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Abstract

This thesis addresses the development of a lightweight and quickly
trainable controller based on bio-inspired and time-dependent spiking
neural networks, tasked to enact an effective gait for a quadruped rover
with a reaction wheel that operates in low-gravity environments. Such
model would be an interesting addition to the methods presently used
in robot controllers, especially in space exploration were the availabil-
ity of computational power is limited. With the solution proposed in
this work, the controller can be optimized in a day on a single computer
and outperform conventional perceptron based architectures in simulations.

The use of Spiking Neural Networks makes the common back-propagation
optimization techniques unavailable, requiring a new approach. Evolution-
ary methods then come into play. With this architecture the controller
has a very powerful tool to memorize frequencies and reproduce complex
periodical movements. The use of evolutionary algorithms makes their
optimization effective and competitive.

Optimizing the spiking controller with Genetic Algorithms and Differ-
ential Evolution, the architecture proposed obtains good fitness scores in
several known benchmarks in under a day of simulations. Furthermore,
it learns effective gaits for the low-gravity environments with results that
vastly surpass the ones obtained by similarly evolved perceptron based
controllers. All the simulations and optimization done show that the
spiking controller has a superior ability to environments with strong sta-
tistical confidence (Welch’s t-Test p � 0.01). On the Mars and Moon
environments it learns a periodical gaits that makes the rover advance and
never touch the ground with its main body. On the Ceres environments it
learns to optimize the fitness function to a local maximum far superior to
the ones obtained by other architectures, although unfortunately not with
a beautiful gait.
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1 Introduction
With the renewed interest in the space race, national agencies and private corpo-
rations are developing new rovers. Novel designs are being proposed to tackle
new challenges: human bases on the Moon and Mars and the explorations of
other celestial bodies. The new rovers will need higher autonomy, since the
distance to their destinations as well as their number will quickly rise. Providing
them a better Artificial Intelligence, dependability and autonomy should follow.

Between the most attractive destinations are the asteroids and little moons,
full of rare metals. These celestial bodies are very light compared to Earth,
with small gravitational forces. The lower gravity causes this body to have
irregular surfaces and the subsequent absence of an atmosphere leaves them
scattered with impact craters. These terrain irregularities and the low grav-
ity in itself make the movement difficult for the rovers [8], especially wheeled ones.

A possible solution is to add vernier thrusters to the rovers, to make them
maintain balance and take short flight when needed. However, this requires a
fuel tank and that creates further balancing problems (with the movement of
liquid in the container) and a disposable object, since the distance would make
it impossible to come back to refuel, making the whole apparatus useless once
the tank is empty.

Another option, explored by NASA with the LEMUR project [8], is to use
legged rovers, that can crawl, walk or jump based on the need. The idea of
jumping rovers for low gravity environments has very recently been made a
reality by JAXA, with the succesful Hayabusa2 mission [18]. The introduction
of this third degree of freedom, leaving the contact with surface, requires an
instrument to orienter the robot whilst on flight, so that it could land safely.
For this reason a reaction wheel has been added to the rover. Moreover, the
presence of legs permits an additional instrument for self orientation, exploiting
the conservation of angular momentum. This addition has costs too, a higher
amount of energy consumed and the complexity increases with the addition of
more controllable motors, with partially redundant functions.

1.1 Definition of the problem
The goal of this thesis is to develop a controller for a robot that acts in low
gravity. Moving in such environments is not easy and there are no examples on
Earth to take inspiration from. Developing the optimal gait by hand is a very
complex deal, already starting with the inertia of the rover, and coping with the
long jumps it will perform in low-g environments so that it may land gracefully.
An artificial intelligence is then built to learn from experience in simulations and
evolve into an effective controller for the shape and gravity under inspection.
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1.1.1 Robot description

The robot is modeled after the body of an arachnid. It is a quadruped, with three
joints per leg, and a reaction wheel in the central body. The legs are positioned
on the longer side of the robot and very close to the corners. The reaction wheel
is at the center of the body. The shoulder presents two joints in immediate
succession, with the first going back and forth (Z axis at rest) and the second
up and down (Y axis at rest). These approximate a universal joint. The elbow
is a single joint that goes, again, up and down (Y axis at rest). All of the joints
have limited rotation capability, simulating the impossibility of "clipping" a limb
through the others or the body. The size of each body part can be seen in Table 1.

Part Height Length Width

Body 1 1 0.4
Arm 0.32 0.8 0.32
Forearm 0.32 0.8 0.32
Wheel 0.8 0.8 0.32

Table 1: Robot parts sizes

Figure 1: The quadrupedal robot used in the experiments in low-g environments.
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1.1.2 Active Mass Balance Auto-Control

The presence of limbs enables more than just the ambulation in uneven terrains.
They can also be used to orient the robot while in flight, using the law of
conservation of angular momentum [29]. The addition of the reaction wheel
makes it so the change in orientation does not need a reconfiguration of the
limbs’ position. This should be particularly useful in the case under examination,
since springing into a jump might modify the rotation of the rover in such a way
that the landing would be uncontrollable. The use of the wheel and the limbs to
adjust the relative position before landing is important and should give an edge
over an object that cannot balance during flight.

1.2 Proposed approach
In this work evolutionary computing will be used to train a spiking neural network
controller to drive the robot. The implementation of this spiking architecture is
tied to the choice of evolutionary computing over other training techniques.
The intention of this thesis is to demonstrate that Spiking Neural Network
controllers have an edge for frequency based behaviours, like encoding a gait [3].
The spiking component guided by the internal parameters is built to react to
inputs in a very nonlinear manner and the combinations of spike frequencies can
create highly complex periodical gaits, or modify them smoothly whenever the
environment should require it. It has been theoretically proven that the function
approximation power of a spiking neural network is superior to the perceptron
architectures [24], but their parameters are more difficult to optimize, especially
with back-propagation.

The use of evolutionary methods to optimize neural networks has grown in
the last years, with a rediscovery of their potential. They need more examples
to optimize a controller when compared to back propagation [32], but this is
made up for since they do not use complex and convoluted derivatives to mutate
the parameters. This reduces the computational cost, making the trade-off with
the higher simulation count worthy. Theoretically, these methods can optimize
any fitness function, with arbitrary long time breaks between an action and the
reward. This last point is still considered a hard challenge for Q-learning models
[25].

1.2.1 Novelties

From the knowledge of the author, this is the first application of Spiking Neural
Networks to the MuJoCo benchmarks. This also seems to be the first time
that the Differential Evolution method is applied to optimize Spiking Neural
Networks. In this work, both are joined and expanded in a field specific test,
tied with a present day task like space exploration.
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Another important accomplishment of this work is to find a solution that
can be trained and run on a personal computer. This absolves the function of
simulating in-loco training by the rovers or planet control. The possibility of
sending clusters of supercomputers on another planet is unlikely in the immediate
future and the distance from Earth in some cases would make communication
difficult. Therefore, sending a list of real observations could not be an easy
or even affordable action (data transmission consumes energy). The ability of
optimizing with a local computer the pre-trained behaviours from the Earth
simulations, incorporating real data observed by the rovers on the mission, is an
important feature.

An additional goal is to prove the quality of an often overlooked architecture,
Spiking Neural Networks. These are usually synonymous with slow computations
and complex hardware requirements. Yet, with the model proposed by Berland
[2] and its implementation developed in this thesis, this architecture might gain
a more positive image and spark new researches on these models.
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2 Neural networks
Artificial neurons originated in the early second half of the 20th century as
models of the biological brain. The original models were more interested in
accuracy and simulation than having a practical use for controllers.

The attention later moved on the use of artificial neuron networks as compu-
tational tools and, with the introduction of Hopfield networks and perceptrons,
the efficiency became the main focus. With the use of the latter, artificial neural
networks become universal function approximators. Given a function a wide
enough network can compute it with arbitrary precision. For years the only limit
was training time, but with the late explosion in computational power and the
use of parallel computing on GPUs, Neural Networks have become the main tool
for artificial intelligence research.

2.1 Action-Value vs Policy Networks
There are two possible uses for neural networks when working on Reinforcement
Learning problems. The first one is to have an Action-Value network, or Q-
network, which learns from past experiences what returns an action will have,
given the present state. This was used by Google’s DeepMind to learn to play
Atari games [25].

The strength of this approach is that it can be trained with a supervised
learning framework, with stochastic gradient descent. Once a sufficient amount
of experiences is collected and a formula for the Q-value of each action-state
couple is defined the network will learn to output this reward given a state and
an action as input. One perceived weakness of this approach is that, if actions
are continuous, it is impossible to find the best one for the state without trying a
huge number of random entries and only then choosing the one with the highest
Q-value.

The second option is to have a Policy Network, which receives the state
as input and returns an action as output. This can’t be trained directly as
the previous option, since there is no way of creating a dataset of states and
optimal action to follow. Having a formula to make it would make the network
itself superfluous. This was tackled by DeepMind by coupling a Q-network
with a policy network [26], such that the Q-value could be trained with the
experiences and the policy would be optimized to maximize the output of the
former. These two operations would be alternated, with the creation of a new
dataset in between by having the present policy network play the game.

Since in this thesis Evolutionary Algorithms will be used to learn complex
continuous actions, the policy network is absolutely necessary, but the Q-network
can be dropped, as evolutionary methods don’t need a step-by-step reference to
improve the parameters.
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2.2 Architectures of Artificial Neural Networks
The most used architectures for Neural Networks are Multi-Layered Perceptrons
(MLP), Convolutional Neural Networks (ConvNet or CNN) and Recurrent Neural
Networks (RNN).

MLPs [42] are based on the concept of Perceptron, a function that takes an
arbitrary number of inputs and emits a single output. More can be put in parallel
in a Layer, so that the output will have a higher dimensionality. Furthermore it
is possible to align multiple layers in succession, such that each one will have
as input the output of the previous, and a high dimensionality can be used for
the inner (hidden) layers to approximate more complex functions. This is one of
the variants that will be tested in this thesis, as a comparison baseline for other,
more complex, methods.

CNNs [20] use instead the concept of a filter, a small set of weights that
computes over a small section of the input and moves around, giving a single
output for each window it was applied to. They are typically used for Computer
Vision and sometimes for Natural Language Processing. Since the policy net-
works will not be trained on the visual output of the simulation, but in vector
form on raw numerical data (the rover will not see itself from outside, but instead
have other sensors to define its pose) the use of ConvNets is not deemed necessary.

RNNs come in several forms. The simplest one feeds itself the previous
output as an input for the next operation. A more complex and effective variant
which has gained more popularity is the Long Short Term Memory network [15].
For sequential data, like a list of observations over time, RNNs are better suited
then MLPs. For this reason a form of recursiveness will be used to strengthen
the capability of the controller in two of the architectures tested.

All the aforementioned implementations are extensions of the perceptron,
which is a kind of Artificial Neuron. Even if lately most experiments and
researches were run on this neuron model, others options were proposed and
have some useful feats that could make them more fit for this task.

2.3 Spiking Neural Networks
Artificial Spiking Neurons are an older and more realistic model of biological
neurons. Compared to perceptrons, which are instantaneous functions with
continuous output, spiking neurons have an "integrate and fire" behavior. They
store the past inputs in a "leaky memory" and have self-adapting threshold that
together determine the output.
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The output is commonly interpreted as binary in nature, indicating the emis-
sion of a spike caused by the internal value overcoming the threshold. However
it is strongly believed that the information is, in fact, not transmitted by the
spikes themselves, but by their frequency [24] [1].

Several implementations exist, some more coherent and slow, while others
more artificial and fast:

• Hodgkin–Huxley model This mathematical model was the first to be
used to represent the action-potential of neurons. It uses four nonlinear
differential equations with numerous parameters and variables, making it
very unpractical for simulations, but very realistic and descriptive [16].

• FitzHugh–Nagumo model Already a simplification from the strongly
realistic Hodgkin–Huxley model, this version uses two parameters (a, b)
to determine the behavior of its two variables (voltage v and w) [10]. Its
output is the voltage, a continuous measurement. The differential equations
contain a cubic function, which complicates the computation and makes
this the slowest method.

v′ = v − v3

3
− w + I

w′ = v + a− b · w

• Simple Model Introduced by Izhikevich to further simplify the previous
model [17]. It has three constants that are usually based on human
neuron volt and ampere measures, but can be modified (or evolved) to
accommodate inputs in other orders of magnitude. It also has four variables
that are originally used to make the neuron analogous to one of the kinds
found in the human brain. This model was built for simulations, instead
of computational real-time use, but with some adjustments it can be made
to work. The output can be continuous as the voltage v or binary with a
spike every time the former goes over the threshold t and causes a reset.
Its differential equation contain a quadratic function and an "if-then"
statement. These make it faster than the previous model, but still slow for
normal CPUs.

v′ = k1 · v2 + k2 · v + k3 − u+ I

u′ = a(b · v − u)

If v > t

{
v = c

u = u+ d

• Controller Model This is an extremely simplified model that directly
describes the memory m and the threshold t and uses only linear operations
and if statements for their differential equations [2]. Although the direct
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value m (or a transformation of it) could be used as the output, it was
planned for it to be binary, as indicator of the presence of a spike when m
is greater than t.

m = m+ I

if m ≥ t

{
t = t+ b ·m
m = 0

if m < t

{
m = a ·m
t = t+ b ·m

t = t+ (c− t) · b
2

Since in this work realism is not an objective, the controller model was
chosen, especially as the only option that, although still slower, can be considered
competitive on speed with the perceptron neurons.

2.3.1 Special Architectures and Attentions for Spiking NNs

Since SNNs are more closely related to the biological counterpart and have a
unique time component, some complex but powerful architectures can be used.
Some structures are not fully connected, some do not process the input instanta-
neously and others have blocks of neurons divided into strata.

Spike shape When a neuron spikes, the current that is transfered to its
outputs can be either suddenly discharged or follow a more natural peaking
distribution over time. Time dependent spikes are more realistic and offer a
strong modeling power, with input neuron that can spike with specific patterns to
have positive or negative inference in the output current to their shared output,
this will permit incredible modeling power with a small ensemble of neurons.

Although, the advantage of a sudden discharge is the lack of computational
cost and memory needed to save and update the spikes in each link, a difference
which truncates the training time drastically. The digital output has been shown
to be sufficient to convey considerable amount of informations anyway [48]. For
this reasons punctual inputs were used in this thesis.

Ring architecture This model imagines the neurons disposed in the shape
of a ring, with layers of variable size following each other and the last right
before the first one in the circular shape. Each neuron in a layer is connected to
at least another in the following layers; the connection are generated randomly,
with probability of connection dropping with distance. A layer of neurons in the
circle is fed with input data and another is taken as output.
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Figure 2: Examples of time dependent spikes. (a) is a step function with a delay.
(b) is the Poisson density distribution. (c) is a triangle function. (d) shows a
spike with an inhibitory component, followed by a positive activation.

Although this model is very powerful, and prone to periodic behaviours for
its built-in feedback loop, its specific design is difficult. The stochasticity of the
connection introduces new hyperparameters to tune, which makes it a two step
optimization process. Even if the random links were to be changed with a hand
picked design, the manual tuning would have to take place beforehand.

Information Transfer Time The fact that in a ring configuration a neuron
might easily be connected with neurons in different layers brings up a problem. If
the input spikes and this current is enough to make the potential of two neurons
in consecutive layers greater than their threshold, should they spike at the same
time?

This is an important decision to make, because any extra spike might generate
a chain reaction. Once again it is good to keep in mind the original model of
the biological neurons in animal brains. In these structures, the rules are set
by physics and biology, so computation is almost instantaneous, but current
transfer takes time based on the distance to travel. A longer connection will
delay the current arrival from a spike. So it has been decided to compute layer
by layer given all the input currents from the previous ones summed.
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Figure 3: Depiction of a very narrow ring of spiking neurons with adjacent input
and output neurons.

Stratified Networks The last structure hereby described is simple, fast and
maintains some of the important features of the ring structure. The Stratified
Spiking Neural Network [40] is divided in three blocks: a single layered input
strata, a context strata of an arbitrary number of consecutive layers, and an
output strata with one or more parallel layers, hence the name of stratified.

The input strata receives preprocessed data taken from the environment, the
number of neurons is in a 1-1 relation to the observed measure. These neurons
are fully connected to the first layer in the context strata. This loses the 1-1
relationship and can instead be of arbitrary size in (each of) its layer(s). In this
case the strata is fully connected to its previous output, making it recurrent.
Furthermore it is fully connected with all layers in the output strata. The output
strata is divided in one or more parallel layers, each of them receives input from
the context layer and by its own previous state. The separation of the output in
more parallel layers can be useful in case of a system that controls independent
peripherals that should not communicate directly with each other. The spikes of
this strata define the output of the whole network. This output is also fed back
to the context layer to use for the next iteration.

All of these recurrent connections make this structure very good at working
with temporal sequences and commands, with the characteristic introducing past
actions together with new observations in the context strata. For these reasons
and its superior efficiency in computation this is the chosen architecture for the
Spiking Neural Network controller.

Function of the output spikes The desired output is a continuous value,
a function that translates a discrete series of binary values into the desired
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Figure 4: Representation of a Stratified Spiking Neural Network. The prepro-
cessor is made of perceptrons, while all light cerulean layers are composed of
Spiking Neurons.

number. Different techniques are possible, taking the frequencies in the past
N time-steps is the simplest but it is limited, as, when there is no input, there
will be non output spikes, so all actuators will start in full reverse while instead
the natural idea is that no spikes means no movement. Some have proposed to
apply a Poisson process to the spikes [40], which is in some ways a more refined
function of the frequency, but with some problems: no negative number is a
natural output of a Poisson process, and the function is not symmetrical, so the
distribution of outputs between positive and negative would not be either.

Both versions can be fixed by having a second set of spikes that determines
the direction, while the first one only defines the intensity. This solution still
leaves an issue, as the direction would be a binary value that can immediately
then switch the direction of the motors, hypothetically even from 1 to -1 in one
timestep, which in a real situation would damage them. A more gradual change
of pace is strongly preferred to keep the simulation realistic.

The solution used in this work is to apply a simple function with continuous
dominion and periodical, smooth and symmetric output limited between 1 and -1,
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a sinusoidal. This function takes the frequency as input and outputs the direction
and intensity of the command in a single value. With an input frequency of 0, the
output will be equally null. Once the process is started, the passage between a
positive and negative output (the engine going forward or backward) can happen
by a rise or descent in the frequency. For these reasons it was selected with the
addition of a parameter that is multiplied by the frequency, to define how many
peaks are available without having to change the length of the spike series on
which the frequency is measured on.
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3 Evolutionary methods
Evolutionary Algorithms are optimization techniques inspired by natural evo-

lution, which has worked slowly but relentlessly to make life happy to live in
every corner of the world and, now, even beyond, with human space exploration.
These methods are proven to work in diverse environments, with few parameters
and, as such, they are both adaptable and simple. This makes them well suited
for the problem faced in this work.

When approaching the optimization of a neural network via evolutionary
methods there are two possible modi operandi. The one which more easily
comes to mind is having the genome contain every parameter of the network in
a 1-1 relationship, so evolving a single gene will change only the value weight or
bias it encodes. This approach was recently used by OpenAI [32] and UberAI [39].

Otherwise one could evolve a function that computes the parameters of the
network based on some intrinsic variables, an indirect encoding. The most
known implementation of this technique is HyperNEAT [37]. The strength of
this method is the use of symmetries and patterns to quickly encode the same
response for specular parts of the robot, but its weakness is the need to create
an encoder function for each layer and each parameter of the neuron.

In this work the first option will be explored, with the use of three different
methods described in the following section.

3.1 Direct encoding
The advantage of this implementation is the power of versatility. By tuning
every single parameter independently it will approach the optimal performance
given the network shape and type. This might require a considerable amount of
time as while one parameter gets optimized another might move from the peak,
but with the right algorithm and the inclusion of mutation adaptability this risk
is strongly limited.

3.1.1 Genetic Algorithms

This is the simplest version of an evolutionary method that will be imple-
mented in this thesis. Already from its formulation it looks very similar to
a parallel random walk, yet in previous studies it appeared to be superior to
random search in all tests with policy networks [39].

Every generation the best elements are kept for the new population, while
the remaining spots are filled by randomly sampling individuals and mutating
them. Mutation is of fixed scale and is normally distributed around the zero
vector. Sampling can be either uniform across the population or weighted by
fitness or rank. In both cases the sample will also include replacement, the same
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individual can be picked more than once and mutated differently, before being
introduced into the new population.

Parameters of the algorithm:

• Population size refers to the number of individuals that are "alive" at
the same time. A higher number means more combinations are tested every
generation. Since this method ignores derivatives completely, a certain
number of individuals are needed to effectively explore the landscape.

• Number of Elites is the number of individuals that is passed to the next
generations unchanged, without mutations, given their superior fitness
score. In the original paper this is only one single individual, the best
fitting. The higher it is, the more conservative the algorithm becomes,
exploring frequently around the same superior individuals.

• Mutation scale is simply the standard deviation of the random noise
which is added to a parent to create a new individual.

• Sample type indicates which kind of function will determine the par-
ents of the new generation. Typically this is a stochastic function that
samples from the previous population with either uniform distribution
or weighted by their fitness. In case of a weighted sample the most
common approaches for each probability are fitness and rank based:
wi = fitness(i)/

∑N
j=1 fitness(j) vs wi = rank(i)/

∑N
j=1 rank(j) respec-

tively. The former is more efficient at finding high value areas when there is
high variance in population fitness, the latter is more robust at identifying
the best even if they are very close in fitness. In both cases it is possible
to apply a function to the value of interest to make the distribution more
skewed or smooth. In the previous study a uniform sample was used, in
this thesis the fitness proportional was considered, albeit smoothed to still
allow for exploratory behaviour.

input :N (population size), K (number of elites), σ (mutation scale)

Population = N random individuals
for g in 1:G do

newPopulation = Elite(Population, K)
while size(newPopulation) < N do

X = sample(Population)
ε = sampleGaussian(0, σ)
Mutant = X + ε
newPopulation.add(Mutant)

end
Population = newPopulation

end
Algorithm 1: Genetic Algorithm pseudocode
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It is technically possible (and quite easy) to introduce a kind of crossover, but
the study of its effect will be over the scope and practical possibilities of this
thesis. The algorithm will then be left as proposed by the original paper [39],
which focused on simplicity as its strength.

Figure 5: Animated representation of the Genetic Algorithm in action. The
fitness landscape grows towards the center (darker blue). The best individual of
the current generation is the darker red point, while the lighter are the ones not
sampled to be parents.

3.1.2 Natural Evolutionary Strategies

This is a gradient approximation method, which optimizes the parameters
with respect to the fitness function. The gradient is estimated by adding noise
to the parameters before testing them, and this creates a Gaussian smoothing
over the fitness function, making it sensible to apply a form of gradient ascent [32].

Practically, random mutations are applied to the original genome, the new
population is tested and all those mutations are added to the original with
magnitude proportional to their fitness gain. A mutation that has caused a
better fitness will be summed, while one that has made the individual worse
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will be subtracted. Trying to describe this version in more classical evolutionary
terms, a single generation has actually two steps. Firstly the original individual
creates a population of children with Gaussian mutation, then these create a
single individual with a weighted average crossover.

Parameters of the algorithm

• Mutants set size is the number of individuals that are created in the in-
termediate generation, the higher the number of samples the more accurate
the gradient estimation is going to be.

• Mutation scale determines the standard deviation of the distribution of
the noise that is added to the single individual to create the population of
mutants.

• Learning rate is the scaling factor that exacerbates or softens the mu-
tation of the new individual, given the gradients found with the set of
mutants.

input :N (mutants set size), γ (learning rate), σ (mutation scale)

X = 1 random individual
for g in 1:G do

for i in 1:N do
εi = σ*sampleGaussian(0, I)
Mutant = X + εi
Fi = fitness(Mutant)
j = N + i
εj = −εi
Mutant = X + εj
Fj = fitness(Mutant)

end
X = X + γ · 1

2Nσ

∑2N
i=1 εi · Fi

end
Algorithm 2: Natural Evolution Strategies pseudocode

This algorithm lacks any kind of self-adaptability, as the fitness grows so does
the mutation, while in a noisy landscape, like Neural Networks parameter spaces,
a form of mutation moderation can help. This problem is muffled by the forced
symmetry in mutations which makes the final movement proportional to the
difference in fitness between the two mutants. Furthermore, from the original
OpenAI paper [32], this algorithm does not work well on simple Neural Networks
and, instead, requires some advanced tricks to work properly, like virtual batch
normalization, which makes the network more sensitive to little changes, this
does not exist in SNNs and was not implemented in the perceptron based models,
so it was decided to not use this method in the final implementation.
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Figure 6: Animated toy representation of the Natural Evolution Strategy in
action. The multiple light red points are the symmetrical couples of sampled
individuals.

3.1.3 Differential Evolution

Differential Evolution [38] is a parallel direct search method that can tackle
discontinuous and non differentiable fitness functions. Its unique mutation type,
called differential mutation, is calculated as the difference between two genomes
in the population, then scaled by a global parameter before adding it as perturba-
tion to a third genome; this can be the one with best fitness or randomly chosen
each time. This algorithm uses a uniform crossover between the new genome
created with the differential mutation and another random genome from the
population. The selection is of tournament type, with groups of size 2 composed
of the mutant genome after the crossover and the one in the population it crossed
over with.

Parameters of the algorithm

• Population size is the number of individuals alive at the same time. It is
advisable to have a higher population size when the problem dimensionality
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is big, this also helps with having better variation when applying the
mutation mechanism.

• Number of couples determines how many pairs of parents are sampled
from the population and subtracted to create the same number of dif-
ferential mutations. When increased it becomes more likely to explore
differences in all parameters between them. Generally, the higher the
problem dimensionality, the higher this number should be, but never ex-
ceeding half the population size since, by rule, the sample is done without
replacement.

• Scaling factor increases or decreases the entity of the differential mutation,
to further decide the exploration of the method. No exact rules clip this
parameter, but generally it is selected between 0 and 2.

• Crossover probability determines which percentage on average of the
individual parameters are exchanged with the mutant ones before compar-
ing it with the original. Its value is bound between 0 and 1. A higher value
makes it so the individual from the previous generation is compared with a
very different element, a lower value means that only some parameters will
change and the exploration is focused on lower dimensional hyperplanes.

These parameters have been tested for different problem dimensionality and
number of evaluations available (comparable to time constrain) in [28]. Those
results have been treated as a base for the parameters used in this work.

Figure 7: Animated representation of Differential Evolution. The best individual
is in dark red. The new one at its various mutation steps is in light red.
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input :N (population size), CP (number of parents),
F (scaling factor), Cr (crossover probability)

Population = N random individuals
for g in 1:G do

Base = Elite(Population, 1)
for X in Population do

Parent1, Parent2, ... Parent 2CP = sample(Population, 2CP)
delta =

∑CP
i=1 Parenti − ParentCP+i

Mutant = Base + F · delta
for xi in X, mi in Mutant do

if Uniform(0,1) < Cr then
mi = xi

end
end
if fitness(Mutant) > fitness then

newPopulation.add(Mutant)
else

newPopulation.add(X)
end

end
Population = newPopulation

end
Algorithm 3: Differential Evolution base algorithm pseudocode

An important factor in evolutionary algorithms is the ability to self-regulate
the mutation scale, so that it might explore or exploit when needed, possibly also
for each gene independently. Differential evolution grants this by design, since its
mutation is strongly related to variance in population. The more scattered the
individuals, the more exploratory the differential mutation, with higher absolute
values. If instead the population starts to cluster around some local maxima this
mutation will be small, and permit an exploitative mutation of the landscape
around this established optima, while still having the ability to explore when
the "parents" randomly selected are from two different clusters.

This is the only evolutionary method used in this thesis with this self-
adaptability to the explored landscape. For this reason it was decided as the
main implementation, together with positive results in the preliminary grid
search which showed it was comparable or superior in performance to both other
implementations on Spiking Neural Networks optimization.

19



3.2 Importance of the fitness function definition
The choice of the fitness function is of the utmost importance when developing

evolutionary algorithms, because every opportunity to raise the fitness is taken,
sometimes even with unpredictable behaviors as consequences.

A typical and intuitive example is to set a fitness function to train a vehicle.
Fitness goes up with distance from the starting point and is coupled with a
efficiency incentive that lowers the fitness for each action, a cost function. If
this cost function is badly weighted then the optimal solution is to stay still, not
performing any actions so that the fitness will remain null instead of going in
the negative with the first, uncoordinated and useless, movements. This is a
case of local maximum.

Another problem is the one of exploitative behavior, in which the agent
develops a strategy which is parallel to the one imagined still getting a high
reward. This is observed, for example, in [41], where an agent had to run on a
circuit and was awarded by the each movement along the circuit and penalized
each time it went out of it. The circuit had an 8 shape and the best solutions
avoided the curves, too complex to learn and slow to ride on, and only learned
to go back and forth on the central straight lines.

From an evolutionary point of view these are very logical adaptations, and
the fault resides in the incomplete or badly balanced fitness function. In the
former example the problem can be avoided with a two-step training which first
rewards distance covered and in a second iteration introduces the cost function,
when the population of agents is already apt at covering distances and efficiency
becomes the target. The latter occurrence was solved by introducing a condition
to the fitness function which rewarded movements on the circuit only if that part
of the circuit was not already being traversed before [41]. This forced the agents
to leave the straight line and, eventually, to try the bended sides of the circuit.

In this thesis another example of exploitation was also observed. The fitness
function of the rover rewards moving fast in a direction and penalizes the use of
energy and strong hits to the structure while landing. Furthermore, there was a
stopping condition if the body touched the ground. This was implemented by
setting a lower limit on the height of the central body, such that the reaction
wheel would not touch the ground. What was not considered was that the height
was calculated from the bottom of the robot mainframe and not from the center.
The robot quickly learned to flip on its back and use the reaction wheel to run
forward at speeds that were not possible using legged locomotion . This exploit
was simply solved by raising the lower limit of the robot height and that behavior
was made impossible.
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3.2.1 Novelty Search

One of the solutions that has recently been used to avoid the stagnation of
the population around local optima of the fitness function, and to contrast lazy
exploitative behavior in favor of more useful solutions, is Novelty Search [23]. In
fact it is also an important part of the NEAT approach, with the formation of
species. This method rewards how different a new solution is with respect to the
previous by adding to the fitness function, so that a group of variations of an
atypical individual, distant from the ones around a local optimum could survive
in a competitive environment.

The impact of this novelty can then be an absolute or a relative factor. It
could be decided that the "weirdest" individual has to survive all the time,
or that each individual fitness will be summed to the novelty after scaling it
with some arbitrary weight, making it possible to have small groups of aberrant
individuals. While this subpopulation of solutions explores its neighborhood, it
is kept alive by this added novelty value. This extra reward reduces with density.
Therefore, after enough exploration, the subpopulation will have to find a new
optimum, so that the falling novelty reward will be compensated by a higher
pure fitness to make these individuals survive. Otherwise the overpopulation
will likely kill the whole subgroup in one go, as soon as the density is too much
to make up for the lack of fitness.

Once again the question is not easily solved, as the definition of Novelty is
not set in stone, especially with noisy systems like Neural Networks or structures
like graphs or wavelets. Even once a distance is defined between individuals,
the problem persists in the weight this should have against the fitness. For
example, in the case of a direct encoding genome, should the novelty factor be
in the genome or in the behavior? When using an indirect encoding, should the
difference in the graph structure be prioritized, or the resulting parameters of
the network or once again the behavior?

It appears very difficult to quantify differences in behavior, so the better
option appears to be measuring the distance between parameters vectors.

Possible distances between vectors

• Euclidean: the most classical form of distance, but it is not optimal for
this strategy, since when parameters become big the measure follows√∑

i

(xi − yi)2
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• Chi squared: a weighted version of the Euclidean distance. It manages
to maintain the distances less affected by the parameter scale√∑

i

(xi − yi)2

xi + yi

• Cosine: the weighting factor is brought to the extreme, as this measure
can only take values between -1 (diametrically opposed) and 1 (same
orientation). The absence of a measure of distance between magnitudes is
its strength, but neural networks might not work the same with proportional
weights, if they contain non-linearities different from ReLU

arcos( XTY
||X||·||Y || )

π

For a population of N individuals the number of distances are N(N-1), so this
operation is in the order of O(N2). Since it has to be run for every generation
and all the direct encoding require a relatively big population size to challenge
the problem dimensionality, this method could end up burning many resources
for an unknown return.

Even if the computational cost was affordable, a weighted function should
be applied to this measure of distance before summing it to the fitness of the
individual. In regard of this function, the two main possibilities are using the
lowest distance from another individual or the average of all of them, maybe
scaled so that they end up between 0 and 1. Furthermore, another scaling factor
has to be decided before applying this Novelty value to the fitness.

Taking in consideration all these open questions and discussions, it was
decided to not include a Novelty Search algorithm between the techniques used
for this work. This decision is taken without casting doubts on the efficacy on
this method, but it would have required a long preliminary phase of experiments
to define the best implementation.
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4 Experiments
In the following chapter all the practical steps of the implementation are discussed.
From the network size, to the hyperparameter choice and, finally, the practical
results in both benchmarks and low-g environments.

4.1 Architectures
Multi-Layered Perceptron

The input is a concatenation of the past N observation, there are three hidden
layers with dimensionality directly proportional to the input size, and the output
layer is directly controlling the joints. All activation functions are hyperbolic
tangents. For the experiments in this thesis four observations were used as input,
following what was done already in [32] and [25].

Recurrent Neural Network

This version of a Recurrent Neural Network is used as a midway between the
MLP and the SNN architectures, as it uses the Stratified Network shape but
with perceptrons. It is very important to test this intermediate solution, to
better understand which component gives a greater edge to the Spiking Neural
Networks over the standard Multi-Layered Perceptron. There is an MLP working
as an input preprocessor. Input and output of this network have the same size
and a single hidden layer double that size. The activation functions of the
hidden layer are ReLU and the ones of the output are hyperbolic tangents. The
preprocessed input gets fed to the first recurrent layer, twice as big, which is
connected bidirectionally to the output layer controlling the joints directly. The
recurrent layers activations are hyperbolic tangents.

Spiking Neural Network

The Spiking Neural Network architecture is almost the same of the Recurrent
Neural Network, but with Controller Model neurons instead of perceptrons.

An MLP preprocessor with input and output layer of the same size and
a single hidden layer twice as big. The activations are ReLU for the hidden
layer and tanh for the output one. The preprocessor is connected to the first of
three layers of spiking neurons, the second and third of which are bidirectionally
connected and recurrently connected, as seen in the Stratified Network paragraph.
The activation function was used as surrogate of the spiking mechanism, so there
is not one applied to the output of the spiking layers.

The output of the last spiking layer is stored in spike trains and the frequency
of spike in the last N steps is multiplied by an evolved parameter and processed
by a sine function. This value is used as an input for the robot joint controller.
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4.2 Software and Hardware
Hardware All experiments were run on a single home owned Personal Com-
puter, the specifications are as follow:

• CPU Intel 8700

• RAM 16 Gigabyte DDR4

• GPU Nvidia GTX 1080

Since Evolutionary Algorithms don’t use backpropagation all the computa-
tions are done by the CPU and the GPU is only used by MuJoCo during the
rendered simulations.

Software MuJoCo is used to simulate the environment and the robot move-
ments, with the help of the OpenAI gym framework. All the code is written in
Python 3.6 and uses the pymp package to run the training simulations on more
cores in parallel. Everything is run on 8 parallel threads.

4.3 Hyperparameter Optimization
To find optimal parameters for the evolutionary methods a grid search was used,
evaluating the best fitness obtained by the algorithm training the same MLP
architecture population on the Ant-v2 Gym environment.

Since it was observed in previous tests how most of the growth in fitness
happened during the first 50 generations, this was selected as the number of
iterations for each combination of parameters. The 12 parameter tuples that
produced the best individuals were then plotted and evaluated. Handmade
pattern recognition was used to find the best values for each value, singularly or
in combinations. Or at least to identify the worst values and avoid them.

Following are shown the various sets explored with the grid search: Tables 2,
3 and 4. In Appendix A the plots can be found and reasoning behind the choice
of the optimal parameters.

Genetic Algorithms

Sigma 0.01, 0.02, 0.05, 0.1
Number of Elites 1, 3, 5, 10
Parent selection Rank based, Uniform
Parent ranking Fitness proportional, Ledger ranking

Table 2: All values in the grid search to tune the Genetic Algorithm on the
Ant-v2 environment. In bold are highlighted the chosen ones. When Parent
selection was set to Uniform, Parent ranking was skipped as it would have been
uninfluential.
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Natural Evolution Strategy

Sigma 0.01, 0.02, 0.05, 0.1
Number of Samples 30, 50, 100, 250
Learning Rate 0.005, 0.01, 0.05, 0.1, 0.5

Table 3: Values tried for each parameter in the grid search to tune the Natural
Evolutionary Strategy to the Ant-v2 environment. In bold are highlighted the
chosen ones.

Differential Evolution

Scaling Factor 0.1, 0.5, 1, 2
Crossover Probability 0.1, 0.4, 0.9
Couples of Parents 1, 2, 5, 10, 25
Mutant Base Random, Best individual

Table 4: Values tried for each parameter in the grid search on the Differential
Evolution. In bold are highlighted the chosen ones.

4.4 Benchmarks
To test the effectiveness of the method it is run on benchmarks present in the Ope-
nAI gym framework; specifically, on three taken from the MuJoCo environment
and based on periodic movements, or gait. For these tests a population of 100
spiking neural networks is created and evolved with three different evolutionary
algorithms. Since the Natural Evolutionary Strategy technique has a single main
individual, the best element of the starting population is selected as the first
generation individual.

All populations are trained for 4 epochs of 100 generations. New individuals
are assigned a fitness which is the average of 15 trials in the simulation. Every
100 generations the whole population is tested with 30 simulations and assigned
the average result as new fitness. In the case of the Natural Evolution Strategy
the samples are evaluated with an average of 15 trials, but, since there is a single
individual per generation, the computational cost of knowing its fitness more
accurately is definitely inferior. For this reason, every generation the newly
created individual is tested on 30 simulations.

After 400 generations, the best individual evolved with each method is tested
for 100 simulations on the environment and its median fitness is reported. The
sets of 100 results are tested in pairs with a t-Test to see whether the difference
in the controllers fitness is statistically significant.
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4.4.1 MuJoCo Environments

The goal of all these environments is to find the optimal trade-off between going
fast and using as little energy as possible.

• Swimmer This environment is one of the simplest. Only two joints to
control, no gravity and no stopping condition. The reward is given based
on speed, and the cost is relative to the magnitude of the actions taken.

• Half Cheetah With six joints to control and no stopping condition, this
bidimensional environment is harder and requires more complex periodical
movements to maximize its fitness. The reward is given by the speed of
the cheetah and the cost is proportional to the entity of the movement.

• Ant This simulation permits movement in all three dimensions and has
stop conditions, it is a hard environment to master. With eight joints to
control and the condition to not touch the ground or jump too high, the
controller has to learn a steady but fast gait to optimize the returns. The
reward is given by speed and the cost by the magnitude of the combined
actions taken. Furthermore, a generous reward is given for each timestep
the simulation runs. This is to help with enforcing the avoidance of the
stopping condition.

4.4.2 Results

Environment GA NES DE
Swimmer-v2 51.8 30.6 57.4 8

HalfCheetah-v2 180.6 9 -4.9 47.4
Ant-v2 1213.8 10 1160.5 1094.4

Table 5: Results on the benchmark environments of the best SNN individual mu-
tated after 400 generations of each Evolutionary Method. The best performance
is highlighted in bold, in all cases the difference in fitness between individuals is
significant (Welch’s t-Test p < 0.01). The best results are shown in 8, 9 and 10.
Bigger animations are shown in Appendix D.

Figure 8: Swimmer bench-
mark. SNN evolved with
Differential Evolution.

Figure 9: Half Cheetah
benchmark. SNN evolved
with Genetic Algorithms.

Figure 10: Ant bench-
mark. SNN evolved with
Genetic Algorithms.
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Swimmer

Figure 11: Best individual fitness on the Swimmer-v2 benchmark over genera-
tions.

Figure 11 shows the results of the best individual of each population over gen-
erations. The most notable detail is the lack of progress by the element evolved
by the Natural Evolution Strategy. This might be due to the starting individual
which was merely a local maximum and the mutation step of the algorithm was
not enough to escape from it. About the individuals produced by the other meth-
ods, Differential Evolution seems to have an edge, but the distribution has long
plateaus in which the best fitness does not change except at the end of an epoch.
After 300 generations the situation unlocks and there is a raise in fitness that
holds the last more consistent test. In spite of this higher variance it holds the
best result after the first 50 generations. The Genetic Algorithm has very little
drops during the more consistent fitness tests at epoch end, and presents a sim-
ilar plateau between generations 100 and 350, before leaving it and growing again.

In the end the edge is still of the population optimized with the Differential
Evolution method, even if the big gaps are a sign of higher inconsistency in
behaviour.
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Figure 12: Comparison between the best SNN individuals fitness result distri-
bution on the Swimmer-v2 benchmark, trained for 400 generations with each
evolutionary method. Single results of 100 simulations.

As already intuited from the plots in 11, the box-plots in Figure 12 show an
individual with a high variance in performance from the population optimized
with Differential Evolution, while the one created by the Genetic Algorithm has
the highest consistency. Nevertheless in more than half of the simulations the
DE individual scored better than the best fitness the GA element reached.

The best element obtained from the Natural Evolution Strategy is actually
the best individual produced by the random generation of the initial population.
It is still useful to show, as it better remarks the notable improvement of both
other evolutionary methods over the starting individuals.
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Half Cheetah

Figure 13: Best individual fitness on the HalfCheetah-v2 benchmark over gener-
ations.

From Figure 13 there is little doubt that the three methods have different
effectiveness, with Genetic Algorithms taking the lead in a very convincing
manner, followed by the Differential Evolution at less than a third of the former
in final fitness and at last by Natural Evolution Strategy, without any serious
gain from the starting best individual.

The Genetic Algorithm population produces a fast fitness growth in the first
50 generations, settles on a slower one up until about the 225th and then seems
to reach a plateau with rare exploitations jumps. It appears as the Differen-
tial Evolution reaches a very lengthy plateau at a way lower fitness level, and
abandons it just a few generations before the end of the last. In both cases it is
interesting to notice that for the stronger consistency simulations at the end of
the epochs the drops are very low, or even little gains. This shows that both
methods produced an individual with very consistent behaviour, and consequent
fitness results.

Natural Evolutionary Strategies fail this task with abysmal gains in fitness in
the course of 400 generations. Possibly for a too small learning rate or mutation
scale, alternatively because the best individual in the starting population was a
lonely peak kind of local maximum.
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Figure 14: Comparison between the best SNN individuals fitness result distribu-
tion on the HalfCheetah-v2 benchmark, trained for 400 generations with each
evolutionary method. Single results of 100 simulations.

In Figure 14 is the box-plot of the 100 simulations results for the best indi-
vidual produced by each evolutionary method. As seen from Figure 13, the best
individual is produced by Genetic Algorithms, with all simulations but a single
low outlier scoring a fitness over 150 and an average of 180. The Differential
Evolution individual follows with a more consistent series of simulation scores
distributed symmetrically around almost 50. The individual evolved with the
Natural Evolution Strategy is the lowest at scoring, with all simulations very
close to -5. The fact that it does not even reach a positive result in all 100
simulations means that the low score is not caused by an unstable behaviour,
but a consistently bad one.

In this case, even if the Differential Evolution has a higher consistency in
results than Genetic Algorithms, the greater variation is explained by the higher
score and there is no doubt that the latter method outputted the best individual.
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Ant

Figure 15: Best individual fitness on the Ant-v2 benchmark over generations.

In Figure 15 it is possible to observe the best fitness over time by evolutionary
method. Differential Evolution is way faster in gaining fitness for the first 50
generations, after those its growth slows down substantially until the fitness
obtained with the other methods gets better after the first 100 generations. The
other populations keep gaining fitness at higher pace, with both apparently far
from any asymptotic maximum.

The faster convergence can be explained by the self-adaptability of the dif-
ferential mutation. This one, as explained in chapter 3, has a magnitude that
variates with the variance in population. In fact the exploration/exploitation
trade off was part of the reason why it is used in this thesis. This switches too
early and converges around a good local optimum.

For the other two algorithm there is a fixed magnitude mutation step which
is Gaussian based and explores only through the samplings from the tails of
the distribution. Although this might make the movement to the optima too
conservative or too jittery, in this case it appears to have the right sigma and it
proceed in surpassing the differentially evolved individuals.
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Figure 16: Comparison between the best SNN individuals fitness result distribu-
tion on the Ant-v2 benchmark, trained for 400 generations with each evolutionary
method. Single results of 100 simulations.

In Figure 16 is the box-plot of the 100 simulations results for the best individ-
ual produced by each evolutionary method. The best scoring is the one evolved
with Genetic Algorithms. The Natural Evolution Strategies individual follows
with its third quartile slightly above the first of the former. The individual
evolved with Differential Evolution is the lowest at scoring, but is also the most
consistent, with a lower variance in the results.
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4.5 Low-g Environments
For these experiments, each environment is created with the same rover shape but
different gravity and different fitness functions. In lower gravity bodies, the cost
of impact and energy used are decreased to represent the lesser effect of the mass.

Each simulation is run for 1000 steps and it is prematurely interrupted if
the central body of the rover or its reaction wheel touch the ground, indepen-
dently from the force of impact. For each individual, 15 simulations are run
and its personal fitness is the average result of these. Every 100 iterations of
the evolutionary algorithm, a stronger test is done on the whole population,
which is tested on 30 simulations and a fitness equal to the new simulations
results average is assigned to each individual. This is done for two reasons:
avoiding stagnation around a lucky result and an eventual early stopping of
the evolutionary algorithms, if this more confident fitness does not grow in the
course of 100 generations.

For every architecture (MLP, RNN, SNN) a population is created with 100
individuals and evolved with two algorithms (Genetic Algorithm and Differential
Evolution) for 500 generations. At the end of this training, the best individual
of the population is tested for 100 simulations and its median fitness is shown
as the final result. The whole set of 100 results in the simulation is compared
with a t-Test to see if they belong to the same population or have a statistically
significant difference.

4.5.1 Mars

Mars is the next destination for humanity. ESA, NASA, ISRO and SpaceX all
have plans for a (manned or unmanned) trip to the red planet, and the recent
discovery of an underground water lake [27] might push even more on the gas.
Several rovers have already explored its surface, but all of them are designed with
wheels and low elevation, this has caused problems in the past. For example, in
2005, Opportunity remained stuck in the sand with almost all wheels and risked
to be permanently immobilized, before managing to get free after 7 weeks. A
lucky escape, since the rover is still in function in 2018.

The rough terrains of mars could be explored by a legged rover with greater
ease than with the current design, more prone to the sandy plains. On the
other hand, with a gravity of 3.7m/s2 gravity of Mars is still quite strong, and
legged locomotion would consume a lot of energy. For this reason it is unlikely
to observe the rover presented in this thesis move gracefully or jump. More likely
it will behave similarly to ones evolved on the Ant environment, but with slower
pace, so to not become unstable and tumble.
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Results

MLP 4obs RNN SNN
GA -148.2 -72.8 573.5
DE -141.8 -119.7 574.5

Table 6: Fitness obtained in the simulated environment of Mars after 500
generations of Differential Evolution by the three architectures. In bold the best
score.

From Table 6 and Figure 17 it is apparent how the spiking controllers out-
perform the other architectures. Between the two spiking controllers there is
very little difference in median, but the one optimized by Differential Evolution
has lower variance. The evolutionary methods made a difference in optimizing
the Recurrent Neural Networks, where the one evolved with Genetic Algorithms
is superior in both median and consistency.

Figure 17: Distribution of results on the Mars gravity environment for each of
the best individuals, by architecture and evolutionary method.

The Multi-Layered Perceptron controllers suffer of a strange effect. Their
behaviour is surprisingly consistent for the vast majority of the simulations,
except a few exception in which the final score is an abysmal -4000. Probably a
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small percentage of the random starts causes a negative chain effect of actions
that makes the controller perform worse and worse. It is important to notice how,
even excluding these random initializations, the results of the MLP controllers
are still the worst median-wise.

Figure 18: Fitness score of the best individual of each population over generations.

Figure 18 shows the trend of the best fitness obtained by each combination
of architecture and evolutionary algorithm. The separation between Spiking
Neural Networks and the others looks even starker than from Figure 17. What
can be observed for all implementations is that after the first epoch the gain in
fitness score is very little and all populations reach an asymptote. The recurrent
controller does not actually gain any fitness for the whole five epochs. While
both the MLP and the SNN do. Interesting how for the former the Genetic
Algorithms have a faster convergence to the local maximum, while for the latter
the Differential Evolution has an extremely fast gain in first 25 generations and
then slows down substantially.

Especially for the MLP and SNN controllers, Differential Evolution appears
to create individuals which are more consistent in their fitness scoring, as shown
by the smaller drops in best fitness when tested more consistently every 100
iterations.
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Figure 19: .

SNN Mean Median Std Dev
GA 557.4 573.5 86.3
DE 567.5 574.4 37.2

Table 7: Statistics of the performance by the best individuals of the differently
evolved SNN population on the Mars environment.

Table 7 contains the statistics of the distribution of results in the final test for
the best spiking individual evolved with both Differential Evolution and Genetic
Algorithms. The results are shown in two boxplots in Figure 19. What can be
observed from these is how the individual evolved by Differential Evolution is
more consistent in score, with less outliers in the lower side, but also a shorter
tail in the better results.

It is important to notice how the distributions of results of the spiking
controllers evolved with Genetic Algorithms and Differential Evolution are not
statistically different from each other (Welch’s t-Test p > 0.05).
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Figure 20: The controller evolved with Genetic Algorithms on the Mars environ-
ment

Figure 21: The controller evolved with Differential Evolution on the Mars
environment.
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4.5.2 Moon

Our own satellite has naturally been the first celestial body to be explored, first
by humans and then by rovers. Since today only three rovers have landed on the
lunar surface, the Soviet Lunokhods in the 70s and the Chinese Yutu in 2013.

Both designs belong to the typical six-wheeled rover. The Soviet rovers
achieved impressive results with their design, with the Lunokhod2 holding the
record for the longest drive on a celestial body up until Opportunity passed it 40
years later. On the other hand, the Chinese probe was stuck in sand after just
42 days, but actually kept working and sending data for a total of 31 months,
showing how much more potential was in the mission.

With a legged design the more energy consumed and complex controller
are heavily counterbalanced by the unlikeliness of getting immobilized by sand.
Lunar gravity, set around 1.68m/s2, should make jumping a reasonable choice
of movement, as some of the astronauts actually tried to do, even with their big
spacesuits on. It is expected for the controller to do small jumps, amortize the
landing and follow with a moment of stabilization.

Results

MLP 4obs RNN SNN
GA -216.1 -95.8 499.3
DE -186.7 -183.9 578.8

Table 8: Fitness obtained in the simulated environment of the Moon after 500
generations of Differential Evolution by the three architectures. In bold the best
individual, the spiking architecture evolved by Differential Evolution.

From Table 8 and Figure 22 it can be seen that the separation between the
Spiking Neural Network controllers and the perceptron based architectures is
clear and significant, being the only ones that manage to obtain consistently
positive results and with lower variance.

The other architectures score mainly between 0 and -500 with some heavy tail
on the lower side. A small edge goes to the recurrent networks, especially to the
one evolved with Genetic Algorithms, but the high variance and frequent outliers
under a fitness of -500 make them incomparable to the spiking counterparts.
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Figure 22: Comparison between the best individuals of each block of training. The
box-plots represent the distribution of the fitness results for the 100 simulations
run for each of these optimal agents.

The absolute worst result is from the Multi-Layered Perceptron controller
evolved with Differential Evolution, scoring just above -2500 in fitness. Such
outlier is a peculiar sight, but further samples have shown this happen with
the same frequency of around 1%. The possible explanation is that one of the
random initializations for the simulation, which happens roughly once every 100
tests, causes the controller to act in a very unrewarding manner, by creating a
chain reaction of bad states and worse responses.
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Figure 23: Fitness of the best individual on the Moon Environment over time,
with all three architectures and two evolutionary methods each. The division is
clear and once again spiking neural networks are substantially superior.

In Figure 23 are shown the average scores of the best individual of each
population over the generations. In this case the three architectures appear well
separated from the start to the end. Most of the gain happens in the first 100 or
even 50 generations for all versions and a long plateau with little gains happen
after the first epoch.

For all the architectures the Differential Evolution seems to make the best
individual more consistent, as observed from the less drastic drops in fitness score
at the end of the epochs. For the MLP-based population it even creates a better
individual than Genetic Algorithms. Although the absolute result is not thrilling,
one of the goals of this thesis was to show the validity of differential evolution
as a Neural Network optimization mechanism, and the ability to produce this
controller competitively to the already accepted Genetic Algorithms method is a
good result.
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Figure 24: Comparison between the best SNN individuals fitness result on the
Moon environment distribution, by evolutionary method.

As seen in Figure 24, and confirmed in Table 9, the individual optimized with
Differential Evolution is better in both average and deviation. Both controllers
have fairly symmetrical and Gaussian shaped distribution in scores. This is a
good sign and indicates that regardless of the initialization of the simulation the
rover behaves in a single way and ends up with a good fitness score. Once again,
this is more true for the individual optimized with the Differential Evolution
method.

Mean Median Std Dev
GA 492.9 499.3 42.5
DE 575.6 578.8 20.8

Table 9: Statistics of the performance by the best individuals of the differently
evolved SNN population.
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Figure 25: Detail of the Spiking Neural Network controller evolutions on the
Moon environment over generations.

For the SNN controller Differential Evolution seems to have worked better as
its score reach a plateau fixed at around 50 more than the individual produced by
Genetic Algorithms, as seen in Figure 24. Furthermore, the drops in score at the
end of the epochs are significantly more contained for this population (Figure 25).
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Figure 26: A comparison of the distribution of the individuals average fitness in
the three randomly initialized populations. From the start it appears clear that
the Spiking Neural Network structure is better, followed by the Recurrent and
finally by the MLP.

To investigate the pure effect of the architecture, without the influence of the
evolutionary methods, the starting populations are shown in Figure 26. That
can be interpreted as a small random search, of 100 random individuals. Also
in this case the distribution of average fitnesses are definitely different between
architectures, with the Spiking Neural Networks having an edge over the others
wit ha few individuals already scoring in positives.

This should dismiss the chance that the architecture and the optimization
method are concurring in making the spiking controller a better solution, and
instead prove how this model has an innate greater power in working with gait
based behaviours.
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4.5.3 Ceres

Ceres is the biggest and most massive celestial body in the Mars-Jupiter asteroid
belt, comprising one third of the total mass. It is large enough to be considered
a dwarf planet as its gravity, at 0.28 m/s2, is sufficient to give it a round shape.
It is composed by a rocky core surrounded by a 100km high water ice layer.
This huge quantity of water is the main reason of interest for this body. There
have been even hypothesis that life could have been possible in an underground
ocean, although this is nowadays considered unlikely. An expedition on this
dwarf planet would offer an answer and prepare the ground for possible future
water extraction and rocket fuel production.

Since the gravity is so low it is expected that the rover proposed in this thesis
should work better than a wheeled one and that the reaction wheel will help
much with the long jumps resulting from even minimal energy applied by the legs.

Results

MLP 4obs RNN SNN
GA -182.9 -89.1 458.1
DE -295.7 -129.9 550.0

Table 10: Fitness obtained in the simulated environment of Ceres after 500
generations of evolution by the three architectures. In bold the best result,
obtained by the Spiking Neural Network Controller optimized with Differential
Evolution.

From Table 10 the spiking controller is the only one that manges to turn
the fitness function to a positive value. In the perceptron based architectures
Genetic Algorithms manges to evolve a better individual, but in the end the best
controller is produced by Differential Evolution applied to the Spiking Neural
Network.

In Figure 27 the results of the best individuals evolved are shown side to
side for comparison. For both average and deviance the spiking controllers
appear significantly superior, while the Multi-Layered Perceptrons are the worse
and the Recurrent Neural Networks lay in the middle, but with bad results.
Specifically, the MLP individuals have most of their results between 0 and -1000,
without a single positive value, but both have a group of outlier scores around
-4000. This appear when the random start makes the controller jump at full
strength in the wrong direction, and keeps flying towards worse and worse returns.
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Figure 27: Comparison between the best individuals of each block of training. The
boxplots represent the distribution of the fitness results for the 100 simulations
run for each of these optimal agents.

In general the fitness distributions of all individual have significantly heavier
tails in the lower score side. This probably means that the controller is not able
to cope with some rarer random initialization of the simulation, and when it
starts in those position it acts sub-optimally which creates a chain event of unseen
or unsolved situations in which the controller cannot get a high fitness return.
The only solution to this occurrence would be to optimize the networks on more
simulations every step, but that would go against the premise of the thesis, of
having good results with little computational power and time expenditure.
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Figure 28: Fitness of the best individual on the Ceres environment over time,
with all three architectures and two evolutionary methods each. The division is
clear and once again spiking neural networks are substantially superior.

In Figure 28 are shown the trends of the best scoring individual by archi-
tecture and evolutionary method over generations. There is a clear distance in
performance between the spiking controllers and the perceptron based, which
appear all clumped up with a little edge for recurrent networks.

Most of the score growth happens in the first epoch and afterwards it is
mostly little gains in fitness, which might be due to randomness of the less
consistent fitness function used for the optimization.
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Figure 29: Comparison between the best SNN individuals fitness result distribu-
tion, by evolutionary method

Mean Median Std Dev
GA 403.5 457.8 137.7
DE 524.6 543.2 99.5

Table 11: Statistics of the performance by the best individuals of the differently
evolved SNN population.

As seen in Figure 29 and Table 11 not only Differential Evolution created a
better individual, by mean and median (Welsh t-Test p = 6.6e− 06), but it has
also more consistency in its behavior, with less variance in fitness results. It is
important to notice how the median is higher than the mean in both cases, as
the individuals tend to have only negative outliers.

It is interesting to notice that the individual evolved with Genetic Algorithms
has many score outliers clustered around a fitness of 100. This seem to indicate
a second, less likely behaviour followed by the controller that brings less efficient
returns. It could be likely caused by a bad landing after a jump, as little dif-
ference in the starting position made the controller take flight in an unplanned
way and unable to correctly compensate before landing roughly. Interestingly
the one evolved by Differential Evolution appears to have the same problem but
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with considerably inferior frequency. To what is due this consistency is very
hard to find out, but the important information given by the data is that this
controller is scoring better than the Genetic Algorithms one with and without
considering these outliers.

Figure 30: Animation of one of the uncommon instances in which the SNN
evolved for the Ceres environments shows a proactive behaviour that exploits
the low gravity. In this case the controller optimized with Genetic Algorithm
moved similarly to a Golden Wheel Spider (Carparachne aureoflava).

This lower variability in behaviour is the reason that gives Differential Evo-
lution an edge over the Genetic Algorithms. In each simulation, the controller
acts similarly, so that a good score is actually indicative of a good controller and
not caused by a lucky draw in the tail of the actual distribution of responses to
the starting condition. Consequently, the evolution that rewards good fitness is
actually promoting good controllers over mediocre ones.
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Figure 31: A comparison of the distribution of the individuals average fitness in
the three randomly initialized populations. From the start it appears clear that
the Spiking Neural Network structure is better, followed by the Recurrent and
finally by the MLP.

To investigate the effect of random events in the evolution process which
could have brought advantage to the SNNs, the distribution of fitness in the
starting populations of each architecture is plotted in Figure 31. From this one
it can be seen how already from the beginning the three sets of individuals are
ordered clearly with the simpler architecture ranking last and the spiking one
getting the best place. However, the distributions appear different but not so
separate as the final individual end up being. This to show that the evolutionary
methods are still having an important effect in the optimization over the random
generation.

Implementing a different fitness function Upon visual investigation of
the best individuals performances in the simulation, it was observed how the
spiking controllers scored higher by exploiting the survival reward. The rover
would slide lazily on the surface, using the minimum amount of energy possible.
The other two architectures did not learn this exploit and were instead more
proactive. As a result, they often crashed or moved in the wrong direction. To
try and obtain a more interesting behaviour for the Spiking Neural Network
controllers (along the line of 30), a different fitness function was defined and the
three architectures were optimized again on it. Results are in Appendix B.
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5 Discussion

5.1 Related work
This thesis does not exist in a vacuum, and many previous works have touched
the same arguments. Without their mathematical models and results, this thesis
would have been a much harder challenge. Two are the main topics of inspiration:

5.1.1 Optimizing Spiking Neural Networks

Berland in his thesis uses an Evolutionary Algorithm to optimize a Spiking Neu-
ral Network to command a simulated robot in a food chase, beating regular MLP
and converging faster than other Spiking Neuron models [17]. In the conclusion
of his work he leaves open the question of a more complex application of its neu-
ron model. This thesis is, in a way, an answer to that question, and a positive one.

Other special Spiking Neural Networks were used as controller of robots and
optimized with evolutionary algorithms. In [9] a robot structure similar to the
one used by Berland receives a SNN controller based on Reservoir Computing
([34]) and evolved with satisfactory results. In [30] a special kind of Spiking
Neuron is created to simulate the biological ones dedicated to the olfactory
system, which is then used as the main part of a robot that acts in a simulated
3D environment to find the source of a chemical compound, by following its
concentration in the air. In [13] the Spiking controller is used for a real robot in
a real environment that learns to actuate its two wheels to avoid obstacles.

A version of backpropagation to train Spiking Neural Networks has been
proposed in the past [21]. This implementation is used to optimize the connection
weights between neurons and time delays between firing and spike emission. Since
in this thesis (and the previous examples) the values to optimize include internal
parameters and the spikes are treated as punctual digital output, this method
would not be useful.

5.1.2 Training methods for controllers

The success of Google’s DeepMind on MuJoCo benchmarks [26] [14] and GO
[36] are based on Reinforcement Learning. This technique is applied to Neural
Networks with the Actor-Critic model [19], in which a Critic entity is trained to
evaluate the value of a couple State-Action (for example with direct supervised
learning over observation of a random behaviour entity). At the same time,
an Actor entity is optimized so that given an input it will output the action
that the Critic considers best (for example through backpropagation over the
Actor network, to maximize the output of the Critic). This method has shown
great results in Perceptron based architectures, and does not necessarily require
backpropagation to optimize the agents, but the use of Evolutionary Algorithms
makes the training of the Critic superfluous, as stated in Chapter 2.
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Several studies have been performed on alternative policy gradient techniques,
in which the Actor is a stochastic entity that gets monotonically optimized. One
of these methods, Trust Region Policy Optimization, has been applied to some
of the MuJoCo benchmarks with good results [35]. Another method is to treat
the set of Neural Networks as a Deep Dynamical Model and solving it so to
optimize a robot movement [44].

Hinted in Chapter 3, indirect encoding is a promising tool to optimize Neural
Networks in spatially related tasks [37]. HyperNEAT has been used with success
in a similar task to evolve a controller for a quadrupedal robot [5], and it has
been proven to beat other parameter optimization techniques [47]. In those
experiments the architecture of the network was very simple, with a single hidden
layer of the same size of the input and output, and the same evolved set of weights
was used between the layers. The same process has been used to optimizing a
controller in a simulate environment, before complete the evolution on a physical
robot, saving much time with this bootstrap technique [22]. HyperNEAT, as
any indirect encoding method, brings also several questions to the table, as it is
based on spacial relationships which coordinates should the input values have
[6]. Once this dependency to the geometry is taken in consideration and solved,
it can actually become a strong feat of the method, that can generate versatile
graphs capable of encoding the right controller to many diverse robots with the
same body shape, but different proportions [31].

A study was done to test the effectiveness of hyperNEAT, proving that it
does not scale well [41]. Specifically, its internal encoder graph quickly loses the
ability to improve the final parameters in an efficient way, and it simply becomes
larger and heavier. In the same study, another indirect encoding method was
applied, based on wavelets, with results that surpass the hyperNEAT ones. This
maintains the same geometric complication of finding the right coordinates for
the input and output values, and even more for the hidden layers.
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5.2 Results wrap up
5.2.1 Spiking Neural Networks controllers

The spiking architecture adapted to all the benchmarks, and at least one of
the evolutionary methods gave good results. This shows potential for compact
Spiking Neural Network controllers in simulated environments (like video games)
or even in real life robotics, especially considering the limited hardware used for
these experiments.

In addition, SNNs have a natural edge over perceptron based architectures
on gait controllers, from their tendency to work with periodic behaviours and
set internal frequencies to follow. Besides, the comparison between MLPs and
RNNs has shown that recursiveness can slightly improve results, while most of
the edge is given by the different model of neurons.

5.2.2 Differential Evolution for SNNs

Although the benchmarks showed mixed results, Differential Evolution was the
better algorithm to optimize the spiking architecture in the main application
of this thesis. Populations that were evolved with Differential Evolution are
consistently superior to the ones optimized with Genetic Algorithms in all the
low-g environment (Welch’s t-test p < 0.01 in all cases).

The individuals created by Differential Evolution have lower variance in
behaviour in all the celestial bodies, as well as in two of the benchmarks, with
respect to Genetic algorithms. For environments in which mistakes are very
costly, like robotics, some performance can be reasonably traded off for more
consistency; even if the final goal is still to have both at the same time.

5.2.3 Low-g Environment results

On all simulations of the varying celestial bodies gravities, the Spiking architec-
ture evolved with Differential Evolution created the best controller. On Mars
the developed behaviour is more natural looking, with small steps dragging the
rover on the surface. On the Moon the controller evolved a gait of short jumps
to advance.

The results on Ceres are less impressive: SNNs evolved an overly cautious
behaviour which slowly slides on the surface, helped by the abysmal gravity.
At the same time Perceptrons evolved into a jumping rover that looked nicer,
but scored worse on the fitness, for the excess of energy used and the likelihood
of landing improperly and ending the simulation, with MLP showing a less
spasmodic behaviour than RNNs that actually lowered its chance of landing
safely.
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5.3 Possible expansions
5.3.1 Ad-hoc fitness functions

From the experiments on the Ceres environment it was observed that a good
result in the numbers is not necessarily connected to a desired behaviour. Most
of the fault resides in the fitness function that was defined. An environment
with such a low gravity did not need such a high reward for survival, like on the
other two, because the control needed to not touch the ground with the main
body was minimal. Of course changing the fitness function would have made
the comparison between environments almost impossible.

In Appendix B there is a test of a different fitness function for the Ceres
gravity simulation, which is built to incentivize more movement. This test is not
brought to its final conclusion and many different changes could be applied to
the original reward function and their effect studied.

5.3.2 Less greedy optimization

For many experiments (Figures 18, 23 and 28) it appears as the evolutionary al-
gorithms very quickly reached a plateau, which is almost surely a local maximum.
Although this is not necessarily a bad maximum, as seen from the simulations,
the chance of having more exploratory algorithms performing better in time is
to be taken in consideration.

Even if it succeeded in the grid search (see Appendix A), the use of rank-based
sampling for the Genetic Algorithms and using the best individual as base for
the Differential Evolution might have made these optimization methods more
exploitative than needed. In a future work the author will certainly try to use
the alternative, less greedy methods and compare the results.

Another option, already stated at the end of Chapter 3, is to apply a Novelty
Search approach, with all the study work behind it necessary to tune it to the
problem in question.

5.3.3 Evolution of the rover body

As suggested in previous studies (for example [4]), the application of Evolutionary
Algorithms can go over the optimization of the controller, and include the actual
physical characteristic of the robot. Since different gravities would logically
favour different bodies, the idea of optimizing in steps body and controller of a
rover is quite enticing. In this occasion, the fact that the Spiking Neuron model
used in this thesis has shown to be light and quickly trainable would make this
ordeal easier to overcome.
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5.3.4 Indirect Encoding

Introduced as a concept in Chapter 3, the use of indirect encoding might create
more natural controllers that use the symmetries and patterns in the robot shape
connecting them with the values outputted by the optimal controller. Future
research might focus on testing and eventually developing these techniques for
Spiking Neural Networks, without the need to use comparative architectures as
in this thesis.

The HyperNEAT method (which has been tested throughly for regular Multi-
Layered Perceptrons) or the more novel wavelet based one are not immediately
translatable to SNNs for the presence of internal parameters to evolve in the
spiking neurons, in addition to the weights between layers. The same goes for the
recurrent connections. Some ideas to adapt them were imagined for this work,
but in the end were considered too time-consuming to study and, consequently,
too experimental to use in the tests.

5.3.5 Other Spiking Neurons architectures

The combination of Stratified SNNs with Controller Model spiking neurons had
good results on the benchmarks. All other architectures and models demonstrated
in preliminary tests to be slower, but not all combinations were tried and the
use of time-based of spikes or a differently shaped stratified network might make
the controller powerful enough to work with a significantly inferior number of
neurons and obtain a similarly good result without requiring more time for
optimization and computations.
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APPENDICES



A Grid Search in-depth results
In this appendix are presented more in depth the results of the grid search to
find the hyperparameters for the evolutionary methods. Plots of the score over
time obtained with the various methods are shown and a brief comment about
each parameters is given to motivate the choices.

A.1 Genetic Algorithms

Sigma 0.01, 0.02, 0.05, 0.1
Number of Elites 1, 3, 5, 10
Parent selection Rank based, Uniform
Parent ranking Fitness proportional, Ledger ranking

Table 12: All values in the grid search to tune the Genetic Algorithm on the
Ant-v2 environment. When Parent selection was set to Uniform, Parent ranking
was skipped as it would have been uninfluential.

Figure 32: Plot of the 12 combinations of parameters for GA that made the best
performing individuals
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• Sigma is quite variegated, in the top 12 the most common values are 0.1
or 0.05. Since a slower convergence is better than an approximate one,
especially with noisy parameter landscapes like in neural networks, the
lower value was selected.

• Regarding the Parent Selection there is little doubt about the effectiveness
of sampling with probability proportional to the individual fitness over a
uniform sampling.

• In the opposite way, the use of ledger rank is almost surely the worse way
of weighting the parents for the sampling

• As for the number of elites to keep each generation there does not seem to
be a strong favourite, with 1 being the relatively better choice. Joining
this with the original implementation by [39] a single elite individual will
be kept at every iteration.

A.2 Natural Evolution Strategy

Sigma 0.01, 0.02, 0.05, 0.1
Number of Samples 30, 50, 100, 250
Learning Rate 0.005, 0.01, 0.05, 0.1, 0.5

Table 13: Values tried for each parameter in the grid search to tune the Natural
Evolutionary Strategy to the Ant-v2 environment.
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Figure 33: Plot of the 12 combinations of parameters for NES that made the
best performing individuals

• Intuitively, the higher the Number of Samples for each generation, the
better the result. This, however, seriously increments the computational
time and makes the comparison somewhat unfair with respect to the other
methods, which can try at most 100 new individuals every generation.
For these reasons it was decided to set it to 100 symmetric samples per
iteration in future implementations.

• The best Sigma is between 0.1 and 0.05. These values encourage exploration
more than exploitation, and to better balance the two strategies, the lower
value was chosen.

• From these tests the best Learning Rate seems to be 0.01, and generally
lower than Sigma. This value will be used in the future implementations.
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A.3 Differential Evolution

Scaling Factor 0.1, 0.5, 1, 2
Crossover Probability 0.1, 0.4, 0.9
Couples of Parents 1, 2, 5, 10, 25
Mutant Base Random, Best individual

Table 14: Values tried for each parameter in the grid search on the Differential
Evolution.

Figure 34: Plot of the 12 combinations of parameters for DE that made the best
performing individuals

• The best value for the Crossover Probability seems to be 0.9, keeping on
average 90% of the mutant genome.

• Half of the top 12 best individuals was evolved with a Scaling Factor of
0.1, it is then considered the optimal between the tested values.

• Having the best individual of the population as the base for the mutant
genome seems better.

• Curiously the number of parent couples does not seem to influence much
the results, as both the minimum and maximum values are present in
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the top 12. Shrinking the podium, half of the top 4 used 5 pairs of indi-
viduals as parents, for this reason it was selected in future implementations.
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B Different fitness function for Ceres
In this appendix are given the result of a brief exploratory experiment in which
the fitness function is tuned to incentive more movement out of the controllers
on the Ceres environment. Spiking controllers showed a good solution in terms
of score, but not as desired behaviour, as they were able to survive with little
adjustments of the engines so to never touch ground, but never advance either.
The new fitness function severely reduces the cost of movement that was hypoth-
esized was holding the SNN controllers from evolving a gait. Following are the
plots and analysis of the result over a brief test of 100 generations.

Figure 35: A comparison of the distribution of the individuals average fitness in
the three randomly initialized populations. This are the results of the changed
fitness function that reduces the cost of movement, to encourage a less passive
approach.
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In Figure 35 the distribution of the individuals results of the more proactive
fitness function is shown. The best element belongs to the RNN population in
this case, but they are all definitely closer and with less variance, with respect
to Figure 31. This is explained by the fact that the two Perceptron based
architectures are more prone to act at every step and this behavior is not as
detrimental anymore, because the cost of performing an action has been lowered
in the hope they will learn to move on this low gravity body.

Figure 36: Evolutionary curves representing the score of the best individual of
the population over 100 generations.

From Figure 36 the immediate reaction would be to consider the Recurrent
architecture as the better one, yet the big drop following a plateau, reveals a
strong instability in the individual results. A deeper analysis is done in Figure
37 and Table 15 that reveals the causes.
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Figure 37: Comparison between the best RNN and SNN individuals fitness result
distribution, trained for 100 test generations with each evolutionary method.
Single results of 100 simulations.

As it can be seen in Figure 37 the results after 100 generations are not very
promising for the Recurrent architecture. A very high variance makes it possible
for an individual to score a successful result on a small sample of simulations,
as during the training (see Figure 36), but the average score on a more sound
series of test is balanced by negative results and ends up lower than the way
more consistent Spiking Neural Network version. Furthermore from the training
curves the RNN architecture seemed to have reahced a plateau at a higher score
than the SNN, but this was only due to a sample size too small with regard to
the variance.
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Mean Median Std Dev
MLP - GA 862.1 858.4 470.6
MLP - DE 764.2 792.0 581.9
RNN - GA 557.4 609.7 859.9
RNN - DE 393.0 384.3 662.2
SNN - GA 390.4 449.6 137.1
SNN - DE 499.0 534.0 107.1

Table 15: Statistics of the performance by the best individuals of all populations
evolved with each algorithm. After 100 generations.

Figure 38: Comparison between the best SNN individuals fitness result distribu-
tion, by evolutionary method, 100 generations.
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From Figure 38 it appears that all of the outliers in fitness results from the
best individual evolved are on the lower side.
For the individual evolved with Genetic Algorithms these seem to cluster around
a fitness that is about 25% of the mean one. This can be explained with the
controller converging around two different behaviors based on the slight random-
ness of the starting position in the simulation.
The second behavior is less efficient and lowers the overall average more than
the sparse outliers from the Differentially Evolved controller. From the data it
also appears that this second behavior raises the variance in results. Were this
behavior to be was erased from the controller by evolution, this would be more
consistent although less performing on average then its alternative evolved with
DE.
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C Time analysis
From the experiments in the low-gravity environments it appeared that from
the initial random population onward the Spiking Neurons architecture had a
consistent edge over the others. For this reason the study of the time required
by the calculations becomes almost superfluous.
A quick descriptive analysis is nonetheless added in this appendix, as one of
the goals of this work was to show the approximation power of Spiking Neural
Networks over perceptron based architectures.

MLP 4obs RNN SNN
GA 6.06 (21833) 1.2 (4314) 4.47 (16080)
DE 11.91 (42859) 1.32 (4749) 4.51 (16237)

Table 16: Hours (seconds) required for the architecture to compute one epoch

Table 16 shows the time required to optimize with both methods the various
architectures for an epoch. An epoch consists of 100 generations in which the
fitness function is the average of 15 simulations plus an additional fitness check
over the population with 30 simulations. The population size is 100 in all cases.

From the data presented it is possible to see how the Differential Evolution
always takes more time then Genetic Algorithms. This is due to the greater
amount of operations to perform to create a new individual. In the case of
Genetic Algorithm there is a Gaussian random sampling of size equivalent to the
number of parameters and the sum of these to the original values. For the Differ-
ential Evolution there’s a sampling of K parents, followed by sum and subtraction
of their parameters it is then K times the amount of sums with respect to the
Genetic Algorithm counterpart. In addition, depending on the number of elites
kept each generations the Genetic Algorithm saves that number of simulations to
test the fitness. While, with Differential Evolution, a number of new individuals
equal to population size is tested every generation. Since simulations are con-
siderably heavier than the operations, this last point could be the most influential.

The comparison between RNN and SNN show how the use of Spiking Neu-
rons instead of Perceptrons makes a big impact on computation time (around
350%). This is because the number of parameters raises and the differential equa-
tions to update the neuron state are not present in the Recurrent Neural Network.

Regarding the impressive time required by the Differential Evolution on
the Multi-Layered Perceptron, since this is the model with highest amount of
parameters, the higher computation count of this optimization algorithm makes
a bigger impact. To the point of excluding its use in future experiments with
very deep or wide Perceptron architectures.
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D Benchmark videos
Better resolution of the videos of the best individual result on the benchmarks.

Figure 39: Swimmer-v2 Gym-MuJoCo benchmark evolved with Differential
Evolution.

Figure 40: HalfCheetah-v2 Gym-MuJoCo benchmark evolved with Genetic
Algorithms.
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Figure 41: Ant-v2 Gym-MuJoCo benchmark evolved with Genetic Algorithms.

72


	Introduction
	Definition of the problem
	Robot description
	Active Mass Balance Auto-Control

	Proposed approach
	Novelties


	Neural networks
	Action-Value vs Policy Networks
	Architectures of Artificial Neural Networks
	Spiking Neural Networks
	Special Architectures and Attentions for Spiking NNs


	Evolutionary methods
	Direct encoding
	Genetic Algorithms
	Natural Evolutionary Strategies
	Differential Evolution

	Importance of the fitness function definition
	Novelty Search


	Experiments
	Architectures
	Software and Hardware
	Hyperparameter Optimization
	Benchmarks
	MuJoCo Environments
	Results

	Low-g Environments
	Mars
	Moon
	Ceres


	Discussion
	Related work
	Optimizing Spiking Neural Networks
	Training methods for controllers

	Results wrap up
	Spiking Neural Networks controllers
	Differential Evolution for SNNs
	Low-g Environment results

	Possible expansions
	Ad-hoc fitness functions
	Less greedy optimization
	Evolution of the rover body
	Indirect Encoding
	Other Spiking Neurons architectures


	Appendix Grid Search in-depth results
	Genetic Algorithms
	Natural Evolution Strategy
	Differential Evolution

	Appendix Different fitness function for Ceres
	Appendix Time analysis
	Appendix Benchmark videos

	0.0: 
	0.1: 
	0.2: 
	0.3: 
	0.4: 
	0.5: 
	0.6: 
	0.7: 
	0.8: 
	0.9: 
	0.10: 
	0.11: 
	0.12: 
	0.13: 
	0.14: 
	0.15: 
	0.16: 
	0.17: 
	0.18: 
	0.19: 
	0.20: 
	0.21: 
	0.22: 
	0.23: 
	0.24: 
	0.25: 
	0.26: 
	0.27: 
	0.28: 
	0.29: 
	0.30: 
	0.31: 
	0.32: 
	0.33: 
	0.34: 
	0.35: 
	0.36: 
	0.37: 
	0.38: 
	0.39: 
	0.40: 
	0.41: 
	0.42: 
	0.43: 
	0.44: 
	0.45: 
	0.46: 
	0.47: 
	0.48: 
	0.49: 
	anm0: 
	1.0: 
	1.1: 
	1.2: 
	1.3: 
	1.4: 
	1.5: 
	1.6: 
	1.7: 
	1.8: 
	1.9: 
	1.10: 
	1.11: 
	1.12: 
	1.13: 
	1.14: 
	1.15: 
	1.16: 
	1.17: 
	1.18: 
	1.19: 
	1.20: 
	1.21: 
	1.22: 
	1.23: 
	1.24: 
	1.25: 
	1.26: 
	1.27: 
	1.28: 
	1.29: 
	1.30: 
	1.31: 
	1.32: 
	1.33: 
	1.34: 
	1.35: 
	1.36: 
	1.37: 
	1.38: 
	1.39: 
	1.40: 
	1.41: 
	1.42: 
	1.43: 
	1.44: 
	1.45: 
	1.46: 
	1.47: 
	1.48: 
	1.49: 
	anm1: 
	2.0: 
	2.1: 
	2.2: 
	2.3: 
	2.4: 
	anm2: 
	2.EndLeft: 
	2.StepLeft: 
	2.PauseLeft: 
	2.PlayLeft: 
	2.PlayPauseLeft: 
	2.PauseRight: 
	2.PlayRight: 
	2.PlayPauseRight: 
	2.StepRight: 
	2.EndRight: 
	2.Minus: 
	2.Reset: 
	2.Plus: 
	3.0: 
	3.1: 
	3.2: 
	3.3: 
	3.4: 
	anm3: 
	3.EndLeft: 
	3.StepLeft: 
	3.PauseLeft: 
	3.PlayLeft: 
	3.PlayPauseLeft: 
	3.PauseRight: 
	3.PlayRight: 
	3.PlayPauseRight: 
	3.StepRight: 
	3.EndRight: 
	3.Minus: 
	3.Reset: 
	3.Plus: 
	4.0: 
	4.1: 
	4.2: 
	4.3: 
	4.4: 
	4.5: 
	4.6: 
	anm4: 
	4.EndLeft: 
	4.StepLeft: 
	4.PauseLeft: 
	4.PlayLeft: 
	4.PlayPauseLeft: 
	4.PauseRight: 
	4.PlayRight: 
	4.PlayPauseRight: 
	4.StepRight: 
	4.EndRight: 
	4.Minus: 
	4.Reset: 
	4.Plus: 
	5.0: 
	5.1: 
	5.2: 
	5.3: 
	5.4: 
	5.5: 
	5.6: 
	5.7: 
	5.8: 
	5.9: 
	5.10: 
	5.11: 
	5.12: 
	5.13: 
	5.14: 
	5.15: 
	5.16: 
	5.17: 
	5.18: 
	anm5: 
	6.0: 
	6.1: 
	6.2: 
	6.3: 
	6.4: 
	6.5: 
	6.6: 
	6.7: 
	6.8: 
	6.9: 
	6.10: 
	6.11: 
	6.12: 
	6.13: 
	6.14: 
	6.15: 
	6.16: 
	6.17: 
	6.18: 
	anm6: 
	7.0: 
	7.1: 
	7.2: 
	7.3: 
	7.4: 
	7.5: 
	7.6: 
	7.7: 
	7.8: 
	7.9: 
	7.10: 
	7.11: 
	7.12: 
	7.13: 
	7.14: 
	7.15: 
	7.16: 
	7.17: 
	7.18: 
	7.19: 
	anm7: 
	8.0: 
	8.1: 
	8.2: 
	8.3: 
	8.4: 
	8.5: 
	8.6: 
	8.7: 
	8.8: 
	8.9: 
	8.10: 
	8.11: 
	8.12: 
	8.13: 
	8.14: 
	8.15: 
	8.16: 
	8.17: 
	8.18: 
	8.19: 
	8.20: 
	8.21: 
	8.22: 
	8.23: 
	8.24: 
	anm8: 
	8.EndLeft: 
	8.StepLeft: 
	8.PauseLeft: 
	8.PlayLeft: 
	8.PlayPauseLeft: 
	8.PauseRight: 
	8.PlayRight: 
	8.PlayPauseRight: 
	8.StepRight: 
	8.EndRight: 
	8.Minus: 
	8.Reset: 
	8.Plus: 
	9.0: 
	9.1: 
	9.2: 
	9.3: 
	9.4: 
	9.5: 
	9.6: 
	9.7: 
	9.8: 
	9.9: 
	9.10: 
	9.11: 
	9.12: 
	9.13: 
	9.14: 
	9.15: 
	9.16: 
	9.17: 
	9.18: 
	9.19: 
	9.20: 
	9.21: 
	9.22: 
	9.23: 
	9.24: 
	9.25: 
	9.26: 
	9.27: 
	9.28: 
	9.29: 
	9.30: 
	9.31: 
	9.32: 
	9.33: 
	9.34: 
	anm9: 
	9.EndLeft: 
	9.StepLeft: 
	9.PauseLeft: 
	9.PlayLeft: 
	9.PlayPauseLeft: 
	9.PauseRight: 
	9.PlayRight: 
	9.PlayPauseRight: 
	9.StepRight: 
	9.EndRight: 
	9.Minus: 
	9.Reset: 
	9.Plus: 
	10.0: 
	10.1: 
	10.2: 
	10.3: 
	10.4: 
	10.5: 
	10.6: 
	10.7: 
	10.8: 
	10.9: 
	10.10: 
	10.11: 
	10.12: 
	10.13: 
	10.14: 
	10.15: 
	10.16: 
	10.17: 
	10.18: 
	10.19: 
	10.20: 
	10.21: 
	10.22: 
	10.23: 
	10.24: 
	10.25: 
	10.26: 
	10.27: 
	10.28: 
	10.29: 
	10.30: 
	10.31: 
	10.32: 
	10.33: 
	10.34: 
	10.35: 
	10.36: 
	10.37: 
	10.38: 
	10.39: 
	10.40: 
	10.41: 
	10.42: 
	10.43: 
	10.44: 
	10.45: 
	10.46: 
	10.47: 
	10.48: 
	10.49: 
	10.50: 
	10.51: 
	10.52: 
	10.53: 
	10.54: 
	10.55: 
	10.56: 
	10.57: 
	10.58: 
	10.59: 
	10.60: 
	10.61: 
	10.62: 
	10.63: 
	10.64: 
	10.65: 
	10.66: 
	10.67: 
	10.68: 
	10.69: 
	10.70: 
	10.71: 
	10.72: 
	10.73: 
	10.74: 
	10.75: 
	10.76: 
	10.77: 
	10.78: 
	10.79: 
	10.80: 
	10.81: 
	10.82: 
	10.83: 
	10.84: 
	10.85: 
	10.86: 
	10.87: 
	10.88: 
	10.89: 
	10.90: 
	10.91: 
	10.92: 
	10.93: 
	10.94: 
	10.95: 
	10.96: 
	10.97: 
	anm10: 
	10.EndLeft: 
	10.StepLeft: 
	10.PauseLeft: 
	10.PlayLeft: 
	10.PlayPauseLeft: 
	10.PauseRight: 
	10.PlayRight: 
	10.PlayPauseRight: 
	10.StepRight: 
	10.EndRight: 
	10.Minus: 
	10.Reset: 
	10.Plus: 
	11.0: 
	11.1: 
	11.2: 
	11.3: 
	11.4: 
	11.5: 
	11.6: 
	11.7: 
	11.8: 
	11.9: 
	11.10: 
	11.11: 
	11.12: 
	11.13: 
	11.14: 
	11.15: 
	11.16: 
	11.17: 
	11.18: 
	anm11: 
	11.EndLeft: 
	11.StepLeft: 
	11.PauseLeft: 
	11.PlayLeft: 
	11.PlayPauseLeft: 
	11.PauseRight: 
	11.PlayRight: 
	11.PlayPauseRight: 
	11.StepRight: 
	11.EndRight: 
	11.Minus: 
	11.Reset: 
	11.Plus: 
	12.0: 
	12.1: 
	12.2: 
	12.3: 
	12.4: 
	12.5: 
	12.6: 
	12.7: 
	12.8: 
	12.9: 
	12.10: 
	12.11: 
	12.12: 
	12.13: 
	12.14: 
	12.15: 
	12.16: 
	12.17: 
	12.18: 
	anm12: 
	12.EndLeft: 
	12.StepLeft: 
	12.PauseLeft: 
	12.PlayLeft: 
	12.PlayPauseLeft: 
	12.PauseRight: 
	12.PlayRight: 
	12.PlayPauseRight: 
	12.StepRight: 
	12.EndRight: 
	12.Minus: 
	12.Reset: 
	12.Plus: 
	13.0: 
	13.1: 
	13.2: 
	13.3: 
	13.4: 
	13.5: 
	13.6: 
	13.7: 
	13.8: 
	13.9: 
	13.10: 
	13.11: 
	13.12: 
	13.13: 
	13.14: 
	13.15: 
	13.16: 
	13.17: 
	13.18: 
	13.19: 
	anm13: 
	13.EndLeft: 
	13.StepLeft: 
	13.PauseLeft: 
	13.PlayLeft: 
	13.PlayPauseLeft: 
	13.PauseRight: 
	13.PlayRight: 
	13.PlayPauseRight: 
	13.StepRight: 
	13.EndRight: 
	13.Minus: 
	13.Reset: 
	13.Plus: 


