatively, in other words, predators are able to alternatively
become the center of the team formation. This fact is also shown when fitness = 4.02. In the beginning, the
center predator moved to the left side of the pack and the predator on the top moved to the center. This is an
interesting behaviour that we did not see during our preparatory experiments with just two input nodes ∆θ
and d. It only occurred after we added the third input r related to the distance between predators.

In some circumstances, there might be an optimal number of predators to catch the prey. Predators intend to
move to prey, but at the same time, they must avoid hitting each other. A skillful prey might lure predators
into a position which is easy to get stuck. Therefore we can examine if there is an optimal number of
predators to catch the prey. Of course, we cannot put too many predators into the field. Considering the real
world setup, we assume that only a limited number of predators can be used. To see if our system is workable
when we need to increase the number of predators we compare 3, 4 and 5 predators in a new set of
experiments. We select the best controllers from 3, 4 and 5 predators from these experiments plot their
average distance to the prey in Figure 3.11. These curves show that 5 predators are a bit too many. The
teams of 3 or 4 predators are equally successful, but 4 predators catch the prey faster and with lower variance
in the beginning. Yet, we choose to use 3 predators in the real world, because 3 robots are easier to work with
and the performance after approximately 20 seconds is the same as for a team of 4.
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Figure 3.9: The average distance (from predator to prey) in runs of 4 controllers with different finesses from
high to low.

3.2.2 Evolution in the real world

The real world setting has the same 2m by 2m square field as the simulated world, and we use three Thymios
as the predators and one as the prey. To extract the features as the inputs of controllers of predators and
prey, an overhead camera above the field collects the coordinates, orientation and unique identification of
robots. To seed the initial population in the real world setting we use the last generation of the simulated
evolutionary process. Figure 3.12 shows a clear reality gap between generation 100 and 101. The average
fitness of the same population drops from 2.94 to 2.12, while the maximum fitness drops from 3.77 to 2.48.
After that, we further evolved our predators 10 generations in the real world. The average of fitness slowly
grows and the average fitness in the last generation reaches 2.87, with 4.55 as maximum fitness. Although, it
might come from the noise of the experiment, for example, the delay of packet transmission, or the different
physics parameters between the simulated world and the real world. Also, the generation 100 may not include
the controller with the best fitness of the simulated world. In the real world, the robots get stuck more easily
because of the wires used to connect the extra battery. This can be an advantage for the prey because
predators can get stuck with each other, but in other cases the predators can immobilize the prey in this way.
Figure 3.13 shows the trajectories of the best three controllers evolved in the real world.

3.2.3 Robustness tests in simulation

To verify that the trained model is able to catch the prey in various situations, we can set random initial
positions and play 1000 episodes to examine the robustness by plotting the fitness distribution and keeping
the hit scores, i.e., the number of times (out of 1000) the prey was really caught. Obviously, this is much
easier and cheaper in the simulated world. In the end, we can select the controller with the best robustness
from the best 3 controllers evolved in the real world. Figure 3.14 shows the fact that the controller with higher
fitness in the real world is not necessary with strong robustness. The red histogram represents the controller
with the highest fitness, the green histogram is for the second highest fitness and the blue histogram is for the
third highest fitness. (We will call them the red controller, the green controller, and the blue controller.) The
median and 25th percentile of the red histogram is much smaller than the blue histogram. The red histogram
has more polarization distribution and a large number of episodes ending with fitness values between 2.6 and
2.8. The reason why it concentrates between 2.6 and 2.8 is that the red controller is relatively slow, once the
prey escapes from predators, the predators can only follow behind the prey, but the red controller is good at
keeping a spread team formation, which makes the controller able to surround prey in some circumstances.
The green controller is quite the opposite of the red controller, it has the high speed but more casual team
formation, which makes predators can re-catch prey when a caught prey escapes. The blue controller combines
advantages from the two other controllers and therefore we pick the blue controller as our champion with both
high fitness and better robustness.
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(a) Fitness = 2.04 (b) Fitness = 3.03

(c) Fitness = 4.02 (d) Best fitness = 5.38

Figure 3.10: Trajectories of 4 controllers with different fitness values that presented in Figure 3.9. The black
dashed line represents the trajectory of the prey. The red, green, blue solid lines represent the trajectories of
three predators.

3.3 Discussion and Limitations

3.3.1 Prey Behaviour

During the evolution, the prey sometimes show the skillful behaviour to escape from the predators. For
example, when the prey was surrounded by three predators at the corner, the prey had the chance to slip
between the gap among the predators. The heat map in Figure 3.15 shows the process of how the prey
escaped from a corner.

The upper bound of the predators’ performance depends on the ability of the prey. Therefore, a fixed strategy
for prey means there is a fixed upper bound of the predators’ performance. In other words, if we want to
improve the performance of the predators, we must design a delicate or complicated prey controller as the
opponent to stimulate the potential of the predators. Another option can be applying coevolution to develop
strategies for both predators and prey as what we are going to do in the second stage.

3.3.2 Predators Behaviour

Collective Behavior

In the swarm intelligence, people can create simple rules to achieve collective behaviours. During the
evolution, we observed that the predators showed collective behaviors like moving in formation and collision
avoidance. It happened after we added the distance to the closest team member as the input of the controller.
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Figure 3.11: Average distance from predators to prey during an evaluation in the situations of 3, 4 and 5
predators in 10 runs.

Because when the collision happens between predators, it interfered themselves to catch the prey. On the
contrary, when the predators keep far away distance from each other, it’s hard to surround the prey.
Therefore, the optimal distance should lay in somewhere between these two extreme conditions. Consequently,
the predators move in a formation to catch the prey together. This result shows the potential of homogeneous
controller to be evolved as a collective behaviour controller.

We perform another new experiment. The wall is removed and the prey is controlled by human to guide the
moving direction of the predators. The prey was accelerated to avoid being caught. Figure 3.16 shows the
steps of the prey was guiding the predators, the predators followed the prey and moved in formation without
colliding to each other.

3.3.3 Limitation of the experimental setting

In the first stage, an overhead camera is used to get the pose of the predators and the prey. It’s a strict
limitation, especially for an outdoor environment, however, it shows that the information about the pose of
robots is enough for the predators to catch the prey. The functionality of the camera can be replaced with
GPS, compass or SLAM(Simultaneous localization and mapping) to locate the pose of the robots. In the work
from Gomes et al. [7], they used GPS and compass in a noisy outdoor environment for a prey-capture task.
Except for selecting the pose of robots as inputs of controller, we can also choose the data from the sensors of
the robots, without using any external equipment to evolve the robots, which is exactly what we do in the
second stage.

3.3.4 Homogeneous Controller and Heterogeneous Controllers

In the first stage, we evolve one controller for all the predators. The predators showed some collective behavior
like having team formation and collision avoidance as the work from Quinn et al. [14]. Baldassarre et al. also
studied the collective behaviour of evolving mobile robots[2]. The relatively small population size is 13 and
100 generations can be evolved within only 30 minutes with the acceleration in the simulation world. Another
advantage of homogeneous controller is the scalability of the number of the predators, when we increase the
number of the predators, the structure of controller and training time can remain the same. These advantages
make the homogeneous controller especially suitable for the low-cost robots, we can controller and coordinate
numerous robots with a controller. However, the homogeneous controller sometimes merely follow the tail of
the prey and fail to catch the prey. It shows the homogeneous controller has the problem of lacking diversity.
In the second stage, we will try to evolve three predators with a heterogeneous controller.
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Figure 3.12: The fitness of post transfer learning in the real world. The fitness in generation 100 is obtained
from the simulation. The blue, green, and red crosses are the top three controllers with fitness 4.55, 4.54, 4.11
during the post transfer learning in the real world. The green triangles, the orange lines, and the black circles
represent average fitness, median fitness, and outliers in a generation respectively.

(a) Fitness = 4.55 (b) Fitness = 4.54 (c) Fitness = 4.11

Figure 3.13: Trajectories of the top three controllers that evolved during further learning in the real world. The
black dashed line represents the trajectory of the prey. The red, green, blue solid lines represent the trajectories
of three predators.

3.3.5 Evolution Time

The difference between evolution in simulation and evolution in the real world can be significant considering
solution quality and execution time. As exhibited in Figure 3.12, the fitness drops by approximately 30%
when we switch from simulation to real robots (average fitness: 28%, maximum fitness: 34%).

The differences in execution times are even greater. In stage 1 of our system, evolution in the simulated world,
it took about 2.5 hours to run 100 generations (with population size 13) on an Intel Core i5-5200U CPU @
2.20GHz 4. The evolution in the real world took about 3 hours to execute 10 generations with the same
population size. Thus, evolution in the real world for 100 generations would take about 30 hours to complete –
approximately 12 times slower. Execution times are of course subject to many practical details, such as the
computers clock speed, the number of cores, simulation accuracy, reset time of the physical robots, etc., but
these numbers give an indication of the time vs. quality trade-off inherent to evolutionary robotics
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Figure 3.14: Robustness histograms of the best three controllers evolved on real robots. The colors red, green,
blue denote the controllers with fitness 4.55, 4.54, 4.11 respectively as identified in Figure 3.12.

experiments.

3.3.6 Comparison of the Different Algorithms

Another influential factor is the presence of noise. As shown in Figure 3.7, the CMA-ES performs better than
Bayesian Optimization and ES. This fact might be (partly) attributed to the capability of CMA-ES to handle
the noisy fitness function[8]. Recent work from Boeing and Bräunl [3] lists various error sources that one
should be aware of when using complex real-time physics simulation systems. The amount of simulation noise
is not constant, for example, it will depend on the acceleration factor (x times faster than the real world time
clock) chosen by the user. Nevertheless, the ability of an EA to cope with noisy fitness functions is an
important aspect.

3.3.7 Selecting Features

With selecting the appropriate feature about the distance between predator and predator, we can achieve
collision avoidance with only one input. Increasing information entropy in each input makes us able to
decrease the dimensions of neural network such that the training can be faster, even standard Bayesian
Optimization can be applied. Although compared to CMA-ES and ES, Bayesian Optimization needs quite
long time(more than 10 hours with core i5) to finish 100 generations. In our experience, select inputs as “the
distance from predator to prey” and “the angle between predator’s orientation and direction from predator to
prey” have higher training efficiency than using the coordinate offset between predator and prey. Also, the
inputs of the controller are independent of the number of predators, which makes our controller has the
potential to manipulate numerous predators.

3.3.8 Number of predators

To determine an effective number of predators, we must consider the balance between catching and collision
avoidance. At least among 3, 4 and 5 predators, selecting 4 predators has the most elegant balance. We also
try to compete our predators with human players, and most of the time the human players are hard to beat
the predators in the simulation world, although it’s another challenge to quantify the performance of human
players.
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Figure 3.15: The prey escapes from the corner

3.4 Conclusion

we presented an evolutionary predator-prey system to develop pursuit strategies for a group of predator robots
to capture a prey. This system is generic, i.e., applicable to various types of robots and it reaches from
simulation to the real world. Specifically, the evolution of predator strategies takes place in two stages, the
first stage in computer simulations followed by a second stage where evolution is executed on real robots.

To validate this system design we experimented with a group Thymio II robots. To obtain a good
evolutionary system we chose to use the CMA-ES and defined a specific fitness function that considers the
distance between a predator and the prey as well as the distance between this predator and its nearest fellow
predator. By design, the controller of the prey was fixed and to provide a challenge for the predators.

The experiments provided feedback about the working of the system and illuminated its advantages and
disadvantages. In line with our expectations, we found that the system was able to produce predators that
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Figure 3.16: These images are ordered in time. They must be read from left to right and top to bottom. The
prey is controlled by human, which can be used to guide the predators to make them move like a flock of birds
without collision.

successfully captured the prey in the real world. Another advantage is the good integration between the
simulated and the real world. Hereby we have the best controller of both worlds. Testing different algorithmic
options is more practical in simulation, e.g., it is easy to vary the number of predators, try more or less
sophisticated prey strategies, or compare several EA variants. In the meanwhile, running evolution on the real
robots can mitigate the reality gap problem.

The main disadvantage we encountered was the time needed to carry out the hardware experiments. As noted
above, these were 70 times slower than the simulations. Using bigger populations we expect that this ratio
becomes even worse. On the positive side, 10 real world generations turned out to be enough to reach the
fitness level achieved in 100 simulated generations. Thus, we can consider the simulations as a manner to
kick-start evolution in hardware and to reduce the total time needed to evolve a solution that works in the
real world. All in all, with our combined software-hardware evolutionary system, the know-how, and the
algorithmic components in place it seems feasible to evolve predator strategies for another type of robots in a
few months, although this will heavily depend on the availability of a good simulator and the perception
capabilities of the robots.
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Considering perception, let us recall that in this study we use an overhead camera to provide exact location
information to predators and the prey. To get a ”real” real-world system that works outside the lab, we are
extending the Thymios with cameras and re-evolve the controllers such that (pre-processed) camera images
are part of the inputs to the neural network.



Chapter 4

Second Stage

4.1 Method

4.1.1 Robot

In the second stage, Robobo is our new robot to perform our experiments. Robobo is capable of carrying a
mobile phone as a camera. We can use the camera to locate the relative position of the predators and the
prey. We choose to use the front camera of the mobile phone to reduce the delay of data processing, because
the resolution of the front camera is relatively low. Robobo has five front IR(infrared) sensors and three back
IR sensors. The maximal range of IR sensors are only 20 cm. so we merely use one front IR sensor in the
middle for collision detection. The overhead camera in the second stage is not necessary because we want to
make our system only relevant to the sensors of the robots.Robobo has five front IR(infrared) sensors and
three back IR sensors, but we merely use one front IR sensor in the middle to avoid from collision. The blue
cube in Figure 4.1b represents the camera of Robobo. The red cylinder is for the camera to detect the robot,
and the prey can be distinguished by using green cylinder.

(a) The real robot (b) The simulated robot

Figure 4.1: Appearance of Robobo in the real world and the simulation world.

4.1.2 The Simulation Environment

Integrating Gym of OpenAI, ROS, and Gazebo

Two of the most popular simulation environments are Gazebo and VRep. But it spends time to build an
environment for research requirement. That’s why there are platforms such as Gym1 from OpenAI to
encapsulate the environment with an interface to perform action such that users can only focus on algorithms.
So we integrate Gym, ROS, and Gazebo together to process all the details including controlling robots,
resetting the experiment and getting world information. Figure 4.2 shows the architecture of the integration.

In the beginning of one evaluation, the predators are placed parallel to one side of the wall, the prey is placed
at the center. The arena remains a square field, but the size is double as 4m×4m to allow that the robots
move more freely. Figure 4.3 shows the environment in the simulation world and the viewpoints from the
different agents. When the robot detects the other robots, a bounding box is created to select the region of

1https://gym.openai.com/
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Figure 4.2: Integrating Gym, ROS, and Gazebo. The users only need to focus on algorithms by receiving
observed world data and generating output for action. The rest of things will be processed by Gym and ROS.
RROS encapsulate Gazebo and the real world to provide the control interface for Gym.

detected agent by color detection. The gazebo allows user to simulate IR sensor and camera, so we try to
make the difference between the simulation and the real world as small as possible. The 3D model of the
robots were created by FreeCAD, which is an open source technical drawing software to create 3D models.
Figure 4.4 shows the sketch of the robot and its 3D model in FreeCAD.

Figure 4.4: Sketch of the robot in FreeCAD

4.1.3 The Real World Environment

The real world environment is a 4m×4m arena. In this time, we removed the camera above. The robots must
rely on their own sensors. Three predators and one prey are connected with a computer via Wifi. A ROS
master server is running on the computer. So robots pass their information from sensors to the computer via
ROS, and then the controllers on the computer take data from sensors as inputs to generate outputs. In the
final, the computer send control command back to the robots. Figure 4.5 shows the viewpoints from the
agents and the experimental setting in the real world.
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Figure 4.3: The simulation environment of the second stage in Gazebo. Three windows on the top are the views
from different agents. The detected objects are selected by the bounding boxes.
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Figure 4.5: The real world experiment of the second stage. Three windows on the top are the views from
different agents. The detected objects are selected by the bounding boxes.

4.1.4 Partially Observable

Unlike the first stage using an overhead camera, in the second stage, we merely rely on the camera and the IR
sensors on the robots themselves. This choice can extend the application of the predator-prey evolution
system. However, we must face another challenge when we merely rely on the sensors of robots, which is that
the world becomes partially observable for robots. When a robot is placed at a new place, it can’t be sure
where it is in this world and how it should move until the robot has detected the environment nearby itself.
Take self-driving vehicles as an example, a self-driving system contains multiple deep neural networks to
detect the environment, including the model to detect pedestrians, the model to detect traffic light...etc.
Based on that environment information, the computer of the vehicle can make the decision of the next action.
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4.1.5 Controller for prey

The controller of the prey and the controllers for the predators are both evolved by NEAT. Our purpose is to
evolve the predators with the sensors to catch the prey. One of the advantage of the simulation environment is
that we can access specific data easily, compared to the real world. For example, we are able to directly get
the pose of robots from Gazebo, however, in the real world, we must rely on some techniques like SLAM or
GPS to locate the pose of robot. This fact allows us to create a all-knowing prey to help the evolution of
predators. Here we list the inputs and the outputs of the prey:

Input Layer:

• ∆θ1,∆θ2,∆θ3: The angle difference between the orientation of the prey and the direction of the
predators with relative to the prey.

• d1, d2, d3: The distance between prey and predators.

• x, y: The coordinates of the prey.

Output Layer:

• ωL: Angular velocity of the left wheel

• ωR: Angular velocity of the right wheel

Using hyperbolic tangent as the activation function.

To be aware of that the inputs are much more than the predators controller, which we can see in next
subsection. This fact implies the mission is much harder for the prey, because the difference in the number of
agents. Also, in most of situations, the predators only need to focus on moving toward the prey, however, the
prey can’t just simply run away from the predators, instead the prey has to turn 90 degrees to avoid from
hitting the wall or being trapped from multiple predators. To evolve a better prey, we need a robot with
wide-ranging sensors, otherwise, we have no choice but to use an all-knowing prey to make predators better.

4.1.6 Heterogeneous controllers for predators

Instead of the all-knowing prey, the predators can merely rely on their cameras and IR sensors. Using the
heterogeneous controllers for each predator can increase the diversity of the predators and prevent from
evolving into monotonous behaviour like only trailing the prey. We tried various inputs, but the simple inputs
have a better effect. Here we list our inputs and outputs for the controllers of the predators:
Input Layer:

• ximage: The horizontal position of prey shown in the image coordinate, the center is defined as zero.

• A: The area of the prey in the image, and -1 if there is no prey in the image.

• c: +1 if middle front IR sensor detects an object, otherwise -1.

Output Layer:

• ωL: Angular velocity of the left wheel

• ωR: Angular velocity of the right wheel

Using hyperbolic tangent as the activation function.

4.1.7 Standard Coevolution Framework

In the second stage, we want to try heterogeneous controllers for the predators, therefore, there are four
targets that need to be evolved, three predators and one prey. Assuming one of the predators is evolving,
what are the teammates and the opponent that we should pick for an evolving target? For the teammates and
the opponent we both pick the individuals with the best fitness from the previous generation, and randomly
pick for initialization. It’s more meaningful to cooperate with better teammates, because if we randomly pick
two teammates for the evolved target, which leads to the performance of the team more depends on the
teammates but not evolved target. The noise of fitness could be huge and more randomly. Also, it’s more
meaningful to compete with the best opponent, if the evolving predator can raise the performance even against
the best opponent and the teammates are fixed comparing to the individuals in the same generation, which
means the performance should be credited to the evolving predator. Otherwise, we don’t know a good or bad
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Evolving Predator Evolving Prey Not Evolving

Figure 4.6: The standard co-evolution framework. Each agent evolves alternatively. The evolving agent(pink
or green) tests its individual and get fitness as feedback. The other agents(grey) send the best controller from
the previous generation to form the team or be the opponent(s).

performance should be credited to the evolving predator or a randomly chosen prey. Potter and De Jong
talked about the architecture for the standard coevolution framework[20]. We apply the standard coevolution
framework to our predators and prey task, and the architecture of coevolution can be drawn as Figure 4.6

we evolve all the agents alternatively. Except for the evolving target, the other agents are usually controlled
by the best controllers from the previous generation. But we also implemented the technique ”Hall of fame”
for competitive coevolution, which means that the agent must play against the best opponents from each
earlier generation. To reduce the evolution time, we make the evolving target to play against the best
opponents from the previous 5 generations. The parameters of NEAT is given in Table 4.1

parameter value

Number of generation 100
Population size 20
Weight mutate rate 0.8
Bias mutate rate 0.7
Probability of adding(deleting) connection 0.1
Probability of adding(deleting) node 0.1
Number of elites 4

Table 4.1: The main parameters of NEAT

4.1.8 Fitness Function

We take the fitness function from [22] as a reference. For the prey, the fitness is computed by the survival
time, the longer the prey survives, the higher the fitness can be. So the upper bound of fitness is when the
prey never get caught during the evaluation time 30 seconds. For the predators, we choose to use selfish fitness
function for each predator, in other words, only the final distance between evolved predator and the prey is
considered. We want to emphasize that one evaluation is ended when one of the predators catches the prey. If
there is an outstanding predator, it may lower the fitness of the other predators, which can motivate the other
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predators to become the first one who can catch the prey. But if all the predators are so selfish that they
merely chase behind the prey, which may fail to catch the prey. We also tried to share the same fitness
between all the predators, however, it seems that an outstanding predator usually makes the other predators
lazy. The outstanding predator confuses others so that the other predators don’t know if they are good. Here
we display the mathematical representation of the fitness functions:

Fitness function for prey:

fprey(t) =
t

T
(4.1)

T is a constant for evaluation time 30. t is caught time, t = T if the prey is not caught.

Fitness function for a predator:

fpredator(d) =
1

d
(4.2)

d is the distance between the evolving predator and the prey. The reason that we use the inverse of distance
instead of that a constant minus d is because there is a huge difference between ”close” and ”extremely close”.
Otherwise, the predators will be inclined to get easy points by staying somewhere close to the prey but never
catch it.

4.2 Experiments

The experiments include the evolution process and the evaluation in the simulation world, and evaluation in
the real world.

4.2.1 Evolution and Evaluation in simulation

As we introduced the standard coevolution framework in subsection 4.1.7, we evolved both the predators and
the prey alternatively with 100 generations and relatively small population size 20. According to the
experience from stage 1, the small population size, even 13 is enough to evolve the agents. After the evolution
process is finished, we tried to evaluate the controllers with Master Tournament, which means that we select
the controllers with the highest fitness in every generation, and then we make them play against each other.
So there will be 100 × 100 evaluation times for all the 100 generations of both the predators and the prey.
Figure 4.7 shows the caught time of the master tournament. The later generation inclines to perform better
when it competes against early generation. However, we can see that the task is more difficult to the prey
from that most of values are below 10 seconds. Also the instability happened nearby 90th generation of
predators and 13th generation of prey.

Figure 4.8 is drawn by accumulated scores of agents. The score of prey is defined by caught time, and it
accumulates a prey from a generation to play against all generations of predators. The score of predators is
defined by that a constant minus the caught time, and the calculation of the accumulated score is similar. The
graph shows that the coevolution can be stable in this evolution framework, although it seems that the upper
limit of performance is hit around the 50th generation of predators.

To see that the behaviour was getting more complicated, we cherry-picked the predators from the 41st
generation play against the preys from all the generations, and draw their trajectories as shown in Figure 4.9.
During the generations between 0 to 19, the best strategy for the prey is to move to the corner for prolonging
the survival time. From the 20th to the 39th generation, the prey developed the strategy to slip away from the
gap between the predator and the wall. The prey successfully went through the gap at the 24th generation.
The generations from 40 to 100, Although, the performance for prey didn’t change too much, the prey still
tried to run away from the predators along different paths.

4.2.2 Evaluation in the real world

In the real world, the prey cannot be an all-knowing player, but we are still interested in evaluating the
performance of the evolved predators when the controllers are transferred from the simulation world to the
real world. So we use multiple human prey players to evaluate the performance of evolved predators in both
simulation and the real world.
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Figure 4.7: The best prey from 100 generations versus the best predators from 100 generations. It shows a
trend that the agent from the later generation performs better when it plays against the agent from the early
generation.
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Figure 4.8: The best prey from 100 generations versus the best predators from 100 generations. The graph
shows the accumulated score for each generation and the final performance is stabilized.

We created an interface for the human to control the predator with keyboard for both the simulation world
and the real world. However the human players may introduce the bias, taking the average from multiple
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(a) 0th generation (b) 5th generation

(c) 8th generation (d) 20th generation

(d) 24th generation (e) 41st generation

(f) 53rd generation (g) 75th generation

Figure 4.9: The trajectories of the predators from 41th generation versus the prey from the other generations

human players is necessary. The time spent to catch the human prey player is the criterion. The result can be
shown in Figure 4.10. The average survival time in the simulation world is 8.43 seconds, however in the real
world the average survival time is 21.59 seconds. Even though the predators in the real world show the
behaviour of pursuit, they still need further evolution to be applied in the real world. The reality gap will be
further discussed in the section 4.3.
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Figure 4.10: The performance of the human controlled prey versus the evolved predators in both the simulation
world and the real world.

4.3 Discussion and Limitations

4.3.1 The source of the reality gap

The number of frames per second(FPS) could be a source which leads to increase the reality gap. FPS in the
simulation world is around 10(because of the computation of simulation, image processing, and running
algorithm), however due to the transmission of high quality of images via local WiFi, ROS and a router, the
FPS in the real world can only be 5-7. The lower FPS has an impact on the object detection, some frames can
be missed which leads to over rotate, even though during the rotation the object can be detected as shown in
Figure 4.11.

Figure 4.11: The viewpoint from a rotating robot. Two predators are detected.
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4.3.2 Triggering the arms race

The arms race is not easy to be triggered. Even the observed behaviour becomes more complicate, it’s not
necessary that the performance is always better. However, the advantage of coevolution is to evolve various
opponents without delicate human design. With the help of ”Hall of Fame”, the predators are able to catch
various opponents and get higher average fitness. The variety of the evolution process makes the predators
complete their evolution target in a certain degree. ”Hall of Fame” can be implemented by choosing the
opponent by random sampling. We also tried to select opponents from 10 previous generations, but it cannot
stabilize the coevolution process. A sampling method for selecting opponents is necessary to stabilize
coevolution. However, if we select opponent random sampling, it means that when the generation increases,
it’s possible that the sampling method, unfortunately, selects only bad performance controllers, which may
lead to misestimating fitnesses, and it may further lead to hitting the upper limit of performance. In our
experiment, the predators hit the upper limit of performance about 50th generation, so we may improve the
performance with performance-based methods as mentioned in the work from Rosin and Belew [23].

4.3.3 Fitness function

In a few preliminary experiments, different fitness functions are tested. For the predator, fitness function
f(d) = constant− d and f(d) = 1

d , d is the distance between the prey and the evolving predator, have a huge
difference, because it distinguishes the difference between ”close” and ”extremely close”. The fitness function
also can be defined by team performance, instead of only individual performance. In our other preliminary
experiments, the fitness which defined by full team performance usually generates a lazy individual. It may be
caused by that the difficulty of this task for multiple predators is relatively lower to the prey. The capitalism
styled fitness function f(d) = 1

d works well at least in the simulation world, in other words, every predator
works for itself to maximize the resource on its hands, but the whole team can be benefited from the result
too. The predators are also not that selfish to just follow behind the prey, otherwise the severe collision should
be observed, which means that they must collaborate in a certain degree.

4.3.4 The Heterogeneous Controller

The heterogeneous controller indeed shows the diversity compared to the homogeneous controller. According
to our observation, some of the predators can rotate in a fixed direction(e.g. clockwise) to search the prey, and
move toward prey directly when they find the prey, another observed controller can follow the prey smoothly
and rotate in different directions which depends on where the prey disappeared in the views of predators. The
various types of predators make they wouldn’t just follow behind the prey as single homogeneous controller.

4.3.5 Evolution Time

The evolution time of the second stage is much longer compared to the first stage. There are two main
reasons, the first one is because we need ”Hall of Fame” to stabilize the process of coevolution, which makes
our evolution n times longer than simple evolution, and n depends on how many previous generations to be
competed with. Another reason is the time for simulating the camera and IR sensors to reduce the reality gap,
it largely slows down the simulation speed of Gazebo. The whole evolution process needs 100 hours for 100
generations and population size as 20, which is 40 times slower than using a homogeneous controller and a
fully observable environment.

4.4 Conclusion of the Second Stage

We presented a better evolutionary framework for both in the simulation world and the real world by
integrating Gym, Gazebo and ROS. The interface provided by Gym makes users and research focus on the
algorithms, instead of spending time on the communication with Gazebo in the simulation world or hardware
in the real world. The framework allows us to perform the experiments about both cooperative coevolution
and competitive evolution, furthermore, reinforcement learning algorithm can be also applied because Gym is
part of the integration.

Our experiment shows that the standard coevolution framework can be also applied for sensor-based
3-versus-1 predator(s) and prey scenario. However, the transferability from the simulation to the real world
can be limited by the hardware resource. The evolved robots still need to further evolve in the real world. The
sampling for selecting opponents is the key step to stabilize the coevolution. At least the random sampling
must be used.
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The simulation of camera and IR sensors consumes large computational resource such that the whole
evolution process becomes much slower. It weakens the advantage in the simulation world, the cost of time is
not cheap anymore compared to the real world. Also, the requirement of computation resources enlarges the
reality gap, because usage of computation resource and FPS cannot be consistent.
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Conclusion

5.1 Conclusion Combining Two Stages

5.1.1 Pure Gazebo V.S Integrating Gym, Gazebo, and ROS

The evolutionary system is improved in the second stage. Gym is the bridge between the algorithm and the
world, users only need to take care of the algorithm part after integrating the world into Gym. ROS can be
used as the inferface for controlling robots in both the simulation world and the real world to increase the
code reusability. Choosing Gym brings us another advantage. It is a popular toolkit for reinforcement learning
and it also can be used for evolutionary algorithm, so the users are able to get started quickly.

5.1.2 Homogeneous controllers v.s Heterogeneous Controllers for Predators

In a classical predator-prey task, it’s hard to doubt that if the performance of heterogeneous controllers is
better than homogeneous controllers. Many studies have shown the fact that heterogeneous controllers have
higher variety, which leads to better performance. However, the heterogeneous can be still applied to a
non-classical predator(s)-prey task. In an imaginary scenario, if the cost of predators robot is cheap. So it’s
allowed us to use numerous predators to catch a prey. It’s impractical to evolve the numerous predators one
by one when we use heterogeneous controllers, and we have no choice but to apply homogeneous controllers
for the predators. In our experiment, the obvious collective behaviour expends the potential application of
homogeneous controller. And the development of collective behaviour can be encouraged by selecting features
and the design of fitness function.

5.1.3 Fixed Strategy v.s Coevolution for Prey

Both the fixed strategy and the coevolution process for prey are able to train the predators to catch the
target. The coevolution needs much longer evolution process. Not only because the prey needs to evolve, but
also the coevolution needs some techniques like ”hall of fame” to stabilize the evolution process. It requires
almost 13 times slower than using the fixed strategy. However, the coevolution increase the variety of prey, the
predators get higher fitness only when they can catch various prey. We don’t need an elaborately designed
strategy when we apply coevolution.

5.1.4 Fully Observable v.s Partially Observable Environment

In the first stage, the fully observable environment needs the shorter time to evolve compared to the partially
observable environment. However, it requires the above camera to get the coordinates of the robots in the real
world. But the functionality of the camera should be replaced by GPS or SLAM to make it more practical in
the different scenarios.

In a partially observable environment, the robots only rely on the sensors of themselves. To reduce the reality
gap, we needed to simulate the camera and IR sensors. This requires more computational resources, which
leads to the simulation process of the second stage become around 7 times lower than the first stage. In the
second stage, we combine the fully observable environment for prey and the partially observable environment
for predators. Some features are easy to get from the simulation world, for example, the coordinates of the
agents. It allows us to create an all-knowing prey to co-evolve with the predators. Also there are 3 predators
but only one prey, the difficulty of this task for prey and predators are different. So in the simulation world,
we need an all-knowing prey which can evolve into a wiser prey compared to a sensor-based prey. And then
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the evolved predators can be used in the real world to catch the prey. We also tried to develop sensor-based
co-evolved prey, however, it seems that the range of sensors is not wide enough for this task. Here is a
quote[13] from the work of Cliff and Miller that we see in the work from Nolfi and Dario Floreano: ”..pursuers
usually evolved eyes on the front of their bodies (like cheetahs), while evaders usually evolved eyes pointing
sideways or even backwards (like gazelles).”
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Full parameters of NEAT

A.1 For Predator

The following are the parameters that we used in the second stage for python module NEAT-Python:

[NEAT]
fitness criterion = max
fitness threshold = N/A
no fitness termination = True
pop size = 20
reset on extinction = False
DefaultGenome
node activation options
activation default = tanh
activation mutate rate = 0.0
activation options = tanh
node aggregation options
aggregation default = sum
aggregation mutate rate = 0.0
aggregation options = sum
node bias options
bias init mean = 0.0
bias init stdev = 1.0
bias max value = 30.0
bias min value = -30.0
bias mutate power = 0.5
bias mutate rate = 0.7
bias replace rate = 0.1
genome compatibility options
compatibility disjoint coefficient = 1.0
compatibility weight coefficient = 0.5
connection add/remove rates conn add prob = 0.1
conn delete prob = 0.1
connection enable options
enabled default = True
enabled mutate rate = 0.01
feed forward = True
initial connection = full
node add/remove rates
node add prob = 0.1
node delete prob = 0.1
network parameters
num hidden = 0
num inputs = 3
num outputs = 2
node response options
response init mean = 1.0
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response init stdev = 0.0
response max value = 30.0
response min value = -30.0
response mutate power = 0.0
response mutate rate = 0.0
response replace rate = 0.0

connection weight options
weight init mean = 0.0
weight init stdev = 1.0
weight max value = 30
weight min value = -30
weight mutate power = 0.5
weight mutate rate = 0.8
weight replace rate = 0.1

DefaultSpeciesSet
compatibility threshold = 3.0

DefaultStagnation
species fitness func = max
max stagnation = 20
species elitism = 2

DefaultReproduction
elitism = 4
survival threshold = 0.2

A.2 For prey

[NEAT]
fitness criterion = max
fitness threshold = N/A
no fitness termination = True
pop size = 20
reset on extinction = False

DefaultGenome
node activation options
activation default = tanh
activation mutate rate = 0.0
activation options = tanh

node aggregation options
aggregation default = sum
aggregation mutate rate = 0.0
aggregation options = sum

node bias options
bias init mean = 0.0
bias init stdev = 1.0
bias max value = 30.0
bias min value = -30.0
bias mutate power = 0.5
bias mutate rate = 0.7
bias replace rate = 0.1

genome compatibility options
compatibility disjoint coefficient = 1.0
compatibility weight coefficient = 0.5

connection add/remove rates conn add prob = 0.1
conn delete prob = 0.1

connection enable options
enabled default = True
enabled mutate rate = 0.01

feed forward = True
initial connection = full

node add/remove rates
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node add prob = 0.1
node delete prob = 0.1
network parameters
num hidden = 0
num inputs = 8
num outputs = 2
node response options
response init mean = 1.0
response init stdev = 0.0
response max value = 30.0
response min value = -30.0
response mutate power = 0.0
response mutate rate = 0.0
response replace rate = 0.0
connection weight options
weight init mean = 0.0
weight init stdev = 1.0
weight max value = 30
weight min value = -30
weight mutate power = 0.5
weight mutate rate = 0.8
weight replace rate = 0.1
DefaultSpeciesSet
compatibility threshold = 3.0
DefaultStagnation
species fitness func = max
max stagnation = 20
species elitism = 2
DefaultReproduction
elitism = 4
survival threshold = 0.2
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