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A B S T R A C T

Unmanned aerial vehicles (UAVs) are an efficient surveillance tool;
by flying over the game reserve rangers are able to cover much more
ground than on their traditional foot patrol. However, the aerial im-
agery gathered by the UAV contains a lot of irrelevant information.
In fact, less than 1% of the pixels contain the information the rangers
require to protect their game reserve. Current methods for object
detection are not fast enough to process the high resolution aerial
imagery on a nature conservation drone.

Resizing the image results in a higher detection rate, but by resiz-
ing the image without considering the content we might remove the
important pixels containing the object the ranger is looking for. Resiz-
ing images increases the detection rate in two ways. First the reduc-
tion in image size allows the proposal method to generate candidate
boxes faster. Second, due to the reduction in image size the proposal
method generates fewer candidate boxes that need to be evaluated by
the object detector.

We use a content-aware image resizing method that avoids the re-
moval of important pixels. We show that using our methods we can
remove 75% of the pixels without negatively impacting detection per-
formance. In fact, we find in some cases that due to the reduction in
the number of candidate boxes, the detector produces fewer false pos-
itives resulting in better detection performance on the resized images.

The results of this thesis were published in The 28th Benelux Con-
ference on Artificial Intelligence (BNAIC 2016) as:

Anouk Visser, Content-Aware Image Resizing to improve the Object De-
tection rate in Aerial Imagery. In The 28th Benelux Conference on Artificial
Intelligence (BNAIC 2016).
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1
I N T R O D U C T I O N

To combat poaching or perform game counts, nature conservationists
need to inspect areas that are very large and hard to reach by car or
foot. To do so, nature conservationists have started to use unmanned
aerial vehicles (UAVs) [1] [2]. Over the past few years, it has be-
come increasingly simple to buy and fly a UAV, or drone. But, what
do drones offer to conservation workers? This question is answered
clearly in [3]: drones gather images efficiently. UAVs equipped with
cameras enable conservation workers to monitor large areas more eas-
ily. Drones have proven to be useful for various nature conservation
tasks including the counting of elephants without disturbing the an-
imals [4] as well as looking for signs of animals such as orang-utan
nests [5] which are often hard to see from the ground.

This thesis focusses on the application of drones as a tool for anti-
poaching operations. Sadly, 2014 was a record-breaking year for the
number of rhinos poached in South Africa. A total of 1215 rhinos
were poached, a 21% increase over the previous year [6]. The de-
clining rhino population has now become a major cause for concern
for many nature conservationists, game reserves and governments.
Many different measures are taken to combat the illegal poaching of
rhinos, one of the most notable ones being the use of drones.

Currently, rangers patrol the game reserve by foot to their best abil-
ity, looking for tracks of endangered animals and poachers. However,
patrolling on foot only allows for surveilling a limited area. To com-
bat poaching more efficiently, a different solution is needed. In [7]
the application of UAVs to anti-poaching operations is described and
evaluated thoroughly. The authors list three ways in which UAVs
could be useful for anti-poaching operations. First, the UAV can
serve as an efficient surveillance tool. By flying over the game reserve
rangers are able to cover much more ground than on their traditional
foot patrol. Second, the UAV can be used as a tool to use during
poaching incidents, where it could for example relay the position of
the poachers in real-time to the rangers to assist during an arrest or
catch the poachers red-handed. And lastly, the mere presence of a
UAV might deter poachers from entering the game reserve at all.
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10 introduction

RHINOS training testing
Dimensions 3000× 2250 3000× 2250
Number of images 169 168

Number of rhinos 626 613

Average rhino dimensions 34× 36 35× 36

Table 1: Overview of the Birds.ai Rhinos Dataset, which we will refer
to as RHINOS.

COWS training testing
Dimensions 1920× 1080 1920× 1080
Number of images 141 127

Number of cows 1383 1227

Average cow dimensions 40× 43 41× 44

Table 2: Overview of the Verschoor Aerial Cow Dataset [9], which we
will refer to as COWS.

There are, however, some limitations that prevent the widespread
use of UAVs for anti-poaching purposes. In most cases it is not be
possible to establish a real-time high quality data stream between the
UAV and the ground station that is required for effective surveillance
of the reserve. This means that the gathered images can only be
analyzed after the UAV has landed. In order to transfer the images
to the ground station in a timely manner, the amount of information
should be reduced. To do this, an image compression algorithm may
be used.

Image compression algorithms are able to encode an image such
that the number of bits needed to present the image is reduced. The
goal of image compression is not to make any changes to the image,
but just reduce the file size. This is achieved by applying a combina-
tion of redundancy reduction (removing repeating patterns from the
image) and irrelevance reduction (removing parts of the image that
are irrelevant) [8].

The idea of irrelevance reduction is an interesting one when ap-
plied to the usage of UAVs for anti-poaching operations. The vast
majority of data captured by a UAV is mostly irrelevant. During
an anti-poaching mission the ranger is interested in finding two ob-
jects: poachers and rhinos. These objects do not appear frequently
in the captured aerial imagery and when they do, take up a minimal
amount of pixels compared to the background.

To illustrate that the majority of data is irrelevant, we show some
statistics of the two datasets that will be used throughout this thesis.
The Birds.ai Rhino Dataset contains a total of 337 images with a total
of 1,239 rhinos that need to be detected. We will refer to this dataset
as the RHINOS dataset. In Table 1 we show some statistics of RHI-
NOS. If we look at the training set, we find that an image contains on
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(a) (b)

(c) (d)

Figure 1: (a) (b) Images taken from the RHINOS testing set.
(c) (d) Images taken from the COWS testing set.

average 3.7 rhinos that cover 34× 36 pixels each. We can estimate that
in an average image from the RHINOS training set, only 0.07% of the
pixels contain a rhino. These numbers could be even lower in practice,
as this dataset was recorded specifically to obtain aerial images of the
rhino. In Figures 1a and 1b we show two example images taken from
the RHINOS testing set. Additionally, we use the Verschoor Aerial
Cow dataset [9], which we will refer to as COWS. This dataset was
used to perform an initial evaluation of the applicability of drones for
the task of nature conservation. In Table 2 we provide the statistics
for the COWS dataset along with two images taken from the testing
set in Figures 1c and 1d. Again, we find that only a small percentage
of the pixels, 0.81% in this case, contain a cow.

Ideally the UAV is capable of reducing the image to only show the
objects that are relevant to the user. As we saw above, in the case of
aerial imagery this means that over 99% of all pixels are irrelevant
and could potentially be removed. Standard image compression tech-
niques are not capable of applying this much irrelevance reduction,
to do so the algorithms would require a better (visual) understanding
of the world.

Once the data is available another challenge arises: processing the
data. According to [7] reviewing only 500 images manually can take
up to 45 minutes. A lot of efficiency can be gained if the data were
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Figure 2: Example output of an automatic object detection algorithm
on an image taken from the RHINOS dataset.

processed automatically. Automatic object detection algorithms re-
duce the time spent looking for the object of interest. Example out-
put of such algorithms can be found for an image from the RHINOS
testing set in Figure 2. Even though UAVs are often packed with
on-board intelligence such as an autopilot, camera stabilization gim-
bal or object avoidance capabilities, automatic object detection algo-
rithms on-board a UAV are still rare. State-of-the-art object detection
algorithms may be computationally expensive or are not trained for
detecting objects in aerial imagery.

To detect objects in an image a proposal method first generates a
number of candidate boxes that are likely to contain an object [10].
These boxes are then evaluated by a proposal-based object detector
which classifies each of these boxes to produce the final detections.
An initial evaluation of using object detection algorithms for the task
of nature conservation is performed in [9]. The authors find that
the results of applying object detection algorithms on aerial imagery
look promising for the task of nature conservation. However, the
Selective Search [11] proposal method does not seem suitable to use
on a conservation drone. This is due both to its detection rate (31

seconds per image) and the number of candidate boxes needed to
achieve reasonable recall.

Proposal methods are used to speed up the detection rate of the ob-
ject detector. However, with 31 seconds per image, Selective Search is
significantly slower on aerial imagery than the 10 seconds per image
reported by [12]. As can be seen in Table 2, the dimensions of images
needed for the task of nature conservation are much larger than im-
ages found in popular benchmarks for object detection. For example,
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a typical image as provided by the PASCAL Visual Object Classes
(VOC) Challenge [13] has dimensions 500× 375. We expect that if we
can reduce the image size, the detection rate of any proposal method
will increase resulting in an overall speedup in the object detection
pipeline.

This thesis concerns the problem of content-aware image resizing on
a nature conservation drone. Content-aware image resizing is the task
of resizing an image without compromising on the content. To do so,
the content-aware image resizing methods removes pixels from the
image that it finds irrelevant to the image content.

Applying a content-aware image resizing method to aerial imagery
on a UAV has three major advantages. First the reduction in image
size should allow any proposal method to generate candidate boxes
faster. Second, due to the reduction in image size we expect the
proposal method to generate fewer candidate boxes that need to be
evaluated by the object detector resulting in another speedup in the
object detection pipeline. Third, the resized image may be transferred
to the ground station in a more timely manner, allowing the rangers
to review the relevant data while the UAV is still in the air.

The main research question of this thesis than becomes: How can
we resize an image on a drone to increase the detection rate of the
object detection pipeline without affecting detection performance?
In order to answer this question we will answer the following sub-
questions:

• How can we remove pixels from the image without compromis-
ing on the image content?

• Can we keep the recall of proposal methods constant while
reducing the image size using a content-aware image resizing
method?

• Can we increase the detection rate of the proposal method by
resizing the image?

This thesis is organized as follows. In chapter 2 we provide an overview
of previous work on content-aware image resizing and object detec-
tion. We then describe our solution to detect objects in aerial imagery
on a nature conservation drone after resizing the images using our
content-aware image resizing method in chapter 3. We perform sev-
eral experiments to verify that using our method increases the de-
tection rate without affecting the detection performance in chapter
4. Finally, we conclude with some final remarks and a direction for
future work in chapter 5.





2
T H E O RY

2.1 content-aware image resizing

With content-aware image resizing an image can be resized while
preserving the image content. An example of content-aware image
resizing using seam carving on an image from [14] can be found in
Figure 3. Using content-aware image resizing parts of the image (in
this case parts of the water and sky) are removed to preserve the most
important image content. Content-aware image resizing may be ap-
plied to an image when the dimensions of the image that needs to be
displayed are not known in advance. An example of this is the use of
images on mobile websites, where the target dimensions differ across
different mobile devices. Most of the work in content-aware image
resizing (or: image retargeting) is focused on resizing the image for
human viewers.

Various methods for content-aware image resizing are evaluated in
[15]. In this study three objectives for a content-aware image resizing
method are identified. First, the resizing method should preserve the
content. Second, resizing the image should result in a new image
with as few visual artifacts noticeable to a human viewer as possible.
And finally, the method should preserve internal structures.

The methods reviewed in [15] can be grouped into two main cat-
egories. The first category contains continuous methods that warp
an image to the target dimensions. This type of content-aware image
resizing method does not seem interesting to the problem of resiz-
ing images on a conservation drones. The other category of content-
aware image resizing consists of discrete methods that remove pixels
from an image to resize it to the target dimensions. In section 2.1.1
we describe one of the most popular discrete content-aware image
resizing methods: seam carving [14].

One of the outcomes of the evaluations in [15] is that discrete meth-
ods work best on images where irrelevant content such as sky, wa-
ter or grass is present. In chapter 1 we established that most pixels
in aerial images are irrelevant, the majority of pixels make up the
landscape. Based on this observation discrete methods seem suitable
for the task of resizing aerial imagery used for nature conservation.
However, aerial imagery is very different from images such as the one
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(a) (b)

Figure 3: Example of content-aware image resizing using seam carv-
ing from [14]. (a) Two seams that will be removed from the
image by seam carving. (b) An image resized with seam
carving (top) and the result of resizing the same image us-
ing regular rescaling (bottom).

shown in Figure 3a. To make content-aware image resizing suitable
for aerial imagery, we make some modifications to seam carving re-
sulting in our own content-aware image resizing method (which will
be described in section 3.1).

2.1.1 Seam Carving

2.1.1.1 Overview

Seam carving [14] is a content-aware image resizing method that it-
eratively removes pixels from an image in order to resize it to a cer-
tain target size. The seam carving operator repeatedly removes 8-
connected paths from the image that go from top to bottom or left to
right. To preserve the image content, these paths, which are referred
to as ‘seams‘ should not contain pixels that are of importance to the
image content. Figure 3a shows an example of two seams. We can de-
termine the optimal seam by using an energy function that expresses
the importance of pixels. Pixels that are important to the image con-
tent should result in high energy, whereas pixels that are not should
result in low energy. In every iteration, the optimal seam to remove
is the seam along which the total energy is lowest. The process of
finding the optimal seam can be solved efficiently using dynamic pro-
gramming. We will elaborate further on this in section 3.1.2. Figure
3b shows an example of an image resized with seam carving (top)
and an example of resizing the image to the same aspect ratio using
regular rescaling (bottom).

In [14] seam carving is proposed as a method of resizing images
for human viewers. Therefore, it is important that any visual arti-
facts are minimized. The authors note that the total energy (the sum
of the energy of every seam that was removed) removed from one
image is affected by the order in which seams are removed. Even
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though a seam that has the lowest energy might seem like the op-
timal choice, by removing this seam from the image the energy of
consecutive seams might turn out to be higher. Seams with higher
energy naturally contain more important pixels and removing this
seam will result in visible artifacts. To solve this problem the authors
use dynamic programming to evaluate the total energy removed for
every possible sequence of removing seams.

In [14] the authors tested several energy functions and concluded
that there is no single best energy measure for all images, but differ-
ent types of images require different energy functions. The authors
initially use gradient magnitude as a simple example of an energy
function that might be used. In other experiments they use various
saliency methods as an energy function, including the output of face
detectors to avoid removing faces from the image. In this thesis we
propose and evaluate several energy functions in order to find the
one that is most suitable to use on aerial imagery.

2.1.1.2 Optimizations

Seam carving can also be used for video retargeting as proposed in
[16]. The two most important contributions of [16] are the introduc-
tion of forward energy and the move from using dynamic program-
ing to graph cuts.

The first contribution of [16] is the introduction of forward energy.
In [14] the cost of removing a seam was described as the total energy
along that seam. Forward energy is a new method to compute the
cost of a seam that eliminates the need to evaluate all possible orders
in which seams can be removed. Removing a seam using forward
energy means that the optimal seam to remove is the seam for which
the total energy in the image after removing that seam, is lowest.

The second contribution of [16] concerns finding the optimal seam
to remove efficiently. In videos a 3D seam should be removed, where
the three dimensions are width, height and time. To do so efficiently,
the authors substitute dynamic programming with graph cuts. The
constructed graph connects all pixels to its neighboring pixels along
the dimensions of the image, as well as throughout the different
frames (the temporal direction). To find the optimal seam, we now
look for the minimum cut through the graph.

Using graph cuts an efficient near real-time implementation of seam
carving can be achieved. Graph cuts can be performed efficiently us-
ing a GPU [17]. Several variations of seam carving as described in
[16] have been re-implemented using GPU parallelization [18] [19],
indicating that real-time seam carving to retarget either images or
videos can be achieved.
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2.2 object detection

Object detection is the task of classifying and localizing all objects in
an image. The number and size of these objects may vary between im-
ages and in the image itself. To detect an object, proposal-based object
detectors [20] [21] [22] evaluate a set of candidate boxes at different
positions and different sizes. The object detector itself essentially is
a classifier that classifies each of these candidate boxes and assigns a
confidence score to every candidate box.

Object detection is often considered one of the hardest tasks of com-
puter vision because it requires correct classification and localization
of an arbitrary number of objects (which may also be absent) [23].
Additionally, it is computationally expensive because of the need to
evaluate candidate boxes at every possible position and scale in the
image. Dense sliding window methods generate a large number of
these candidate boxes in an attempt to cover as much of the image
as possible. However, evaluating all of these boxes is expensive and
decreases the detection rate (the number of seconds it takes the object
detector to evaluate one image). To increase the detection rate, pro-
posal methods are used to generate a limited number of candidate
boxes which are more likely to contain an object.

We describe several of these proposal methods in Section 2.3. In
section 2.4 we describe various object detectors.

2.3 proposal methods

To detect an object it is necessary that the proposal method generates
at least one candidate box that denotes the object. A dense sliding
window method does not consider the image content and it there-
fore has to produce a large number of candidate boxes to increase
the probability of recalling all objects. Once an object is missed by
the proposal method, it will not be recovered further along in the
pipeline.

The number of candidate boxes are related to the detection rate of
the object detector; because the object detector evaluates all candidate
boxes, the larger the number of candidates the lower the detection
rate. Dense sliding window methods are very inefficient because of
the large number of candidate boxes they produce.

To increase the detection rate, the use of proposal methods has
become increasingly popular. In contrast to dense sliding window
methods, proposal methods do consider the image content. These
methods are build on the assumption that objects in general share
the same or similar characteristics that make them stand out from
the background. For example, an object has a closed boundary and
it appears different from its surroundings [24]. Different proposal
methods use different methods of deciding what makes an object.
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Figure 4: Visualization of the output from the segmentation algo-
rithm proposed in [25] on an image from the COWS dataset
(image is visible underneath the segmentation for clarity).
Selective Search uses these regions to generate candidate
boxes, it will continuously evaluate neighboring regions
and merge them to create candidate boxes that correspond
to different levels of the hierarchies that can be found in the
image.

This enables them to reduce the number of candidate boxes needed
to achieve good recall and only produce candidate boxes (‘object pro-
posals’) that are likely to contain an object. In addition to this, the
proposal method might produce a score along with the candidate
boxes indicating the likeliness that the box contains an object.

A thorough evaluation and comparison of various proposal meth-
ods is provided by [10] and [12]. In this work ten proposal methods
are analyzed by evaluating their performance through repeatability
experiments. In these experiments the performance of the methods
are monitored under different image transformation such as resizing,
rotation, illumination changes and blurring. The experiments shows
that most proposal methods suffer from even small scale changes.
Amongst the top performing methods across all experiments are Se-
lective Search and Edge Boxes, which are described in more detail be-
low. Although the performance of BING strongly resembles a dense
sliding window approach throughout most experiments, we also eval-
uate and describe BING because it is the only method that does not
suffer significantly from changes in image size.

2.3.1 Selective Search

Selective Search is build on the observation that images are hierar-
chical: the appearance of multiple objects (sweater, arm, head) make
up another object (person). To generate candidate boxes, Selective
Search starts by segmenting the image using the fast segmentation al-
gorithm proposed in [25]. The initial regions obtained by segmenting
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Figure 5: Output for the Structured Edge Detector [26] on an image
from the COWS dataset. The Structured Edge Detector is
used by Edge Boxes to evaluate candidate boxes produced
by a sliding window approach.

the image represent the smallest objects or object parts in the image.
Figure 4 provides a visualization of the output from the segmentation
algorithm proposed in [25] on an image from the COWS dataset. The
algorithm then proceeds to group these regions (based on similarity)
to create bigger regions resulting in a number of different regions
at different scales. The image regions at different scales are used to
generate the candidate boxes. Additionally, the authors propose a
‘quality’ and a ‘fast’ setting which can be used depending on whether
high quality candidate boxes are required, or quality can be traded
for computational efficiency for a specific application.

On PASCAL VOC 2007 [13] the authors report a recall of 99%
achieved with 2,134 boxes per image (generated while using the fast
setting).

2.3.2 Edge Boxes

Edge Boxes [27] is a proposal method that generates candidate boxes
from edges. The authors observe that edges often correspond to the
boundaries of an object. Candidate boxes that contain an object thus
contain a set of edges that are fully connected. The authors design
an objectness score that favors boxes that enclose a set of connected
edges over boxes enclosing disjoint edges. To generate a set of can-
didate boxes, this method first follows the sliding window approach.
Boxes are scored by the sum of the strengths of all edges within the
box minus the strength of the edges that extend across the bounding
box. To compute the edges, the authors use the fast Structured Edge
Detector [26]. Figure 5 shows the edges on images taken from the
COWS dataset.

On PASCAL VOC 2007 the authors report a recall of 96% with an
overlap threshold of 0.5 when using the 1,000 highest ranked candi-
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date boxes. The average time per image in the PASCAL VOC 2007

dataset is reported as 0.25 seconds.

2.3.3 BING

BING [28] (Binarized Normed Gradients) is a proposal method that,
like Edge Boxes, observes that objects are defined by having a closed
boundary. To represent these boundaries, or edges, the authors use
the gradient magnitude to assign an objectness score to a candidate
box. The authors introduce the 64D normed gradient feature, that
is obtained by scaling a candidate box to 8× 8 and taking the norm
of the gradient. In addition to this new feature, the authors propose
an accelerated version; namely the binarized normed gradient. The
use of the binarized normed gradient makes BING one of the fastest
proposal methods. To produce the final objectness score, the normed
gradient is combined with the location, size and the position of the
candidate box.

On PASCAL VOC 2007 the authors report a recall of 96.2% with
an overlap threshold of 0.5 when using the 1000 highest ranked can-
didate boxes. The average time per image in the PASCAL VOC 2007

dataset is reported as 0.003 seconds.

Even though BING delivers a minimal number candidate boxes
with good recall within only 0.003 seconds per image, BING is not
considered a good proposal method. In [29] it was shown that similar
results can be achieved without looking at the image. BING assigns
an objectness score based on the normed gradient, but also the loca-
tion, size and position of the candidate box. It was shown that the
influence of the normed gradient feature on the final objectness score
is negligible.

2.4 detection methods

We can divide object detectors into two categories: detectors that rely
on carefully engineered features and detectors using features learned
by Convolutional Neural Networks (CNNs, or ConvNets).

Early work in the field of object detection, such as the Viola Jones
classifier [30] or detectors using HOG (Histogram of Oriented Gra-
dients) features [31], fits the first category. The Viola Jones classifier
uses a boosting algorithm to obtain a classifier using a large number
of simple Haar filters. In [31], the authors were able to train a linear
Support Vector Machine (SVM) on a grid of HOG features to classify
pedestrians. The state-of-the art method for object detection using
engineered features is the Deformable Part Model (DPM) [22]. This
method views an object as a collection of parts, where each part is
represented by HOG features.
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In 2012 the ImageNet challenge [32] was won by Krizhevsky et
al who applied a ConvNet to the task of image classification [33].
This deep ConvNet (with five convolutional layers) was trained on
1.2 million images, allowing it to learn very effective (hierarchical)
features.

The features learned by a ConvNet can be used for several other
tasks. In [23] a single ConvNet is used for the tasks of classifica-
tion, localization and detection. To use one network for these differ-
ent tasks, the authors introduce OverFeat: a feature extractor based
on ConvNets. By using a feature extractor based on ConvNets, one
could train a network on the task of image classification, but use
the features (which we refer to as CNN features) that are learned
by the convolutional layers for other tasks such as detection. The
R-CNN [20] and Fast R-CNN [21] object detectors (both of which
will be discussed below) are examples of object detectors using CNN
features. The use of ConvNets for object detection has yielded an
impressive increase in mean average precision (mAP) over the use of
hand-engineered features: the mAP increased from 33.7 achieved by
DPM to 66.9 achieved by Fast R-CNN.

2.4.1 Regions with CNN features (R-CNN)

Regions with CNN features (R-CNN) [20] is an object detector that
uses convolutional features to evaluate regions proposed by Selective
Search.

At test time, Selective Search is used to generate candidate boxes
on the input image. For every one of these candidate boxes, CNN
features are extracted. These features are used as input to an SVM
that classifies the candidate box. For every object category that needs
to be detected, the SVM outputs a score representing its confidence
of classifying the candidate box as this object category. To produce
the final detections, the authors apply non-maximum suppression
(NMS) to the candidate boxes, meaning if two (or more) boxes overlap
according to a given threshold, they choose to keep the box with the
highest confidence score.

R-CNN is a supervised method, meaning that it should be trained
using positive and negative examples. Because datasets where every
object is annotated individually are scarce, the authors show that it is
possible to train a ConvNet on the ImageNet classification task (that
has 1.2 million images, with labels for 1000 categories) and fine-tune it
on the task of object detection using PASCAL VOC 2007 that provides
object annotations on 20 object categories [13]. Training the ConvNet
on ImageNet has the advantage that the convolutional layers are able
to learn effective features and fine-tuning afterwards increases perfor-
mance on a specific task.
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2.4.2 Fast R-CNN

R-CNN is succeeded by Fast R-CNN [21]. It improves upon R-CNN
in two ways. First, it reverses the order in which CNN features are
extracted. In R-CNN features were extracted for every candidate box
separately. However, as many of these candidate boxes overlap, the
same features would often be computed. Fast R-CNN first computes
CNN features for the whole input image and then reuses these fea-
tures for the different regions of interest (the candidate boxes).

The second improvement over R-CNN is the change from a multi-
stage training to single-stage training. This is achieved by removing
the SVM in favor of a softmax classifier and fine-tuning the network
with a multi-task loss; learning the classification and the box regres-
sion at the same time. As a result of these two improvements, the
time to train the VGG CNN M 1024 network [34] is reduced from 28

hours to 2 hours (14× faster) and the test time of 12.1 seconds per
image is reduced to only 0.15 seconds per image (80× faster).

2.5 class activation maps

As mentioned in 2.1.1.1 various energy functions such as the gradient
magnitude or the output of a face detector may be used by content-
aware image resizing methods. In this thesis we use Class Activation
Maps (CAMs) as an energy function. CAMs show which parts of the
image a ConvNet uses to classify the image as a specific class.

To understand how a network classifies an image [35] proposes
to visualize ConvNets. By visualizing different layers, they show
that CNN features found in the higher layers are activated by spe-
cific (parts of) objects, such as faces and wheels. It seems that CNN
features act as object detectors by itself. Based on this observation,
a number of different methods started using ConvNets for weakly-
supervised object localization. Supervised object localization needs
a dataset where every object has been annotated separately. Using
weakly-supervised learning, the object localization model learns to
localize objects based only on image-level annotations.

In [36] it was shown that a ConvNet trained on image-level labels
for the task of classification is able to localize objects as well. First
the ConvNet is turned into a Fully Convolutional Network (FCN).
An FCN does not contain any fully-connected layers which would
normally use the CNN features to classify the image. After remov-
ing the fully-connected layers max pooling takes place on the feature
activations to localize a single point on the object.

To improve upon the localizations of [36], [37] uses a global aver-
age pooling layer instead of a max pooling layer. While max pooling
localizes the maximum activation, global average pooling localizes
all activations. By using global average pooling the whole object can
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Figure 6: Illustration from [37] of the process to generate a Class Ac-
tivation Map (CAM). CAMs show which parts of the image
a ConvNet uses to classify the image as a specific class. It
is generated by multiplying the weight for the specific class
by the output of global average pooling layer (GAP) on the
activations of the last layer.

be localized, instead of a single point on the object. To perform lo-
calization, a Class Activation Map (CAM) is generated. This map
is generated by multiplying the weight for the specific class by the
output of global average pooling layer on the activations of the last
layer as illustrated in Figure 6. The map can be scaled up to cover the
original image and shows what regions are most likely to contain the
specific object class.



3

A P P R O A C H

This chapter describes our solution to detect objects in aerial imagery
on a nature conservation drone after resizing the images using our
content-aware image resizing method. There are four steps that will
be described in this chapter:

• Content-aware image resizing In section 3.1 we describe how
we resize the image. This method removes the necessary pixels
to scale the image down to a given scale factor.

• Proposal Method The resized image is used as input to a pro-
posal method. This method generates a number of candidate
boxes that are likely to contain an object. In section 3.2 we ex-
plore different proposal methods that could be used to generate
candidate boxes on aerial imagery.

• Reverse resizing candidate boxes To be able to compare the
candidate boxes with the ground truth, we reverse the resizing
step. After we obtained candidate boxes from the resized image,
we use the seams to transform the candidate boxes so we can
find their place in the original image. The process of reverse
resizing is described in section 3.3.

• Object detection The final candidate boxes are evaluated by the
Fast R-CNN object detector [21] to produce the final detections
as described in section 3.4.

25
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Figure 7: The content-aware image resizing method takes as input a
scale factor and outputs the resized image.

3.1 content-aware image resizing

As can be seen in figure 7, this stage of the pipeline takes as input an
image and a scale factor and outputs the resized image. The image is
resized by applying a content-aware image resizing method inspired
by seam carving [14]. This method removes the necessary number of
pixels to scale the image down to a given scale factor.

The seam carving operator repeatedly removes 8-connected paths
from the image that go from top to bottom, or left to right. To pre-
serve the image content, these paths, which we refer to as ‘seams’,
should not contain pixels that are of importance to the image content.
To determine the importance of a pixel, we use an energy function
that outputs high energy when the pixel is important and low energy
when the pixel is irrelevant. This energy function is used to find the
optimal seam to carve.

In this section we provide a detailed description of the content-
aware image resizing method we use to resize the images. We first
discuss what it means to resize an image to a certain scale factor
followed by a description of how the optimal seams can be found.
We then present several energy functions that we evaluated. Because
our method is inspired by seam carving, we conclude by highlight-
ing some important differences between our resulting implementa-
tion and the implementation described in [14].

3.1.1 Scale Factor

We want to be able to compare our content-aware image resizing
methods to resizing methods that are not content-aware. Therefore,
we will use the same definition of a ‘scale factor’ as used in regular
image rescaling methods. To resize image I with scale factor r means
that both the width Iw and height Ih will be scaled with r:

I∗w = Iw × r, I∗h = Ih × r (1)
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(a) (b) (c) (d) (e)

Figure 8: The seam carving algorithm: (a) original image (b) output
of the energy function (c) accumulated energy (d) a seam to
be deleted (e) result after one iteration.

where I∗w and I∗h are respectively the width and height of the image
resized with scale factor r. The total number of pixels in the resized
image I∗p then becomes:

I∗p = r2 × Iw × Ih (2)

The content-aware image resizing method will remove pixels from the
image until the number of remaining pixels reaches I∗p . This means
that to resize an image with, for example, scale factor 0.5, 75% of the
pixels need to be removed.

3.1.2 Carving seams

A seam is an 8-connected path that is not important to the image
content. We can compute the cost of removing a seam s as:

c(s) = ∑
(x,y)∈s

Ie(x, y) (3)

where Ie denotes the energy image. The optimal seam s∗ can then be
defined as follows:

s∗ = arg min
s

c(s) (4)

The optimal seam can be found efficiently by using dynamic pro-
gramming. Dynamic programming is a method that reduces a large
problem to a series of (smaller) sub-problems.

Let’s first consider the case where we would like to remove verti-
cal seams from an image. Figure 8 provides a visualization for the
different steps needed to remove one vertical seam from the image
depicted in figure 8a. After finding the energy image Ie (figure 8b),
we continue by creating a table to hold the accumulated energy when
going through the image from top to bottom. Starting at the second
row, we define the accumulated energy for a pixel located at (x, y) as:

acc(x, y) = Ie(x, y) + min(acc(x− 1, y− 1), acc(x, y− 1),

acc(x + 1, y− 1))
(5)
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We use dynamic programming and so the complex problem of find-
ing the seam with the lowest accumulated energy, is reduced to find-
ing small portions of the seam. In our case, this means that for every
pixel (x, y), we find a pixel in the row above (z, y − 1) that results
in the lowest accumulated energy at location (x, y). Following the
dynamic programming method, we only store the lowest values in
every row. In addition to the accumulated energy, we store a pointer
to the previous pixel (the optimal sub-solution). When the table is
completely filled every pixel in the last row holds the cost for the
optimal seam originating from that pixel. Figure 8c shows a visualiza-
tion of the accumulated energy table based on the energy image Ie

as shown in figure 8b. The optimal seam s∗ is found by backtracking
starting from the lowest value in the last row of the accumulated en-
ergy table as shown in Figure 8d.

Because the most optimal seam does not necessarily have to be a
vertical seam, we create two energy tables one as described above
and one where energy is accumulated by going through Ie from left
to right. This leaves us with one optimal vertical seam s∗v and one
optimal horizontal seam s∗h. The length of a vertical seam will always
equal the height of the image in this iteration and a horizontal seam’s
length equals the width of the image. To decide which seam to carve
in this iteration, it is needed to compare the cost of vertical seam and
horizontal seam. However, because the image width and the height
may not be equal, simply comparing the cost of the seams might cre-
ate a bias towards the shorter seam. Therefore, we normalize the
costs for removing the horizontal and vertical seam by dividing the
cost of both seams by the image height and width respectively:

cv(s∗v) =
c(s∗v)

height
, ch(s∗h) =

c(s∗h)
width

(6)

where cv(s) is the normalized cost of a vertical seam and ch(s) is the
normalized cost of a horizontal seam. Now, the cost of the seams
can be compared and the optimal seam s∗ can be removed from the
image. In addition to removing the seam from the image, it is also
removed from the energy image Ie.

The process described above is repeated iteratively, until enough
pixels were removed.
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(a) (b)

Figure 9: (a) The original image. (b) The gradient magnitude energy
image, Ie. We find that the edges found in the original image
become visible.

3.1.3 Energy functions

We apply an energy function to the image to capture the importance
of a pixel to the image content. A good energy function assigns a
higher value to important pixels. When an energy function is applied
to an image, an energy image is created. The energy image is a vi-
sualization of the energy assigned to every image. In this section we
provide a description of the three energy functions we evaluated for
use on aerial imagery: gradient magnitude, ImageNet Class Activa-
tion Map and Aerial Class Activation Map.

3.1.3.1 Gradient Magnitude

The objective of seam carving as described in [14] is to remove pixels
without leaving a noticeable effect. Among the many energy func-
tions used to evaluate seam carving for content-aware image resizing
is the gradient magnitude. The gradient magnitude of an image rep-
resents how much it changes. We can define importance of a pixel by
the gradient magnitude. A pixel is important when at that point the
image changes a lot. A pixel is unimportant if less change occurs in
the image around that pixel.

To compute the gradient magnitude we first take the gradient of
the image in both the x and y directions and sum the absolute value
of these two gradients:

Ie = |
∂

∂x
I|+ | ∂

∂y
I| (7)

where I is the image and Ie is the resulting energy image. Because
the gradient magnitude of an image exposes how much an image
changes, the resulting energy image Ie clearly shows the edges of the
image. Figure 9 shows the gradient magnitude of an image from the
COWS dataset.
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(a) (b)

Figure 10: (a) The original image. (b) The ImageNet Class Activation
Map energy image, Ie. We find that the areas around the
cows light up, indicating these pixels contain the image
content.

3.1.3.2 ImageNet Class Activation Map

A Class Activation Map shows which parts of the image the ConvNet
used to classify the image as the specific class. Naturally, the image
regions with the highest activation in the Class Activation Map are
most likely to contain that specific object (if classification was done
correctly). We use GoogLeNet-GAP from [37] that was trained on
1,000 ImageNet classes to generate a Class Activation Map for the
top-1 prediction for the images in the COWS and RHINOS dataset.
Neither cows nor rhinos are one of the 1,000 ImageNet classes, but
the network could classify them as an animal that resembles a cow or
rhino. We will use these Class Activation Maps as the energy images.
Figure 10 shows the resulting energy image of using the ImageNet
Class Activation Map as an energy function. We find that the areas
around the cows light up, indicating these pixels contain the image
content.

3.1.3.3 Aerial Class Activation Map

The GoogLeNet-GAP network was trained on 1,000 object categories.
Neither cows or rhinos are amongst these objects. We expect to ob-
tain better results using a network that predicts these objects. There-
fore, we fine-tune the GoogLeNet-GAP network [37] for both of these
datasets.

The GoogLeNet-GAP network was trained for the classification
task on 1,000 ImageNet object categories. However, both our datasets
only contain one object. After fine-tuning the network should dis-
tinguish between pixels containing that object (positive examples) or
pixels containing the ‘background’ class (negative examples). Both
the COWS and RHINOS dataset only contain images containing the
objects. To be able to fine-tune this network we sample windows from
the images. The sampled windows each have dimensions 224× 224,
the dimensions in which the network expects images. The bounding
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(a) (b)

Figure 11: (a) The original image. (b) The Aerial Class Activation Map
energy image, Ie. The image is divided into windows of
224× 224. Each of these windows is then passed through
the network to obtain the Class Activation Map for the top-
1 prediction. Class Activation Maps for windows that were
classified as ‘background’ are multiplied by −1. We find
that the windows that contain cows light up as a whole
compared to the windows containing the background.

box annotations are used to determine what windows contain the
objects and represent a positive example, but after sampling the win-
dows only image-level labels are used. We train a separate network
for the two different datasets. We fine-tune the network for 1, 600 it-
erations before it converges.

At test time we divide the image into windows of 224 × 224 (the
same dimensions that were used to train the network). Each of these
windows is then passed through the network to obtain the Class Acti-
vation Map for the top-1 prediction. We multiply the Class Activation
Maps for windows that were classified as ‘background’ with −1. This
ensures that pixels of which the network was most confident belong
to the background get assigned the lowest energy. Figure 11 shows an
energy image for an image from the COWS dataset generated with
the Aerial Class Activation Map as described above. The different
windows are still clearly visible. We find that the windows that con-
tain cows light up as a whole compared to the windows containing
the background.

3.1.4 Modifications to the original seam carving algorithm

In addition to using different energy functions than the original seam
carving algorithm described in [14] we have made some other modi-
fications.

First, we do not require the image to be resized to a certain aspect
ratio. Instead, we merely want to reduce the number of pixels in the
image. This means that instead of removing a fixed number of verti-
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cal and horizontal seams, we can remove the optimal seam regardless
of its direction.

To avoid introducing visible artifacts into the image, the original
seam carving algorithm searches for the optimal order of removing
seams. However, in every iteration we remove one seam from the
image, without considering the consequences. Because our method
is not intended for human audiences the introduction of new energy
into the image is not a problem. However, if the newly introduced
energy is higher than the energy surrounding the important pixels,
the algorithm might choose to remove important pixels rather than
the pixels that produced a visible artifact. To counter this effect we
make another modification to the original algorithm. Instead of re-
computing the energy image after removing every seam, we simply
remove the same seam from the energy image as well.
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Figure 12: The resized image is used as input to a proposal method.
This method generates a number of candidate boxes that
are likely to contain an object.

3.2 proposal method

The resized image is used as input to a proposal method (figure 12).
This method generates a number of candidate boxes that are likely to
contain an object.

In choosing a proposal method for the task of object detection on
a conservation drone we have three requirements. First, the proposal
method must have high recall on aerial imagery, because objects that
are missed in this stage will not be recovered further along in the
pipeline. Second, we require the proposal method to have a poten-
tial to be used in real-time applications, using as little computational
resources as possible. And third, the most important increase in de-
tection rate by using proposal methods comes from the reduction of
candidate boxes that need to be evaluated, thus we require the pro-
posal method to achieve high recall with as little candidate boxes as
possible.

[10] and [12] offer an extensive comparison of different proposal
methods. However [9] finds that results on standard computer vision
datasets do not necessarily translate to aerial imagery. To select a pro-
posal method most suited to aerial imagery we perform some small
experiments described in section 4.3.1.
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Figure 13: After we obtained candidate boxes from the resized image,
we use the seams to transform the candidate boxes so we
can find their place in the original image.

3.3 reverse resizing candidate boxes

To be able to compare the candidate boxes with the ground truth, we
reverse the resizing step. As shown in figure 13; after we obtained
candidate boxes from the resized image, we use the seams to trans-
form the candidate boxes so we can find their place in the original
image.

The goal of the reverse resizing step is to transform the position
of the candidate boxes from the resized image to a position in the
original image. Doing so will allow us to compare the candidate
boxes to the ground truth.

We reverse the resizing step by re-inserting seams that were re-
moved from the image. Every time a seam is re-inserted this affects
the position of some candidate boxes. By keeping track of the trans-
formations caused by the re-inserted seams, we can compute the po-
sition of the candidate boxes in the original image. Just like when
we were resizing the image, straight lines may not be preserved. As
a result, the rectangular shape of the candidate boxes in the resized
image may not be preserved after reverse resizing. Since the object
detection step expects candidate positions to be rectangular boxes, we
reconstruct the rectangular shape of the candidate box.
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Figure 14: The final candidate boxes are evaluated by the Fast R-CNN
object detector [21] to produce the final detections.

3.4 object detection

The transformed candidate boxes are used as the input to the Fast
R-CNN object detector [21] as can be seen in Figure 14. For both
datasets we fine-tuned Fast R-CNN using candidate boxes gener-
ated by Edge Boxes [27] (no resizing was applied while training the
models). In [21] the authors fine-tune small, medium and large pre-
trained ImageNet models to perform object detection on PASCAL
VOC 2007.

We selected the medium model, because it improves upon the
small model, but does not require specialized hardware like the large
model. The medium model is the VGG CNN M 1024 network from
[34]. We used the fine-tuned network from [21] and fine-tuned it for
both the COWS and RHINOS dataset for 2500 iterations (after which
performance converged). The other parameters are identical to the
parameters that were used to fine-tune the model for PASCAL VOC
2007.
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R E S U LT S

In this chapter we present the experiments to answer the main re-
search question of this thesis: How can we resize an image on a
drone to increase the detection rate of the object detection pipeline
without affecting detection performance? To answer this question
we perform a number of experiments to verify that:

• although pixels are removed from the image, the ground truth
stays more or less intact (section 4.2)

• the recall of the proposal method is minimally affected when
resizing the image (section 4.3)

• using our content-aware image resizing method increases the
detection rate both by increasing the speed with which the pro-
posal method generates candidate boxes and by decreasing the
number of candidate boxes that need to be evaluated by the
object detector (section 4.3)

• the performance of the object detector remains stable under dif-
ferent scale factors (section 4.4).

37
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4.1 experimental setup

In this section we describe the datasets used to evaluate the effect of
content-aware image resizing to detection performance, we discuss
the different evaluation metrics that are used and recap the different
methods that are evaluated.

4.1.1 Dataset

We perform experiments on two datasets. The fist dataset is the
Birds.ai Rhinos Dataset, which we refer to as RHINOS. It contains
169 images in its training set and 168 images in its testing set. The im-
ages are 3000× 2250. Table 1 shows more statistics of RHINOS. The
second dataset is the Verschoor Aerial Cow Dataset [9], which we re-
fer to as COWS. The dataset is split in a training set of 141 images
and a testing set of 127 images. The images are 1920× 1080. Table 2

shows more statistics of COWS.

4.1.2 Evaluation Metrics

This section provides a brief overview of the main metrics used to
evaluate proposal methods and object detectors.

4.1.2.1 True Positives, False Negatives and False Positives

Detected objects are called true positives (TP), whereas objects that
were missed by the proposal method or object detector are called
false negatives (FN). The object detector might also produce detections
that do not correspond to any object in the ground truth, which are
called false positives (FP).

4.1.2.2 Intersection over Union Threshold

To determine whether an object is a true positive or a false negative
the detection is compared to a ground truth box. If the intersection
over union (IoU) of a detection with the ground truth box is greater
or equal to a pre-determined IoU threshold, the detection is marked
as a true positive. The intersection over union of a ground truth box
Bgt and the box denoting the detection Bd is computed as:

IoU =
area(Bd ∩ Bgt)

area(Bd ∪ Bgt)
(8)
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4.1.2.3 Recall

Recall represents the fraction of objects in the dataset that was de-
tected by the proposal method or the object detector. Recall is com-
puted as:

recall =
TP

TP + FN
(9)

4.1.2.4 Precision

Precision represents the fraction of detected objects that correspond
to objects in the ground truth. Precision is computed as:

precision =
TP

TP + FP
(10)

4.1.3 Methods

This section provides a brief overview of the four image resizing
methods used throughout all evaluations.

4.1.3.1 Baseline

To assess the added value of considering the content when resizing
the image, we compare our content-aware image resizing methods to
an image rescaling method that is not content-aware. As a baseline,
we use image rescaling with bilinear interpolation.

4.1.3.2 CAIR GM

We use CAIR GM to refer to the the content-aware image resizing
method as described in section 3.1 using the gradient magnitude as
the energy function described in section 3.1.3.1.

4.1.3.3 CAIR ICAM

We use CAIR ICAM to refer to the the content-aware image resizing
method as described in section 3.1 using the ImageNet Class Activa-
tion Map as the energy image, as described in section 3.1.3.2.

4.1.3.4 CAIR ACAM

We use CAIR ACAM to refer to the the content-aware image resizing
method as described in section 3.1 using the Aerial Class Activation
Map described in section 3.1.3.3 as the energy image.
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(a) (b)

Figure 15: Comparison of the percentage of important pixels that
were removed from the image by our methods to the per-
centage of important pixels removed by the baseline. All
content-aware image resizing methods remove fewer im-
portant pixels from the image than the baseline. CAIR
ACAM is the best performing method, removing fewest
important pixels from images of both datasets. (a) Results
on the COWS dataset. (b) Results on the COWS dataset.

4.2 evaluation of seam carving

This section verifies that although pixels are removed from the im-
age, the ground truth stays more or less intact. In section 4.2.1 we
compare the percentage of important pixels removed from the image
by our content-aware image resizing methods to the percentage of
important pixels removed by the baseline. In section 4.2.2 we show
some examples of images resized by all methods.

4.2.1 Quantitative

To evaluate to what extent the content-aware image resizing method
is only removing irrelevant pixels, we compare the percentage of im-
portant pixels removed from the image by our methods to the per-
centage of important pixels removed by the baseline. In this case, ‘im-
portant pixels’ are pixels that are contained by one or more ground
truth boxes. Figure 15a and 15b show the results for the COWS and
the RHINOS dataset respectively. We find that all our methods re-
move fewer important pixels from the image than the baseline. This
indicates that the content-aware image resizing methods are indeed
avoiding the removal of pixels that are important to the image content.
CAIR ACAM is the best performing method, removing fewest impor-
tant pixels from images of both datasets. We observe that the RHI-
NOS dataset appears to be more challenging than the COWS dataset.
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More important pixels were removed for all scale factors from images
from the RHINOS dataset than images from the COWS dataset.

4.2.2 Qualitative

We can also verify the content-awareness of the resizing method by
looking at the resized images themselves. Figure 16 shows an image
from the COWS dataset resized with scale factor 0.5. Although 75%
of the pixels were removed, the cows remain fully visible and seem
largely unaltered. The results of CAIR GM are shown in Figure 16b,
we find that large parts of the meadow were removed. CAIR ICAM
removes most of the surroundings of the cows, except for two small
patches of background clutter as can be seen in Figure 16c. CAIR
ACAM removes the background as well, including the shadows of
some cows as can be seen in Figure 16d.

Figure 17 shows an image from the RHINOS dataset resized with
scale factor 0.5. In the image from the RHINOS dataset multiple
things stand out. First, in the original image (Figure 17a) the bottom
right corner shows part of the UAV, this is completely removed in
the resized image by CAIR GM (Figure 17b) and CAIR ICAM (Figure
17c). We also find that parts of the water were removed by CAIR
GM, especially the stream that runs land inwards has been reduced
significantly. CAIR ICAM even removes all water from the scene.
Lastly, large portions of the road were removed. We find that due to
the removal of pixels throughout the image by CAIR GM the direction
of the road has been altered. When resizing the image with CAIR
ACAM (Figure 17d) the road is removed almost completely.
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(a)

(b)

(c)

(d)

Figure 16: Image from the COWS dataset resized with scale factor
0.5. Although 75% of the pixels were removed, the cows
remain fully visible and seem largely unaltered. (a) Origi-
nal image. (b) Image resized with CAIR GM, large parts of
the meadow were removed. (c) Image resized with CAIR
ICAM, most of the surroundings of the cows are removed,
except for two small patches of background. (d) Image re-
sized with CAIR ACAM, most of the surroundings of the
cows are removed including the shadows of some cows.
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(a)

(b)

(c)

(d)

Figure 17: Image from the RHINOS dataset resized with scale factor
0.5. Although 75% of the pixels were removed, the rhinos
remain fully visible and seem largely unaltered. (a) Origi-
nal image. (b) Image resized with CAIR GM. Unimportant
pixels such as the part of the UAV in the bottom right cor-
ner of the original image, were rightfully removed. (c) Im-
age resized with CAIR ICAM, all water has been removed
from the image. (d) Image resized with CAIR ACAM, most
of the road has been removed.
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(a) (b)

Figure 18: Comparing Selective Search (fast setting), Edge Boxes and
Bing on recall on the COWS dataset. (a) Recall over IoU
(intersection over union) thresholds for all candidate boxes.
(b) Recall over the number of candidate boxes for an IoU
of 0.5.

4.3 evaluation of proposal method

In this section we evaluate the proposal method that is used to gen-
erate candidate boxes that are likely to contain an object. In order
to select a method we compare the performance of several proposal
methods in section 4.3.1. We find that Edge Boxes outperforms Selec-
tive Search and BING on both the COWS and RHINOS dataset. In sec-
tion 4.3.2 we then continue and evaluate the recall of Edge Boxes on
resized images to evaluate to what extent resizing the image affects
the recall. Finally, we report the speed with which Edge Boxes gener-
ates boxes on resized images and the number of candidate boxes that
were generated in section 4.3.3.

4.3.1 Proposal method

We compared Selective Search (fast setting) [11], Edge Boxes [27] and
BING [28]. Selective Search has been used by numerous object de-
tectors [20] [21] because it produces high quality proposals. Edge
Boxes, like Selective Search, offers great detection performance, but
is much faster than Selective Search [10]. BING is an efficient pro-
posal method that was found to be more robust under different image
transformations than both Selective Search and Edge Boxes, however
the proposals are of lesser quality. In Figures 18 and 19 we compare
the performance of the proposal methods on COWS and RHINOS
respectively. Figures 18a and 19a show the recall for different IoU
thresholds for COWS and RHINOS respectively. Here, the recall was
computed by using all candidate boxes. We find that Edge Boxes
outperforms both Selective Search and BING. Based on these results
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(a) (b)

Figure 19: Comparing Selective Search (fast setting), Edge Boxes and
Bing on recall on the RHINOS dataset. (a) Recall over IoU
(intersection over union) thresholds for all candidate boxes.
(b) Recall over the number of candidate boxes for an IoU
of 0.5.

COWS RHINOS
Selective Search (fast setting) 27.05 111.07

Edge Boxes 3.62 6.74

BING 1.77 4.20

Table 3: Comparing the speed of Selective Search (fast setting), Edge
Boxes and BING.

Edge Boxes makes the best choice of proposal method for the task of
object detection in aerial imagery.

Figures 18b and 19b shows the recall over the number of candidate
boxes for a fixed IoU of 0.5 for COWS and RHINOS. Selective Search
and Edge Boxes offer better recall at a smaller number of candidate
boxes. We also compare the evaluation time per frame for the three
proposal methods. The results can be found in table 3. As expected,
BING provides fastest performance, spending on average only 1.77
seconds per image. Like in [10] we find that Edge Boxes provides a
good trade-off between efficiency and performance.

4.3.2 Recall

To assess the added value of considering the content when resizing
the image, we compare our content-aware image resizing methods to
the baseline which uses bilinear interpolation. Figure 20 shows the
recall for different scale factors when the intersection over union is
fixed at 0.5.

For the COWS dataset, we find that rescaling the image using CAIR
ACAM results in only a slight drop in recall from 0.92 for the orig-
inal image to 0.88 when resized with scale factor 0.5. This is a big
improvement when we compare it to the recall achieved when resiz-
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(a) (b)

Figure 20: Recall of Edge Boxes after resizing the image with CAIR
against the non content-aware baseline. (a) Results for
the COWS dataset. The best performing method, CAIR
ACAM, results in only a slight drop in recall. CAIR GM
also offers an improvement over the baseline for all scale
factors. However, the results for CAIR ICAM indicate the
Class Activation Map of the top-1 prediction of the Ima-
geNet object categories does not provide enough details to
accurately describe the importance of the different pixels.
(b) The RHINOS dataset is more challenging and shows
only a slight improvement between resizing with CAIR
ICAM or CAIR GM and the baseline. However, CAIR
ACAM shows an improvement over the baseline. CAIR
ICAM closely follows the baseline showing the ImageNet
object categories do not provide to be accurate enough to
generate a Class Activation Map that accurately identifies
important pixels.
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(a) (b) (c)

Figure 21: (a) Image from the COWS dataset. (b) Image from the
‘wild dog’ ImageNet sysnet. (c) Image from the ‘gazelle’
ImageNet sysnet.

(a) (b) (c)

Figure 22: (a) Image from the RHINOS dataset. (b) Image from the
‘stingray’ ImageNet sysnet. (c) Image from the ‘labyrinth’
ImageNet sysnet.

ing the image with scale factor 0.5 using the baseline, which causes
the recall to drop to 0.41. CAIR GM also offers an improvement over
the baseline, with a final recall of 0.58 when resizing with scale factor
0.5. CAIR ICAM closely follows the baseline up until scale factor 0.7,
after which it shows some improvement.

Although the initial energy images looked promising, using the
Class Activation Map of the top-1 prediction of the ImageNet object
categories does not provide enough details to accurately describe the
importance of the different pixels. The top-1 predictions used to gen-
erate Class Activation Maps for images in the COWS dataset contain
the ‘wild dog’ as well as the ‘gazelle’ classes. Both of these classes
might resemble the cows we want to detect (Figure 21 shows a com-
parison of these classes), but the results show these predictions do
not offer the accuracy needed to preserve the image content.

In contrast to the COWS dataset the predictions on images from
the RHINOS dataset do not resemble rhinos. Figure 22 shows an
image from the RHINOS dataset next to an example of the ‘stingray’
and ‘maze’ ImageNet classes that were used to generate the Class Ac-
tivation Maps. As a result CAIR ICAM closely follows the baseline.
The RHINOS dataset is more challenging and shows only a slight im-
provement between resizing with CAIR GM and the baseline. How-
ever, CAIR ACAM shows an improvement over the baseline. Using
CAIR ACAM we observe a drop in recall from 0.85 for the original
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0.5 0.6 0.7 0.8 0.9 Original
Seconds per image 1.05 1.47 1.87 2.64 2.76 3.62

CAIR GM 3824 5033 6458 7664 8487 9333

CAIR ICAM 4304 5792 7335 8498 9052 9333

CAIR ACAM 5666 6712 7687 8237 8661 9333

Baseline 3641 4892 6317 7661 8605 9333

Table 4: Average number of candidate boxes generated by Edge Boxes
on the COWS dataset and the average time it takes to gen-
erate the candidate boxes for images resized with different
scale factors.

0.5 0.6 0.7 0.8 0.9 Original
Seconds per image 1.60 2.53 3.74 4.71 5.91 6.75

CAIR GM 2994 4362 5845 7237 8249 8893

CAIR ICAM 4245 5340 6318 7290 8092 8893

CAIR ACAM 7149 7715 8157 8536 8787 8893

Baseline 4788 6091 7160 8020 8518 8893

Table 5: Average number of candidate boxes generated by Edge Boxes
on the RHINOS dataset and the average time it takes to gen-
erate the candidate boxes for images resized with different
scale factors.

image to 0.54 when resized with scale factor 0.5, which improves the
baseline by 0.37.

4.3.3 Detection rate

We expect that applying content-aware image resizing increases the
detection rate in two ways. First, we expect that on smaller images,
the proposal method is able to generate candidate boxes faster. Sec-
ond, we expect fewer candidate boxes to be generated on smaller
images. A reduction in candidate boxes means a reduction of boxes
to be evaluated by the object detector, immediately increasing the de-
tection rate.

In Table 4 we show the number of candidate boxes (generated by
Edge Boxes) for different image resizing methods and scale factors
as well as the time it takes to generate these boxes for the COWS
dataset. Resizing the image indeed leads to a reduction in the num-
ber of candidate boxes generated and the time it takes to generate
them. Resizing the image with CAIR GM results in only 3823 candi-
date boxes when resized with scale factor 0.5, a reduction of approx-
imately 60% compared to the original image (9333 candidate boxes).
Even for CAIR ACAM, the number of candidate boxes can be re-
duced to 5666 boxes (approximately a 40% reduction). We observe
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0.5 0.6 0.7 0.8 0.9 Original
CAIR GM 0.34 0.40 0.45 0.47 0.47 0.42

CAIR ICAM 0.35 0.35 0.39 0.40 0.40 0.42

CAIR ACAM 0.43 0.46 0.48 0.46 0.46 0.42

Baseline 0.26 0.33 0.42 0.40 0.45 0.42

Table 6: Average precision of the Fast R-CNN object detector on de-
tecting cows in the COWS dataset when the image was
resized using different resizing methods and scale factors.
CAIR GM and CAIR ACAM improve on the average preci-
sion achieved by the baseline for all scale factors. The av-
erage precision when resizing the image with CAIR ACAM
shows an improvement over the original image, even when
the image is resized with scale factor 0.5.

some variation between the number of candidate boxes generated by
different methods for the same scale factor. Again, looking at scale
factor 0.5 the number of candidate boxes generated can be as low as
3824 and as high as 5666. We expect this happens because the re-
sized image clearly contains a number of objects and therefore the
proposal method was able to ‘make more sense’ of the content. Edge
Boxes takes only 1.05 seconds to generate candidate boxes for an im-
age resized with scale factor 0.5, this is approximately 70% faster than
on the original image.

Table 5 shows the results for the RHINOS dataset. Resizing the
image with CAIR GM results in only 2994 candidate boxes when
resized with scale factor 0.5, a reduction of approximately 65% com-
pared to the original image (8893 candidate boxes). Even for CAIR
ACAM, the number of candidate boxes can be reduced to 7149 boxes
(approximately a 20% reduction). Edge Boxes needs 1.60 seconds to
generate candidate boxes for an image resized with scale factor 0.5,
this is approximately 75% faster than on the original image.

4.4 evaluation of object detection

Using the candidate boxes that were evaluated in the previous section,
we now evaluate the performance of the Fast R-CNN object detector
[21].

Table 6 show the average precision on the COWS dataset. CAIR
GM and CAIR ACAM improve on the average precision achieved by
the baseline for all scale factors. The average precision when resizing
the image with CAIR ACAM shows an improvement over the origi-
nal image, even when the image is resized with scale factor 0.5. Table
7 provides the results on the RHINOS dataset. Again: CAIR GM and
CAIR ACAM either improve or do not affect the average precision
achieved by the baseline for all scale factors. The average precision
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0.5 0.6 0.7 0.8 0.9 Original
CAIR GM 0.15 0.16 0.16 0.16 0.15 0.15

CAIR ICAM 0.10 0.12 0.13 0.13 0.15 0.15

CAIR ACAM 0.15 0.15 0.15 0.15 0.15 0.15

Baseline 0.12 0.14 0.15 0.15 0.14 0.15

Table 7: Average precision of the Fast R-CNN object detector on de-
tecting rhinos in the RHINOS dataset when the image was
resized using different resizing methods and scale factors.
CAIR GM and CAIR ACAM either improve or do not affect
the average precision achieved by the baseline for all scale
factors. The average precision when resizing the image with
CAIR ACAM with scale factor 0.5 equals the average preci-
sion achieved on the original image.

when resizing the image with CAIR ACAM with scale factor 0.5 is
equal to the average precision achieved on the original image.

For both datasets we find the average precision achieved after resiz-
ing the image with CAIR GM and CAIR ACAM shows some improve-
ment over using the original image for certain scale factors.

A possible explanation for the increase of performance of the object
detector might be the fact that resizing the image leads to fewer can-
didate boxes. This means that there are fewer false positives amongst
the candidate boxes that are evaluated by the object detector, result-
ing in better precision. This effect has been described in [10] as one
of the benefits of using proposal methods over the dense sliding win-
dow method.

In figure 23 we provide the precision-recall curves for both datasets
after resizing the image with scale factor 0.5 using different image
resizing methods and Fast R-CNN as the object detector.

Like the average precision, when resizing images from the COWS
dataset with CAIR ACAM the precision-recall curve also shows an
improvement over using the original image (Figure 23a). Both CAIR
ICAM and CAIR GM outperform the baseline, but suffer from a drop
in recall as observed in section 4.3.2. Figure 24 shows true positive
and false positives detections on the original image as well as the
detections on the same image resized using CAIR ACAM with scale
factor 0.5. In the resized image most of the cows were detected while
the remaining false positives now appear much closer to the cows
rather than at the top as was the case in the original image (Figure
24b). The remaining false positive detections are localization errors
whereas the false positive detection in the original image is a more
serious mistake.
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(a) (b)

Figure 23: Comparison of precision-recall curves after resizing the im-
age with scale factor 0.5 using different image resizing
methods and Fast R-CNN as the object detector. (a) Re-
sults on the COWS dataset. Resizing images with CAIR
ACAM shows an improvement over using the original im-
age. Both CAIR ICAM and CAIR GM outperform the base-
line, but suffer from a drop in recall as observed in sec-
tion 4.3.2 (b) Results on the RHINOS dataset. CAIR GM
and CAIR ACAM show similar performance and both out-
perform the baseline. However, the baseline outperforms
CAIR ICAM which was not able to come up with a Class
Activation Map for a class resembling the rhino.

The precision-recall curves of the more challenging RHINOS dataset
are shown in Figure 23b. CAIR GM and CAIR ACAM show similar
performance and both outperform the baseline. However, the base-
line outperforms CAIR ICAM which was not able to come up with
a Class Activation Map for a class resembling the rhino. Resizing
an image from the RHINOS dataset sometimes leads to an improve-
ment over using the original image. An example of detections on the
original image as well as the same image that was resized with scale
factor 0.5 prior to generating candidate boxes can be found in Figure
25. For this particular image the recall stays at 0.6 (three out of five
rhinos were detected). In contrast, the precision turns out to be bet-
ter on the resized image, where fewer false positives detections are
detected (Figure 25d).
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(a) (b)

(c) (d)

Figure 24: Example detections from the Fast R-CNN object detector
applied to the original image and the same image resized
using CAIR ACAM with scale factor 0.5. (a) True positive
detections on the original image. (b) False positive detec-
tions on the original image. (c) True positive detections
on the resized image, most of the cows were detected. (d)
False positive detections on the resized image. The remain-
ing false positives appear close to the cows, however they
do not have an IoU greater or equal to 0.5 with an actual
cow. These false positive detections are localization errors
whereas the false positive detection in the original image
is a more serious mistake.
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(a) (b)

(c) (d)

Figure 25: Example detections from the Fast R-CNN object detector
applied to the original image and the same image resized
using CAIR ACAM with scale factor 0.5. (a) True positive
detections on the original image. (b) False positive detec-
tions on the original image. (c) True positive detections
on the resized image, in this image the recall of the object
detector is not affected by resizing the image. (d) False
positive detections on the resized image. We find less false
positive detections on the resized image than on the origi-
nal image.
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C O N C L U S I O N

To increase the detection rate of an object detector, we reduce the size
of aerial imagery captured by a nature conservation drone. Resiz-
ing images increases the detection rate in two ways. First the reduc-
tion in image size allows the proposal method to generate candidate
boxes faster. Second, due to the reduction in image size the proposal
method generates fewer candidate boxes that need to be evaluated by
the object detector.

To find out how we can resize an image on a drone to increase
the detection rate without affecting detection performance we experi-
mented with a content-aware image resizing method inspired by [14].
The content-aware image resizing method decides what pixels to re-
move based on an energy function. We evaluate the content-aware
image resizing method using three energy functions: gradient magni-
tude (CAIR GM), ImageNet Class Activation Map (CAIR ICAM) and
Aerial Class Activation Map (CAIR ACAM).

We perform several experiments to determine that resizing the im-
ages using a content-aware image resizing method increases the de-
tection rate without affecting the detection performance. First, we
need to verify the resizing methods do not remove important pixels.
We then evaluate the recall of the proposal method, which should
be minimally affected when resizing the image. Next, we report the
reduction in time it takes the proposal method to generate candidate
boxes along with the number of boxes generated when resizing the
image. Finally, we perform an experiment to evaluate the average
precision of the object detector on the resized images. We conclude
that using CAIR ACAM an image can be resized with scale factor
0.5 resulting in a higher detection rate without impacting detection
performance.

In the first experiment we measure the percentage of important pixels
removed from the image when using different methods for resizing.
We find all content-aware image resizing methods indeed avoid the
removal of pixels that are important to the image content.

The second experiment evaluates the recall of the proposal method.
Resizing the image using a content-aware image resizing method

55
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causes the recall to drop with only 0.04 points, whereas using the
baseline which is not content-aware, causes the recall to drop with
0.51 points. The experiments confirm that recall is minimally affected
when resizing the image using one of our methods.

The third experiment illustrates that resizing the image leads to an
increase in the detection rate. Both the time it takes for Edge Boxes
to generate candidate boxes as well as the number of candidate boxes
generated decrease as the image size is reduced. In section 2.1.1.2
we describe how seam carving could run in real-time, using content-
aware image resizing is a feasible method for increasing the detection
rate of object detectors on a nature conservation drone.

To establish resizing the image does not have a negative effect on
detection performance, we evaluate the Fast R-CNN object detector
on images resized with different scale factors. We find that the av-
erage precision of the detector may benefit from resizing the images.
Because fewer candidate boxes are generate by the proposal method,
the candidate boxes contain fewer false positives, resulting in better
average precision of the object detector.

5.1 future work

To increase the detection rate of Fast R-CNN its successor, Faster
R-CNN, replaces the traditional proposal methods by using a ‘Re-
gion Proposal Network’ [38]. By using the Region Proposal Network
Faster R-CNN is able to generate candidate boxes and assign a con-
fidence score describing the likeliness this box contains an object si-
multaneously. Another example where a network is used to generate
candidate boxes is HyperNet [39]. Like Faster R-CNN, HyperNet
also generates candidate boxes and confidence scores simultaneously.
A different approach is used by YOLO (You Only Look Once) [40],
where proposal methods are no longer needed.

It is not immediately clear whether the detection rate of these meth-
ods would benefit from smaller images. In future work we would like
to research whether the use of content-aware image resizing also in-
creases the detection rate of these methods.
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