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ABSTRACT 
 
This thesis describes an idea to enhance the control over the mobile autonomous robot 
MARIE. MARIE is a complex, software controlled autonomous robot, that is capable of 
versatile behavior, such as maneuvering in a complex environment. Control decisions are 
made by a central process. This process controls the execution of a variety of tasks, that the 
robot can do, by instructing, differently controlled, elementary operations. This requires 
flexibility on part of that central control process. The downside of this flexibility is that 
control is enforced in a generic fashion, and the central controlling process can’t take too 
detailed decisions, because it lacks the information to do so.  
This is solved, in this thesis, by introducing location independence of all the software 
components of the robot, and introducing a property interface that allows for the 
communication of the properties of all these modules. 
Location independence makes it easier, for the developer and user of the robot, to carry 
through changes in the software or its configuration. Extending location independence with 
the ability to talk about properties of the robot’s controlling elements creates room for more 
autonomous behavior. The property interface provides the required control details about the 
actuation, sensing and reasoning components of MARIE, in generic and broadly applicable 
way, so that high-level functionality such as self-configuration or self-optimisation become 
possible. 
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1 INTRODUCTION 

1.1 General 

1.1.1 Autonomous Systems 
Autonomous systems are computational devices that need to operate in an environment that is 
similar to that in which humans operate. The devices’ ability to adapt to unforeseen situations 
or changes in the environment make it autonomous.  
The fundamental goal of research on autonomous systems is to have the best behavior with as 
little human specified directions as possible. This is, generally, accomplished by specifying 
the task a robot must perform in terms of parameters or properties of the world the system 
resides in. The system will need to translate the task description into internal parameters, that 
it can evaluate or reason about and that control the robot. 
There are three main processes that lie at the basis of a (mobile) robots autonomy: 

 Sensing; perceiving the environment the robot resides in. 
 Reasoning; interpreting and analyzing perceived data.  
 Actuation; undertaking actions to change the world state, based on perception and 

reasoning. 
 
An autonomous robot’s behavior is the result of the relationship between these three 
processes: actuation changes the world state, which the robot senses, which in its turn 
influences reasoning. An autonomous mobile robot continuously loop through these tasks, 
allowing it to perceive, act on, and adapt to its changing environment. 
These processes are performed by software that controls the robot’s hardware. The robot’s 
software is usually divided in different functional components, the cooperation of which 
causes the robots behavior. One of the developments in this area is involved with the 
structuring of these software components, i.e. the software architecture. In literature on 
autonomous systems a number of proposals for the software’s architecture can be found: 

 Functional; hierarchical decomposition of software components, based on 
functionality. 

 Behavioral; components are separated on basis of specific behavior they should 
exhibit. 

 Hybrid; a combination of functional and behavioral architectures. 
 
The hybrid form is currently the most acceptable architecture, in literature. During the 
nineties the focus on research on autonomous robot software moved more towards the 
cooperation of, and controlling the various software components within a given software 
architecture. This master thesis is about enhancing the control of the sensing, actuation and 
reasoning components in a mobile robot, called MARIE. 

1.1.2 The MARIE autonomous mobile robot 
The research in this master thesis concerns an autonomous mobile robot called MARIE. 
MARIE is an acronym for Mobile Autonomous Robot in an Industrial Environment. MARIE 
is a mobile autonomous robot, that was developed in order to research computer-integrated 
manufacturing. The project was started in 1989. The primary goal of the research was to 
investigate symbolic and numerical control methods for autonomous systems. 
The integration of symbolic and numerical techniques enabled the robot to meet three major 
control objectives: 

 Comprehending a complex environment, 
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 Maneuvering within this complex environment, and 
 Carrying out tasks in exceptional situations. 

 
The robot is built from a Vesa Trekka cart for disabled people. It contains a steering and a 
driving motor, an on-board computer with the controlling software and, recently, a wireless 
network connection to other computers. 
 
At present there is no research being done to have MARIE operate in an Industrial 
Environment, which was the original purpose of the MARIE project. Despite the project not 
being finished, it has left the department with a fully functioning, state-of-the-art, mobile 
autonomous robot and thus there is still plenty of opportunity to perform research on it. 
Throughout the years different people have conducted research using MARIE as a test bed.  
Ph. D. George de Boer has investigated the architectures for intelligent robots, and described 
in detail its application on MARIE [1]. M. Sc. Frank Terpstra [2] has developed an on-line 
planner for MARIE, with considerable success. M. Sc Erik de Ruiter [3] has finished work on 
structuring input and output of the system combined with version management, in order to 
learn future control parameters and configuration settings.  

1.1.3 Flexibility 
MARIE was developed in a modular sense. Meaning that some kind of abstraction was 
thought of to divide the desired functionality into several components, additionally, interfaces 
were developed to have the components interact. The success of this modular approach was 
(besides usual software design demands) needed because the development of MARIE took 
place in different countries, with the intention to merge (the best functioning) developed 
components. At every research site different hardware was used. For the planned merging to 
take place all software components had to operate with ‘foreign’ software and be abstract 
enough to be applied on the other hardware platforms. This approach led to success; it has 
resulted in a fully functional mobile autonomous robot system. However, the flexibility also 
had a price; controlling the software of MARIE suffers from its size. Control decisions are 
made by a central module. This module is flexible, because it can deal with the high-variation 
in specific control details of the actuation, sensing and reasoning software components, 
allowing for MARIE’s versatile behavior. The downside of this generic control method is that 
it is not able to adjust to changes in the components that this central module controls, as will 
be explained in the next section.  

1.1.4 The downside of the current system 
The software of the MARIE robot unifies the best methods available on the subject of 
software architecture at the moment. Both a hierarchical and a behavioral architecture 
philosophy are applied, resulting in a versatile robot, capable of solving various ‘complex’ 
tasks [1].  
The software of MARIE can be divided in two parts. One part is concerned with translating 
the human supplied mission description into subtasks that the robot can understand. The other 
part of the software controls and executes these subtasks. The execution of these subtasks is 
done by a virtual representation of the robot. The actual behavior of MARIE is a direct result 
of the behavior of this virtual robot. All sensing, actuation and reasoning of MARIE is 
performed in this software layer. It contains a collection of relatively simple software 
elements, called elementary operations, that each perform one specific tasks. For example, 
there is an elementary operation that reads and stores ultra sonic sensor values, or there is 
another elementary operation that assembles line segments from the ultra sonic data or yet 
another that plans a path. 
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The presence and location of each of the modules of the virtual robot has to be known at the 
time when task execution takes place, else how can they be controlled in the first place? This 
was accomplished by having locations and configurations be constant and that compromises 
the systems extensibility and maintainability, because as a result the software had to be 
treated as a monolithic whole, making it much harder to treat processes separately; aspects 
such as changing configurations or debugging (new) modules require a lot of effort. 
Another issue, that arises when one has to control the various elementary operations, is that 
all the operations are controlled differently. This was partly solved by introducing an interface 
that generalizes control. It defines certain functionality that every controlling component has 
to posses. The components will thus communicate in an abstract ‘instruction language’. This 
language is suitable enough to control the components, but the operator has to supply the 
factual instruction-details and since there is a big amount of instructions this makes operating 
the robot a time-consuming job, consisting of a repetitive and simple task. As a result, since 
the higher-level modules of the robot do not have the means to determine the specific control 
details for the virtual robot, high-level functionality, such as self-configuration, self-healing or 
self-optimization are harder to realize. 

1.2 The proposition of this thesis 
MARIE is capable of accomplishing high-level tasks such as finding a docking a spot and 
parking in it, while avoiding obstacles. These high-level tasks are described, by a human 
operator, in a mission description. Such mission descriptions contain high-level instructions, 
that tell the robot when to perform what task, it also contains specific control details that tells 
how a task is to be performed. 
The ultimate goal for MARIE, or autonomous mobile robots in general, is to have the system 
perform complex tasks, with as least human interference as possible. In case of MARIE, it 
should be sufficient for the human operator to just tell the robot to “park in the nearest 
docking spot”, without supplying any extra information. This however is far from how it is 
actually done; besides high-level task descriptions, the human also provides control specific 
details, such as the docking spot size. Rather than having a robot, that relies for goal 
satisfaction, on detailed, human supplied control instructions, the robot would be more 
‘intelligent’ if it were able to obtain these specific control details on its own.  
This thesis should bring MARIE a step closer to this ultimate goal; a method that increases 
the robots self-knowledge is introduced by extending the robots controlling software elements 
with functionality to supply their properties to higher-level system modules, so that on a 
higher-level it is known how the virtual robot is controlled. In this way more autonomous 
behavior becomes possible.  
The instruction-details are different for every controllable software element. This means that, 
if one wants to communicate the capabilities of these elements, the interface has to be generic 
enough to accommodate all of them, but specific enough to communicate all details. 
Furthermore, publishing ones capabilities doesn’t necessarily mean they can be accessed. 
That has to be accomplished as well.  
A new interface will be designed to facilitate these demands. As a result the system is 
expected to decrease the work the operator has to spend on creating and providing mission 
descriptions, without the system performing poorer, of course. Furthermore the robot is 
expected to have a higher degree of autonomy since a system, which is aware of its control 
details can better adjust to unforeseen situations (environments), and perform better. 
 
This leads to the formulation of the following hypothesis: 
The property interface and location independence will 

 Decrease the human interaction with MARIE, and 
 Increase MARIE’s autonomy 
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In the rest of this thesis the problem is described in more detailed, a solution is devised and 
the hypothesis are tested by means of experimentation. 

1.3 Structure of this document 
The theoretical background of this thesis will be treated in chapter 2 by discussing four 
articles that aim at using heterogeneously controlled elements in a distributed environment, 
just like the controlling elements of MARIE. Chapter three will explain how MARIE works. 
It gives a description of the various development stages of MARIE’s software.  
In chapter 4, the drawback of controlling the robot, will be described. Chapter 5 considers 
existing solutions to this problem, it discusses the applicability of the literature examples from 
chapter 2, and proposes a final solution.  
Chapter 6 describes the solution in more detail, explaining how it is will be developed. 
Chapter 7 gives the design for location independence, of which, in chapter 8, the 
implementation will be provided.  
Experiments were devised, that test the hypothesis, by investigating if the proposed changes 
to the robot actually improve the system, this is described in chapter 9.  
Chapter 10 contains a general discussion concerning the (improved) robot, and chapter 11 
concludes this thesis. 
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2 RESEARCH CONTEXT 

2.1 Introduction 
The subject of this thesis is to improve the control over a collection of distributed components 
of the MARIE robot that require specific control information. When distributed systems 
become sufficiently large and versatile the need arises for a communication framework that 
defines how to obtain knowledge about distributed components and have them cooperate.  
This, and its relevance to MARIE are explained briefly in the overview of section 2.2. Section 
2.3 gives an example of a system that specializes in locating and using distributed services. 
Section 2.4 gives an example of a system that controls heterogeneously controlled, statically 
located, elements. Section 2.5 describes a specific language for component description and 
section 2.6 describes, in more conceptual form, a design methodology and architectural 
concepts for collections of systems to manage themselves more autonomously. 

2.2 Overview 
The increase of MARIE’s autonomy is expected to be accomplished by extending the robot 
with more self-knowledge, so that it has the information to make high-level decisions, that are 
now made by the human operator of the robot. The emphasis is primarily on self-
configuration, but self-management in general is kept in mind.  
This issue is a typical AI issue [8], [13]. In literature various software systems are developed 
that deal with decreasing the role of humans in controlling and managing systems. The papers 
that are discussed in this chapter were selected because they deal with the specific issue of 
controlling heterogeneous components in a networked environment  That is (as will be seen in 
the next chapters) an important obstacle to overcome because the controlling components of 
MARIE are also heterogeneously controlled and are spread out over a network. In order to use 
these components, they must be identified and located and, because each component is 
controlled differently, control information needs to be obtained. 
Despite the difference in scale (MARIE being relatively small) the examples are applicable 
because of the similar problem they intend to solve. The first two examples focus on 
localization of distributed components in a system. The other two examples deal with system 
control; LARKS is an example of the use of middle-agents and the capability language that 
comes with such an approach. And in the fourth example, a more towards the future view will 
be described, that shows a general approach to designing self-managing, complex control 
systems. 

2.3 Jini 
The goal of Jini is to turn a network into a flexible, easy to use tool on which resources can be 
found by clients and users [9]. Resources can be anything from hardware resources to 
programs.  
Jini is an extension on Java, bringing along the machine independence and the ability to 
communicate data and code from machine to machine. 
The Jini system consists of the following parts: 
 A set of components that provide an infrastructure for federating services in a 

distributed system 
 Services that can be made part of a federated Jini system and which offer 

functionality to any other member of the federation 
 (a programming model that supports the production of reliable distributed services) 
 



Improving Control of the MARIE robot   

 
 
 

 
 
 
 

6 

 

The most important concept within the Jini architecture is that of a service. A service may be 
a computation, storage, a communication channel to another user, a software filter, a 
hardware device, or another user. 
Members of a Jini system share access to services. A Jini system consists of a collection of 
services that can be used together to perform a task. 
Services are found and resolved by a lookup service. The lookup service provides the major 
point of contact between the system and the users of the system. 
A service is added to a lookup service by two protocols, called discovery and join. The first 
locates an appropriate lookup service, the second joins the service. Communication between 
services is done by remote method invocation or RMI. 
 
The infrastructure of Jini consists of  
 The discovery and join protocols, that allows services to discover, become part of, 

and advertise its service to other members of the federation. 
 The lookup system, which serves as a repository of service 
 
The entries in the lookup system are objects that can be downloaded as part of a particular 
lookup operation and act as local proxies to the service that placed the code in the lookup 
service. 
 
Dataflow  
At the heart of the Jini system are three protocols: discovery, join, lookup. Figure 2-1 depicts 
the dataflow. 
 
 

 

Figure 2-1: Jini dataflow 

Discovery occurs when a service needs to find a lookup service with which to register, join 
occurs when a lookup service is located and it wishes to join. Lookup occurs when a client or 
user needs to locate a service. This requested service is described by its interface and possibly 
other attributes. The data that is send to the lookup service consists of a service object. The 
service object contains the interface for the service, including the methods that applications 
will invoke to execute the service, along with any other descriptive attributes. 
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2.4 Hive 

2.4.1 Overview 
Hive is a distributed agents platform, a decentralized system for building applications by 
networking local system resources [15]. Its architecture concentrates on the idea of an 
‘ecology of distributed agents’.  
 
Hive provides  
 ad-hoc agent interaction,  
 ontology’s of agent capabilities,  
 mobile agents, and  
 a graphical interface to the distributed system. 
 
Hive consists of three components: cells, shadows, and agents. In Hive an agent is located in a 
particular place, called a cell, and uses various local resources, called shadows. These 
shadows encapsulate capabilities such as a screen display or a digital camera. Agents are 
hosted on a cell and are meant to communicate with each other to share information and to 
access resources. An application is made from the communications and actions of agents. 
The ecology of distributed agents is a decentralized system, this means that agents are 
responsible for locating the resources they need, finding each other, and negotiating their 
relationships. 
A cell is like a kernel, shadows are like device drivers, and agents are like processes.  
 
 

 

Figure 2-2 

 
Of concern is the ability of the agents in Hive to represent the ontology of their capabilities. 

2.4.2 Cells 
A cell is a program that performs two tasks: hosting software agents and managing access to 
local resources through shadows. 
Hive has a location dependent model of a distributed system. Hive cells are different from 
each other: each cell has a specific set of shadows and a specific population of agents. 
Devices are accessed by contacting an agent on the cell that has access to the shadow of that 
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device. The HIVE model does not ‘remove’ the concept of location, in contrast to other 
distributed systems. 

2.4.3 Shadows 
Physical devices are `shadowed' in the Hive cell. For example, a Hive cell may have a digital 
camera plugged into it, a shadow then contains the functionality to use that camera, simply by 
providing an API to access it.  
The collection of shadows are the static part of a Hive cell. The behavior of a device is 
represented in the shadow, by the developer. The flexibility of the system comes from the 
mobile agents; the shadows provide the functionality which the agents access. 

2.4.4 Agents 
Hive agents embody the network interface and policy for resources. 
Agents live on specific cells, accessing shadows for the resources they need. Agents export 
selected functionality to the network and communicate with each other to share those 
functions. For example, a camera agent can export the picture taking functionality of a camera 
shadow to remote agents. An image displayer agent can then invoke this method over the 
network, implementing a simple remote picture taking application. Hive applications are built 
out of a collection of interacting agents. 
There is no requirements for agent communication, it is up to individual agents to decide how 
to talk to each other, making agent interaction ad-hoc. 

2.4.4.1 Agent Description 
Every agent in Hive is described in terms of two ontologies: syntactic and semantic.  
The syntactic ontology of agents in Hive is simply its Java type. 
Hive uses a second ontology to describe ‘semantic’ information about agents. This ontology 
utilizes the Resource Description Framework (RDF) [14]. RDF provides a structured way to 
attach nouns and verbs to agents. For example, an agent's semantic description might state its 
physical location, a human readable nickname, the owner of the device it is using, and a 
description of the meaning of its data. It is expected that application designers will develop 
their own schemas to make agent communication semantically consistent. 
In HIVE, the agents capabilities and their meaning are explicitly stated in an ontology.  
On request an agent can communicate its capabilities. The requester agent can then use that 
information to make decisions.  

2.5 LARKS 

2.5.1 Overview 
Because the amount of services and deployed software agents in the internet is increasing 
rapidly there is an growing demand for automated search and selection of relevant services or 
agents. In order for heterogeneous agents to cooperate effectively across distributed networks 
of information, they must be able to communicate with each other using a common language. 
A paper, called “Dynamic Service Matchmaking Among Agents in Open Information 
Environments”, describes research done, to solve this problem. It introduces a language and 
the process of matchmaking of agents in an open environment, like the internet [10], [11]. By 
means of a capability description language, called LARKS (“Language for Advertising and 
Request for Knowledge Sharing”), agents are meant to locate particular services for other 
services or agents. 
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The proposed approach defines three categories of agents: 
 Service providers, proving some kind of service, such as finding information 
 Service requesters, that need some service provider to perform some service for them 
 Middle agents, agents that help locate others 
 
Matchmaking or brokering is the process of finding and appropriate provider for a requester 
through a middle agent. This has this general form: 
 

1. Provider agents advertise their capabilities to middle agents 
2. middle agents store these advertisements 
3. a requester asks a middle agent if it knows a provider that can provide certain 

information 
4. the middle agents matches the request against the stored advertisements and returns 

the results 
 
A common language is used by matchmaking agents to pair service-requesting agents with 
service-providing agents that meet the requesting agents' requirements. 

2.5.2 The Language 
The process of matchmaking is complicated by the fact that providers and requesters are 
heterogeneous, spread out over the internet and don’t understand each other. This is solved by 
creating a common language that makes it possible to describe capabilities and requests in a 
uniform manner.  
Three of the main features this language posses are: 
 Expressiveness. The language should be expressive enough to represent data, 

knowledge and meaning 
 Inference. Inference must be possible with a description in the language, enabling 

automated reasoning and comparison of descriptions. 
 Ease of use. Description should be easy to use, read and write by the user. 
 
The agents capability description language developed in this case is called Language for 
Advertisement and Request for Knowledge Sharing, or LARKS. Below is what a 
specification in LARKS looks like: 
 
Context Context of specification 
Types Declaration of used variables 
Input Declaration of input variables 
Output Declaration of output variables 
InConstraints Constraints of input variables 
OutConstraints Constraints of output variables 
ConcDescription Ontological description of used words 
TextDescription Textual description of specification 
 
The slots have the following meaning: 
 Context: context of the specification in the local domain of the agent 
 Types: Optional definition of the data types used in the specification 
 Input and Output: Input/output variable declaration. 
 InConstraints and OutConstraints: logical constraints on the input/output variables. 

Described as Horn clauses. 
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 ConcDescription: Optional description of the meaning of words in the specification. 
The description relies on concepts in a given domain ontology and links words, 
occurring in the above slots, to this concept defined in the ontology. 

 TextDescription: optional textual description of the specification. 

2.5.2.1 Local domain ontology 
LARKS uses local domain ontologies to describe the meaning of words from the 
specification. This way it offers the possibility to use domain knowledge in advertisements 
and requests. What concept language to use to write the ontology in is up to the developer. 
The benefits of using domain ontologies are twofold: 
 The user can specify in detail what is being requested or advertised, 
 The matchmaker is capable of making inferences on descriptions 

2.5.3 The Matchmaking Process 
The matchmaking process uses several methods for computing syntactical and semantic 
similarities between agents capability descriptions. It does this by providing 5 filters. The 
different filters provide different techniques to calculate the relevance between specifications, 
when the resulting value exceeds a certain threshold the specification pass the filter. Different 
combination of filters give different results. The 5 filters are Context Matching, Profile 
Comparison, Similarity Filter, Signature and Constraint filters. 
 
LARKS and the matchmaking process present a good balance between quality and efficiency 
of matchmaking between heterogeneous software agents on the internet, due to the language’s 
expressiveness and its efficient matchmaking with filters. 

2.6 Autonomic computing 
IBM has taken the integration of various complex and differently controlled systems to a next 
level by introduction of a concept called autonomic computing, that consists of a more 
general approach towards design of system integration and system cooperation in a dynamic, 
open environment [4], [6], [7]. 
In 2001 the corporation published a manifesto describing an increasing demand for systems to 
become better at self-management.  
IBM suggests an approach involving autonomic computing and self-repairing systems. 
Systems must be developed that can run themselves, can adjust to varying circumstances and 
changing demands, and are robust with respect to damage and degradation. 
The essence of this autonomic computing approach is self-management. The goal is to create 
a system that decreases the system administrators interaction with it and provide users with an 
optimal performing system. 
The manifesto sites four aspects of self-management: 

 Self-configuration, the automated configuration of components and system, 
following high-level wishes 

 Self-optimization, components continually seek to optimize their (cooperate) 
performance. 

 Self-healing, components automatically detect and repair from errors. 
 Self-protection, system automatically defends against malicious attacks. 

 
These autonomic systems will consist of autonomic elements, that are individual components 
that deliver services and contain resources and that will interact to accomplish the above 
mentioned goals, with and each other and the users of the system. 
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They will manage their internal behavior, as well. Such an autonomic element will consist of 
an autonomic manager that manages elements contained therein, that monitor, analyze, plan, 
and execute the managed element. See figure 2-3. 
 
 

 

Figure 2-3: Structure of an autonomic element 

The managed element could be something high-level as an application service or as low-level 
as a hardware component. 
Each autonomic element is responsible for managing its own state and behavior with its 
environment, possibly by interacting with other autonomic elements. 
Higher level autonomic elements will use low-level autonomic elements to achieve their 
goals. Goals that may be described in terms of the goals of these low-level elements. 
Viewing autonomic elements as agents and autonomic systems as multi agent systems makes 
it clear that an agent-oriented approach will be important. There are no further details about 
the cooperation of the various elements, besides the recommendation that this should be done 
by some existing agent-software system. 

2.7 Conclusion 
Throughout the years more and more systems have been developed for varying purposes. In 
the last decade, or so, the need for these systems to cooperate has increased drastically. 
Considering the fact that most of these system reside somewhere on the internet, the above 
observation presents two problems, that are also relevant for MARIE. In order to control the 
different components (or systems) one needs their location and control information. This issue 
is a hot topic in the world of computer science and more specifically in the field of artificial 
intelligence. Connecting and cooperation of various, differently controlled, distributed 
systems is tackled subject of a vast number of software applications. This chapter described 
four of these. The first two dealt primarily with the distributed nature of the to-be-controlled 
components. The third example deals with describing components. The fourth example looks 
at self-management of systems, in general. 
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Jini and HIVE are interesting because of the way they deal with the location information of 
distributed components and are less concerned with providing specific control details for 
these components. In Jini services are located by looking them up with a lookup service, 
where the service has registered its location and additional control information. 
HIVE uses fixed locations for its distributed components. Mobile agents serve as 
representatives of the component to interface with other agents. HIVE makes use of a (clearly 
separated) syntactical and semantic descriptions of its agents. 
LARKS is an agent capability description language and serves as an example of how control 
information of (distributed) components may be represented. Great care was taken to include 
semantic and reasoning information in the components’ descriptions. It is considered useful 
because it gives a nice picture of how a component’s control information may be represented. 
IBM’s autonomic computing concept is a good example of one of the major goals of AI, 
namely making systems manage themselves. The self-management of a system is defined by 
its ability to configure, heal, optimize and secure itself. This would be accomplished by 
developing or extending a system (or its components) with monitoring, analysis, planning and 
executing elements.  
Section 5.3, of the solution chapter, will discuss what concepts of the above mentioned 
techniques are useful for MARIE. 
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3 MARIE 

3.1 Introduction 
The autonomous nature of a given system is derived from the ability to solve problems in a 
varying environment. MARIE is autonomous in that sense, since it is capable of finding 
solutions to unforeseen situations. Solutions for relatively simple problems, like obstacle 
avoidance, have been shown to work and solutions for more difficult problems like 
maneuvering in a changing environment, are also performed successfully.  
This chapter will explain how MARIE works. The three architectures that lie at the base of 
the system of the system are explained in sections 3.2.2, 3.2.3, 3.2.4. Section 3.2.5 explains 
the interfaces of MARIE, section 3.3 shows how MARIE is used. 

3.2 MARIE Architecture 

3.2.1 Overview 
The goal of these sections is to explain how MARIE works. The software architecture that 
was designed for MARIE will be described. Some explained aspects bare more relevance on 
the issues of this thesis, than others, but it is assumed that an over-all perspective of the 
system is essential for understanding the motivation that led to the proposed changes. 
There are three architectures, a functional, operational and implementational.  

 The functional architecture defines the requirements for the robot. It is of a 
conceptual form, allowing it to be reused for other projects.  

 The operational architecture describes how to realize the requirements from the 
functional architecture. In this step the over all problem is divided in components that 
must solve sub-problems, consequently, this is where design decisions are made.  

 The implementational architecture describes in detail how these components must be 
implemented. It adds details regarding the technical limitations of the practical 
circumstances the robot and its software will be used in.  

 
In this thesis some changes will be proposed that, mostly, affect the operational and 
implementational architecture. 

3.2.2 Functional Architecture 
To achieve its overall goals two basic systems were defined for MARIE, a Plan Generation 
system and Plan Execution system. 
The Plan Generation system must produce a plan or task tree. A human operator and a logical 
module are contained in the system. Together, they interactively construct a task tree.  
The operator supplies symbolic information, structured in a tree. The module translates this to 
a tree in a numerical format, suitable for the Plan Execution system. The process of 
decomposing symbolic instructions into a series of activities consists of task planning, 
scheduling and parameter planning. 
The Plan Execution system receives the numerical tree with activities. It is responsible for the 
trees executing. Each activity consists of zero or more perception, on-line reasoning or control 
operations. To coordinate the proper execution of the activities and handle exceptions, 
execution control functionality was included. Figure 3-1 depicts the systems and their 
interaction. 
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Figure 3-1: MARIE’s functional architecture 

3.2.2.1 Plan Generation System 
The Plan Generation system must produce an executable task tree. There are two ways to do 
this. One is done interactively by a human operator, the other is automatic. 
The operator supplies a collection of tasks and execution control information. A logical 
module interprets this data, verifies it, and builds a numerical task tree from it. It supports the 
operator by prompting for missing information.  
The generation of a task tree is done off-line, because it is a time consuming job. The operator 
would not be able to keep up with the speed at which tasks are executed. 
The preparation of the mission can also be performed by an automatic, on-line task-planner 
[2]. It is able to plan tasks from a collection of predefined, numerically formatted sub-trees. 
Based on initial and final conditions of each sub tree, it tries to connect them, into a complete 
task tree. Because it uses a fast algorithm this job can be performed on-line. 

3.2.2.2 Plan execution System 
The task tree that was built by the plan generation system is sent to the plan execution system. 
The plan execution system is responsible for executing the tasks of the missions and the 
handling of exceptions. 
If an exception occurs it can’t handle, it is passed to the Plan Generator. The execution of a 
task is accomplished by routines that are capable of perception, reasoning and control.  
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This system controls the robot. This means that the execution of the task tree is done on-line.  

3.2.3 Operational Architecture 
In the operational architecture the role of the plan generation system and the plan execution 
system are divided in logical modules that together perform the required functionality. Each 
of these modules are so-called Virtual Machine.  
 
A Virtual Machine layer is capable of handling the instructions it receives, without any help 
from the higher layers. This approach makes it possible to hide system-dependent information 
from higher layers. Furthermore, dividing the system in virtual machines defines a hierarchy 
of processes and provides structured exception handling. 
 

A virtual machine layer is defined as an instruction set and a virtual machine. The instruction 
set fully defines the capabilities of that particular layer, while the virtual machine interprets 
and executes them. A level N+1 virtual machine will express a task that it wants to 
accomplish, as a sequence of level N instructions. The level N machine will then interpret each 
of those instructions, and produce a number of instructions for level N – 1 [1]. 

 
The virtual machine levels and their hierarchy are depicted in figure 3-2: 
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Figure 3-2: MARIE’s operational architecture 
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The name of each virtual machine level is given on the left side of the figure. The virtual 
machine belonging to that level is given in the rectangle and the words in italic identify the 
instruction set that is produced and interpreted. 

3.2.3.1 Overview 
The operator and the task level together represent the plan generation stage. The operator is 
the top-level, the task level is the lowest level of the plan generation level. The operator 
creates a task tree with the plan generator. Additionally the plan generator converts the task 
tree in appropriate instructions for the next level.  
The first level of the task execution level is shown as the execution control level. The 
instructions it receives also consist of a task tree. It gets parsed here and executed. 
Alternatives are present in the task tree to facilitate exception handling. When such an event 
occurs execution is stopped and an alternative is selected.  
The next level of the task-execution level is the virtual robot level. At this level perception, 
reasoning and control are responsible for the robots behavior. This is where the operations are 
present. These operations are standalone units; they have no over-all knowledge, contrary to 
the higher levels. They instruct the virtual machine of the interface level. The virtual robot 
directly interacts with the hardware. Its instructions control the actual robot. 

3.2.3.2 Task Level 
The virtual machine of the task level, the plan generator, is the only software representation of 
the plan generation system. There are two different task planners available for MARIE; one is 
an off-line task planner, the other an on-line task planner. 
The instructions the off-line planner accepts come from the operator and consist of elements 
of a task tree. The task planner combines these elements into a complete task tree, by 
prompting the operator for missing details. The instructions the operator gives are of a 
symbolic nature. To get the next layer to understand the tree, the task planner first translates 
it, before sending it. I.e. the plan generator performs task decomposition; it transforms high-
level instructions into low-level activities that can be understood and executed by the plan 
execution system. 
The on-line task planner, was recently created by Frank Terpstra [2]. The on-line planner is 
capable of combining sub-trees it has available in a repository, into a complete task tree. If 
execution of such a tree should fail, the planner is again consulted to supply an alternative 
tree, thus on-line planning can be done.  

3.2.3.3 Execution Control Level 
The Execution Control level, is performed by a virtual machine called the Action Dispatcher.  
It accepts a series of activities from the task planner. They are structured in the form of a task 
tree; linking actions with conditions for execution. 
The action dispatcher parses the tree. When it encounters an action and its conditions are 
satisfied, it executes it by dispatching the necessary operations of the next level, by sending 
virtual robot instructions to them. When an action is finished it dispatches the next one, until 
the whole tree has been processed or the mission is completed. Feedback from the operations, 
influences the next dispatched action. 
The action dispatcher takes care of activation and deactivation of operations. It does not 
execute actions itself. Since it has knowledge of the active operations, it is capable of 
stopping them, when, for example, the action is finished or an exception occurs. Autonomy is 
implemented at this level, because only here the combination of knowledge and control 
capabilities is present. The control capabilities are limited, though, because the system lacks 
the explicit knowledge on how to control the operations. This problem is the subject of this 
thesis and will be discussed in the following chapters. 
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3.2.3.4 Virtual Robot level 
The operations reside in the virtual robot level. Each operation is a virtual machine, more 
precisely called an elementary operation, and is controlled by elementary operation specific 
instructions from the action dispatcher.  
At this level perception, reasoning and control are implemented; specific tasks like detecting a 
docking spot, finding a wall or reading sensor input happen here. 
Each Action Dispatcher instruction maps directly on an operation. An instruction consists of a 
command and parameters. The command can be ‘execute’, ‘suspend’ or something similar. 
Additionally it contains parameters specifying the settings of the task. The parameters are 
operation-specific, meaning that each operation has its own set. The parameters ‘tune’ the 
operations behavior and makes them adaptable to different circumstances. 
An important feature of the operations is that they can run concurrently; for example, while 
sensor data is being read, the features of a wall can be extracted and a path can be planned.  
Operations are completely unaware of one another, they have no idea how other operations 
are manipulated and can’t manipulate each other. Over-all knowledge is, to a limited extent, 
present at the action dispatcher level, and originates from the task tree, that was created by the 
human operator. 

3.2.3.5 Virtual Hardware 
The interface level implements the virtual hardware; this layer is a software representation of 
the hardware and directly interacts with the sensors and actuators. It is highly dependent on 
the hardware, for example, for each sensor and actuator one interface is defined. I.e. one for 
the ultrasone sensor, one for the shaft encoder, etc. The virtual hardware provides the hiding 
of details, like low-level input-output control, but also provides some basic safety measures 
like an emergency stop. 

3.2.4 Implementation Architecture 
In the implementation architecture specific hardware and software modules were 
implemented. 
In this section the additional details of the virtual machines will be specified. The 
development of the software components was governed by basic software design 
considerations, such as modularity, expandability, adaptability and flexibility.  
This has lead to two interfaces that supply generic means of interaction. A control interface 
defines the way in which operations have to be controlled and an intermediate data manager 
interface defines the data exchange between operations. This prevents the modules from 
directly interacting with one another, allowing modularity and flexibility. Expandability is 
achieved by the interfaces, because they enforce a standard on new modules. The data 
exchange interface makes modules more adaptable to different situations.  
 
Figure 3-3 denotes the implementation architecture. 
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Figure 3-3: MARIE’s implementation architecture 

3.2.4.1 Action Dispatcher 
The action dispatcher receives an instruction from the task planner in the form of a task tree. 
The task tree describes when to execute what task. The action dispatcher must interpret and 
realize this.  
Tasks get executed by dispatching the appropriate operations in the virtual robot level. To do 
this the action dispatcher sends a command telling the operations what to do, this can be 
something like activate, suspend, etc. Additionally it sends parameters specifying the control 
for an operation more precisely. 
When the action dispatcher has dispatched all operations in a task, it waits for one or more of 
the operations to finish, before dealing with the next task. 
  
The action dispatcher does the following tasks: 
 

 Receive and parse a task tree 
 Activate and suspend operations 
 (Re)parameterize operations 
 Wait for completion of an action 
 Interpret status flags 
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Tasks in the task tree consist of actions and conditions under which they can be executed. 32 
bit flags represent these conditions. When an activity is finished executing, all operations 
return their status. The action dispatcher interprets this returned information and combines it 
into status-flags. A next action is suitable for execution if its conditions (i.e. its flags) are 
implied by that status-flag.  
 
For example, one of the 32-bits is reserved for the operation that is responsible for finding a 
docking spot. When this operation is finished executing and has found a docking spot, it 
returns a flag with the specified bit set to one. The action dispatcher then combines that 
feedback with that of the (possible) other operations of the action, and thus produces a status 
flag. If it then finds an action with a condition flag that has the ‘docking spot found’ bit set 
(and all other relevant bits) it executes that action. 

3.2.4.2 Elementary Operations 
The capabilities of the operations define the capabilities of the complete system. Elementary 
operations perform the actuation, perception and control functionality of the robot. This 
means that all operations do different things and are controlled differently.  
Examples of elementary operations are: Trajectory controller, Path Planner, Docking Spot 
detector, wall sensor. 
 
The basic ‘frame’ for each operation is relatively simple: to provide optimal capabilities, it 
must provide functionality for control and to exchange data. This functionality is defined by a 
control interfaces and a data interface. Elementary operations must conform to these 
interfaces. 
To cooperate with the rest of the system an elementary operation must contain the following 
functionality: 
 

 Repeated activation/deactivation by the action dispatcher 
 (Re-) parameterization, the settings that control the operation must be of a dynamic 

nature 
 Signal status-flag 
 Task completion leads to suspension, instead of termination 
 Socket based communication, connect and disconnect functionality 

 
This functionality is defined by the elementary operations interface, covered in the next 
section. 
The action dispatcher controls the operations through two types of information. One is a 
command, telling the operation to start, stop or retrieve its configuration information. The 
second way of control is by providing settings. These settings are parameters for the 
functionality the operation exhibits. An example of parameters is the depth and breadth of the 
docking spot, passed to the docking spot detector-operation. The parameters are important for 
the exact function of an operation. Parameters need to be fairly accurate; a small deviation 
often results in completely different behavior.  

3.2.5 The Interfaces 
Essential for communication between execution control and operations are interfaces. There 
are two interfaces implemented in MARIE; one to communicate Virtual Machine instructions 
from the Action Dispatcher to an operation and one to facilitate communication between 
individual operations. The first is done over the Elementary Operations Interface, further 
called the eo-interface, the second uses the Data Manager Interface, referred to as the dm-
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interface. The eo-interface communicates virtual machine instructions, the dm-interface data-
records. 

3.2.5.1 The eo-interface 
The eo-interface defines the functionality for interaction between the execution control layer 
and the operations. The operations and the controller of the operations must implement this 
functionality, but they both must conform to the standard it defines. 
The elementary operations provide reasoning, control and actuation as services. The action 
dispatcher is the client, and uses them. To give control over an operation, the interface defines 
a generic method for communicating instructions, which tell the operation what to do and 
how to do it and give the operations feedback on their performance. 
The control information that is passed between client and server consists of: 
 

 A command, 
 Parameters, and 
 Status flags. 

 
This information is exchanged as follows. The Action Dispatcher connects to an operation it 
wants to use1. It sends an instruction to the Elementary Operation and waits for a reply. 
This instruction consists of the command and the parameters. The command specifies to the 
operation what to do, for example activate or suspend, the parameters tell the operation how 
to perform its task. 
The answer the operation responds with, to the action dispatcher, after it is finished, is a 32-
bit flag. The flag denotes the status of the system, according to the operation. I.e. in case of 
the docking spot, a bit corresponding to a found docking spot is set, or, in case of the 
trajectory controller, a ‘path has been driven’-bit is set. The action dispatcher processes this 
information and decides, based on the task tree, what action to take next. 

3.2.5.2 The dm-interface 
To prevent operations to become to reliant on one another, communication is done through an 
intermediate data manager. Data managers are designed to store data. When an operation 
produces data it can store it there so that other operations can retrieve it. 
Using data managers must be done through the data manager interface. The data manager 
interface defines functionality to store, retrieve and delete data entries from a data manager. 
The data managers are powerful, because of their simplicity. No complicated data structuring 
is performed. The idea is that both supplier and retriever of data are supposed to know what 
the structure of the data is they want. For example, the ultrasone sensor produces data, in the 
form of points. It is stored in the data manager. It is then retrieved by the line segment 
extractor, whose task it is to ‘see’ a line in this data. Both operations don’t know of each 
other’s existence and the retriever assumes the data to be present.  
This means that any data may be stored. To make it recognizable some structure on the data, 
namely a division in a class and up to two sub-class levels is defined.  
The operation that is the source of the data defines the classes, the operation that will need the 
data needs to know that structure. On storing the data, the manager adds additional context 
information, like a sequence number, a time stamp and the source. 
The interface defines one very powerful function to retrieve data, in particular. Based on 
almost any criteria (time, sequence number, class, sub-class) data may be retrieved. This 

 
1 All connections between action dispatcher and elementary operations are set up on start-up of the 
system and only get closed when the action dispacher or the specific operation terminates. 
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broadness is very important, because the stored data is (almost) only relevant to the operator 
of that data, and because of that broadness it can be very meticulous about retrieving it.  
There are three data managers defined in the system. A world datamanager, containing world 
information, a feature datamanager, containing world features and a parameter datamanager, 
these operations plan parameters for an operation in a consecutive task. 

3.3 Utilizing MARIE 

3.3.1 Functionality of the system 
On initialization of the system all processes that are going to be used, will be started . The 
action dispatcher will set up a communication channel with each operation using the eo-
interface and all datamanagers through the dm-interface.  
The system will then built a task tree. This is done by one of the task planners.  
The on-line planner is very resourceful in letting MARIE maneuver. This means that when 
testing one is never sure if success was due to the tested component or the on-line planner. 
This same line of reasoning holds for explaining odd and unexpected behavior. This planner 
is too good at solving problems. It is useful for demonstration purposes, but for serious 
experiments the old planner is better usable, because it allows for a better examination of 
results. 
The alternative is to create a task tree by the operator and the (original) task planner. This 
proceeds off-line, all processes that are not involved, wait until the task tree is finished.  
Prompted by that task planner, the operator must supply the elements for the structure of the 
tree. This way the operator provides the control details, through the task planner, for the 
execution control system. The operator can use scenario’s, which contain pre-processed sub-
trees, in an acceptable format for the task planner. The task planner does not know if it 
receives information directly from the operator or out of a scenario; it has no effect on the 
robots functioning. 
 
Once the job of building a task tree is done, it is sent to the execution control system. Here the 
action dispatcher parses the tree, when it finds an action node, it dispatches the appropriate 
operations, through the eo-interface, by sending an activation command. Then it will wait for 
an operation to finish, upon which it will decide what to do next. Some operations must finish 
their execution, instead of being told to stop. The Trajectory Controller is such an operation. It 
drives a path and must be able to finish, regardless of the result of other operations. 
When all active operations are suspended or stopped, the action dispatcher interprets their 
returned statuses and based on those, the parsing of the tree continues. 
Execution control is enforced by the action dispatcher. It is capable of this thanks to a 
mechanism that involves condition flags. By means of these flags the action dispatcher 
decides what actions it takes. Based on the systems status the action dispatcher executes 
nodes of the task tree. When that event occurs and there are no more nodes to process, the 
mission has succeeded. 

3.3.2 Example 
To illustrate how MARIE processes information and how its components interact, an example 
mission will be explained. The goal of this mission is to position MARIE in a corner of the 
room. See figure 3-4.  
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Figure 3-4: Driving backwards into a corner 

 
The car knows the layout of the room and its own position relative to the corner. First a path 
will be planned to the corner, then the wall must be found after which the cart will follow it 
and drive to the corner. These four steps have to be performed:  
 

1. Planning a path into the corner 
2. Driving the path until a wall is found 
3. Aligning the vehicle with wall 
4. Follow the wall until the corner is reached 

 
The task tree consist of a node (the root) that has four actions corresponding to four steps. The 
operations of each action are: 
 

1. Path Planner 
2. Wall Sensor, Trajectory Controller and Collision Avoidance 
3. Wall Sensor, Wall Follower and Collision Avoidance 
4. Wall Sensor, Wall Follower and Controlled Stop2 

 
The first action is done by one elementary operation, the other action by several at once. 
The operations interaction and data flow: 
 

 
2 The controlled stop is actually a special instance of the collision avoidance; when an obstacle is 
detected it signals full stop. 
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Figure 3-5: interaction and data flow of elementary operations 

The first action plans a path from the world map that it obtains from the world datamanager 
and stores the path in the parameter datamanager. 
The second action consists of the trajectory controller drives the path that it obtains from the 
parameter datamanager, while the collision avoidance makes sure that it does not bump into 
obstacles. While doing this the ultrasone sensor acquires data from the surroundings, it does 
this with narrow and wide beam ultrasonic sensors and stores their findings in the feature 
datamanager. Simultaneously, the wall sensor looks for a wall, from the ultrasone data in the 
feature datamanager. 
Next, when a wall is detected, the wall follower will align the cart along this wall, using the 
ultrasone data in the world datamanager, while the wall sensor continues to update that data. 
When the cart is aligned the wall follower will drive the cart backwards, along the wall, until 
the collision avoidance detects the other wall, resulting in full stop; the cart is parked in the 
corner. 

3.4 Conclusion 
This chapter explains how the MARIE robot is capable of solving complex tasks. A mission is 
given to the robot, in the form of a symbolic task tree, that is executed, and results in the 
robots versatile behavior.  
MARIE’s software is a so-called hybrid software architecture, a combination of a functional 
architecture and a behavioral architecture. The software’s high-level modules first create or 
gather a symbolic task tree and then translates it into a numerical task tree. This task tree 
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consist of actions, that are executed when certain conditions are met. A module called the 
action dispatcher is responsible for processing the task tree. Actions are executed by 
activating simple processes, called elementary operations, they do things like following a wall 
or reading sensor input. The combination of these operations are a virtual representation of 
the robot; the robots behavior is a direct result from there processing. Actuation, sensing and 
reasoning is done by these elements. A strong characteristic of the elementary operation is 
that they can run concurrently; for example, while sensor information is being gathered, a 
wall representation can be constructed from it. 
Information is exchanged by means of two interface; the datamanager interface (dm-interface) 
and the elementary operations interface (eo-interface). The dm-interface allows for the 
sharing and storing of data, produced by the elementary operations. By means of this interface 
the elementary operations make use of each other. The action dispatcher enforces control by 
means of the eo-interface. The interface generalizes control for all the elementary operations. 
Control instructions for elementary operations and state information are communicated 
between the action dispatcher and the operations, through the eo-interface. 
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4 PROBLEM DESCRIPTION 

4.1 Introduction 
With respect to adapting to changes or extensions of the robots controlling software, MARIE 
can be improved. This chapter describes this improvement. 
Section 4.2 gives an overview of high-level observation that led the conclusion that an 
improvement is due. In section 4.3 out-lines the general area in which MARIE may be 
improved. It describes that the robot is unable to adapt to modernized or new software 
components. This makes much desired, high-level functionality, such as self-configuration 
and self-healing impossible. After the domain of the problem is narrowed down, in section 
4.4, it is possible to describe exactly what information the system lacks. This description is 
divided over two sections; section 4.5 deals with the location information of the components, 
and section 4.6 deals with the controlling elements and their specific control details. 
Section 4.7 will look ahead towards a solution and section 4.8 will conclude the chapter. 

4.2 Overview 
The research and development of MARIE is meant to, eventually, increase its autonomy. The 
autonomy of a robot can be derived back to its ability to do things ‘on its own’. For MARIE, 
this has to quite an extend been accomplished already. However, functionality can still be 
improved.  
It is inevitable that a complex system, like the control software and hardware of MARIE, 
suffers from its size; control decisions that work fine in a historical context, have to be re-
evaluated in situations where the system is extended with new functionality or modernized in 
general. This is reflected in the work-intensive job it has become, to prepare experiments and 
adapt to changes in the software. The general cause for this is that the robot lacks means to 
deal with information about the system as whole, and can therefore not reason about itself on 
a higher-level. Currently, it relies on the operator to make system-wide decisions. The 
variation, high quality and amount of control information that the operator has to take care of 
in order for MARIE to function appropriately, is the information the system should have in 
order to be able to reason on a grander scale.  
 
In general, this thesis is concerned with solving the lack of self-knowledge around 
configuring and knowing how to control the elementary operations. A solution will be sought 
that bridges the knowledge gap between the operator and the robot and provides the system 
with additional functionality that should give it more high-level knowledge. 

4.3 Room for Improvement 
MARIE has extensive means to accomplish goals, because a lot of high-level, machine 
independent software that it has available. This demands flexibility on the part of MARIE; it 
must be able to plan a multitude of tasks and execute and vary control, interactively. The 
action dispatcher is the one module that is responsible for this, facilitated by the eo-interface. 
That flexibility of one module controlling all elementary operations comes with a price, 
because controlling the elementary operations requires elementary operation specific 
information, such as their location on the network and its control details, i.e. the information 
that tunes the functionality of the elementary operation. If these change, for example when a 
different configuration is set up, or the control structure of an elementary operation is 
improved, these changes have to be manually brought to the attention of the system by the 
operator or even the developer. If the execution control system were able to obtain the 
knowledge about locating or controlling elementary operations, it would have the means to 
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become much more autonomous. Characteristics of autonomy, such as, parameter 
optimization, predicting results or self-analysis would be easier. 
Currently, the only means the robot has to control the operations are defined in the eo-
interface, which is generic enough to communicate all commands but gives no insight into the 
structure of the control information, let alone its contents. The eo-interface is not able to deal 
with the high-level information about the system as a whole, such as locations or control 
structures for elementary operations. 
 
Practically, the focus of this thesis will be on configuring MARIE. This is, at the moment, 
made more difficult by the static configuration of MARIE’s software and the inability to 
obtain information about the elementary operations capabilities. In theory, dynamically 
configurable software and the ability to obtain such control information gives the robot means 
to configure itself. Such self-configuration increases the autonomy of the robot and decreases 
the operators concern with the system.  
The design of the software architecture of MARIE does take distribution into account, but has 
never been implemented, due to practical reasons. Solving this location dependence issue of 
MARIE’s modules, as an initial step in providing self-knowledge, should be realized first. 
When this has successfully been accomplished the supply of elementary operation specific 
control information should be developed. For this a design will be presented. 

4.4 Domain of the Problem 
Before going into more detail, it must be pointed out that the subject here is centered around 
versions, settings, and all other elementary operation specific information that describes how 
a certain elementary operation must be used and not the work spent on devising tasks-trees as 
far as the sequence of tasks is concerned. 
Or, in other words, what is explained here describes how an operation needs to be controlled, 
it does not describe the functional side of the elementary operations or their cooperation. This 
is motivated by the opinion that the operator’s job to supply a collection of tasks, that together 
solve a problem, is the job of the human. The robot must be able to execute the tasks and 
control the elementary operation therein, in as much an autonomous fashion as possible, 
without help from the operator. 

4.5 Location Dependence  
Historically all software of MARIE ran on one computer. Since a wireless network was added 
to the hardware of MARIE this is no longer required. Processes of MARIE can now be run on 
any computer within the network. In order to make use of this, MARIE should have the 
ability to obtain and reason about the location information of its processes. The system has no 
such mechanism, and to make matters worse, locations are hardcoded. 
The introduction of distributed computation in the system increases the computational 
capabilities of the system and allows for some evolution in the way the software 
configurations are realized.  
Historically all processes ran on the on-board computer, limiting the amount of possible 
configurations. These limitations no longer hold in the distributed version of MARIE. So that 
makes it possible to establish configurations more ‘to the need’ of the robot. For example, 
selecting between different versions of one process becomes an option. To be able to do this 
kind of reasoning, knowledge about elementary operations, i.e. where they can be reached and 
how they are controlled, is required. This knowledge is different for each elementary 
operation and can currently not be obtained by the system in a generic fashion.  
In all circumstances it is the operator that is responsible for configuring the system and 
supplying the control information. In the world of AI this type of control and configuration 
being pre-defined is somewhat out-dated. Compare this for example to autonomous agents; 
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they rely heavily on the ability to communicate their capabilities and are independent of the 
agents location. 

4.6 The Applicability of Elementary Operations 
The issue of the robots inability to obtain information on how the elementary operations are 
controlled, and the fact that it can’t deal with the dynamic location of its processes, is the 
result of the non-uniform information that controls the elementary operations. 
To understand this one must realize that if the structure and content of the control information 
for the elementary operations were of one format for each elementary operation, there would 
be no problem, because if the system were aware of that structure it would automatically have 
the potential to enforce control more autonomously. The fact that for each elementary 
operation, location and control information is not generic or pre-determined, means that 
specific knowledge is required for each elementary operation in order to make use of it.  
 
The following example will explain the problem when developing and applying operations. It 
should demonstrate how the system would improve if it had information about the location of 
elementary operations and their control information. 
  

 A Development Example: wall follower vs corridor follower  
MARIE contains an elementary operation called the wall follower. As the name 
suggests, this operation is able to follow a previously found wall. Because MARIE 
often drives through a corridor, a corridor follower was desired. It was decided not to 
make this a new operation, but instead, to extent the wall follower with extra 
functionality; a parameter was added to the operation to indicates if a wall or corridor 
is to be followed.  
To be able to use old task trees, that don’t take this new parameter into account, and 
new task trees, that do take the new parameter into account, the operator could have 
the old and the new wall follower active on the network. MARIE’s software should 
then decide ‘on its own’ which of these two instances its should use, based on the 
compatibility with its task tree . 
There is a desire for the system to be able to determine the proper configuration with 
its task tree, based on the available elementary operations and the way they are 
controlled 

 
Note that such configuration issues would be no problem if MARIE could locate and choose 
between available elementary operations based on their properties such as, control 
information and version.  
At that moment MARIE cannot choose between two instances of elementary operations, 
because it lacks functionality to distinguish between multiple instances of an elementary 
operation and even if it could distinguish two instances of an elementary operation, the robot 
could not use them, because the software relies on hardcoded locations. 
The desired situation is that the robot could assemble a working configuration from processes 
that reside somewhere in the network, based on the elementary operations characteristics, 
instead of the operator specifying what elementary operations to use and then re-linking and 
restarting the entire system . 
 
The role of the operator 
Dealing with the flexibility of controlling and connecting the elementary operations is 
currently done by the operator that has to fill in all the ‘missing’ knowledge. The operator 
must configure the system and explicitly tell the action dispatcher where, which elementary 
operations can be found. So, because the system is not aware of the locations or capabilities of 
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elementary operations a static configuration is enforced. When during the development of 
new elementary operations these properties change, a manual reconfiguration of the entire 
system must follow to make the changes known to the ‘users’ of that elementary operation. 
Control of each individual elementary operation requires operation specific information. This 
is the concern of the operator, because the system cannot obtain these details and cannot 
handle them because it uses a (too) generic interface to communicate them. 
 
This thesis will introduce location independence and a method that gives the robot more 
information about how to control the elementary operations and deal with variable locations. 
This will be done by enabling it to obtain elementary operation specific information on the 
location and capabilities of its operations.  
 
In order to explain what information controls the elementary operations and to debate what 
information should be made available by the system itself, the next section will elaborate on 
the properties of elementary operations. 

4.6.1 Operation Management 
The operator supplies the information that tunes the functionality of the elementary 
operations. The ‘tuning-information’ consists of settings that specify the behavior of an 
elementary operation. By means of these settings a variety of control can be enforced, that 
allows for MARIE’s broad applicability.  
The robot takes care of starting the processes that will be used, activates them when needed, 
supplies them with control parameters and reacts on their feedback. 
 
The location and ‘tuning’ information of the elementary operations are part of the elementary 
operations properties. Identifying and describing an elementary operation (in the context of 
configuration and control) can therefore be done by these properties.  
The information for controlling the elementary operations is listed below. 
 
Information due to the functionality of elementary operation: 

 Amount of operations 
 Functionally different operations 
 Different versions of operations 

 Settings of Operations 
 Different Settings per operation 
 Prediction and Accuracy of Settings 

 
Information for the configuration of the system: 

 Static Configuration 
 Existence of operations 
 Static Location of operations 

 
The contribution of each aspect to the over-all problem differs, but it is the combination of 
these points that cause a great amount of possible control information.  
Next, these aspects will be clarified. 

4.6.1.1 The Amount of Operations 
Approximately, 8 operations have so far been implemented. They can be divided into three 
types: operations that sense, reason and control.  
 
Sensing is done by: 
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The Ultrasone –operation 
Wall Finding –operation 
Docking Spot Detector –operation 
Segment Extractor –operation 

Reasoning is done by: 
Path Planning –operation  

Controlling is done by: 
Wall Follower –operation 

 Collision Avoidance –operation 
 Trajectory Controller –operation 
 
 Functional Range of Operations 
The operations are the ‘simple’ units that perform reasoning, activation and sensing. Thus a 
path planner is an elementary operation, but also the ultrasone sensor reader is an elementary 
operation. High and low level functionality is mixed at the operation level. The operator has 
to supply control information for both and thus must know information ranging from low-
level details, such as the direction of the ultrasone search beam, and high-level functional 
knowledge, such as the width and breadth of the docking spot. 
 
 Different Versions of Elementary Operations 
Throughout the years MARIE has evolved. This advance is the result of development of new 
modules and enhancement of old modules. Both from a functional and operational point of 
view changes took place. Functionality of modules was improved, technically modules were 
made better applicable, for example, the entire system was ported to Linux. Although most 
individual changes are documented, version management was neglected. There used to be a 
version management of the system, but this has not been used for some years3, resulting in a 
variety of different versions of modules. It is unclear what module is the most recent one. 
This gives rise to the following problems:  
 

 Old modules are used by mistake in (new) experiments; in experiments old modules 
have been used, when newer version were available. This could result in failure, and 
consequently a time consuming and wrong problem analysis 

 Old experiments become less informational; suppose a later performed execution of 
an identical experiment gave different results; is this caused by differences in version 
or lies the discrepancy somewhere else? Again, this costs time to figure out. 

 New modules can become too advanced, in comparison with other modules; such as 
the on-line task planner that is unpractical to be used in experiments.  

4.6.1.2 The Settings of Operations 
Elementary operations are not designed for a particular moment; rather, they are designed to 
be applicable on as many occasions as seems fit. This requires that an operation has 
functionality that can be configurable, so that it can be adapted to a specific circumstance. 
This adaptation is done by means of parameters. These specify the exact behavior that is 
expected from an operation.  
 
 Different Parameters for each Elementary Operation 
There is no framework for parameters or any other directive that specifies what they must 
look like; every elementary operation can have its own set of parameters. This means that 

 
3 This is not primarily due to laziness, but lack of system overview and tests for compliance with the 
rest of the system. 



Improving Control of the MARIE robot   

 
 
 

 
 
 
 

30

 

each elementary operation is controlled differently. Both from a semantic and a syntactic 
point of view the parameters of each elementary operation differ. The system itself cannot 
reason about these parameter structure, it doesn’t even have them explicitly available. 
 
 Prediction and Accuracy of Settings 
All parameters have to be predicted before hand, for each elementary operation in every 
situation. They can’t be changed during execution.  
The system doesn’t contain methods to estimate are supply default values. Some operations 
are sensitive to their parameters values and some are not. This further increases the 
complexity of supplying parameters. 
From experiments done for this thesis with the docking spot detector it was shown that the 
values for these parameters had to be very precise. The parameters of the docking spot are 
very simple: one must supply a breadth and depth of the park-spot. The elementary operations 
is sensitive to its settings. A slight deviation in their value from the real docking spot would 
have the operation fail4 [21].  
On the other hand, the Trajectory Controller is pretty flexible in handling its path-parameters. 
When an object is present on the path to drive, the collision avoidance makes sure no collision 
happens. 
To get insight into the parameter settings that were used in experiments Eric de Ruiter has 
created a database that links this information to the software version that was used and some 
additional information [3]. 

4.6.1.3 Static Configuration 
During execution additional hardships arise concerning the control of the operations. This is 
due to the limited capabilities of the system to manage its own configuration. Currently, the 
over-all system configuration is only implicitly present.  
This deficit exhibits itself by the absence of the capability to manage the following 
information: 
 
 Existence of Operations 
MARIE was designed to be a multi tasking system, running on a single machine. To function 
correctly the system must know all components that will participate in the execution of a task. 
However, the system only knows of the existence of the elementary operations it started. 
When the operator or a developer starts an additional operation it cannot participate in the rest 
of the system or replace an existing elementary operation, because there is no mechanism to 
announce that it is there. Additionally, during execution the system assumes all started 
operations are still there, but never knows for sure, because there is no mechanism to check 
this. When an operation crashes, for instance, the remaining software isn’t informed and 
therefore cannot recover. 
 
 Location Dependence of Modules 
An additional problem has resulted during development of modules of MARIE. This is the 
result of the practical situation the robot was used in. It caused two different, but very much 
related, problems: 
One needs to remember that there is one main computer aboard the MARIE robot. This 
computer runs the VxWorks operating system. Although the software of MARIE is set up to 
run distributed, all was run on that VxWorks machine.  
It resulted in hardcoded locations of modules, i.e. when a module needed to find another 
module it just connected to the ‘local machine’, being sure the module would be located there.  

 
4 One could very well justify blaming the docking spot implementation for this. However, the fact 
remains that adjusting the parameters solves the problem. 
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This caused an additional change that became possible because of some memory management 
features of VxWorks. To avoid getting too technical, and drift off topic, the explanation will 
be kept brief. In short: Different processes and threads share global memory and a single 
name-space on VxWorks, this, practically, means that global variables are known throughout 
the system. In a programming context this is very ‘dirty’, in the context of MARIE it was 
gratefully exploited. Various forms of data were shared between all processes e.g. software 
modules. And that’s what’s wrong: data sharing. That’s bothersome, because modules cannot 
be properly compiled, tested or debugged without having to deal with all the other modules 
that run on the system. One could say that these two changes led to a decrease in reusability 
and maintainability, which means that modularity, is compromised. 
 

 

Figure 4-1: As it is 

 
An example of the sharing of system wide knowledge will clarify this.  
On start-up the action dispatcher connects to all elementary operations and data managers. A 
handle identifies the connections. This handle is globally known throughout the system. This 
makes it possible for all clients of a datamanagers to use the established connections, 
provided they run on the same system. The modules that use this shared information cannot 
choose to do otherwise, this means that they must run on the same machine as the action 
dispatcher. Goodbye distribution, farewell modularity. 

4.6.2 Concluding 
The need for improvement in controlling the operations are on the one hand the result of 
MARIE’s behavioral architecture; the collection of operations and their different way of 
control are the result of the demand that all behavior should be exhibited by one virtual 
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machines. Because they must be able to run concurrently, they reside in the same operational 
layer, even though from a functional perspective the operations are very different. The 
functional difference of operations demands operation-specific control, which leads to a great 
variety of control information.  
Operations are controlled by their parameters. There are no development limitations on the 
parameters; there can be as many as the developer seems fit. This leads to the disadvantage 
that there is no straightforward way to know how they are controlled and that makes it the job 
of the operator to equip them with the correct control details. 
Additionally parameters are liable to change during run-time. The operator has to foresee this 
and supply the correct values for the expected situation. Combine this with the sensitivity and 
amount of parameters to realize the meticulousness and extent of this job. 
The problems with respect to version management and location dependence, on the other 
hand, are the result of a discrepancy between the design and implementation of the system. 
By design all modules must be able to run on different machines and their communication 
must be performed over a network. In the implementation this has not been fully developed 
this way; modules are to such an extent dependent on one anther that they must run on one 
machine. 

4.7 Towards a solution 
The existence of a behavioral architectural layer in MARIE’s software, that contains a variety 
of functionally different elements and that are controlled from a central process enforces a 
flexible but general control mechanism. The cooperation of the different modules of the robot 
is facilitated by two interfaces; the dm-interface, for data, and the eo-interface, for control 
values, but cooperation on a higher level is not possible, because the system lacks both means 
and knowledge to reason on a level that is comparable to that of the operators’. 
The current interfaces don’t have the capability to deal with information about the system in 
general. No knowledge is communicated about the systems components, but ‘just’ the 
information that controls the robot. A solution should be devised that introduces the ability to 
communicate about the system as whole. A meta-interface on self-knowledge. The goal of the 
thesis was previously formulated as ‘bridging the knowledge gap between the system and the 
operator’. An interface that communicates properties is expected to do this, because it 
provides the information that allows for reasoning from a more birds-eye view of the system, 
just like the operator does. 
Such a property interface would be useless if there is no application that uses it. For this 
reason, as the example from section 4.6 shows, self-configuration could be an application that 
improves the system, when using the interface.  

4.8 Conclusion 
MARIE is an up and running, fully functional system. The robot has means to communicate 
data between processes, it has means to communicate control information to processes, but 
has no means to communicate more general information about itself, making it more difficult 
for the robot to reason on a higher-, operator-like level. An example situation in which this 
becomes apparent is self-configuration. This is impossible due to the lack of knowledge to 
identify individual instances of elementary operations.  
Two aspects were identified that can be improved. One improvement is providing the system 
with self-knowledge about the detailed control knowledge for its versatile control mechanism. 
The second aspect that can be improved is the way the robot deals with location information; 
since the introduction of the wireless LAN there is no longer any need for a static, pre-defined 
configuration of the robots software. 
This thesis seeks to improve the system with regard to controlling and using elementary 
operations, independent from their location. The general goal will be to find a solution that 
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provides MARIE with more autonomy. It should be able to acquire information about the 
properties of its elementary operations, so that it knows where they can be found and knows 
how to use them. 
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5 SOLUTIONS 

5.1 Introduction 
This chapter describes how to the previously formulated improvement could be realized. First, 
in section 5.2 some existing methods that deal with decreasing the operator involvement in 
creating and executing task trees and testing new modules will be described. Section 5.3 will 
describe the applicability of aspects of the research that was discussed in chapter 2, by 
evaluating the four literature examples, with respect to how they deal with location 
information and specific control details. In section 5.4 the proposed solution will be 
presented; a functional description will be given that should improve MARIE. 

5.2 Existing Solutions 
The system contains a collection of methods that helps the operator control MARIE. In this 
section these methods and their pro’s and con’s will be discussed. The methods that will be 
dealt with are:  
1. Pre-defined scenario’s that can be used when producing a task tree,  
2. online parameter planners during task tree execution, 
3. the on-line task-planner 
 
1. Pre-defined scenario’s 
Why do the same thing twice? The idea behind scenarios is that task trees can be stored as a 
‘script’, facilitating reusability. One can store a task tree in a so-called scenario-file type 
format. The system, the task-planner in particular, has been adapted to accept these scenario-
files as input, and incorporate them into a task tree. This means that tasks, that are described 
in a scenario, can be reused in different experiments. This decreases the amount of work for 
the operator, especially when experiments are repeated.  
However, scenario’s contain static control information. When, for example, the control 
information for an operation changes then all scenario’s that use that operation, are out of date 
and can no longer be used, unless they are updated. Additionally, scenario’s are in an 
unreadable format, which makes it hard to understand what a scenario precisely does, and that 
makes them hard to incorporate into other trees. On top of that, scenarios still have to be made 
by the operator. 
 
2. On-line parameter planners 
The system allows for the use of on-line parameter planners. These are themselves elementary 
operations that are meant to parameterize other elementary operation during execution. Using 
parameter planners has the benefit that it can adapt the behavior of an elementary operation to 
the ‘current’ situation, and thus provide great adaptability for the operation that needs the 
parameters. 
Currently, there is only one parameter planner available for MARIE. This is the path planner, 
whose task it is to plan a path which serves as a parameter for the trajectory controller.  
There are two problems with this approach. Parameter planners will have to be specifically 
designed for each elementary operation, this is not straight forward and requires a lot of work. 
Secondly, the planners also need control information, so this approach would just move the 
problem from the elementary operation to the on-line planners.  
 
3. The on-line task planner 
The on-line task planner takes the trouble of creating a task tree out of the hands of the 
operator all together. This planner, created by Frank Terpstra [2], is capable of composing its 
own task tree from a collection of sub-trees, given a start- and end-state. Although this means 



Improving Control of the MARIE robot   
 

 
 
 
 
 
 

35

 

that the operator is not needed anymore to supply all control information, this is still not a 
satisfactory solution.  
Using the online task planner circumvents the tediousness of settings, but was, obviously, not 
developed for this purpose. The problem with the on-line planner is that it is not very useful 
when testing the software, because the on-line task planner greatly influences the result. 
Examining the results of a test is quite some work, because besides the tested component, the 
behavior caused by the on-line planner has to be taken into account as well. 
Additionally, the macro’s used by the planner assume the software to be static, so changes in 
the software, require manual adjustment of the macro’s.  
 
Concluding 
The major drawback of all these solutions is that they cannot automatically adjust to changes 
in the software. For an existing configuration most work fine, but, when adding new 
operations or conducting new experiments just as much work is required. The methods 
assume the system is fixed. Since MARIE is a test-bed and as a result changes in its software 
are not uncommon, the system would benefit from a method that automatically updates the 
information about its components.  
There are no methods to manage the systems configuration, nor does the system have 
methods that deal with the availability of operations, the correctness of its parameters, 
etcetera. A successful solution will need to obtain and use such knowledge. 

5.3 Alternative Solutions 
These sections investigate to what extent the presented examples from chapter 2 can be 
integrated in, or used for, MARIE’s software with respect to the improvement mentioned in 
chapter 5. As stated there, an improvement is due concerning the fact that the specific control 
information for elementary operations is only known by the operator and not by the system. A 
solution that allows for that knowledge to become available is needed. 
Systems that consist of various, functionally different, components that together cause the 
behavior of the entire system are common in literature, because this is the holy grail of agent 
technology [8].  
The presented systems are all born from a desire to control (heterogeneous) components in a 
distributed computing environment that is becoming more complex. Both, MARIE and the 
presented systems, need to ascertain a components control information.  
This section discusses the possible application of the discussed systems and methods, with 
respect to locating and using distributed, differently controlled, components. 

5.3.1 Jini 
In Jini location and control information is actively published by the service. A client identifies 
a service in Jini by java types, that identifies the object, as a reply it gets sent the specific 
control information. In Jini this consists of possible (remote) methods that can be called to the 
service. Communication proceeds directly with the service 
 
Jini has been used as the bases for various systems [22], but using Jini for MARIE would be 
very elaborate, because Jini relies heavily on Java. The concepts of Jini, however, such as the 
way that the identification, localization and control issues are solved, could be learnt from. 
MARIE’s elementary operations are the services that clients want to locate and control. If the 
concepts of Jini would be used for MARIE, then the elementary operations should register 
their locations and control information at a specially devised lookup service. It would add 
additional attributes to this self-description with version information, and such.  
The client (the action dispatcher, for example) can request this proxy from the lookup service, 
so that it knows where the elementary operation is located and knows how to control them. 
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This presumably solves the location and control issue for MARIE, but at the cost of quite 
some additional design and implementation. Besides that, one would have to design the 
proxies for each elementary operation, and make it transferable, executable code. Applying 
the proxy concept with C, means that CORBA [19] would have to be used, and, to 
communicate code between processes, a special interface would have to be devised to 
describe the proxies in and thus the elementary operations’ control information.  
 
Advantages of Jini approach: 
 solution to localization issue 
 communication of attributes allows for better description of elementary operations 
 
Drawbacks of Jini approach: 
 concept of proxies unpractical 
 unacceptable amount of additional design and implementation 

5.3.2 HIVE 
A system setup with HIVE consists of cells, shadows and agents. The cell contains services 
on a system, shadows are interfaces for using these services and agents are meant to 
communicate between shadows (and thus cells). The agents communicate and share resources 
with each other. Programs in HIVE are represented by a collection of cooperating agents. 
 
The idea of HIVE is to let heterogeneous components in a system cooperate. This is exactly 
what we want. Because of the structure of separating the system in services (cells), interfaces 
(shadows) and agents HIVE could be used in almost any distributed system.  
On the surface, HIVE provides a nice solution to the static location of modules. This is 
solved, or rather, worked around, by leaving them in a fixed location, and have agents by 
means of shadows interface with them5. It is the agents’ task to locate the process then.  
This cannot be used as a solution to introduce distribution in MARIE’s software, because 
desired benefits from real distribution cannot be met by HIVE’s methods. I.e. the monolithic 
appearance of the software is not solved; debugging, and ease of configuring the system are 
thus not realized, unless the agents facilitate in this as well.  
 
Functionality from a system that uses HIVE is derived from the cooperation of the agents. In 
analogy the functionality of MARIE is derived from the cooperation of its elementary 
operations. The big difference here, is that MARIE requires a central component (the action 
dispatcher) that governs this cooperation, that would also have to be represented as a 
collection of agents. But if all (controlling) components are represented as agents, MARIE’s 
operational layering is gone and because the operational layer is a cornerstone of the MARIE 
robot, this makes HIVE an inappropriate approach. 
What may be considered, though, is the representation of the communicated knowledge in 
HIVE. In HIVE the agents are described in two manners; a semantic description and a 
syntactic description. The semantic description is required to give agents the ability to 
determine what other agents are capable of, the syntactic elements then describes how to 
make them do it. In analogy for MARIE a semantic description of the elementary operations 
would describe what they can do (obtain line segments, follow a wall), a syntactical how to 
make them do it. This last aspect is exactly what MARIE requires, since it gives insight in the 

 
5 The components in HIVE are fixed, physical objects, such as digital cameras or printers, and as such 
really have a fixed location. For MARIE, this is only the case for the on-board computer; it also has a 
permanent location. However, introducing HIVE just so that the on-board computer can communicate 
with the rest of the software components of the robot seems rather extravagant. 
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specific control details of the elementary operations. A semantic description would also be 
useful, but at what cost? The next section will go into this in more detail. 
 
Advantages of using HIVE: 
 Separation of semantic and syntactic descriptions 
 Fixed location of elements is compensated by dynamic elements that interface with them 

(useful for the on-board computer of MARIE) 
 
Drawbacks of using HIVE: 
 As a concept not usable, because it would require a complete conversion of almost every 

module into an agent 
 The overhead of having a representation of a service on each machine. 

5.3.3 LARKS 
LARKS is interesting because it makes differently controlled components understand each 
other by having them ‘talk’ a specific language. This is accomplished by defining the 
components in a syntactic and semantic form, together with logical statements, that allows for 
reasoning about the possibilities and capabilities of the components. Separate software 
entities, called matchmakers, reason with these capability descriptions, obtained after the 
components are located, in order to satisfy certain requests. Thus providing services on 
demand.  
 
The semantic aspect of ACDLs faciliate reasoning about agent information such as an agent’s 
intentions and capabilities. The elementary operations are no agents and do not have (easily) 
defined intentions or capabilities. This gives the problem that, to make a semantic definition 
of them, a lot of research is required as to find a good representation of the elementary 
operations and because a semantic representation is only useful when it is generic enough to 
be used for multiple goals (on-line parameter planning, self-configuration, self-optimization, 
etc) generating a semantic ontology for MARIE is simply too much work. 
 
Considering the fact that MARIE was never designed to describe its own capabilities or 
communicate about them, it seems more practical to focus on the particular properties that 
should be made available, in stead of providing means to allow the system to choose 
elementary operations in order to solve an action or have it accomplish a task, i.e. no 
matchmaking and no semantics, but just syntax should be defined. 
 
Advantage of using LARKS 

 Allows for sophisticated decision making 
 
Drawback of using LARKS 

 Not applicable for elementary operations 
 Difficulty in creating a semantic language 

5.3.4 Autonomic computing 
The IBM manifesto speaks of controlling complex, heterogeneous systems and components 
by developing systems with self-managing elements that provide the ability to self-configure, 
self-optimize, self-heal and self-protect. Except for self-protection (protection has never been 
an issue for MARIE), self-configuration, self-optimization and self-healing are definitely 
improvements to MARIE, and are actually made more realistic by the changes this paper 
introduces. Providing the robot with more knowledge about the specific control details of its 
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components brings these improvements closer. However, the way to increase the autonomy of 
the individual system elements, by transforming the elements into autonomic elements with 
monitoring, analyzing, planning and executing parts, is not usable for MARIE, because 
elementary operations are designed to be simple units and were not meant to be autonomous. 
Adding autonomy to the individual elementary operations would render the action dispatcher 
useless for the greater part and would require a totally different way to enforce control on a 
higher-level. 
The manifesto does provide a glance at how useful elements with more autonomy would be, 
but sadly does not provide means to make it so; the manifesto deals too little with how 
capabilities of components are to be published and used, a strong recommendation for an 
agent-oriented approach is all that is mentioned. 
 
So, although the characteristics of autonomic computing, such as self-configuration and self-
healing are much desired features for MARIE, autonomic computing is only useful as a very 
general concept. The reason for this is, as said, that IBM’s approach is too heavy for the 
simple and small design of the elementary operations.  

5.3.5 Concluding 
Agent technology with ontologies, capability languages and some middleware provide means 
to solve problems in an autonomous fashion, with using a (potentially big) collection of 
agents, although this is useful for MARIE (as it would be for any autonomous system) it is not 
so easy to implement. Considering the fact that MARIE was never designed to describe its 
own capabilities or communicate about them and that choosing a particular service (i.e. an 
elementary operation) is done once per execution, it seems more useful to focus on the 
particular properties that should be made available, in stead of providing means to allow the 
system to choose elementary operations in order to solve an action or have it accomplish a 
task. 
In general, there are two reasons why it is not recommended to use the existing systems for 
MARIE: 
 The existing approaches produce too much overhead. Using middle-agents or brokers or 

something similar, requires too much communication and computation, especially for the 
on-board VxWorks machine of MARIE (the VxWorks machine is 14 years old). Note that 
such methods are meant to work in environments with a lot of agents. MARIE has only 
ten, potential, agents available. 

 Managing control information is not just a matter of dealing with properties of agents, but 
also handle states, intention, goals, context, et cetera. Because elementary operations are 
very different from agents, since they do not have these typical agent characteristics, they 
can’t talk about them. Defining semantic information, that allows for reasoning about 
how to solve a goal, such as agent-based systems do, is needlessly complex. MARIE is, 
presumably, better off with syntactical definitions and a human that does the task 
planning. 

 
The presented frameworks also deal with the way the various components locate and deploy 
each other’s services, by having some type of middle agents resolve requests (HIVE, 
LARKS). In MARIE locating is not dealt with. It is best to keep following in mind when 
developing a solution: 
 Identification, as a combination of predefined, fixed data, and further information on 

request. (a client actively has to identify a service) 
 Location information must be stored in a fixed location table 
 Control information of a syntactical form, provided on request 
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5.4 Proposed solution 

5.4.1 Introduction 
The proposed solution will consist of an interface that communicates information about the 
elementary operations, so that the system has means to determine such knowledge more 
autonomously. A property that is certainly required is the location information of elementary 
operations.  
In these sections the hi-level functional requirements of the solution will be defined. 
Described is what the proposed solution will do. These descriptions form the bases for the 
next chapter, that describes how the requirements are fulfilled. 
Its is expected that this knowledge can be used in much more situations to the systems 
advantage, not just for efficiency. Section 5.5 will describe some possible future applications 
for the interface. 

5.4.2 Overview 
Chapter 4 described that MARIE lacks knowledge about the elementary operations location 
and control details (and the consequent problems with either of these changing). This chapter 
describes a solution to fill this ‘knowledge gap’. It will consist of a way to communicate 
information about its components by means of their properties. This will become possible by 
designing an interface that allows other components to obtain and publish property 
information of elementary operations. The idea behind the construction of another interface is 
that this new interface introduces knowledge on a different, higher, level than the other two 
interfaces of MARIE.  
The first stage of development of this interface will consist of making the systems modules 
location independent. Locations of modules are thought to be a property that nicely 
demonstrates the usefulness and functioning of the property interface. 

5.4.3 Functional Description of the Solution 
Knowledge about elementary operation will be made available, in a generic fashion, that 
surpasses the other generic ways of the system to share or communicate information. 
The traditional way this kind of knowledge is characterized is by defining a semantic 
framework that captures the inter-relationship between knowledge and the meaning thereof, 
resulting in a description of capabilities and a ‘language’ to describes these capabilities in, so 
that they can be reasoned about, see section 2.5 or [10], [12], that deal with such a languages.  
However, this is not what will be done in this thesis. The existing software architecture is not 
designed to function with such a mechanism that (in essence) uses decentralized control and 
reasoning, in order to fulfill goals. Developing and using it would create too much overhead 
for MARIE.  
 
Properties 
Identifying and describing characteristics of an elementary operation (in the context of 
locations and control information) can be done differently. The use of a semantic 
representation of the relationship between elementary operations will be omitted and instead 
there will be a description of the properties of elementary operations, of which the user, or 
consumer of this information, must know the interrelationship with other information. 
Using properties, instead of capabilities, allows for much broader (although less structured) 
collection of information to be made available; properties, such as up-time and historical 
information can also be taken into account. 
 
An Interface 
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Sharing this information between processes could be done by extending the eo-interface. But, 
because of the nature of the property information (its about elementary operations, instead of 
controlling the elementary operations), this will not be done. Instead, an interface will be 
designed that is specifically meant to communicate properties of elementary operations in a 
predefined manner, according to a certain protocol. Such an interface defines how information 
is made available and can be obtained This means that any process can make use of it. 

5.4.4 Self-configuration: an application of the property interface 
The more information that is known about the elementary operations, the better control can be 
enforced. One particular instance where this is expected to be the case is when the system can 
determine its own configuration. Self-configuration, however, is not the only enhancement 
that could result from more self-knowledge. What was described in section 5.3.4 about 
autonomic computing and [5] deal with typical autonomous system improvements, that 
essentially require self-knowledge. 
Having explicit knowledge about the whereabouts of elementary operations in combination 
with knowledge about the specific control information for each elementary operation provides 
not only means to set up a system, but can also be used to recover from crashing processes or 
failing machines or it could be used in assembling task trees, or to check the (syntactical) 
correctness of a particular mission, etc. 
All such application require special functionality, and this paper limits itself to the design of 
the property interface, not using it. However, the self-configuration application will be kept in 
mind as an example application of the property interface. It is considered a very useful 
application that can be viewed as a proper test case for the improvements that will be made to 
the system. 
 
The self-configuration example 
To give an idea of what properties should be communicated by the interface, self-
configuration will be taken as an example. It describes how the system would benefit from the 
ability to chose between multiple instances of an elementary operation, and thus determine on 
its own what its proper configuration should be like: 
 

When the system is starting up one of the initialization steps is setting up connections 
to elementary operations. The action dispatcher is, at startup, expected to connect to 
every elementary operation it will use in the experiment. Currently the developer (!) 
must specify which elementary operations the action dispatcher will connect to and 
the operator must make sure that they are available.  
The new property interface, however, must make it possible for the action dispatcher 
to find out what elementary operations are available so that it can setup a connection, 
without the help from the operator.  
The idea is that, in that case, the action dispatcher invokes functions from the 
interface to determine the available elementary operations. Based on that information 
it can reason about which ones to use. If there are multiple instances of a particular 
elementary operations active at the same time (for example an old and a new version 
of an elementary operation), then the interface provides means for the action 
dispatcher to obtain information to distinguishes the multiple instances. This can be 
done by providing elementary operations specific information, such as information 
about their parameters, their version, up-time, etc. 

 
Summarizing this: in order for MARIE to set up an appropriate configuration by itself, it first 
of all, needs a source for information on all available modules within the network and their 
location. Additionally, in order to select between multiple instances of an elementary 
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operation, it needs to obtain information about other properties of these elementary 
operations, such as previous parameter values, version information , et cetera.  

5.4.5 Functional requirement 
In general, the interface is a source for properties of elementary operations, to any module of 
MARIE. It allows such modules to obtain up-to-date, elementary operation specific property 
information. 
 
The property interface must be the source for properties, such as: 
 The availability of elementary operations; so that the system knows what elementary 

operations it has at its disposal  
 The location of the elementary operations 
 The version, parameters count, parameter values, default parameter values, up-time, and 

various other properties. 
 
Implementation of this functionality leads to a system where all modules can contact all 
available elementary operations and find out how they are controlled. The property interface 
assures the availability and enables the communication of properties of elementary operations. 
It does in no way dictate how the obtained information should be used. That is up to the 
developer of the particular application that uses the interface. 
 
In order to have up-to-date and accurate information the elementary operations will be the 
source for their own properties. The elementary operations are required to take care of the 
following: 
 actively supply availability information 
 actively supply location information 
 supply all other properties on request 
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Elementary 
Operation

Property Interface

any
property

I exist !
and I am 

located here

 

Figure 5-1: Locations are actively published, other properties are available on request 

 
Because the elementary operations are the source of their own properties and because the 
location of the elementary operations should not be considered static, the requester of 
properties of such an elementary operations must first locate it, before it can submit its 
particular request. The following is required from the requester of property information: 
 
A requester of property information must 

 Locate and contact the elementary operation it wants property information from 
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Requester

Any elementary
operation

Location information

Any other property
Registered
locations

 

Figure 5-2: location information is required for obtaining properties 

In figure 5-2 the blue arrow represents interface functionality. The requester is required to 
locate and contact the elementary operation for that operations property information, before it 
can obtain any other property of that elementary operation. 

5.4.6 Towards design and implementation 
At this juncture an important decision must be made concerning what will be designed and 
implemented and what not. It was chosen to, first of all, design and implement location 
independence, with the property interface in mind. This means that location independence is 
going to be implemented and the property interface will be designed in some detail. 

5.4.7 Location Independence 
Providing the system with knowledge about the location of elementary operations and making 
the system location independent are two different, but closely related, subjects. 
Providing the location information of elementary operations does not imply location 
independence. Location independence, however, does require some way of obtaining location 
information of modules, in order to set up connections.  
The locations of MARIE’s modules are hardcoded in the system, although by design all its 
modules are location independent. This means that MARIE, currently, runs with a static 
configuration, but has the potential to function with a distributed configuration. To 
accomplish dynamic configurations location independence of MARIE’s modules needs to be 
designed and implemented.  
 
Location independence was dealt with first, for the following reasons: 

 the system as a whole improves with real distribution, 
 the location of elementary operations is needed, in order to obtain their properties, 
 the location property can serve as an example property for the interface 
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These points will be briefly motivated: 
 
 System as a whole improves  
A location independent system is easier to use, extend and maintain. Both the developer and 
operator of the system will have less interaction with the system. The developer needs to pay 
less attention to integrating a new module, the operator will have less work configuring the 
system. 
 
 location of elementary operations is needed, in order to obtain their properties 
In order to obtain an elementary operations properties one needs that elementary operations 
location. Although, this in itself, is easier when locations were hardcoded, it would provide 
additional problems, when in the future location independence were to be implemented, 
because, then, also the property interface would have to be adjusted to deal with dynamic 
locations. 
 
 the location property serves as an example property for the interface 
For demonstration purposes the location property is a good example; it is a property that each 
elementary operation posses. Its gain, as extra, higher-level knowledge that can be reasoned 
with, is apparent in the context of determining configurations. 
 
For the self-configuration application location independence is required. The application 
would have to be able to set up a configuration with two differently located elementary 
operations. How would this be possible if the system can not deal with dynamic locations? 

5.4.8 Future applications of the property interface 
Availability of properties of elementary operations is useful in various circumstances. This 
section will give some example applications in which property information can be useful, 
although tests should be performed to confirm this.  
Note that the property interface assures the availability and enables the communication of 
properties of elementary operations, but it is up to the developer of the application to use this 
information.  
 
1.  Self-configuration 
Depending on the available modules that are active, a proper configuration could be set up. 
Deciding which configuration to use, if multiple are available, could be based on information 
from the database of Erik de Ruiter. 
 
2.  Recovery from failure due to a new configuration.  
Recovery from wrong configurations requires the ability to communicate the properties of the 
elementary operations in order to check the appropriateness of the send parameters and 
recover from errors. 
 
3. Parameter simulation during task tree development 
One step in the development of a task tree is to simulate the nodes in order to query the 
operator for parameters. This simulation can be augmented by the interface. 
 
4. Monitor/request Configuration 
The interface would make it possible to query the current system configuration. This 
information could then be used for different things ‘on the side’. I.e. evaluating a certain 
configuration, for example. 
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5. Eo-interface message debugging 
A detailed log file can be generated that reports all information received through the eo-
interface, by an elementary operation. This can be useful when the system did something 
wrong. 
 
6. Eo-interface supervision 
The eo-interface could be extended with a check of (and maybe correct) the information it 
passes. 

5.4.9 Conclusion 
The system will be extended with an interface that provides information about the elementary 
operations. The information about elementary operations is represented by their properties. 
The location and availability property will be dealt with in more detail than the others, 
because the expected benefit of knowing location information exceeds that of other 
properties. Being able to deal with dynamic location information will improve the system as a 
whole and is an important property for the functionality of the property interface. Because the 
elementary operations are the source for their own properties, the location of an elementary 
operation is required before properties can be requested. The elementary operations must 
actively publish their locations, in order for the rest of the systems modules to be able to 
contact them. All other properties are delivered on request, by the elementary operations. 
It is expected that MARIE will benefit from the self-knowledge about its controlling 
components; possible future application such as self-configuration, self-recovery or self-
analysis are potential users of this data. 

5.5 Conclusion 
The chapter looked at improving MARIE, with respect to obtaining knowledge about its 
controlling components, by first evaluating existing solutions. It was concluded that these do 
not (sufficiently) solve the problem. The drawback of the existing ‘solutions’ is that they can’t 
deal with changes to MARIE’s controlling software components. 
The alternative solutions that are (abundantly) available in literature are either to vast for 
MARIE or simply not applicable. So a solution is proposed, that uses the interesting features 
from the alternative solutions, but does not have the overhead that comes with those systems. 
The solutions consists of an interface that communicates properties about the elementary 
operations. This interface must be developed such, that, on request, the elementary operations 
publish their properties. Among these properties are the operations specific control details, but 
also version information, or any property imaginable (and implemented).  
The property interface makes the development of smart extensions to MARIE’s software 
possible; in the future applications that enable self-configuration, self-healing, parameter 
checking or facilitating task tree construction can be developed.  
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6 OPERATIONAL DESIGN 

6.1 Introduction 
This chapter motivates the decisions that were made in designing location independence with 
the property interface in mind. Following an overview in section 6.2, this is approached by 
formulating general design demands for the property interface, in section 6.3.  
Section 6.4 describes in detail the collection of properties that can be retrieved with the 
interface. Among these are, of course, the specific control details of the elementary 
operations, but also other useful properties. Section 6.5 describes how the communication of 
properties proceeds. Section 6.7 concludes the chapter.  

6.2 Overview 
The information that is provided by means of the property interface gives MARIE more high-
level knowledge about its own controlling software components. Any module within the 
configuration may request properties from the interface. The elementary operations provide 
the properties.  
Figure 6-1 below depicts how the property interface is integrated with the other system 
components. 
 

Action Dispatcher

Elementary operations interface

Wall
Sensor

Path Planning
Trajectory 
Controller

Wall Follower

Data Managers
World/parameter/feature

Narrow Beam 
Ultrasone

Wide Angle
Ultrasone

Virtual Car

Collision 
Avoidance

Client side
Server side

Task Planner

Macro RepositoryOperator
Off-line

Task Planner Property      Interface

 

Figure 6-1: MARIE’s software architecture, with the property interface 

 
The interface is concerned with two aspects; a definition of the functions that take care of the 
communication of some data and a definition of that data. 
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The data of the property interface are the properties of the elementary operations. These 
include information such as versions, parameter information or up-time and location 
information of modules.  
Properties are obtained real-time, from the elementary operations. This means that they are 
always up-to-date, but this also means that there is no functionality to edit or delete 
properties. The interface will contain a function for each property.  
The location property of an elementary operation will be treated differently in this regard, 
because, in order to contact an elementary operation, its location must be known, beforehand. 
Locations are therefore reported to a database. This makes it possible to deal with the 
dynamic location of all elementary operations. 

6.3 Design Demands 
The new interface should not burden the systems or the future development on MARIE. Some 
general guidelines for the development of the interface are taken into account that should keep 
the interface manageable. They are formulated below.  
 
 Location Independence 
Location independence will be defined as a design demand. It is expected to serve the 
property interface well, because it demands a more generic approach towards communication. 
As a result of location independence the property interface will be able to deal with the 
dynamic location of the elementary operations.  
 
 Simple and generic 
The data communication must require minimum overhead. This means that the data exchange 
functionality will be efficient and with small overhead, so that the interface will not export an 
unmanageable amount of extra functionality. Compare this to for example CORBA or 
middle-agents, that both rely on brokerage of requests.  

 
 Small Scale 
Taking scalability into account would needlessly complicate matters. MARIE will always be 
used in relatively small and modest set up. This means that the traditional issues involved 
with managing objects in a large configuration are not relevant. Name space, communication 
load, for example, are not likely to cause any problems.  

 
 Computational load on the operations 
In general it seems a good idea to keep computations to a minimum. For the more high-level 
operations such as the docking spot finder or the wall follower extra computations don’t 
influence the overall behaviour of the operation, because they operate with relatively large 
time-intervals. The low-level operations, like the ultrasone sensor are of more concern. 
Experiments should indicate if (especially the low-level) elementary operations suffer from 
the extra computation that results from property interface activity. If this is the case, then 
special measures will have to be devised for these operations.  

 
 Generic functions 
The interface should be designed such that when a process wants some property of an 
elementary operations it will have a function at its disposal to obtain that property, regardless 
of which elementary operation is ‘targeted’. So, if that process needs the number of 
parameters that control a particular elementary operation, it should have a function available 
that obtains that property. If it wants to know the location of a elementary operation it should 
have a function for that property as well.  

 



Improving Control of the MARIE robot   

 
 
 

 
 
 
 

48

 

 Requester of the properties 
The users of the interface will not be restricted to one particular process. Since the interface is 
more general than the other two interfaces, this would needlessly restrict its applicability. So, 
all virtual machines can make use of the interface and demands generic access to it. 

 
 Source of properties 
The elementary operations themselves will supply their properties to the interface. This is 
motivated by the fact that properties of elementary operations are liable to change. These 
changes can take place between executions, for example when an operation is moved to 
another computer or it has been changed, but also during execution properties may change, 
for example its last received parameters. Although the majority of the properties are static 
during execution, the interface will have to be able to cope when a property changes ‘on the 
fly’; the elementary operations will contain up-to-date information and will therefore be the 
sources for properties. 

 
The above mentioned design demands have a particular consequence concerning the way that 
the location property will be treated.  
Just like any other characteristic of an elementary operations, the location information is a 
property. However, in order to obtain a property of an elementary operation one must know 
that operations location, because the properties are provided by the elementary operation 
itself. Therefore, obtaining the location property is done differently.  
 
 Location Information Storage 
MARIE is, by design, a distributed system that location is not pre-defined and thus needs to 
be determined on the fly. All locations of all active modules are stored on-line in a central 
database (whose location is hardcoded). By means of the database all active elementary 
operations can be found and connected to, because the operations have registered their 
location there when they were started..  
If a virtual machine wants to obtain information about a certain elementary operation, it must 
first look that operations location up in that central database and then contact the elementary 
operation to send its request. 

6.4 The Properties 
Describing elementary operations in terms of properties makes it possible to express 
practically anything that can be said about an elementary operation and thus it enables the 
merging of general concepts such as version, location and control information with technical, 
situation dependent information such as up-time, control values, etc. The interface provides 
answers to question such as: where is the trajectory controller, what version is this docking 
spot, what was the last value send to the ultrasone sensor, how is the path planner controlled, 
etc.  
It is not the goal to provide a complete description of elementary operations by their 
properties. A requester of data therefore, must not rely on the interface to do such a thing, 
rather, the requester of properties already must know something about the elementary 
operation and it ‘just’ needs some additional property, in order to facilitate some reasoning 
process.  
 
The collection of properties the interface provides can be categorized in four groups:  
 
 properties that together uniquely identify an elementary operation, i.e. its name, an 

identification number and its version. These must be known by the requesting process, 
before any other property can be obtained. 
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 properties describing the location information of an elementary operation 
 general properties that each elementary operation has (for example properties of the 

parameter structure). This group can be extended in the future. 
 specific properties that describe a particular aspect of an elementary operation and that 

says something about other properties (for example, the data type of a certain elementary 
operations’ third parameter). This group can also be extended in the future. 

 
Below is an example listing of properties. The identification and location information are 
generally applicable and needed by all users of the interface.  
The other two tables with general properties and specific property details are expected to be 
useful to various applications, but the exact elements of the list are not fixed.  
Distinction between the four tables, is that the information from the first two are always 
needed when the interface is being used. The third and fourth table are needed in the afore 
mentioned problem of section 5.4.4, and are, so to say, application dependent. The properties 
listed in those tables will therefore serve as example.  
 
 
Type Description Example 
Name Name of the elementary 

operation 
“TC – Trajectory Controller” 

Version A version number to be defined 
ID A unique number identifying 

a elementary operation 
1201, 1202 

Table 6-1: Properties for Identification 

 
 
Type Description Example 
Existence of properties Indicates whether a 

elementary operation is 
active in the network 

TRUE or FALSE 

Host machine Machine the process is 
running on 

“carol.science.uva.nl” or 
146.50.1.20 

Port number The port the service is 
listening to 

> 1024 and < 65535, but in 
practice it corresponds to the 
ID-property of the 
identification table 

Table 6-2: Properties for Location Information 

 
 
Type Description Example 
Amount of parameter Amount of entries in the 

control structure of an 
elementary operation 

0...15 

Up-time The amount of ticks that a 
elementary operation is 
running 

A number 

... ... ... 

Table 6-3: User-defined general properties 
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Type Description Example 
Data type of parameters Specifies the data type for 

each parameter 
‘d’, ‘l’, ‘c’ (double, long, 
char, etc) 

Default values The default value for a 
specific parameter 

... 

Range of values The range a value can have ... 
Previous value Last value of a parameter ... 
Current value Current value of a parameter ... 
... ... ... 

Table 6-4: User-defined specific properties 

Properties may be described, and communicated, in two manners. One way is to communicate 
a single property per request, the other way is to communicate a set of properties per request.  
 
What will be done is, that by anticipating on the likely context of the request, a collection of 
properties or a single property will be provided. A requester that wants the amount of 
parameters of an elementary operation is likely to also need the data types of those 
parameters, hence, this expectation means both are provided by the elementary operation in 
‘one go’. This will be done in a predefined manner, no reasoning will take place on-line to 
decide what parameters to send. (this contrary to the way that agents, middle agents and 
ACDL’s work). 
 
The little meaning that is imposed on the (relationship between) properties in this way is 
expected to be useful to the users of the interface and cuts down on communication, because 
instead of the (anticipated likelihood of) sending two property-requests only one is sent. 
 
The following collections are made: 

 Name, id, host-machine, port-number6 
 Parameter names, parameter count, parameter data types 
 Parameter names, default values, minimum, maximum 
 Parameter names, previous values 
 Parameter names, current values 

 
Note that there exists the possibility that a particular parameter consists of a structure. This 
means that, when implementing the interface, special measures have to be devised to 
represent and communicate embedded structures.  

6.5 Communication 
Getting information from one process to another is an issue that occurs often in literature. For 
example, the use of middle agents as is done in various multi agents system’s [15], [10], using 
brokers, such as in CORBA [19], using shared memory (as was done in MARIE, but not for 
properties though), through mapped files, RPC [17]. These methods are either to big (agents, 
CORBA) or simply not applicable because of the system is distributed (file mapping, etc).  
In MARIE the transfer of information has so far been done through the eo- and the dm-
interface. This is like remote procedure calls, or RPC; a local function is called that has 
corresponding functionality on the remote machine that delivers data. Contrary to RPC, 
function names will not be stored in a central table. The idea is relatively simple to implement 

 
6 The location is a special case, see design and implementation chapter of location independence. 
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and fits nicely in the rest of the system. Besides, this is one of the few protocols that is 
supported on VxWorks. 
 
A request for a property is made by invoking the appropriate interface function. This interface 
function sends a request to the relevant elementary operation. Upon reception of this request, 
that operation finds the property that is requested and sends it back. 
 

a client
process

elementary operation

interface
-function

interface
-function

Network

Request

Reply

 

Figure 6-2: Request and reply of properties 

This approach requires connections between processes. In setting up connections the need for 
the location property of elementary operations arises, and therefore locations are treated a bit 
differently from all other properties. Dealing with location information is explained in detail 
in the next chapters (chapter 7 and 8). 

6.5.1 Request and supply of properties 
A request for a property is created by invoking an interface function for that property. This 
function sends a message to the relevant elementary operation. On the elementary operations 
side a function is listening for messages. It obtains the information that is requested and sends 
it back. See figure 6-3. 
 
All the interface functionality is thus represented by functions, and there is not a separate 
process or data-repository that manages the properties, so the interface does not maintain 
information. There is no need for functions to create, edit or delete data, because the source of 
the property information are the elementary operations themselves and their information is 
real-time and always up-to-data. The only property that can not be dealt with in this way is the 
location property. How this is dealt with is explained further on.  
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elementary
operation

networkclient

supply
property-
function

get
property-
function

supply

request

 

Figure 6-3: A property interface function 

An elementary operation needs to provide its own properties, when requested. Because most 
properties are implicitly present (parameter information, location) property specific 
functionality is required to make them explicitly known. This makes it more difficult to make 
the interface generic. It is solved thus:  
A certain property is always requested and supplied in a fixed manner. The elementary 
operations, upon reception of the property request, invokes an internal function that retrieves 
the property. This internal function is unique for each elementary operation, but the function 
that received the message is generic; it is the same for all elementary operations.  
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Figure 6-4: request and supply functionality of the property interface 

The request and supply functionality of the properties is depicted in figure 6-4 below. Same 
shapes denote the same functionality, different shapes different functionality. Note how, from 
the clients perspective, properties are supplied in a uniform manner, but that the internal 
solution to obtain the properties depends on the property. 

6.5.2 Retrieving properties 
To retrieve a property from an elementary operation, the requester must first setup a 
connection to that particular elementary operation. When this connection is successfully 
established, the requester can invoke a specific function for that property. 
This function is property specific, not elementary operation specific; it is the connection that 
identifies from what operation properties are requested. This approach ensures that, from the 
clients perspective, the interface can provide in the same properties for all elementary 
operations, meaning that all operations can be addressed in a uniform manner. 
The invoked function to retrieve a property sends a message to the elementary operation, over 
the established connection, that identifies the specific property, and then waits for a reply. 
From the reply the necessary information is abstracted. 

6.5.3 Providing properties 
When a elementary operation receives a property request, the request is handled in an 
elementary operation independent, but property specific, manner. When the type of request is 
sufficiently determined, based on the type of message, the appropriate function that obtains 
the property, is invoked. 
These internal functions are characterized by the following aspects: 

 it is part of the elementary operation 
 there is one for each property, 
 each function is specific for all elementary operations 
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the internal function is part of the elementary operation 
The internal function is not provided by a special process. The service of the property 
interface is completely contained in the elementary operations. 
 
one internal function for each property 
For each property, there is an internal function. So when a version is requested a different 
internal function is invoked than when parameters are requested. 
 
each function is specific for all elementary operations 
The internal function that is called to obtain a particular property is unique per elementary 
operations. The way to address them is the same however, which makes the interface generic.  
 
The result of a property specific, internal functions is encapsulated in a message and returned 
to the requester.  

6.5.4 Retrieving the location property 
For the location property special measures have to be taken, since the requester of the location 
property cannot setup a connection to an elementary operation, before it knows its location. 
Therefore, when a module wants location information, it must first obtain the specific 
operations location from the location table. For this the requester of location information has 
to invoke the interface function, that was designed to obtain location information. In short, 
this function contacts the database, containing the location records for all active processes of 
MARIE, retrieves the relevant record with location information and returns this to the 
requester.  
Chapter 7 and 8 discuss this issue in more detail. 

6.5.5 Providing the location property 
As with all other properties, the location of an elementary operation also originates from the 
elementary operation itself. However, since the operation cannot be reached, before its 
location is known, the elementary operation must actively publish its location information. 
The elementary operations will register their location at a small, central data repository, when 
they are initiated. 
This is fundamentally different from the way that all the other properties become known 
throughout the system. The location information is actively exported, whereas other 
properties are only exported on request. 
Chapter 7 and 8 discuss the location property issue in more detail. 

6.6 Conclusion 
Design demands are formulated that should result in a simple and generic interface. Explicitly 
programmed properties of elementary operations will be provided to any requesting module 
within the system. The assessment that the elementary operations are the only sources for 
accurate property information leads to the demand that they will be responsible for providing 
their own properties. Because of this, the requester of properties must locate the designated 
elementary operation, and hence, the elementary operations must register their locations at a 
central database. 
The properties of an elementary operation are divided in four groups; identification 
properties, location properties, general properties, specific properties. For each property one 
committed interface function will be present at the server and client side. These two 
(interface) functions will realize the requesting and deliverance of that property. 
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7 DESIGN OF LOCATION INDEPENDENCE 

7.1 Introduction 
This chapter describes how location independence was realized in MARIE. Section 7.2 
explains how location information is differently treated than the other properties, followed by 
an overall view of its design, in section 7.3. The way that the location information is 
published and retrieved is designed in section 7.4. Section 7.5 concludes this chapter. 

7.2 Location independence and the property interface 
In the previous chapter the general description of the property interface was described. In this 
chapter the design of location independence and, in the next chapter, its implementation will 
be presented.  
The handling of the location property serves as an example of how the interface deals with 
properties. It does deviate from the general method of obtaining properties with respect to 
some aspects. The location property must be treated differently from other properties because: 
 The functionality for location independence must be usable by all modules, not just 

the elementary operations. 
 During initialization of the system, locations of the various modules must be known 

at an early moment. 
 The client functions of the property interface require the location information of 

elementary operations 
 
This adds up to a different way in which location information is made available.  
Making the system location independent concerns two parts; untangling the system modules 
and publishing and using location information. Since the latter is of more importance to the 
property interface than the former, it will be discussed first.  

7.3 Overview 
MARIE was designed to be a multi tasking system, implemented to run on a single machine. 
In section 4.3.2.3 it was discussed that this causes two problems: 
 
1. The single machine environment that the robots software ran on, caused locations of 
the various modules to become hardcoded. Configuration are thus static, which is undesired. 
2. Due to the way memory is shared on the VxWorks computer, the actual modularity of 
the system was compromised as well; name-space sharing causes processes to share 
information through memory and that makes them dependent on one another.  
 
The solution to the two problems is to remove the name-space sharing dependency, add 
machine independence and add module availability information.  
The design demands resulting from the name-space sharing of the various modules are that all 
such dependencies must be removed. Doing this was rather a tiresome and time consuming 
activity. The description of all that was done at this stage is discussed in the implementation 
chapter’s section 8.7.  
Modules will have to publish their locations actively. I.e. on their own account, without being 
requested for it. This must be done at an early moment, so that the availability and location 
can be used as soon as the module in question is started. 
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7.4 Design of Location Independence 
To replace the predefined or hardcoded location information a new mechanism was 
introduced that makes modules register itself, so that locations are known and that allows the 
location of a specified module to be retrieved, when a connection is desired. 
 
When a module is started it must register its location information in a location-table. This 
location table is maintained by the feature datamanager. A datamanager was chosen for this, 
because, the datamanagers and the datamanager interface exactly contain the functionality to 
store and retrieve records.  
Registration-routines will be embedded in the existing functionality of all modules. 
The information that is registered are the name, id, machine and port information. 
 
Figure 7-1 depicts the registration location information. 

 

Figure 7-1: Machine independent location registration 

When a module needs the service of another module it must obtain the location information, 
in order to contact the service, from the location table. 
Obtaining location information is done by invoking the function to get the location from the 
property interface. This function first contacts the feature datamanager (which has a fixed 
location) and then invokes a function from the (existing) datamanager-interface, to select 
datamanager-records7.  
Figure 7-2 depicts the situation in which module A wants to contact module B. Since module 
B can be located on any machine within the network, module A needs to obtain the location 
information of module B from the location table in the datamanager, before it can connect.  

 
7 The dm-interface was discussed in section 3.3.5. 
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Figure 7-2: Retrieving a location 

 
When the location information of a module has been successfully retrieved a connection can 
be set up, as shown in figure 7-3. In the event that no location information is returned, it must 
be concluded that the desired module is not active. 
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Figure 7-3: Connecting to module 

Identification of a module is done by the modules name and id-number. This information 
could theoretically return multiple entries. For example, when multiple versions of one 
module are active on the network. In such cases, it is up to the requester to determine what 
module it needs.8 Note that the other properties provided by the property interface could be 
used for this. 
When determining what module to use becomes a (too) complex matter, it might be a good 
idea to introduce a framework of some form, to determine the best module to use, given the 
desired features provided by the requester. With the current design of the property interface, 
making decisions is up to the requesting module itself; reasoning is not expected to be done 
by a third party. 

7.5 Conclusion 
In order to allow for a more distributed usage of MARIE’s software, location independence of 
the modules was needed. This chapter described the design that accomplishes this.  
In the original implementation, locations were predefined; they either were present in a 
globally available list or were just hardcoded.  
The new method, that is designed in this chapter, requires that modules register their location 
when they are started, so that other modules that want to contact them can retrieve the 
location information, in order to do so. This mechanism should also be used for contacting the 
elementary operations when a property is requested. 
Registration of modules is done in a location table. This location table is a design concept; in 
practice locations are stored in the feature datamanager, whose location is the only hardcoded 
location. 

 
8 This would be no issue if modules could register their version. However, the absence of version 
management makes that impossible.  
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8 IMPLEMENTATION OF LOCATION INDEPENDENCE  

8.1 Introduction 
This chapter describes the implementation of location independence. Section 8.2 will give an 
overview. Section 8.3 describes the details of registering location information. Section 8.4 
explains where and when, in the original source code, the location information is obtained, 
section 8.5 explains how this works. Section 8.6 discusses the removing of location records. 
The various modules were entangled in a number of ways, preventing per-module 
compilation, or resulting in failure of certain modules. Section 8.7 describes the encountered 
problems and solutions regarding when untangling the software modules. 
Section 8.8 concludes the chapter. 

8.2 Overview 
To make MARIE’s software modules location independent, the following must be taken care 
of: 

 all inter-modular dependencies, that do not use network communication, are removed 
 registration of location information 
 that the location property is obtainable with the property interface –functions. 

 
Although the first issue was by far the most time-consuming, it does not leave any marks in 
the final sources. Therefore the explanation of what problems were encountered to restore 
modularity, are discussed at the end of this chapter. 
The second issue, having modules register their location, is explained in detail in the first part 
of this chapter. The third issue, that makes properties available by the property interface, is 
described in the next chapter, because it is, by design, functionality of the property interface.  

8.3 Registering Locations 
On startup modules register their host machine and port number to the location table in the 
feature datamanager, this is done during initialization of the module. 
Since the location information of the feature datamanager cannot be obtained from the 
datamanager itself, it is predefined, hardcoded, information, making it the only hardcoded 
location currently in the system. 
 
Registration of locations happens through the use of a generic function, called 
location2dm(Id, port). This function is embedded in each modules startup routine 
(and thus called by each module). The ‘id’ –argument specifies the user-defined unique 
module number and the ‘port’ –argument specifies the port where the process is accepting 
connections on. (The host-machine is determined automatically). 
The goal of the function is to send the location information to the location table, that is 
maintained in the feature datamanager. 
 
The steps location2dm(Id, port) takes to register the ID and port are: 
 

1. connect to feature datamanager, if that went OK 
2. construct location –record 
3. add the location –record to the location table, if that went OK 
4. disconnect from datamanager 
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See figure 8-1. 
 

 

Figure 8-1: location2dm, registering location information 

The block on the left depicts the location2dm()-function that is called from a module that 
registers its location. The block on the right depicts the datamanager, that stores the location 
information.  
Appendix B contains the commented sources of location2dm(). 

8.4 Using the location property 
Originally when a module needed to connect to an elementary operation or datamanager, it 
just called the interfaces’ eo_connect() or dm_connect() function. These functions 
looked-up the location information in the predefined global location table and then set up the 
connection. 
In the new situation looking up locations has become part of the connect() functions: 
instead of getting the location information from a predefined table, it is gotten on-line from 
the datamanager. 
Below the pseudo-code for the connect-function is shown (the dm-connect function works 
similar): 
 
Eo_connect(struct ident)  
START 
 getLocation(struct ident) // this is added 
 
 If (Connect(ident->port, ident->machine) == SUCCESS) 

Return(fd) 
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 Else 
  Return(Failure) 
END  
 
The bold line is the only addition to the existing code of MARIE, as far as using the location 
information goes. How the getLocation function works and where it gets its information from 
is explained in the following. 

8.5 Retrieving Locations 
When a module needs the location of another module it must use the interface function to 
obtain that location. This function is called getLocation(). 
The requester calls the getLocation() –function. With ‘Struct ident’ as argument. ‘Struct 
Ident’ is a structure that only contains an id-number of the desired module. On return it will 
contain the id, name, machine and port of the desired process. 
 
The steps that the getLocation()-function takes to obtain locations are: 
 

1. connect to feature datamanager 
2. call the dm –interface function with appropriate query (dm_select) 
3. translate reply into answer 
4. disconnect 

 
See figure 8-2. The block on the left depicts what is done by the getLocation() -function that 
is called from a module that registers its location. The block on the right depicts the 
datamanager, that contains and supplies the location information.  
Refer to appendix B for commented sources of location2dm(). 
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Figure 8-2: Retrieve Location 

 
If there are multiple modules with the same id-number registered in the location table, then all 
of them will be returned. In the third step one particular record is selected from all the 
returned records, based on the order in which they were stored. This prevents selection of a 
particular record on some other basis, and that is not desirable, in the light of future 
applications, when, for example, based on specific control details or versions a selection is 
desired. 
It would be better if getLocation() would return all location records that were found, and the 
caller of the getLocation()-function should then determine what records it wants. This is 
future work. 

8.6 Removing Location Records 
In the design of MARIE, the event of a module terminating or being shutdown, has not been 
taken into account. This means that modules do not have a destruction-routine. There is no 
mechanism to automatically terminate another module or have a module terminate itself. This 
means that one cannot deduce with the original methods of the system if a module is still 
active within the network.  
This has implications for the location independence implementation. For, in theory, a module 
may have crashed, or could be stopped by the operator and the datamanager would incorrectly 
contain a location record for this absent module.  
One approach to solving this issue is to implement some sort of heartbeat, that make the 
modules inform the datamanager, every now-and-then, that they still exist. This requires, from 
the datamanager, functionality to be able to understand these heartbeats. Such functionality is 
not present at the datamanager and therefore another solution will be sought.  
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Another approach would be to let the datamanager ‘check’ if modules are still present, but 
this also requires functionality on the datamanager side that is not there. 
The way that this issue will be solved is to have modules, that discover false location 
information in the datamanager, report this to the datamanager, by removing the entry. The 
observation that an entry is false can be made when setting up a connection fails 
Nothing has been implemented to inform the system of the existence or deletion of location 
records from the datamanager. Currently it is up to the operator to keep the datamanager 
information correct.  

8.7 Encountered Problems and solutions 
During the implementation phase of location independence various problems were 
encountered. Most of these had to do with the way that data is being shared between 
processes in memory. This section describes these problems and their solutions.  

8.7.1 Machine Dependence 
All modules were written so that they could run on the onboard computer of MARIE . To 
make distribution possible, modules had to be moved from that machine to other computers 
within the network. However, this was not possible for all modules; the low-level modules, 
such as the Phillips motion controller and the ultrasone sensor are hardware specific and 
therefore remain bound to MARIE’s board computer. 
The virtual cart software, does not depend on the hardware of MARIE, but can also not be 
moved, because, its functioning relies heavily on direct function calls to the mentioned 
hardware dependent modules. 
Thus the following modules remain fixed to MARIE’s onboard computer: 

 Phillips Motion controller 
 Ultrasone sensor 
 Virtual Cart (the info-task and the controller-task) 

8.7.2 Porting to UNIX and Linux 
The issue about machine dependence is closely related to the porting issue. All modules were 
already written so that they could function on UNIX (or previous porting was done), except 
for the VxWorks modules mentioned in the previous section. Certain sources are explicitly 
written for the VxWorks operating system, such as the ultrasone sensors, the Phillips motion 
controller and the virtual cart. These need to be run on the on-board computer of MARIE, 
because they directly interact with the hardware. 
Due to external reasons the software had to be able to run on Linux, so porting needed to be 
done. Little code needed to be changed; only deprecated and for backwards-compatibilities 
sake still supported, UNIX functions, that were never available for the Linux OS, because of 
their obsoleteness9.  

8.7.3 Shared memory 
Originally, when MARIE was developed, there was no data being shared by processes of the 
system, but throughout the years, various changes in MARIE’s software brought this about. 
The result is that the situations in which data is being shared, seems ‘ad hoc’ and only occurs 
at some places.  
 
Data sharing between separate processes through memory was encountered in the following 
situations: 

 
9 This had to do with the UNIX thread library and the Linux pthread library. 
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- Connection descriptors 
On startup the initialization file indicated what datamanagers and elementary operations were 
to be used during the experiment. With each of these modules a connection was set up. The 
descriptor of these connections where kept in two globally accessible tables: connection to 
data managers were stored in data_link-table and connection to elementary operations are 
stored in elem_obj-table.  
Whenever communication took place between an elementary operation or datamanager and 
the action dispatcher, these connections were retrieved from the tables and then used for this 
purpose. 
Since the new changes do not guarantee process to be run on one machine, it is not possible to 
use one connection per elementary operation or datamanager. In the location independent 
version of the system these tables will also be used, but must be filled differently.  
 
- Linking object files 
This is best explained with an example. Take the simple operations. For each simple operation 
a separate function is defined. In a functional sense the simple operations are completely 
different, and unrelated to one another, and so are the modules that use them. This means they 
use different variables, some of which are declared in external source files. Now suppose a 
module needs a simple operation that does not use those externally declared variables, it must 
include that external source file anyway to make sure the external variable exists. 
So if one wants to link an elementary operation that uses a simple operation, then also all 
other simple operations are linked, including all the files these simple operations need and all 
the files that those files need, and so on. Meaning that to building that initial elementary 
operation requires compilation and linking of practically the majority of source files. 
The solution consists of removing the dependence on external variables.  
This has posed by far the most time-consuming obstacle to overcome and has not totally been 
solved.  
An example of where it is still left intact are all the elementary operations that have 
communication shells at the action dispatcher level. Functions that are used by these 
elementary operations were declared in the communication shell-source files. Which means 
that these have to be linked with the elementary operations themselves. That’s functionally 
not correct, but has no influence on the elementary operations behavior, and therefore has 
been left in place, for the time being. 
 
- Collision Avoidance mode  
This has to do with three modules: the collision avoidance module, the virtual cart and a third 
arbitrary module that can change the collision avoidance mode (for example the trajectory 
controller.) 
Collision Avoidance can be set to 4 different modes, indicating how the robot is to respond to 
obstacles. This value is stored in a variable that was shared throughout memory. Each 
modules could access and change the variable (if it ran on the same machine as the collision 
avoidance module). This was mostly done by the Trajectory Controller. Since it is no longer a 
demand that the Trajectory Controller and the Collision Avoidance run on the same machine 
this information exchange must be changed.  
It was worked around by adding the collision avoidance mode to the information structure 
that the Virtual Cart communicates. This structure contains all sorts of information about the 
state of the (virtual) cart. In addition, it now also contains the collision avoidance mode. 
Because the structure can be obtained and altered remotely, this solves the dependence 
between the two modules.  
For example, the trajectory controller wants to change the collision avoidance mode. To do 
this it now invokes the collision avoidance interface function originally designed for this (i.e. 
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TcEnableAvoidance(desired_ca_mode) ). This function (belonging to the collision avoidance 
module sources) will communicate and set the new value in the vc-struct. When the tc or vc 
or any other module needs to now the value of the ca-mode it can retrieve it with a similar 
function. 
This is not a neat solution, though, since the ca-mode is a typical collision avoidance-property 
and not a virtual cart property. However, there is no functional difference and so this solution 
is acceptable, for the time being. 
 
- Process Id’s 
Process Id’s are used by the Data Managers and Elementary Operations to verify connections 
and when reporting errors during communication. A message send by a client contains the 
process id of the client. This makes it possible for the server to see if it is still communicating 
with the process that set up the connection. 
The id’s were stored in one globally accessible table, that links them to names in order to 
make error messages more readable. On startup, a client stored its process id and name in 
these tables. Because all processes ran on the same machine all the servers had to do was use 
the table to get a matching name with a process id. 
Since modules no longer have to reside on the same machine this mechanism fails. It is solved 
by keeping a table on each machine that runs a dm or eo server. When a client connects to an 
eo- or dm- server the first message it now sends is a name-message, that contains its process 
id –number and name. The server reads these values and stores them in a table. 
 
- debugging information  
MARIE’s software uses an intricate mechanism to specify the level of debug-information that 
is logged. This debug-level can be set per source file.  
The mechanism relies on a collection of global variables. These were defined in the main file 
of the big executable that was loaded on the VxWorks machine. Because there no longer is 
one executable file, the definition of the debug information had to be moved to each 
individual executable. 

8.7.4 Location dependence 
All communication between processes on MARIE happens through socket based connections 
(besides from those processes that wrongly use memory sharing for communication). To 
establish a connection to another process, the location (machine and port number) where that 
processes reside, must be known. This information used to be either predefined or hardcoded: 
 

 Predefined Locations Information 
Predefined location tables were used to store the expected location of other modules. If a 
process wanted to connect to another process, it would look up the expected location and 
try to establish a connection, regardless of the existence of the process. If establishing a 
connection to a process failed, this would be reported, but no other action would be taken. 
Failure of the experiment, due to lack of a vital process, was likely. 
A special case is the way the eo-shells get connected to their respective eo’s. These shells 
had no means to set up a connection, but used the connection that the action dispatcher 
was using; on initialization the action dispatcher starts communication shells (i.e. the eo-
shells) for all elementary operations. These shells use the same connection to elementary 
operations that the action dispatcher uses when sending commands to it. 

 
 Hardcoded Location Information 
The low-level modules, such as the virtual cart and the ultrasone sensor connected with 
hardcoded information in the function calls, i.e. connect(“local_host”, 1234). The low-
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level modules that connect like this are the system dependent modules, such as the 
Ultrasone, the Phillips motion controller and the Virtual Cart. Because of the machine 
dependence of these modules, this method of connecting is no limitation to the location 
dependence (i.e. localhost will always be correct). Nevertheless, the method was changed 
to be consequent with the rest of the system. 

8.8 Conclusion 
Implementation of location independence for MARIE’s software modules involved two 
issues. Untangling the modules inter dependencies and adding a registration and using 
mechanism of location information. Untangling the system was done with respect to data 
sharing between processes, porting to Linux was done, and pre-defined location tables were 
removed. 
The registration of location information is done at startup; modules register their location at 
the feature datamanager. A module that needs that module’s location obtains it there, by 
specifying the identification number of the desired module. If the requested information is 
available, the location is returned and the requester then knows of that modules availability. 
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9 EXPERIMENTS 

9.1 Introduction 
This chapter describes the experiments that were performed and explains additional 
experiments for when the property interface is implemented.  
Section 10.2 gives an overview of the experiments to be conducted. Section 10.3 describes the 
tests that were performed to ensure the consistency of MARIE’s old functionality with 
location independence and describes other experiments that were performed. 
Section 10.4 describes experiments to test the capabilities of the property interface with an 
example application. 

9.2 Overview 
This chapter first describes experiments that tested the proper functioning of the system with 
location independence. The experiments are designed to check if MARIE can still do the 
same things with location independence as it could without it. This is done by executing the 
Docking Spot mission, of which a complete set of results are documented [21]. 
 
The second series of experiments should test the property interface by investigating the robots 
ability to select between differently located instances of one elementary operations.  
It is expected that, for the application of self-configuration, just location information is not 
enough to decide what elementary operation to use; there is a need for more information 
about the available properties. This will be tested in the next experiments, where the property 
interface comes in play; this third series of experiments test the robots ability to configure 
itself, based on predefined set of criteria, that require information into the elementary 
operations properties. 

9.3 Consistency experiments 

9.3.1 Experiment 
The tests that were performed are designed to verify the continuity if the system, making sure 
that MARIE still functions with location independence, as it did before. 
The mission that was used to test this was the Docking Spot –mission. This mission has 
MARIE follow a wall until a docking spot is found. Then the cart should park in that docking 
spot.  
As said, the goal of the test is not to investigate MARIE’s capabilities when it comes to 
maneuvering in the world, but a test to see if the changes made to its software, haven’t 
affected the robots behavior.  
The only changes that were made to MARIE’s software, in a functional sense, concern setting 
up connections. This test should confirm that the setting up of connections is done correctly 
and that nothing else has inadvertently changed. 
 
The reason for choosing the docking spot-mission is:  
 there are previous test results available,  
 that it requires the use of most elementary operations  
 the mission can be executed with the “command interface”, developed by George de 

Boer.  
 
As was explained earlier, the command interface is an alternative way to execute missions. 
Instead of relying on the task planner to translate a mission description in suitable tasks and 
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actions, direct calls to elementary operation functions are invoked, making the detailed 
mission description unnecessary10 and tests more easily executed. 
 
Test Setup 
Software 
The test was performed with the following modules: 

- Action Dispatcher,  
- Wall Follower, Docking Spot Detector, Path Planner, Trajectory Controller, Segment 

Extractor, Collision Avoidance, Virtual Cart, Ultrasone Sensors, Phillips Motion 
Controller 

- Feature-, world- and parameter –datamanager. 
 
The software ran distributed over 3 machines. 

1. vw1.science.uva.nl (the cart): host for Virtual cart (and collision avoidance), the 
Ultrasone Sensors, the Phillips motion controller 

2. rijn.science.uva.nl; host for feature datamanager 
3. signor.science.uva.nl; host for action dispatcher 
4. signor.science.uva.nl: host for all elementary operations and the parameter- and world 

datamanagers 
 
Environment 
The experiment was performed in the lab of Wetenschappelijk Centrum Watergraafsmeer. By 
placing wooden segments a wall and docking spot are created, as shown in the figure below. 
The docking spot is 80 cm by 280 cm. The carts starting position is at the far right of the wall. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The experiment 
The test consists of 4 stages. 

1. initialization. Of importance are the modules registering and retrieving locations for 
initial connectivity  

2. Finding the wall 
3. Following that wall until a docking is found 
4. Parking in the docking spot  

 
When any of these stages should fail (for example, no wall is found) full stop should be 
executed. Figure 9-1 fives graphical representation of this. 

 
10 This approach makes no use of the task planner. This has not been tested, but there are justifiable 
reasons not to do this; the task planner is not affected by location independence because this is the only 
module that already incorporated location independence. 

2,80 

0,80 
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Figure 9-1: MARIE finding a docking spot and parking 

9.3.2 Results 
The test was performed a number of times and initially came back with wrong results, due to 
various reasons. Most notably the aspects mentioned earlier as the memory sharing deficits, in 
section 8.7 were the cause for these. 
Another reason for the experiment failing was to do with the size of the docking spot that 
MARIE expected. It turned out that MARIE was very ‘sensitive’ to the this value; the docking 
spot was supposed to be rather large before MARIE would recognize it as such, otherwise it 
would just drive past it.  
 
Connections that were made 
By checking and combining the output of the various processes one can deduce what 
connections were made.  
The action dispatcher requests all registered modules from the feature datamanager and 
connects to them. This is reported in a log file, like so: 
The modules registered at the feature datamanager were: 
 
ad_init: Found the following records: 
EO found 0: ID: 1516 port: 1516 machine: 146.50.1.211 name: US - Ultra sonic system. 
EO found 1: ID: 1511 port: 1511 machine: 146.50.1.106 name: TC - Trajectory 
controller. 
EO found 2: ID: 1513 port: 1513 machine: 146.50.1.106 name: SC - Sensor-based 
controller. 
EO found 3: ID: 1512 port: 1512 machine: 146.50.1.106 name: WS - Wall-sensor. 
EO found 4: ID: 1515 port: 1515 machine: 146.50.1.106 name: PP - Path planner. 
EO found 5: ID: 1518 port: 1518 machine: 146.50.1.106 name: DD - Docking spot 
detector. 
EO found 6: ID: 1517 port: 1517 machine: 146.50.1.106 name: SD - Line segment 
extractor. 
DM found 0: ID: 1201 port: 1201 machine: 114.105.106.110 name: DmFeature. 
DM found 1: ID: 1202 port: 1202 machine: 146.50.1.106 name: DmParameter. 
DM found 2: ID: 1203 port: 1203 machine: 146.50.1.106 name: DmWorld.  
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Figure 9-2 combines the above information in a graphical representation of the connections 
that were made. 
Change in picture: one arrow to a datamanager from the virtual cart, dunno about the others. 

Virtual Cart
Ultra Sone

Motion ControllerFeature datamanager

All eo’s
and

Two DMs
Action Dispatcher

rijn.carol.uva.nl (Unix)

signor.carol.uva.nl (Unix)

vw1.carol.uva.nl (VxWorks)

 

Figure 9-2: connection made, for the docking spot mission 

The broad arrows indicate the registering and retrieval of location information.  
The thinner arrows represent the connections that were made and for which location 
information was looked up.  

9.3.3 Other experiments performed 
A number of additional experiments were performed to investigate to what extent MARIE’s 
processes are independent of their location and the operating system of the machine. 
 
This served three goals: 

 To show that processes do not have to run on one specific machine 
 To show that processes are not dependent on a specific location of other processes 
 To show that processes run both on the Linux and Unix –operating system 

 
The following tests were done: 

 Running the action dispatcher separate from the elementary operations 
 Changing the hardcoded location information of the feature datamanager 
 Running the action dispatcher, the elementary operations and the feature datamanager 

on a Linux System (arena.science.uva.nl) 
 
Table 9-3 shows on what machines modules were tested (and ran correctly). 
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Operating System Name
ad eo's feature dm vc/us/pm

VxWorks vw1 x x x x
Linux arena x x x
Unix eenlx x x x
Unix carol x x x
Unix signor x x x

Module

 

Figure 9-3: Machines modules were tested on 

All modules except for VxWorks dependent modules (the virtual cart, the ultra sonic sensor 
and the Phillips motion controller) function normally on both the Linux and the Unix 
operating system.  

9.3.4 Conclusion 
The experiments have shown that old functionality is preserved with the new location 
independence implementation. Additionally it is shown that modules (besides from the low-
level VxWorks software) can run on any machine within the network, without compromising 
functionality. More experiments must be performed concerning the flexibility of location 
independence, for example, the influence of big ‘distances’ between processes (i.e. hops). 
An additional observation must be made concerning the particular machine the location table 
is hosted at. As was explained the location table is implemented as a data class for the feature 
datamanager. It is currently not located on the VxWorks machine of MARIE. Since this 
machines hostname is not likely to change in the future, it is advisable to move the location 
table to it, because, in practice it is the only location whose name is fixed. 
 
The implementation of location independence decreases the use of the system for both the 
developer and the operator. The developer can, much easier than before, test and debug 
elementary operations. The operator no longer needs to compile software to change 
configurations. A benefit for both is that log files have become separate from each other, 
although these can still be improved. 
The downside of this test is that it doesn’t demonstrate the functional benefit of location 
independence and the property interface, hence the following experiments, were devised. 

9.4 Functionality experiments 
The hypothesis is that the property interface increases autonomy and decreases user-
interaction. How to test this hypothesis? 
Because the interface only provides data, an application is required that uses the properties 
supplied by the interface, and that replaces some activity of the operator.  
This section will describe such an application and experiments that should be performed with 
it. Since there is no implementation of the property interface the application is also not 
implemented and experiments are not actually performed. This remains future work. 

9.4.1 The Application: self-configuration 
The task of the self-configuration application is to set up a working configuration from the 
collection of available elementary operations. The situation is one in which there are two 
instances of a particular elementary operation; one is the ‘old’ version and one as the ‘new’ 
version. Based on their properties the system should decide which one of these two 
elementary operations to use. 
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Configuration must take place during initialization, before any action is executed or any 
elementary operation is activated. The place where the configuration must be determined is 
the action dispatcher.  
Suppose there is an old and a new version of the wall follower active. The action dispatcher 
would do something like this: 
 

1. locate all modules with the wall-follower ID 
2. connect to all modules with that ID 
3. obtain their relevant properties, using the property interface 
4. decide which one to use, based on those obtained properties 

 
Step 3 and 4 are the essential steps here.  

9.4.2 The experiments 
The success of a configuration can not be measured in a numerical sense. What can be done is 
show that a configuration works, and, even, that it works better than another configuration. 
Comparing the results of executed mission enables this. For example, one might look at the 
time it took to complete a mission. Or alternatively the number of exceptions that occurred 
can be taken as a measure. The aspect to base the performance of a mission on depends on the 
goal of the mission, and on what is being tested. Since in this case some configuration is 
subject to tests, comparison must be based on the performance of the configurable 
components. These components, obviously, are the elementary operations, and more 
specifically the two instances of the specific elementary operation that must be chosen from.  
 
Experiment 1 
Previously it was established that MARIE operates properly with location independence. This 
experiment should show that MARIE is capable of deciding what operation to use, when 
there are two instances available. The criteria to base this decision on do not matter, at this 
point, as long as it uses the property of the two instances for this. 
For a given mission, three experiments should be conducted with the following elementary 
operation running: 
 

 the wall follower and corridor follower [3] 
 only the wall follower 
 only the corridor follower 

 
The action dispatcher should decide what elementary operation to use, based on a property it 
obtains via the interface. The distinguishing property of the wall follower and the corridor 
follower, is that the latter needs one parameter more than the former. 
A test is considered successful when a configuration was established. A configuration is 
considered successful if the chosen elementary operation is part of it. More specifically, this 
means that the action dispatcher made a connection to it. 
 
When the previous test was successful, an experiment can be conducted that checks if the 
autonomy of the system increases and the operators influence decreases.  
 
Experiment 2 
The experiment that is devised to check that the autonomy will increase and that the user 
interaction will decrease should extract the desired configuration from the information in the 
task tree, instead of the configuration being determined by the operator. 
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The task tree contains the parameters it will sent to the elementary operations, in addition to 
their id-numbers, this is information that can be used to reason about which elementary 
operations, will participate in the configuration, also, when there are multiple instances of a 
particular operation available.  
Again, this experiment is conducted with the wall follower and corridor follower. These 
elementary operations can be distinguished on basis of the amount parameters they expect, the 
wall follower expects one parameters and the corridor follower expects two parameters.  
In case the task tree contains, 6 parameter the action dispatcher should decide to include the 
wall follower in its configuration, and when it contains 7 parameters it should use the corridor 
follower. 

9.4.3 Results 
Note that the experiment is meant to test the interface and not the application. Although it is 
the application that (theoretically) decreases the user interaction with the system, it is the 
interface that allows those applications to exits in the first place.  
 
The property interface has not been implemented, and so the devised experiments cannot be 
performed. However, if there were an implementation of the property interface, and an 
application using it, the above mentioned experiments can be done.  
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10 DISCUSSION 
The MARIE robot was improved by introducing location independence for its modules and a 
design for a property interface, that provides information about its controlling components.  
Location independence is clearly an improvement to the system, because the operator is 
greatly facilitated by the dynamic manner in which configurations can be set up, and also 
from a design point of view location independence makes things easier; testing and debugging 
new components will now be much less work. 
 
The question whether or not the property interface is an improvement to MARIE and satisfies 
the characteristics of a source for meta-knowledge is a more delicate matter. Before 
discussing this issue the following must be noted:  
The real usefulness of the property interface can only be determined when it is implemented 
and experiments are done with it. This is, for the moment, not of importance, since it is 
solvable by time and although it will result in the final answer to this paper’ hypothesis, it is 
useless to discuss now. It just means that the discussion takes place in a theoretical context. 
 
The following points of criticism about the property interface will be discussed: 

 The property interface is no source for meta-knowledge 
The first point of criticism is concerned with the fact that although MARIE contains 
several modules, the interface only provides properties for a subset of these modules and 
thus may not be considered a meta-interface.  
However, the operations layer (of the operational design, see section 3.3.3) contains all 
the modules that are responsible for MARIE’s behavior, because these modules do the 
actuation, sensing and controlling of MARIE. The remaining layers ‘just’ enforce this 
control. By means of the property interface additional information is available to facilitate 
the high-level decision making processes. 

 
 The property interface provides unstructured knowledge about its components  
The second point of criticism states that it is no good, that the interface only provides 
properties and no information about the relationship between these properties. This is 
true, the property interface is not aware of the meaning of the information that it passes. 
This would require a semantic description of (the properties of) the elementary operations 
and additional reasoning capabilities to interpret this semantic information. This has not 
been designed. The interface relies on the fact that the requester is aware of the meaning 
of the information it requests.  
This means that instead of deciding what elementary operation is desired in a particular 
situation, or what operation can solve a particular problem or task (which is a possibility 
with capability descriptions), a broad applicability was realized, still facilitating task tree 
construction, self-configuration or self-healing. Besides the introduced interface does not 
make future development of semantics impossible, it might even augment it. 

 
 The requester must be aware of the information it requests 
The requester of the properties, i.e. some module of MARIE, must be aware of the 
meaning of that property. This means that in practice the user of the property interface 
‘just’ needs some additional property, in order to facilitate some reasoning process.This 
restricts autonomy as a result from the interface. 
One can argue against this point that, the developer of an application already is aware of 
the relationship and meaning between properties, before he or she decides to use them. 
Hence, enforcing structure would not aid the developer. It does not facilitate automatic 
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reasoning, as is done in agent-based system, but this was argued against, in chapter 5, 
section3: alternative solutions.  
 
 Proliferation of properties 
The absence of structure also allows any property to be introduced by the developer to be 
communicated by the interface. In itself this freedom can be used as an advantage, 
because a developer may introduce any elementary operations aspect at will. However, 
this might create a proliferation of handled properties, creating some sort of over-fitting. 
This is no valid criticism, it is a strong feature of the property interface, and just means 
that the developers must be moderate in introducing new properties to the interface. 
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11 CONCLUSION 

11.1 Introduction 
This chapter concludes this thesis. The first section gives an overview of the discussed issue. 
Section 11.3 discussed what has been achieved and section 11.4 lists some recommended 
future changes. Section 11.5 generally concludes the thesis. 

11.2 Overview 
The main focus on the control issue with MARIE was on the amount of control information, 
that the human operator has to supply, and the lack of control knowledge that the system 
determines on its own. 
What is introduced is a way to obtain the control information per elementary operation. In 
theory the interface supplies knowledge about elementary operations that could be used to 
enhance the systems functionality, which is expected to increase in autonomy.  
The elementary operations can be considered as building blocks for missions. Together with 
the datamanager interface and the elementary operations interface this is a powerful software 
package that allows the cart to perform various missions. The flexibility of controlling 
MARIE, that results from this, is augmented by the property interface. The combination of the 
three interfaces and the functionality of the elementary operations provides means to built 
autonomous software that enhances control of the MARIE robot. 
Since the interface has only been designed and not implemented, there has been no possibility 
to tests this hypothesis. Nevertheless, it is very likely that the introduction of the interface will 
improve the robot’s behavior.  

11.3 Achievements 
The extent in which the propositions of this paper, formulated in chapter 1.2, have been 
realized is discussed next. The propositions were: 

 Decrease of human interaction with MARIE, and 
 Increase of the robots autonomy 

 
The two changes to the system, that should realize these propositions, are the introduction of 
location independence and the property interface.  
 
 Decrease of human interaction with MARIE 
That the introduction of location independence decreases human interaction with the system 
can be seen when one realizes that the operator no longer has to compile the software of 
MARIE when the configuration is changed, and also for the developer the interaction with the 
system is decreased, because testing and debugging new modules is much simpler now. 
The human interaction also decreases because of the property interface, because some 
decisions that the operator has to take, can be made automatically when the property 
information is available. This may concern aspects such as setting up a proper configuration, 
or building and verifying a task tree.  
 
 Increase of the robots autonomy 
For the increase of MARIE’s autonomy much the same reasoning applies; location 
independence makes the system more flexible; modules are able to locate each other.  
It is the use of property interface that increases the robots autonomy. The property interface 
provides self-knowledge that can be used for reasoning on a high-level. The interface will 
makes it possible for, to-be-developed, applications to take decisions, based on properties, 
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that will allow it to have MARIE cope with new situations. For example when different 
versions of a module are available, the module’s identity number is no longer unique within 
the network. Requesting the modules location would result in all modules with that identity 
number that are currently registered. The property interface can be used to distinguish 
between the different instances of the module, based on their properties (version, up-time, 
parameters, etc.). 
 
When the property interface is realized applications can be developed that extend MARIE 
with the following collection of more specific autonomous characteristics: 

 Parameter variation 
 Parameter optimization 
 Predicting results 
 Understanding undesired behavior 
 System analysis 
 Monitoring of an elementary operation’s behavior 

 
From the above the following conclusion is drawn: 

11.4 Future work 
Some room for improvement was observed and future enhancements are recommended with 
respect to the following: 
 
General 

 Implementing the interface and performing the experiments. 
 Redesign of action dispatcher 

 
Functional: 

 Provide elementary operations with termination function. This gives the elementary 
operations a life-cycle. The existence of elementary operations can be determined 
more accurately. 

 Fusion with Erik de Ruiter’s database [3], with regard to identifying module versions 
 
Technical: 

 Move the feature datamanager to the VxWorks machine 
 The way that the eo-interface is implemented suggests that it is meant to deal with al 

communication that goes to or from an elementary operation. A generic listener 
function should be implemented, for both property- and eo-interface.  

11.5 Conclusion 
This master thesis concerns with controlling the MARIE mobile autonomous robot. It is 
researched if the autonomy of MARIE will increase when it has more knowledge about its 
reasoning, sensing and controlling elements.  
A property interface was designed that provides property information about the elementary 
operations to all other modules within the system. Describing the elementary operations in 
terms of properties makes it possible to express practically anything that can be said about an 
elementary operation and thus it enables the merging of general concepts such as version, 
location and control information with technical, situation dependent information such as up-
time, control values, etc. In addition to an interface for communicating data and an interface 
for communicating commands, the systems is extended with an interface for communicating 
about its sensing, reasoning and controlling components.  
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MARIE’s modules were made location independent, which makes setting up the system more 
dynamic.  
The property interface, in combination with the location independence, gives high-level 
modules access to information about all the controlling elements, which makes it possible for 
these high-level modules, that are (in-)directly in charge of controlling MARIE’s behavior, to 
use the properties of elementary operations to make decisions, that were formerly taken by the 
human operator (or with the knowledge supplied by the human operator). It is possible to 
select, monitor or verify the (functionality of) elementary operations. This creates a variety of 
extra functionality; self-configuration, task tree verification, parameter varying, self-recovery, 
all become possible for MARIE.  
With respect to answering the hypothesis of this thesis: tests have shown that location 
independence decreases the amount of work the human operator has to spend on MARIE, 
because setting up configurations can now be done automatically (and as a result MARIE’s 
autonomy has increased).  
In theory, the combination of the property interface and location independence of the robot’s 
modules also increases autonomy. The introduction of the control details to higher-levels 
provides them with the information to enhance decision making processes, that are typically 
done by the operator, such as self-configuration or self-healing. Such functionality will 
increase MARIE’s autonomy. 
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APPENDIX A: CONCEPTS FOR IMPLEMENTING THE PROPERTY 

INTERFACE 

A.1 Introduction 
This appendix will describes an onset towards the implementation of the property interface. 
The description focuses on two issues. One describes the properties of the elementary 
operations, in section A.4. In section A.5 the communication protocol is devised, and section 
A.6 gives a brief description on what server and client functions could look like. But first a 
preface, section A.2, to describe what context this chapter must be read in and second an 
overview is presented in section A.3. 

A.2 Preface 
Location independence has been implemented, this is done in such a way that it can be made 
part of the property interface. However, the communication of location information is 
different with the respect that communication proceeds actively, contrary to other properties 
that are only published on demand, and that obtaining the location information is done from 
the feature datamanager.  
To tackle the communication of all the other properties some additional implementations are 
required that cannot directly be done in analogy with the way that was dealt with the location 
property. This requires some specification of the properties and the communication and 
publication mechanism. 

A.3 Overview 
In this chapter is looked ahead how the property interface for the other properties than the 
location property could be implemented. The aim is to propose how the further development 
of the property interface should proceed.  

 More details are provided about the specific properties of the elementary operations. 
Most importantly details about the internal obtaining of properties is described. 

 A protocol, to support communication, is proposed. 
 Generic functions are presented 

A.4 The Properties in Detail 
This section provides additional details about the properties of tables 6-1 to 6-4. 
A collection of details for each property must be identified, before they can be communicated. 
These aspects include high-level issues such as, how the properties are represented and 
technicalities, such as, how an elementary operation knows its own properties. 
 
Internal Resources 
An elementary operation supplies its own properties when requested to do so. But where can 
an operation obtain its own properties? An elementary operation receives a request for a 
certain property and then invokes some internal functionality to obtain that property. This can 
be done directly by the elementary operation, for example the up-time of an elementary 
operation can be obtained by using system-calls, others must be obtained differently. The 
table describes for each property where it is gotten from. This may be: 

 from a file 
 by system calls 
 from the feature datamanager 
 from eo-interface 
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 from the database of Eric de Ruiter 
 
Internal Supplier of properties 
Some properties of an elementary operation, such as the default value for a certain parameter, 
cannot be obtained automatically. Such properties must be thought up by either the developer 
or the operator, before the elementary operation can determine them. 
 
Representation of properties 
An additional issue that should be addressed is how the properties are represented. For some 
properties, such as its name or location, this is straightforward. But this is not the case for the 
parameters. These are not described by only providing the amount of parameters that control 
an elementary operation; properties such as their data type and order are also required.  
This leads to a structural representation of the parameter properties.  

A.4.1 The Properties Table 
Note that an elementary operations contains a sheer unlimited amount of properties. Therefore 
a selection was made with the self-configuration example in mind. 
 
Below the table with properties is given. 
 
Property Description Data 

Type 
Supplier 
(operator/deve
loper/system) 

Local 
Resource 

Example 

Name Name of the 
elementary 
operation 

Character 
string 

D File “DS – 
Docking Spot 
Detector” 

Location 
Information  

Machine the 
elementary 
operation is 
running on 

IP and 
port 
number 

S Feature 
datamanager 

127.0.0.1:120
1 

Existence of 
operation 

Existence of the 
elementary 
operation 

Boolean S Feature 
datamanager 

True or False 

Version Version 
Information 

See notes 
below 

D/O/S? See notes 
below 

See notes 
below 

Amount of 
parameters 

Amount of 
parameters 

Integer D File 1,2,3,4,… 

Parameter 
Names 

The names of the 
parameters 

Array of 
strings 

D File “p1”, “p2”, 
“p3”, … 

Parameter type The type of the 
parameters 
(‘maps’ on 
parameter names) 

Sequence 
of 
predefine
d 
Character
s 

D File c,l,d,.. 
(c)har, 
(d)ouble, 
(l)ong 

Default value Default values 
for parameters 

Sequence 
of alpha-
numeric 
values 

D File Sequence of 
any possible 
value 

Minimum 
Value 

Minimum value 
for a parameter 

Alpha 
Numeric 

D/O/system in 
the future? 

File A value 

Maximum Maximum value Alpha D/O/ system File A value 
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Property Description Data 
Type 

Supplier 
(operator/deve
loper/system) 

Local 
Resource 

Example 

Value for a parameter Numeric in the future? 
Previous 
Value 

The previous 
value for a 
parameter 

Alpha 
Numeric 

S Eo data  A value 

Current Value The current value 
for a parameter 

Alpha 
Numeric 

S Eo data A value 

InUse Indicates if a eo 
is already being 
used by MARIE 

Boolean S   

Table A-1: Implementation details of elementary operations properties 

The fields have the following meaning: 
 
1. Property Name 
The name of the property 
 
2. Short description 
Description of the property 
 
3. The data type of the property 
The properties can have different data types, this field describes that data type. Simple types 
such as integers and characters are possible, but also more complex data types such as 
structures may typify a property. 
When communicating these properties data types have to be taken into consideration, how 
this is done is discussed in section ??. 
 
4 & 5. Supplier and local resource of the property information 
There are two fields to represent where an elementary operation gets its property from. One 
specifies the actual source (file, system call, databse, etc) the other specifies who defined the 
data, if relevant.  
 
6. Example 
An example of the value for the property. 

A.4.2 The parameter properties 
To represent the parameter properties in one structure, it must be taken into account that the 
amount of parameters depends on the elementary operation and therefore the structure can not 
be of a fixed length. Since the interface (and thus the data representation) is demanded to be 
generic as well as non elementary operation specific, a dynamic data structure should be 
devised that can be used for representing all parameters of for each elementary operations. 
Of each elementary operation, a parameter is uniquely defined by its name and data type, so 
each parameter can be represented by two fields. Ordering these fields for all parameters and 
adding a number that represents the amount of parameters of the elementary operation in one 
data structure gives a description of its set of parameters.  
There is an issue not addressed here which is: embedded structures. When a parameter is not 
of a simple data type, such an integer or a character, but consists of a structure, then special 
measures have to be taken to deal with it. this is no big deal however, since that structure can 
be described in the same manner as the other data structure.  
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A similar construct can be devised for the (default) values of each parameter. 

A.4.3 The version issue 
Uniquely identifying an elementary operation is done by its id-number (or name). In theory 
multiple instances of the same elementary operation can be active within the network. In 
those cases the location information can be used to distinguish them. However, when these 
instances are of a different version, that version information is needed to uniquely identify the 
operation.  
Problem is, that there is no version information available in the MARIE software. Erik de 
Ruiter has made a database that makes it possible to uniquely identify different versions, 
without the use of explicit version management [3]. This is realized by combining executables 
with there sources and compilation date.  
This information can not be used by the property interface, however, because the sources and 
compilation date are unknown. So until this issue is not solved, Eriks database can not be used 
as source for versions. 
I suggest, as temporary solution, that requires the developer to add a version number to each 
new (version) of elementary operation. This is, however, no proper version management and 
can therefore not be considered a long-term solution. 

A.5 Communication 
On the client-side functions will be developed that translate a request into a message (i.e. a 
request for some property). The message is sent to the supplier of the information on the other 
end of the line, i.e. the server. On that server side a function must be developed that receives 
and replies to the request. The next section describes the general steps the servers and clients 
must go through, to use the interface; it defines a protocol for the interface. 

A.5.1 Messages 
Information between processes is communicated via messages. Messages are identified by a 
message type, that is specified in the message, together with specific content. The message 
type facilitates following the rules of the protocol and defines consecutive actions. I.e. the 
message type tells the communicating parties what step to take next.  
Each property has a message type associated with it. On receiving such a message the server 
will know that a request was send for a particular property. The server can then respond by 
examining the content of the message and sending the property (if found) or sending a 
property-not-found message. 

A.5.2 Protocol 
The exchange of information must obey certain rules. These rules must describe when to send 
what information, and must pertain to both client and server. Such rules are defined in a 
protocol.  
The steps the client and server go through from question to answer are listed below. Note that 
it is required that there already exists a connection to the server.  
 
Figure A-2 gives a graphical representation of the protocol. 
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Figure A-2: Protocol of the Property Interface 

A.6 Retrieving Properties 
The interface must provide two functions for each property. One function for generating the 
appropriate message for the requesting module that needs property information of an 
elementary operation, and a function on elementary operation’s side, that internally retrieves 
the property. 

A.7 Conclusion 
This chapter gives a preliminary description for the implementation of the property interface; 
it might be used as a guideline for the actual implementation, and merely presents some ideas.   
The structure of the properties of elementary operations and functions to obtain and 
communicate these properties are explained in some detail. 
The requester of properties can be any module in the system. The process of requesting 
information is a matter of contacting the relevant elementary operation and starting 
communication, as defined in a protocol. It is required that the requesting process sets up and 
closes the connection. (This is not facilitated by the interface.)  
The requester should be aware of the particular data type of the property it has requested.  
The elementary operation, whose property is requested, supplies the property itself. The way 
the elementary operations obtains these properties depends on that property and the 
elementary operation. The internal function used for this, can obtain the property from system 
resources, from a user-defined a text file, or it might be directly available. In the future a link 
to the database created by Eric de Ruiter may be developed. 
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APPENDIX B: SOURCE CODE 
This appendix contains the source code of the functions that were added or altered for 
location independence. For clarities sake the following (already existing) structure definitions 
are added.  
In the code these structures contain location records. Note that for they are not the same; the 
machine and name field are of different size, for the datamanagers and elementary operations. 
 
typedef struct DM_IDENT 
{ 
    long port;   /* the port of the dm service */ 
    long ident;  /* the unique id-number of the dm */ 
    char machine[64];  /* The name of the machine running  
                         * the service (i.e. vw.science.uva.nl */  
    char name[64];      /* The human readable name of dm 
                         * (i.e. “world datamanager”) */ 
} dm_ident; 
 
typedef struct EO_IDENT 
{ 
    long port;   /* the port of the eo service */ 
    long ident;         /* the unique id-number of the eo */ 
    char machine[32]; /* The name of the machine running  
                         * the service (i.e. vw.science.uva.nl */ 
    char name[32];      /* The human readable name of dm 
                         * (i.e. “Trajectory Controller”) */ 
} eo_ident; 
 

B.1 Location Independence functions for datamanager 

B.1.1 Existing functions 
Retrieving datamanager information and storing datamanager information is through slight 
adaptation of the existing datamanager functions, dataman and dm_connect. 
 
int dataman(long ident, long port_no) 
{ 
 
    dm_all D; 
    unsigned long t_now; 
    long   t_del; 
    int       i; 
    long max_sleep; 
    int         ret;       /*Locaction Indenpence */ 
 
    D.my_id = ident; 
    D.fdmax = 127; 
    D.n_cl = D.count = D.errval = 0; 
    D.nr_close = -1; 
    D.dm_list->p_seq = D.dm_list->n_seq = D.dm_list; 
    D.dm_list->p_source = D.dm_list->n_source = D.dm_list; 
    D.dm_list->p_class = D.dm_list->n_class = D.dm_list; 
    D.cur_seq = 0; 
    for (i = 0; i < 16; i++) 
    { 



Improving Control of the MARIE robot   
 

 
 
 
 
 
 

87

 

 D.by_source[i].p_seq = D.by_source[i].n_seq = D.by_source + i; 
 D.by_source[i].p_source =  
                    D.by_source[i].n_source = D.by_source + i; 
 D.by_source[i].p_class =  
                    D.by_source[i].n_class = D.by_source + i; 
 D.by_class[i].p_seq =  
                    D.by_class[i].n_seq = D.by_class + i; 
 D.by_class[i].p_source =  
                    D.by_class[i].n_source = D.by_class + i; 
 D.by_class[i].p_class = D.by_class[i].n_class = D.by_class + i; 
    } 
    for (i = 0; i < MAX_CLIENTS; i++) 
    { 
 D.clients[i].fd = 9999; 
 D.clients[i].flags = 0; 
 D.clients[i].proc_id = 0; 
    } 
 
    /* The Datamanager-space has been initialised now, 
     * let's store it's existence 
     * Store its location in the feature datamanager */ 
    if (ident != DM_FEAT_IDENT) 
      { 
 if((ret = dm_location2dm(ident, port_no)) < 0) 
   { 
     DPRINT(ERRS,  
                ("dataman: Location not reported:  
                               id: %d, port: %d, code: %d\n", 
        (int) ident, (int) port_no, ret)); 
   } 
 else 
   { 
     DPRINT(MESS, ("dataman: Location successfully reported:  
                               id: %d, port: %d, code: %d\n", 
        (int) ident, (int) port_no, ret)); 
   } 
      } 
 
 
    DPRINT(MESS, ("dm task: calling DtCreateSock\n\n")); 
 
    D.in_fd = DtCreateSock(port_no, &(D.dm_sock), MAX_CLIENTS); 
 
    DPRINT(MESS, ("dm task: returned from DtCreateSock\n\n")); 
 
    D.fdmax = (D.in_fd > D.fdmax) ? D.in_fd : D.fdmax; 
 
    D.nr_clients = 0; 
 
    FD_ZERO(&D.readset); 
    FD_ZERO(&D.writeset); 
    FD_ZERO(&D.exceptset); 
 
    FD_SET(D.in_fd, &D.readset); 
 
    /* the feature datamanager should respond to keyboard input 
     * this allows us to see what records are stored there */ 
    if (ident == 1201)  /* 1201 == feature datamanager */ 
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    { 
 /*  
  * stdin added to listen list, input on stdin should result in  
       * a client list 
  * Just for the Fe3ature Datamanager, though. 
  */ 
 FD_SET(0, &D.readset); 
    } 
 
    D.repeat = 1; 
    D.nr_wait = 0; 
    D.first_wait = 0; 
 
    DPRINT(MESS, ("Now starting repeat loop\n")); 
 
    max_sleep = DM_MAX_SLEEP * sysClkRateGet(); 
    DPRINT(MESS, ("max_sleep %ld\n", max_sleep)); 
    while (D.repeat) 
    { 
 D.readfrom = D.readset; 
 D.writeto = D.writeset; 
 D.excepton = D.exceptset; 
 D.timeout.tv_sec = DM_MAX_SLEEP; 
 D.timeout.tv_usec = 0; 
 DPRINT(MESS, ("dataman: D.nr_wait %d\n", D.nr_wait)); 
 if (D.nr_wait > 0) 
 { 
     t_now = tickGet()+1; 
     t_del = D.clients[D.first_wait].ret_time - t_now; 
     DPRINT(MESS, ("dataman: t_del %ld\n", t_del)); 
     if (t_del < max_sleep) 
     { 
     double  d; 
 
  if (t_del > 0) { 
      d = (t_del * 1000000.0) / sysClkRateGet();  
      D.timeout.tv_usec = irint(d); 
  } else { 
      D.timeout.tv_usec = 1; 
  } 
  D.timeout.tv_sec = D.timeout.tv_usec / 1000000; 
  D.timeout.tv_usec = D.timeout.tv_usec % 1000000; 
     } 
 } 
 DPRINT(MESS, ("dataman: (3) tv_sec %ld tv_usec %ld\n",  
                                           D.timeout.tv_sec, 
                                         D.timeout.tv_usec)); 
 D.count = select(D.fdmax + 1, &D.readfrom,  
                                    &D.writeto,  
                                    &D.excepton, 
                                    &D.timeout); 
 if (D.count == 0) 
 { 
     /* We have run into a time-out.*/ 
     if (D.nr_close >= 0) 
     { 
  close(D.clients[D.nr_close].fd); 
  D.clients[D.nr_close].fd = 9999; 
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  D.nr_close = -1; 
     } 
 } else if (D.count < 0) 
 { 
     D.errval = errnoGet(); 
     perror("dataman: Error in select "); 
 } else 
 { 
     /* count > 0, i.e. regular I/O */ 
     
      if (D.nr_close >= 0) 
      { 
  close(D.clients[D.nr_close].fd); 
  D.clients[D.nr_close].fd = 9999; 
  D.nr_close = -1; 
      } 
 
      /*  
       * Every input on stdin will result in a list of clients. 
       */ 
      if (FD_ISSET(0, &D.readfrom) && (ident == 1201) ) 
        { 
   char x[10]; 
   bzero(x, 10); 
   read(0, &x, 10); 
   DPRINT(ERRS, ("Current Client Information:\n")); 
   for (i=0; i < D.nr_clients; i++) 
     { 
       printf("Client %d on fd %d with process id: ",  
       i, D.clients[i].fd); 
       if (D.clients[i].proc_id==0) 
         printf("<no messages yet>\n"); 
       else 
         printf("%d == %x\n", D.clients[i].proc_id, 
                                         D.clients[i].proc_id); 
     } 
   DPRINT(ERRS, ("Listed IDs\n")); 
   list_id(); 
        } 
 
     /* Now check for new connections */ 
     if (FD_ISSET(D.in_fd, &D.readfrom)) 
     { 
  set_up_connection(&D, D.in_fd); 
  D.count--; 
     } 
     /* Now, at last, read messages from clients */ 
     for (D.n_cl = 0; (D.n_cl < D.nr_clients) && (D.count > 0); 
  D.n_cl++) 
     { 
  if ((D.clients[D.n_cl].fd <= D.fdmax) && 
      (FD_ISSET(D.clients[D.n_cl].fd, &D.readfrom))) 
  { 
      handle_client(&D, D.n_cl); 
      D.count--; 
  } 
     }  /* End of loop over all clients */ 
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 }     /* End of all I/O actions following select */ 
 /* Now test pending waits */ 
 if (D.nr_wait > 0) 
 { 
     t_now = tickGet() + 1; 
     D.reply.sender = D.my_id; 
     D.reply.type   = DM_TIMEOUT; 
     D.reply.info   = 0; 
     D.reply.t_send = tickGet(); 
     while (D.nr_wait &&  
                       (D.clients[D.first_wait].ret_time <= t_now)) 
     { 
  write(D.clients[D.first_wait].fd, (char *) &(D.reply), 
       sizeof(D.reply)); 
  D.nr_wait--; 
  D.first_wait = D.clients[D.first_wait].next_wait; 
     } 
 } 
    }      /* End of infinite loop */ 
 
    return (0); 
} 
 
int 
dm_connect(dm_ident *ident, dm_work **dm) 
{ 
    dm_name  nm; 
    int       s; 
    dm_ident *bak;  
 
    /* Location Indepence: to get backward compatability this is 
     * The place where locations are verified and retreived 
     */ 
    if (ident->ident != DM_FEAT_IDENT) 
        bak = dm_getLocation(ident); 
    else 
        bak = ident; 
 
    if (NULL == (*dm = (dm_work *) malloc(sizeof(dm_work)))) 
    { 
 fprintf(stderr,  
           "Task %d: cannot allocate working storage \n%s\n", 
      taskIdSelf(), "for data manager interface routines"); 
 return(DM_NOSTORE); 
    } 
    do { 
      /* ident->machine can either be an IP number or a  
       * machine name (i.e. a string). Distinctions between those  
       * two are hard to find. (IP:114.105.106.110 could  
       * also be machine 'rijn') 
       */ 
 
          s = DtConnect2Sock(ident->port, 
             (struct sockaddr_in *) &((*dm)->sockname), 
                                        ident->machine); 
  if (s < 0) { 
    /* Location Independence: 
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               * found location failed, try old settings'*/ 
    s = DtConnect2Sock(bak->port, 
        (struct sockaddr_in *) &((*dm)->sockname), 
         bak->machine); 
    /*-- Location Independence] */ 
    if (s < 0) { 
   if (s == ERROR) 
    return (ERROR); 
   if (s == -2) 
    return (DM_NOHOST); 
   if (s == -3) 
    taskDelay(4 * sysClkRateGet()); 
    } else  
      { 
        DPRINT(ERRS,  
                ("Connection established with old settings: %s:%d\n",  
                 bak->machine, (int) bak->port)); 
        printf( 
                      "Connection established with old settings.\n"); 
        bcopy(bak, ident, sizeof(dm_ident)); 
      } 
  } 
    } while (s <= 0); 
    (*dm)->fd = s; 
    (*dm)->dm_id = ident->ident; 
    (*dm)->my_id = taskIdSelf(); 
 
/*  
 * NEW MESSAGE TYPE FOR HEADER 
 * A connection  has just been established; now send this process' 
 * proc-id. 
 */ 
    nm.reply.sender = (*dm)->my_id;      /* id-number */ 
    nm.reply.type   = DM_HEADER;         /* message type */ 
    nm.reply.t_send = (int) tickGet();   /* ticks */ 
    nm.reply.info   = 0; 
    strncpy(nm.name, taskName(taskIdSelf()), 32);   /* taskName */ 
    nm.name[31] = '\0'; 
    write((*dm)->fd, (char *) &nm, sizeof(dm_name)); 
 
    return (DM_OK); 
} 

B.1.2 New functions 
The datamanager function library has been extended with four functions to facilitate location 
independence. These functions are dm_location2dm, dm_getLocation, dm_nr2id, 
dm_get_all_modules  and dm_list_all_modules. 
 
The first function, dm_location2dm, is used to store a datamanger’s location information at 
the feature datamanager. 
 
/*  
 * Stores location information in the Feature Datamanager 
 *  
 * A location is defined as the process’ 'port_no',  
 * its IP ('machine'), a string identifing it ('name') and its  



Improving Control of the MARIE robot   

 
 
 

 
 
 
 

92

 

 * ID number ('ident').  
 * These are stored as dm_ident-structs, as a DM_CLASS_LOCATION   
 * All records. Even the eo's are stored as dm_ident (and not 
 * eo_ident), when an eo-record is retreived one should take this  
 * into account! 
 */ 
int dm_location2dm(long ident, long port_no) 
{ 
  char        host_name[64];  /* Locaction Indenpence change      */ 
  dm_work     *p_dm_work;     /* idenitfies dm-connection         */ 
  dm_record   *dm_rec;        /* dm record containg info to store */ 
  dm_ident    *tl;  /* Actual information to add to dm  */ 
  char        *tmp; 
  int         my_ip, i; 
  int         ret=-1; 
 
  if (ident != DM_FEAT_IDENT) 
    { 
      /* Construct dm-record’s message header */ 
      dm_rec = (dm_record *) malloc( 
                             sizeof(dm_record)+sizeof(dm_ident)); 
       
      dm_rec->header.tick_obs = tickGet(); 
      dm_rec->header.source = port_no; 
      dm_rec->header.class  = DM_CLASS_LOCATION; 
      dm_rec->header.size   = sizeof(dm_ident); 
 
      /* Initialize the body of the message */ 
      tl = (dm_ident*) malloc( sizeof(dm_ident) ); 
      memset(tl, 0, sizeof(dm_ident)); 
      tl->port = port_no;  /* modules port number */ 
      tl->ident = ident;            /* modules id-number   */ 
 
       /* Get 'this' machines IP number */ 
#ifdef VXWORKS 
      gethostname(host_name, 64); 
      /* get localhost-name */ 
      DPRINT(MESS, ("gethostname: host_name is: %s ident: %d\n", 
                                                host_name, ident)); 
      /* conver name to IP */ 
      my_ip = hostGetByName(host_name);  /* i.e.  
      tmp = (char*) &my_ip; 
      DPRINT(MESS, ("TEMP: hostGetByName-> my_ip: %d.%d.%d.%d\n",  
      (unsigned int) tmp[0], (unsigned int) tmp[1],  
      (unsigned int) tmp[2], (unsigned int) tmp[3])); 
 
#else 
      gethostname( host_name , 64); 
      host2ip(&my_ip, host_name); 
#endif 
      memcpy(tl->machine, &my_ip, 4);      /* store IP address */ 
       
      /*  
       * Fill in the name of the module (from its ID-number) 
       * This name comes from a predefined list, defined in eo_inits. 
       */ 
      i=0; 
      while (module_names[i].ident > 0) 
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  if (module_names[i].ident == ident) 
     break; 
  else 
     i++; 
 
      if (module_names[i].ident) 
   strcpy(tl->name, module_names[i].name); 
      else 
   strcpy(tl->name, "<unknown>"); 
       
      memcpy( dm_rec->data, tl, sizeof(dm_ident)); 
       
      /* connect top feature datamanager */ 
      ret = (int) dm_connect(&feat_ident, &p_dm_work); 
 
      if (ret > -1) 
 { 
   /* using the existing dm_add-function, add the record  
         * to the datamanager  
         */ 
   ret = (int) dm_add( dm_rec, p_dm_work); 
 
   if (ret < 0) 
     { 
       DPRINT(ERRS,  
             ("dm_location2dm: Adding record FAILED with code: %d\n",  
                                                               ret)); 
     } 
   else 
     { 
       DPRINT(MESS,  
              ("dm_location2dm: Adding record returned with: %d\n", 
                                                               ret)); 
     } 
 
   if (dm_disconnect(&p_dm_work)<0) 
       printf("dm_location2dm: dm_disconnect error.\n"); 
 } 
      else 
 { 
   DPRINT(ERRS,  
        ("dm_location2dm: can't connect to FEATURE DATAMANAGER!\n"));       
 } 
    } 
 
  return(ret); 
} 
 
The dm_getLocation, is used to retrieve a datamanger’s location information. The 
actual retrieval is done by a function called dm_nr2id, which is explained later.  
 
/*  
 * Retreives location from Feature datamanager. 
 * The requested module’s location is identified by the  
 * 'ident->ident' field. 
 * On return the rest of this dm_ident structure is filled in.  
 * The function also returns a pointer to the original  
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 * 'ident' struct, for recovery reasons. 
 */ 
dm_ident *dm_getLocation(dm_ident* ident) 
{ 
  long       target;  /* Identity number for DM to find */ 
  int        ret; 
  int        ip1;  
  char       ip2[4]; 
  dm_ident   *bak;     /* Backup of old record */ 
  ret = 0; 
 
  /* Save the original record */ 
  bak = (dm_ident*) malloc(sizeof(dm_ident)); 
  bcopy(ident, bak, sizeof(dm_ident)); 
 
  /* Get the record */ 
  target = ident->ident; 
  if (DM_OK  == dm_nr2id(target, ident)) 
    /* Record was found.  
     * (ident-> machine could be an IP address and not a  
     * machine name). Now check if the record has changed. It might 
     * be possible that, because of old code, the dm_ident struct 
     * contains incorrect location information. If so, the user 
     * should be told and the record corrected. 
     */ 
    { 
#ifdef VXWORKS 
      if ((hostGetByName(bak->machine) != (int) ident->machine) || 
    (ident->port != bak->port) ) 
#else 
      host2ip( (int) ip2, bak->machine); 
       
      if ( (ip2[0] != ident->machine[0]) || 
      (ip2[1] != ident->machine[1]) || 
      (ip2[2] != ident->machine[2]) || 
      (ip2[3] != ident->machine[3]) || 
      (ident->port != bak->port) ) 
#endif 
 { 
   DPRINT(WARN, ("dm_getLocation:  
                              Destination has been corrected!\n")); 
   DPRINT(WARN, ("Old: %d.%d.%d.%d:%d\nNew: %d.%d.%d.%d:%d\n",  
                bak->machine[0],  bak->machine[1], 
                bak->machine[2],  bak->machine[3],  
                               bak->port,  
                               ident->machine[0], ident->machine[1],  
                               ident->machine[2], ident->machine[3],  
                               ident->port)); 
 } 
    } 
  else 
    { 
      DPRINT(ERRS,  
        "dm_getLocation: Could not retreive location with id: %d.\n",  
                                                            target)); 
    } 
 
  return (bak); 
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} 
 
The dm_nr2id –function is looks for a specific location record in the feature 
datamanager, based in a id-number. On success the function returns a completely filled 
ident-structure. 
 
int dm_nr2id(long id, dm_ident *ident) 
{ 
    int i, found, MAX_RECS=15; 
    dm_work *p_dm; 
    dm_loc_rec *records[MAX_RECS]; 
    i = 0; 
 
    if ( dm_connect(&feat_ident, &p_dm) < 0 ) 
      { 
 DPRINT(ERRS, ("dm_nr2id:  
            can't connect to feature datamanager.\n")); 
      } 
    else 
      { 
      /* retrieve all records from feature dm */ 
 found = dm_select(0, 0.0, 0.0, 0, 0,  
                        DM_CLASS_LOCATION, 10.0,  
                        MAX_RECS,  
                        (dm_record **) records, p_dm); 
 if (found < 1) 
   { 
     DPRINT(ERRS,  
             ("dm_nr2id: can't find id in feature DM: ret = %d.\n", 
                                                             found)); 
     if (dm_disconnect(&p_dm) < 0) 
       printf("dm_nr2ida: dm_disconnect error.\n"); 
     return(DM_WRONG_ID); 
   } 
 else if (found > 1) 
   { 
     DPRINT(MESS, ("dm_nr2id: found %d records.\n", found)); 
   } 
 
 for (i = 0; i < found; i++) 
   { 
     if( records[i]->loc.ident == id ) 
       { 
                  /* The id-number is found in the retrieved records 
                   * Save that record, disconnect from feature  
                   * datamanager, and return success 
                   */ 

  DPRINT(ROUT, ("dm_nr2id: found it.\n")); 
             /* copy records[i] to ident structure */ 
   bcopy(&(records[i]->loc), ident, sizeof(dm_ident)); 
 

  if (dm_disconnect(&p_dm) < 0) 
                    printf("dm_nr2idb: dm_disconnect error.\n"); 
 

  return(DM_OK); 
       } 
   } 
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 if (dm_disconnect(&p_dm)<0) 
   printf("dm_nr2idc: dm_disconnect error.\n"); 
      } 
    /* When executioon is here, no valid records was found: 
     * Return failure  
     */ 
    return(DM_WRONG_ID); 
} 
 
The dm_get_all_modules –function is used to retrieve all location records stored at 
the feature datamanager. 
 
/*  
 * Retrieves, at maximum MAX_RECS registred module locations 
 */ 
int dm_get_all_modules(dm_loc_rec *records[], int MAX_RECS) 
{ 
  int found; 
  dm_work *p_dm;  /* connection to feature dm */ 
 
  if ( dm_connect(&feat_ident, &p_dm) < 0 ) 
    { 
      DPRINT(ERRS, ("dm_get_all_modules:  
                          can't connect to feature datamanager.\n")); 
    } 
  else 
    { 
      /* Get all records, using dm-interface function */  
 found = dm_select(0, 0.0, 0.0, 0, 0,  
                        DM_CLASS_LOCATION, 10.0,  
                        MAX_RECS,  
                        (dm_record **) records, p_dm); 
 if (found < 1) 
   { 
     DPRINT(ERRS, ("dm_get_all_modules:  
                  can't find any records in feature DM: ret = %d.\n", 
                                                             found)); 
     if(dm_disconnect(&p_dm) < 0) 
       printf("dm_get_all_modules: dm_disconnect error.\n"); 
     return (found); 
   } 
 else if (found > 1) 
   { 
     DPRINT(ROUT, ("dm_get_all_modules: found %d record(s).\n", 
                                                             found)); 
     if(dm_disconnect(&p_dm) < 0) 
       printf("dm_get_all_modules: dm_disconnect error.\n"); 
     return (found); 
   } 
 else 
   { 
     DPRINT(WARN, ("dm_get_all_modules:  
              There are no modules registerd at Feature 
                                                 Datamanager.\n")); 
     if(dm_disconnect(&p_dm) < 0) 
       printf("dm_get_all_modules: dm_disconnect error.\n"); 
     return (found); 
   } 
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    } 
  return(0); 
} 
 
The dm_get_list_all_modules –function is used to retrieve all location records 
stored at the feature datamanager and output hem to screen.  
 
/*  
 * Retrieves, at maximum MAX_RECS registred module locations 
 */ 
void dm_list_all_modules() 
{ 
    int i, found, MAX_RECS=100; 
    dm_work *p_dm; 
    dm_loc_rec *records[MAX_RECS]; 
    i = 0; 
 
    if ( dm_connect(&feat_ident, &p_dm) < 0 ) 
      { 
 DPRINT(ERRS,  
         ("dm_list_all_modules: can't connect to feature 
                                                datamanager.\n")); 
      } 
    else 
      { 
 found = dm_select(0, 0.0, 0.0, 0, 0,  
                        DM_CLASS_LOCATION, 10.0,  
                        MAX_RECS,  
                        (dm_record **) records, p_dm); 
 if (found < 1) 
   { 
     DPRINT(ERRS, ("dm_list_all_modules:  
                  can't find any records in feature DM: ret = %d.\n", 
                                                             found)); 
     if(dm_disconnect(&p_dm)<0) 
       printf("dm_list_all_modules: dm_disconnect error.\n"); 
     return; 
   } 
 else if (found > 1) 
   { 
     DPRINT(ERRS, ("dm_list_all_modules:  
                                found %d records.\n", found)); 
   } 
 for (i=0; i< found; i++) 
   { 
     printf("Record %d: ID: %d port: %d machine: ", i, 
                                     records[i]->loc.ident, 
                                     records[i]->loc.port); 
     printf("%d.%d.%d.%d name: %s.\n",  
                                     records[i]->loc.machine[0], 
                                     records[i]->loc.machine[1], 
                                     records[i]->loc.machine[2], 
                                     records[i]->loc.machine[3], 
                                     records[i]->loc.name); 
   } 
 if (dm_disconnect(&p_dm)<0) 
   printf("dm_list_all_modules: dm_disconnect error.\n"); 
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      }  
} 

B.2 Location Independence functions for elementary operations 

B.2.1 Existing functions 
Retrieving elementary operation information and storing elementary operation information is 
done through slight adaptation of the existing eo-functions , eo_connect and eo_init . 
Connecting to elementary operations is done using a function called eo_connect. One of its 
arguments is a structure with the id-number, machine and port of the service. This information 
is likely not correct, since it always was retrieved from the hardcoded location table. For 
location independence eo_connect has been adapted. The adaptation is such that the callee 
does not know it passed the wring location information. eo_connect it is called with the 
exact same arguments as before, but inside the function the correct location is retrieved.  
Below colored in red are the lines that were added.  
 
int eo_connect(eo_ident *ident, eo_client_struct *eo) 
{ 
/* The machine to on which the eo task runs is specified in machine. 
 * This routine sets up the connection with the eo-server task.  
 * It will also create a structure, pointed to by eo, containing all  
 * the local information needed by the elementary operation interface 
 * routines. The routine returns zero on success, and a negative 
 * value on failure 
 */ 
 
    int     s, count = 0; 
    eo_con_rec *eo_rec = NULL; 
    eo_name nm; /* [may'02] */ 
 
    /* backup for old information */ 
    eo_ident *bak; 
 
    DEBUGON(WARN); 
    *eo = NULL; 
    if (NULL == (eo_rec = (eo_con_rec *) malloc(sizeof(eo_con_rec)))) 
    { 
 logMsg ("eo_connect: cannot allocate working storage \n%s\n", 
      "for eop interface routines"); 
 return(EO_NOSTORE); 
    } 
     
    /* save old record in ‘bak’ and store correct record in ‘ident’  
     */ 
    bak = eo_getLocation(ident); 
 
    do { 
 s = DtConnect2Sock(ident->port,  
                               (SOCKADDR *) &(eo_rec->sockname), 
        ident->machine); 
 if (s < 0) { 
   s = DtConnect2Sock(bak->port,  
                                (SOCKADDR *) &(eo_rec->sockname), 
        bak->machine); 
   if (s < 0) { 
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     if (s == ERROR) 
       return (ERROR); 
     if (s == -2) 
       return (EO_NOHOST); 
     if (s == -3) 
       { 
  DPRINT (WARN, 
   ("eo_connect: Waiting for connection to '%s'\n", 
    ident->name)); 
  taskDelay(4 * sysClkRateGet()); 
       } 
     else 
       {      
                logMsg("eo_connect:  
                      Error no. %d in attempt to connect to '%s'\n", 
      s, ident->name); 
           taskDelay(2 * sysClkRateGet()); 
       } 
     count++; 
     if (count > 3) 
       { 
  DPRINT (ERRS, 
   ("eo_connect: cannot connect to eo '%s'  
                   (port %d@%s)\n", 
    ident->name, ident->port, ident->machine)); 
  return(EO_WEIRD_ERR); 
       } 
   } 
   else  
     /* Newly found location was not connectable */ 
     { 
       DPRINT(ERRS,  
               ("Connection established with old settings: %s:%d\n", 
       bak->machine, (int) bak->port)); 
       bcopy(bak, ident, sizeof(eo_ident)); 
       /* change dm record ? */ 
     } 
      
 } 
    } while (s <= 0); 
 
    DPRINT(WARN, ("Eo_connect made a connection on fd = %d\n", s)); 
    eo_rec->fd = s; 
    eo_rec->eo_id = 0;  /* WHY IS THIS ZERO AND NOT IDENT */ 
    eo_rec->my_id = taskIdSelf(); 
    *eo = eo_rec; 
 
/*  
 * NEW MESSAGE TYPE FOR HEADER 
 * There has just been established a connection,  
 * now send our proc-id. 
 */ 
 
    nm.reply.sender = eo_rec->my_id; 
    nm.reply.type   = EO_HEADER; 
    nm.reply.t_send = (int) tickGet(); 
    nm.reply.size   = 0; 
    strncpy(nm.name, taskName(taskIdSelf()), 32); 



Improving Control of the MARIE robot   

 
 
 

 
 
 
 

100

 

    nm.name[31] = '\0'; 
    write(eo_rec->fd, (char *) &nm, sizeof(eo_name)); 
    return (EO_OK); 
} 
 
Storing locations is initiated during initialization. Below is the code that an elementary 
operation calls when initializing. 
 
int 
eo_init(long ident, long port_no, eo_serve_struct *Dvoid) 
{ 
    int  i, ret; 
    eo_data *D; 
 
    *Dvoid = D = (eo_data *) malloc(sizeof(eo_data)); 
 
    D->my_id =  ident; 
    D->fdmax =  127; 
    D->n_cl =  D->count = D->errval = 0; 
    D->nr_close =  -1; 
    D->rate =  sysClkRateGet(); 
    D->usec_tick =  1000000 / D->rate; 
    D->state =  EO_JUST_INIT; 
    D->params = NULL; 
    D->parsize = 0; 
    D->boss_id =     -1; 
    D->sentNotification = 0; 
 
    /* start -Location Independence- */ 
    /* Store Location at feature dm */ 
 
    if ((ret = eo_location2dm(ident, port_no)) < 0) 
      { 
 DPRINT(WARN, ("eo_init: Location not reported: id: %d,  
                                        port: %d, code: %d\n",  
                            (int) ident, (int) port_no, ret)); 
      } 
    else 
      { 
 DPRINT(MESS, ("eo_init: Location successfully reported: id:  
                                         %d, port: %d, code: %d\n",  
                                 (int) ident, (int) port_no, ret)); 
      } 
    /* end   -Location Independence- */ 
 
    DPRINT(MESS, ("eo_init: calling DtCreateSock for port no. %d\n", 
  port_no)); 
 
    D->in_fd = DtCreateSock(port_no, &(D->dm_sock), MAX_CLIENTS); 
    if (D->in_fd < 0) 
    { 
 fprintf(stderr, 
  "eo_init for task %x failed horribly\n", taskIdSelf()); 
 eo_show_id(D); 
 return(D->in_fd); 
    } 
 
    DPRINT(MESS, ("eo_init: returned from creat_sock\n\n")); 
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    D->fdmax = (D->in_fd > D->fdmax) ? D->in_fd : D->fdmax; 
 
    D->nr_clients = 0; 
    for (i = 0; i < MAX_CLIENTS; i++) 
    { 
 CL(i).fd = 9999; 
 CL(i).proc_id = 0; 
 CL(i).flags   = 0; 
    } 
 
    FD_ZERO(&D->readset); 
    FD_ZERO(&D->writeset); 
    FD_ZERO(&D->exceptset); 
 
    FD_SET(D->in_fd, &D->readset); 
 
 
    D->repeat = 1; 
    return(0); 
} 
 

B.2.2 New functions 
The functions to store and retrieve location records for elementary operations are very similar 
to the functions for storing and retrieving datamanager location records. However, of old, 
there is an annoying difference. The records used, throughout the original code, for storing 
eo-records and dm-records are different. The field that stores the name (description) and 
machine of the module are, in case of the eo_ident struct 32 bytes, and in case of the 
dm_ident struct 64-bytes. 
This is no problem when storing records, because the eo_ident struct is easily ‘upgraded’ to 
a dm_ident struct. But the reverse, i.e. obtaining a record and downgrading it to a eo_ident 
struct is harder, and therefore there have to be separate functions for the dm_getLocation 
and eo_getLocation. 
 
/* 
 * Just call dm_location2dm 
 */ 
int eo_location2dm(long ident, long port_no) 
{ 
  return (dm_location2dm(ident, port_no)); 
} 
 
This function is (as said) similar to dm_getlocation, but merely differs when memory space is 
allocated for the retrieved record.  
 
/* eo_getLocation returns the first record with ident->ident  
 * from feature datamanager the old ident-struct is also returned 
 */ 
eo_ident *eo_getLocation(eo_ident* ident) 
{ 
  long   target; 
  int    ret; 
  char   ip2[4]; 
  eo_ident  *bak; 
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  ret = 0; 
  /* Save old ident-struct */ 
  bak = (eo_ident*) malloc(sizeof(eo_ident)); 
  bcopy(ident, bak, sizeof(eo_ident)); 
 
  /* Set target for search */ 
  target = ident->ident; 
  if (DM_OK  == eo_nr2id(target, ident)) 
    { 
      /* Found a record, see if it is changed */ 
#ifdef VXWORKS 
      if ( (hostGetByName(bak->machine) != (int) ident->machine) || 
#else 
      host2ip( (int) ip2, bak->machine); 
       
      if ( (ip2[0] != ident->machine[0]) || 
      (ip2[1] != ident->machine[1]) || 
      (ip2[2] != ident->machine[2]) || 
      (ip2[3] != ident->machine[3]) || 
#endif 
           (ident->port != bak->port) ) 
        { 
          DPRINT(WARN, ("eo_getLocation:  
                        Destination has been corrected!\n 
                        Requested: %s:%d\n 
                        Corrected: %s:%d\n", 
                        bak->machine, (int) bak->port,  
                        ident->machine, (int) ident->port)); 
        } 
    } 
  else 
    { 
      DPRINT(ERRS, ("eo_getLocation:  
                         Could not retreive location.\n")); 
    } 
  return (bak); 
} 
 
/* Given an id-number, eo_nr2id looks for the location struct  
 * stored in the feature DM with that number 
 */ 
int eo_nr2id(long id, eo_ident *ident) 
{ 
    int i, found, MAX_RECS=15; 
    dm_work *p_dm; 
    /* eo’s are stored in dm-fashion (64 byte fields): dm_loc_rec */ 
    dm_loc_rec *records[MAX_RECS];  
    i = 0; 
 
    if ( dm_connect(&feat_ident, &p_dm) < 0 ) 
      { 
        DPRINT(ERRS, ("eo_nr2id:  
                        can't connect to feature datamanager.\n")); 
      } 
    else 
      { 
 for (i=0; i < MAX_RECS; i++) 
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      records[i] = (dm_loc_rec *) malloc( sizeof(dm_loc_rec)); 
 
        /* only one record should be stored */ 
        found = dm_select(0, 0.0, 0.0, 0, 0,  
                          DM_CLASS_LOCATION, 10.0,  
                          MAX_RECS,  
                          (dm_record **) records, p_dm); 
        if (found < 1) 
          { 
            DPRINT(ERRS,  
               ("eo_nr2id: can't find id in feature DM: ret = %d.\n", 
                                                             found)); 
            if(dm_disconnect(&p_dm) < 0) 
                printf("eo_nr2id: disconnecting error!\n"); 
            return(DM_WRONG_ID); 
          } 
        else if (found > 1) 
          { 
            DPRINT(MESS, ("eo_nr2id: found %d records", found)); 
          } 
 
        for (i = 0; i < found; i++) 
          { 
            if( records[i]->loc.ident == id ) 
              { 
                DPRINT(ROUT,  
                   ("eo_nr2id: found the record with id %d.\n", id)); 
 
      /* retreived records contain 64 byte fields,   
       * hence the 32 of eo_ident 
       */ 
      ident->port  = records[i]->loc.port; 
      ident->ident = records[i]->loc.ident; 
      strncpy(ident->name, records[i]->loc.name, 32); 
      strncpy(ident->machine, records[i]->loc.machine, 32); 
                if(dm_disconnect(&p_dm)<0) 
               printf("eo_nr2id: disconnecting error!\n"); 
       for(i=0; i < MAX_RECS; i++) 
               free(records[i]); 
                return(DM_OK); 
             } 
          } 
 
      if(dm_disconnect(&p_dm)<0) 
       printf("eo_nr2id: disconnecting error!\n"); 
 
 for(i=0; i < MAX_RECS; i++) 
   free(records[i]); 
 
      } 
    return(DM_WRONG_ID); 
} 

B.3 Action Dispatcher 
The Action Dispatchers ad_init –function looks up all elementary operations and 
datamanagers in the feature datamanager and connects to them Originally, no looking up was 
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done, but a predefined list (maintained by the developer) was used. Below is the changed 
code of the ad_init –function. 
The retrieved records are filtered in two groups: eo’s and dm’s. The eo’s are stored in eo_id 
and the dm’s in dm_table. 
 
/* 
 * Action dispatcher initialize routine 
 * EO's and DM's locations are dynamic, not predefined. 
 * This results in various changes. 
 */ 
int ad_init(ad_client, server) 
    int    *ad_client; 
    SOCK_INET *server; 
{ 
    int   ret       = OK, rv = ERROR; 
    int   eo_ret    = EO_OK; 
    int   MAX_RECS  = MAX_NUMBER_EOS; 
    dm_loc_rec       *records[MAX_RECS]; 
    int   i,j,k,l,m, eosFnd; 
 
    DPRINT(ROUT,  
         ("%s: Init action_dispatcher started \n", "ad_init")) 
 
/********** Start of addition for Location independence **********/ 
    /* 
     * 
     * Fill table with Elem Operations 
     * Previously eo_id-array was predefined. 
     * Now it is filled with EO's registered at the Feature Dm 
     */ 
    i=0; j=0; k=0; m=0; 
    /* feature dm is predefined, and should always be present */ 
    dm_table[0] = feat_ident;    
    l=1;                        /* 'l' is at least 1 */ 
    if (eosFnd = dm_get_all_modules(records, MAX_RECS)) 
      { 
 /* For each found records check 
  * if it is dm or eo 
       * and then check if it is already present 
       */ 
 for (i=0; i < eosFnd; i++) 
   { 
     if ( (records[i]->loc.ident > dm_port_start) && 
     (records[i]->loc.ident < (dm_port_start+100))) 
       { 
            /* The record is a location of a DM 
             * Check if it is unique 
             */ 
  for(m=0; m < l; m++) 
    if (dm_table[m].ident == records[i]->loc.ident) 
      { 
         bcopy(&(records[i]->loc),  
                            &(dm_table[m]), sizeof(dm_ident)); 
         break; 
      } 
  if (m==l)      // I.e. it's unique, so append to end 
    bcopy( &(records[i]->loc), &(dm_table[l++]), 
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                                                  sizeof(dm_ident)); 
  else 
    DPRINT(WARN,  
                ("ad_init: dm \'%s\', ident: %d, was seen twice.\n",  
    dm_table[m].name, (int) dm_table[m].ident));
     
       } 
     else if ( (records[i]->loc.ident > eo_port_start) &&     
          (records[i]->loc.ident < (eo_port_start+100)) ) 
       { 
            /* The record is a location of an eo  
   * eo-locationrecords might be registered twice, 
   * The latest version is best. Hence:  
             */ 
  for (k=0; k < j; k++) 
    if (eo_id[k].ident == records[i]->loc.ident) 
      { 
        eo_id[j].port = records[i]->loc.port; 
        eo_id[j].ident= records[i]->loc.ident; 
        strncpy(eo_id[j].machine,  
                                      records[i]->loc.machine, 32); 
        strncpy(eo_id[j].name, records[i]->loc.name, 32); 
        break; 
      } 
  if (k==j)      // I.e. it's unique, so append to end 
    { 
      eo_id[j].port = records[i]->loc.port; 
      eo_id[j].ident= records[i]->loc.ident; 
      strncpy(eo_id[j].machine,  
                                    records[i]->loc.machine, 32); 
      strncpy(eo_id[j].name, records[i]->loc.name, 32); 
      j++; 
    } 
  else 
    DPRINT(WARN, ("ad_init: eo \'%s\', ident: %d,  
                  was seen twice.\n",  
        eo_id[k].name, (int) eo_id[k].ident)); 
       } 
     else 
       { 
  DPRINT(WARN,  
               ("Found a record which is not a DM or EO.\n")); 
       } 
   } 
 /* Terminate arrays */ 
 dm_table[l].ident = -1; 
 dm_table[l].port  = -1; 
 strcpy(dm_table[l].machine, "localhost"); 
 strcpy(dm_table[l].name, "End-of-list"); 
 NEW_NUMBER_DMS = l; 
 eo_id[j].ident = -1; 
 eo_id[j].port  = -1; 
 strcpy(eo_id[j].machine, "localhost"); 
 strcpy(eo_id[j].name, "End-of-list"); 
 NEW_NUMBER_EOS = j; 
 
#ifdef MARIE_DEBUG 
   /* print results */ 
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   printf("ad_init: Found the following records:\n"); 
        for (i=0; i < j; i++) 
   { 
     printf("EO found %d: ID: %d port: %d machine: ", 
                i, (int) eo_id[i].ident, (int) eo_id[i].port); 
     printf("%d.%d.%d.%d name: %s.\n",  
                       eo_id[i].machine[0], eo_id[i].machine[1],  
             eo_id[i].machine[2], eo_id[i].machine[3], 
                       eo_id[i].name); 
   } 
        for (i=0; i < l; i++) 
   { 
     printf("DM found %d: ID: %d port: %d machine: ", 
              i, (int) dm_table[i].ident, (int) dm_table[i].port); 
     printf("%d.%d.%d.%d name: %s.\n",  
             (char) dm_table[i].machine[0], dm_table[i].machine[1],  
          dm_table[i].machine[2], dm_table[i].machine[3], 
                    dm_table[i].name); 
   } 
#endif  // MARIE_DEBUG 
 
      } 
    else 
      { 
          DPRINT(ERRS, ("ad_init: Fatal error,  
               no location records found in Feature Datamanager.")); 
     return(ERROR); 
      } 
 
 
    for (i = 0; i <= NEW_NUMBER_EOS; i++) 
    { 
 
 bzero((char *) &(Elem_obj[i].eo_rec), 
                                         sizeof(eo_client_struct)); 
 Elem_obj[i].id = eo_id[i]; 
 DPRINT(MESS, ("%s: Elem_obj[%d].id.ident %ld\n",  
                     "ad_init", i, Elem_obj[i].id.ident)); 
 
 if (eo_id[i].ident < 0) break; 
    } 
 
/*********** End of addition for Location independence ********/ 
 
    /* 
     * Connect to data-managers 
     */ 
    i = 0; 
    while (dm_table[i].port > 0) 
    { 
      data_links[i].id = dm_table[i]; 
      rv = dm_connect(&(data_links[i].id), &(data_links[i].work)); 
 
      if (rv != DM_OK) 
 { 
   ret = ERROR; 
   printf("ad_init: Failed to connect to %s\n", 
                                                 dm_table[i].name); 
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   fflush(stdout); 
   taskDelay(10); 
 } 
      else 
 { 
   printf("ad_init: connected to %s\n",dm_table[i].name);  
 } 
      i++; 
    } 
 
    /* initialise file-descriptor client */ 
    *ad_client = -1; 
 
    /* create server_side of action-dispatcher socket */ 
    DPRINT(MESS, ("%s: Creating server-side socket\n", "ad_init")) 
 
    if ((ad_sock =  
        DtCreateSock(AD_PORT_NMB, server, MAX_CONN_PEND)) < 0) 
      { 
    printf("ad_init: Cannot create socket!! Exiting ad_init\n"); 
    ret = ERROR; 
      } 
 
    if (ret >= 0) 
    { 
 fd_last = ad_sock + 1; 
 
 /* Connect to all EO's */ 
 /* 'defined NUMBER_EOS' number eos  
       * changed to 'int NEW_NUMBER_EOS' 
       */ 
 for (i = 0; i < NEW_NUMBER_EOS; i++) 
 { 
     if (eo_id[i].port < 0) 
     { 
  break; 
     } 
     printf("ad_init: Attempting to connect to '%s'\n", 
   Elem_obj[i].id.name); 
     fflush(stdout); 
     taskDelay(45); 
 
     eo_ret = eo_connect(&eo_id[i], &(Elem_obj[i].eo_rec)); 
 
     if (eo_ret != EO_OK) 
     { 
  DPRINT(ERRS, ("%s: Error %d connecting to port %d\n", 
           "ad_init", (int) eo_ret,  
                          (int) Elem_obj[i].id.ident)) 
   ret = ERROR; 
     } else 
     { 
  DPRINT(MESS, ("\t%s: connected on port %u\n", "ad_init", 
       (unsigned int) Elem_obj[i].id.port)); 
     } 
 
 } 
    } 



Improving Control of the MARIE robot   

 
 
 

 
 
 
 

108

 

    return (ret); 
} 
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If eo’s (or some sort of proxies of each eo) could reason about the service they need, and 
would have sources to obtain these services from, this would steal control from the ad. This is 
much desired, because the drawbacks of centralized control, which are (…).  
Original idea was probably:  
Theory: agent based approach with out matchmakers. Meaning; the reasoning (matching 
request and reply, client and service) must be done y the requester itself.  
Practice: groups of eo’s are there to accomplish certain tasks. These tasks are predefined. 
These are the reasoning, controlling and sening elements. Each of these tasks has an 
reopresentative. (sort of proxy) They determine what they want, and formulate this into a 
request. This request is resolve by themselves, using some simple semantics, (probably rule 
based like). By contacing all other tasks they negotiate which task to use next. All this within 
an action.  
 
 
 
This has considerable consequences, since it means that the functionality of the four 
autonomic elements can not be taken over in an other module (say, the action dispatcher) 
because it would require internal information of each specific elementary operation.  
 
Many distributed systems are being built today to address problems of embedded network 
applications. Sun's Jini system [2] is a leading architecture in this domain. A comparison 
between Hive and Jini is useful for highlighting the details of Hive's ecology of distributed 
agents. In some cases we are trying to make Hive more like Jini. In other cases, we believe 
Hive has advantages.  
 
Both Hive and Jini are distributed application infrastructures, both are based on Java, and both 
rely on RMI distributed objects and mobile code. Both systems have discovery and lookup 
implementations. Hive and Jini both make extensive use of events for communication; indeed, 
Hive uses the Jini distributed event specification. And both systems represent devices and 
capabilities on the network, proxying if necessary.  
 
Jini services are roughly analogous to the combination of Hive's shadows and agents. But Jini 
does not have anything like the conceptual split between the two. The distinction between 
shadows and agents gives Hive a useful abstraction between local, trusted code and 
networked, untrusted code. The autonomy of Hive agents gives a clear place to place 
computational activity in the system. 
 
Another important difference is Hive's location-dependent model. In Hive, an agent's cell is 
an important fact; it tells you where the agent is on the network, (potentially) where it is 
physically, what resources it has access to, etc. Jini focuses mostly on services; the actual 
place a service is hosted on is not a major part of the Jini model. We believe that the location 
dependence of Hive contributes to scalability, both technically and conceptually. 
 
Both Jini and Hive rely on mobile code for flexibility, and the argument for the usefulness of 
mobility is the same. A difference is that Jini only has single hop mobility: a service can 
upload a smart proxy to the user as an interface, but that proxy does not then 
migrate around the network. Currently, we do not make much use of Hive's multi-hop mobile 
agents, but we believe that it will become more important as the system grows. 
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For description, both Jini and Hive use the Java type system for a syntactic ontology. But 
where Hive uses RDF for semantic descriptions of agent capabilities, Jini uses more Java 
types. The Jini Lookup Attribute system is more closely like our use of RDF, but we believe 
the RDF model is more flexible due to the ability to perform deeply structured queries. Jini's 
Lookup Attribute system does not support queries on subattributes of attributes. 
 
Hive does not currently support Jini's leasing or transactions, but probably should. 
Transactions will be useful to allow agents to enter into multi-message communications with 
a guarantee of consistency. Leasing will be a useful hook for allowing Hive agents to 
explicitly negotiate their relationships; an agent can express the decision to work with another 
agent for a limited period of time as a lease. 
 
As a practical matter, Hive and Jini could be integrated by encapsulating a Jini service as a 
Hive shadow or making a Hive agent present itself as a Jini service. 
 
Finally, Hive has so far stayed inside the Media Lab network. But in every decision we have 
designed Hive to expand beyond that, to work across the Internet. The abstractions inherit in 
the ecology of distributed agents gives us a conceptual model for organizing a worldwide 
network of interacting processes. 
 
More specific goals are: 

 Providing information more  
 behavior is expected to be more autonomously and better enforced 
 self-knowledge increases autonomy 

 
 
 
[ 
What to do with these thoughts about different approaches: 
Semantics could be used in order to facilitate brokering of some sort. (downside is that one 
needs a good, generic description of what one wants) 
Control could be ‘stolen’ from the action dispatcher by having a task (or action?) take 
decision on its own. The task or action would then have to know what must be done (in and 
out status?) and on its own determine how to accomplish this. Can also be extended with 
brokering or matchmaking. 
 
Does the discussion contain the assumption that reason (about properties) must be done by the 
requester, and not by a third party.  
] 
“De meerwaarde van semantische beschrijving is beperkt, omdat er door het geringe en 
redelijk constante aantal eo’s genoeg overzicht is over wat een eo kan; redeneren in deze 
context (bepalen wie en hoe welke eo’s een taak oplossen) kan makkelijk gedaan worden door 
middel van de gebruiker, itt tot automatisch, complex reasoning en infernce rules (en daarbij 
komende semantishe representatives.)” 
 
 
 
TITLE: Improving control of the MARIE robot 
 Extending … with self-knowledge 
- Voorkant 
- appendix 
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- link to appendix of implementation 
 
(done) - figure xx-x 
(done) - page 63, discussion reference… 
(done) - Experiment: plaatje 
(done) - literature (evt. chaims: ww-db.stanford.edu/CHAIMS/) 
(done) - Experiments log files 
(done) - Discussion 
(done) - Conclusion 
(done) - Eo-specific or property-specific or not specific…(in design) 
(done) - introductions: section and chapter titles… 
(done) - bullet an numbering consequent 
 
Denken: 
literature and references to other sections and chapters. 
What are HORN clauses again 
Java type 
 
Rol van architecture in oplossing en probleem en literatuur 
Data verkeer aangaande elementaire operaties, de extra waarde van de interface 
 
De alternative solution: no middleagent 
Abstract… 
More autonomy for MAIRE is realized by making the system modules location independent 
and extending all modules with the ability to obtain the properties (among which the specific 
control information) of the elementary operations.  
 
Realizing more autonomy for MARIE by extending it with self-knowledge, is hindered by the 
location dependence of its modules and the way that is dealt with control information: 
 
Preface… 
Eindelijk is mijn scriptie af. Ik ben dank verschuldigd aan mijn vaders voor de steun, tijd, 
geduld, kritieken en correcties die hij gaf en leverde tijdens het schrijven van deze scriptie. 
Dank aan Arnoud Visser, voor de begeleiding, en voor het klaar staan als ik weer een vraag 
had. Ook dank ik Erik de Ruiter voor de gesprekken en discussies over MARIE in de 
rookpauzes. 
Verder ben ik dank verschuldigd aan Frank Terpstra en Bram Heerebout voor het lezen en 
vinden van onjuistheden en andere fouten in deze tekst. 
 


