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1.1.    Abstract

In recent years both the attainable accuracy in terms of repeatability and the accuracy
requirements for robots have increased. The more stringent requirements in terms of accuracy
stem, e.g., from the advent of off-line programming techniques, which can only be used if the
robot’s positioning can be predicted with sufficient accuracy. It is, therefore, necessary to
maintain this accuracy. This requires a measuring system that can easily be used on the work
floor for incidental and periodic (partial) recalibration.

One of the goals of the CAR ESPRIT II project3, is the development of a prototype for such a
portable calibration system. The requirements study and a survey of possible techniques now
have been completed and the calibration system is now in the design phase. Beside accuracy,
the requirements also cover issues such as ease of use, portability, robustness, self-calibration
and cost.

The measurements produced by the system will be used to compute improved parameters for
the kinematical model for the robot. This approach allows the measurements to be used for a
twofold purpose, viz. for improvements in the positioning accuracy and for diagnostic
purposes, identifying any deteriorations in the system.

In order to obtain sufficient accuracy in the model’s parameters, measurements of the tool
center point’s pose with a position accuracy of the order of 0.1 mm and an orientation
accuracy of about 1’ are required. The measurements should be well distributed over the joint
coordinate space of the robot.

After an initial exploration several optical measuring techniques have been selected for
further study. The advantage of such techniques is that they allow accurate measurements
over a large range of distances. One such technique is based on the use of beams of light and
position sensitive devices; another on the use of cameras and space resection.

                                                

1  This is an version of the paper published in "Robot Calibration", Eds. R. Bernhardt, S. Albright, Chapman &
Hall, London (August 1993), ISBN 0412491400, p.101-123

2 Address: Kruislaan 403, 1098 SJ Amsterdam, The Netherlands. e-mail: dick@FWI.UVA.NL

3 The CAR project (ESPRIT II project 5220) is a collaboration between the Fraunhofer-Institut für
Produktionsanlagen und Konstruktionstechnik, LEICA (UK) Ltd., the University of Amsterdam, TGT and
KUKA Schweißanlagen und Roboter GmbH.
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The performance of these systems has been analyzed using a first order analysis technique
based on singular value decomposition. The technique has the advantage that it provides a
clear indication of relative sensitivity to the various types of errors in the robot pose. It can
also be used to analyze the systems capability for self-calibration.

1.2.    Introduction

Robot calibration can serve various purposes. The most obvious of these is to improve the
static and/or dynamic positioning accuracy of the robot, e.g. for off-line programming
applications. A second important application is the use as a diagnostic tool. Accurate
calibration measurements can be used to determine some or all parameters of a suitable
kinematic or dynamic model of the robot. In this way inaccuracies and wear in specific
components of the robot may be identified.

Depending on the aims of a calibration session and the circumstances under which it is
performed, different requirements must be met by the measurement and data-analysis
procedures. A moderate improvement in the positioning accuracy over a limited part of the
reachable work space can be more easily attained than the accurate identification of all model
parameters. Calibrating a robot at first installation is different from recalibrating a robot in a
production line.

A large number of robot calibration tools in now available commercially, each with its own
range of applicability and its own requirements. Prices and required levels of expertise vary
over a very wide range.

In this chapter we shall specifically address the problem of calibration applied to parameter
identification on the work floor, e.g. after repairs. The problem of parameter identification in
general is treated in the chapter by [Albright and Schröer] in this book.

We shall begin by discussing the accuracy requirements for these types of measurement, as
well as certain other important constraints. Next we will present a survey of possible
measuring techniques and their limitations, with some examples of commercially available
products. Finally, the expected performance of a few designs for measuring systems are
analyzed in some detail. The analysis technique employed for this is discussed in an
appendix.

1.3.    Applications and requirements

1.3.1. Off-line programming and calibration

In recent years the accuracy requirements for robots have increased, mainly because of the
broader use of off-line programming techniques, but also due to a wider range of
applications.

The application of off-line robot programming techniques for tasks which require a high
precision may be hampered by discrepancies between programmed position and the attained
real position. It can only be successful if a good absolute positioning accuracy can be
obtained, i.e. an accuracy of the same order as the repeatability. To minimize the positioning
errors extensive calibration of the robot and its workcell is needed. In the course of such a
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calibration a full set of kinematical parameters of the robot can be obtained. However,
currently extensive calibration still is an expensive procedure, which is unacceptable when it
has to be applied repeatedly.

Errors in the positioning of a robot can be seen as a combination of two separate effects, viz.
limited pose repeatability and model errors. Robot pose repeatability can range from 0.1 mm
to 0.5 mm and up. Its effects cannot be removed in any simple way. Repeatability thus
defines the limit of the accuracy attainable with a particular robot. In order to approach this
limit, the contribution of the model errors should be small compared to those due to
repeatability. The required model accuracy thus is about 0.05 mm to 0.25 mm at the tool
center point. In order to construct a model with this kind of accuracy, pose measurements
with at least this accuracy are required. Full pose information, including orientation
information may be required e.g. when tools of various lengths will be employed. 0.05 mm at
30 cm corresponds to about 0.5 arc minute.

In many situations full accuracy calibration measurements covering only those parts of the
workspace that are actually used will suffice. Almost any model fitting such measurements
will provide the required positioning accuracy.

1.3.2. Parameter identification and calibration

When calibration measurements are used only to obtain a sufficiently good positioning
accuracy, the accuracy requirements for the measurements will only be a few times better
than the robot repeatability. When, however, the measurements should also serve diagnostic
purposes, the requirements may be much more stringent. In order to successfully distinguish
the error contributions of various components in the diagnostic model, a large number of
highly accurate measurements, covering a large part of the robot joint space may be needed.
Here it is of even more importance to obtain complete pose information.

Clearly, the pose information contained in each individual measurement cannot be better than
the pose repeatability of the robot. However, as in any measurement procedure where the
errors contain a stochastic component, the error in the final result can be reduced to below
this limit by obtaining a sufficiently large sample. Any systematic contributions to the
measurement errors must, of course, be much smaller than the required measurement
accuracy.

A full calibration of a robot, involving all model parameters, requires a large number of
highly accurate measurements, covering as large a part of the robot work-space as possible.
Such a calibration must be performed at production and/or first installation of the robot.

However, it is known that during the lifetime of the robot only a limited and predictable
subset of all the parameters needs to be recalibrated. Consequently, fewer measurements,
covering a smaller fraction of the robot work-space will often suffice for a rapid, local
recalibration of e.g. a newly installed or repaired robot.

1.3.3. Objectives of CAR

As argued above, highly accurate measurements of all six pose parameters, albeit over a
limited part of the robot work space, will be needed at frequent intervals over the lifetime of a
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robot. Such measurements should be obtained with calibration system, which can be applied
on-line for incidental and partial recalibration in between production cycles of the robot. It
should meet the following requirements:

1) The system must be able to provide measurements of an accuracy similar to that provided
by e.g. theodolite systems, but over a smaller part of the workspace of the robot.

2) The should be simple enough to be used by essentially untrained personnel and be usable
in an industrial environment.

3) A derived requirement is that the measurement system should at least contain a number of
consistency checks, so that damage to the system can be detected and reported - and if
possible corrected for.

4) The system should be sufficiently inexpensive to produce that an economically viable
product line can be established.

I.e., there is a need for reliable, low-cost measuring systems for partial calibration. Such
systems should be portable, robust and easy to operate.

One of the goals of the CAR ESPRIT II project 5220: "Calibration Applied to Quality
Control and Maintenance in Robot Production" is the development of a prototype for a
portable calibration system such as described in the preceding section . The requirements
study and a survey of possible techniques now have been completed and the low-cost
calibration system is now in the design phase.

1.3.4. Requirements for a portable measurement system

The most widely applied approach to calibration is the use of theodolite systems.
Unfortunately theodolite systems impose some severe constraints on the calibration
procedures. In the first place the theodolites (as well as most other global measuring systems)
require a special set-up. This can limit their applicability on the workfloor. In the second
place the cost of these calibration systems, which are in the order of $ 150 000, prohibits their
application on a large scale. Thirdly, a full calibration is a time-consuming procedure, which
requires the robot to be removed from the production process for a considerable amount of
time.

A measuring system used for partial calibration needs to perform local measurements relative
to some reference points or objects. Due to the robot accuracy the applied measuring system
which has to be designed must be very precise to compete with robot repeatability. The
measurements have to be performed within a volume of about 1 m3.

The system should be mounted on the robot end-effector and identify the robot end-effector’s
position and orientation when the robot takes one pose.

Measurements must be made with non-contact sensors to avoid external forces and the
attendant deformations.
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The measurements should be performed without manual interaction and in collaboration with
an automatic system for robot calibration. The measuring system has to be easy to handle,
portable and of low cost when concerning its utilization of partial calibration.

Accuracy

Calibration accuracy by itself depends on the accuracy of the measurement system and the
inaccuracies due to robot parameters that are not modeled. Basically, the requirements of the
measurement system are measurements with an accuracy in position of about 0.05 mm
(systematic+3σ) and 0.01 degree in orientation can be performed for at least 40 significantly
different poses.

As the positioning accuracy of the robot before calibration may be quite low, it is essential
that the measuring device at least cannot be damaged by an error of about 40 mm, and
preferably can start its measuring cycle given a positioning error of that magnitude.

1.4. Résumé of sensing techniques

The requirements state that both position and orientation must be measured with high
accuracy. Position measurements throughout a volume can be obtained in a number of ways.
Orientation measurements almost always are obtained as a tangential displacement. In order
to obtain the required accuracy, a baseline of at least 0.3 m is implied by the above
requirements if the same sensors are used for position and orientation measurements.

A large choice of sensing devices is available that can, in principle, be used as the basis of
out low cost sensor design. Part of our effort was spent in obtaining information on the prices
and capabilities of various devices.

The information obtained on commercially available devices will be reported separately.

1.4.1. Distance

One method of determining the position of the measuring head relative to the measurement
station is to measure its distance to various reference objects in the measurement station.
Optical, ultrasound and electrical techniques for distance measurements could be considered.
Distances measured by the various devices can either be nearest distances, or distances in a
specific direction.

Parallactic/triangulation

An optical technique of sufficient accuracy over ranges up to about 0.1 m. Devices based on
a combination of a diode laser and a 1–D position-sensitive device are available
commercially. They are moderately large and fairly expensive. As they provide only one data
item per measurement, at least six such devices would be required in a single measuring
head.
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U.S. time of flight

An inexpensive technique. However, it is not sufficiently accurate at the frequencies usually
employed and is sensitive to interference. It may be a good choice as an additional device to
obtain an initial positioning and as a safety measure to prevent collisions.

Optical time of flight

Prohibitively expensive due to the technical complexity of the system.

Optical Interferometry, fringe counting

A very accurate distance measuring technique, retaining its full accuracy of the order of 0.1µ
over its entire working range. Can, and actually must, be used dynamically, i.e. performing
continuous measurements while the robot is moving. Is commonly used for partial
calibration, but is then generally limited to 1-D position measurements along a single line.

Among others, the Leica "SMART" system and the laser tracking system developed by The
University of Technology in Vienna (S. Decker et al., 1992) overcome this limitation.

Electric/electrostatic and inductive

Electric/electrostatic devices are based on the change in the capacitance of a condensor as the
distance between the plates is varied; inductive devices make use of changes in the
inductance of a coil. Neither has been studied in any great detail for this project as both can
only provide a high measuring accuracy for small distances. Combination with bridge
techniques should allow very accurate centering in null-type measurements.

1.4.2. Displacement

Displacement measurements as understood here are measurements in which the displacement
of the measuring head parallel to the measuring device is to be measured.

Beams & knife edge

In this method a light-beam between to locations on the measurement station is cut by a knife
edge in the measuring head. The requirement that the measurement volume be about 1 m3

implies a beam length of about 1 m, which for optical wavelengths implies a beam-width of
about 1 mm. I.e. the cut-off will not be sharp and complex photometric techniques may be
required to obtain the required positioning accuracy. Furthermore, it is difficult to obtain all
six position parameters in this manner.

Camera

A camera fixed in the MH may be used to observe reference points on the (entirely passive)
MS. Using space resection techniques, the position of the MH may be reconstructed. The
obtainable accuracy for normal video camera's appears to be marginal, especially as the
solutions to the space resection problem are known to be somewhat unstable in many
situations. The technique is, however, sufficiently promising still to be considered.
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Position sensitive devices

Position sensitive devices are photo-electric devices that allow the intensity-weighted mean
position of all the light incident on the device to be measured in either one or two dimensions
with an accuracy up to one-thousandth of the device size. In combination with well-
collimated (laser) beams and modulation techniques the intersection of a line fixed to the MH
with the MS can be measured.

Rasnik

Rasnik is a position measuring device, developed at the Netherlands Institute for Nuclear and
High Energy Physics by H. van der Graaf. The RASNIK device consists of three optical
components and some specially designed electronics. The three optical components are a
LED, a lens and a 4-quadrant detector (4QD), configured as shown in Fig.1.

4-quadrant 
detector

lens light-emitting 
diode

Figure 1. The three optical components of a Rasnik device.

The device measures the misalignment of the three components by comparing the 4 outputs
of the 4-quadrant detector. It is made insensitive to ambient light by modulation of the LED
output. The three optical components of a Rasnik device are selected and calibrated together
and allow measurements with accuracies of the order of 1 micron over displacements of
several millimeters. The system is not very sensitive to the accuracy with which the image of
the LED is focussed on the 4QD.

1.4.3. Absolute Orientation

Various techniques are available to measure (components of) the orientation in space. We can
distinguish two types of device, viz. devices that measure the inclination with respect to the
vertical (two angles) and devices that measure the rotation around the vertical.

Inclination measurements can easily be performed with exceedingly high accuracy (less than
an arc second, if desired) for angles near to the vertical, e.g. by using a pendulum or a
mercury mirror. Both techniques do require the measured object to be at rest.

The design of a device providing a similar accuracy over a larger range of angles is much
more difficult.

The measurement of rotations around the vertical is much more problematical, as no absolute
reference is simply available (a magnetic compass is not particularly suitable for industrial
environments). Such measurements, therefore, must be made using inertial systems, such as
gyroscopes. A good accuracy can be attained, but e.g. the rotation of the earth must be taken
into account.
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1.4.4. Existing robot calibration systems

An extensive review of the available systems at that time is given by Schlüßler (1987, in
German).

1.5.    Measuring device designs considered for the CAR project

The measuring device is likely to consist of a "measurement station" (MS) fixed in the
workspace and a "measuring head" (MH) or "measurement tool" fixed to the robot wrist. The
MH can either replace the normal tool or be mounted separately on the wrist. The choice for
the one or the other option is determined by the measuring principle and by weight and
accuracy considerations.

1.5.1. Calibration procedure

From the point of view of the calibration procedure it would be attractive to control the robot
directly from the calibration system, as such an approach would allow null-measurements to
be performed, directing the robot precisely to a predetermined position and then obtaining the
joint-encoder readings. However, such an approach would be technically complex and result
in a system that is not easily adapted to different robots. Therefore, a procedure like the one
described below must be followed.

In the calibration procedure a number of components must cooperate to obtain and process
the required measurements. These components are:

1) The robot plus robot controller. Together, these must execute a program to move the
robot to a specified position, provide the joint-encoder values to the measuring system,
wait until a pose measurement has been obtained and move on to the next position.

2) The pose measuring system. This component includes the measuring sensor system, a
control computer and the required software. The pose measuring system will wait for the
robot to reach a specified pose, read the joint-encoder values, obtain the necessary data
from the sensor system and signal the robot to move on to the next pose. When a
measuring program has been completed, a file containing tuples of joint encoder values,
pose information and error information can be generated1.

3) The modelling program. This program will take the data generated by the pose measuring
system and compute improved model parameters for the robot.

4) The robot program generator. This program will generate a program for the robot
controller, taking into account the desired measuring poses generated by either the pose
measuring system, or the modelling program. The output will be corrected using the
information in the robot model.

                                                

1 For a measuring system incorporating self-calibration and consistency checks, the complete set of
measurements must, in general, be available, before the poses can be reconstructed.
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Depending on the type of sensors used by the pose measuring system, the calibration
procedure may have to be executed more than once in order to obtain the desired accuracy.
E.g. one sensor system may be used for an initial, rough calibration and a different one for a
final, precise calibration.

1.5.2. FFC

The FFC has been described in the first interim report. Several variants have been studied.
The original design where the four fingers are positioned near the centers of the sides of the
reference cube proved to be unstable with respect to rotation around the vertical axis. A
rotation of the MH by 30• around the vertical axis solves this problem.

The FFC as a measuring device still presents a large number of problems:

1. Measurements must be done in the immediate vicinity of a reference object. The design,
construction and handling of a measurement station with reference objects covering a 1
m3 3-D region in space is difficult.

2. A very large measuring head (40 to 50 cm!!) seems to be indicated, both to accommodate
the six or more distance sensors, and to allow a good angular measuring accuracy.

3. Redundant measurements are difficult to obtain.

For these reasons the FFC probably will be dropped as a design option.

1.5.3. Three and four beam systems

In this and the following sections we shall consider a number of designs that make use of a
number of well collimated light sources, e.g. generated by laser diodes in the MH and a grid
of 2-D position sensitive devices in the MS. The collimated beams make fixed angles with
each other.

Centering a light beam on a PSD fixes two degrees of freedom. With a suitable configuration
of 3 beams and 3 PSD-s, all six degrees of freedom can be fixed; if more beams are used, a
certain redundancy is introduced that can be used for e.g. self-calibration purposes.

For simplicity only symmetric configurations have been studied, where the beams are
distributed evenly over the surface of a cone. Such configurations also have the advantage
that the measuring head can simply be rotated by 90• (for a four beam system) to obtain a
new measurement.

A problem that must be solved for all optical sensor systems is that of background light. As
the output of a PSD is linear with the amount of light incident on the device, and as the
response time of a PSD is short (in the order of 0.1 ms), modulation techniques and analog
electronics can be used quite reliable to remove the effect of the background light. However,
even so, the amount of background light must be kept reasonably small and care must be
exercised to select a modulation frequency not present in the background.

Another problem specific to the three and four-beam systems described here, is that they
require the use of light beams that make very considerable angles (e.g. 50•) to the normals of
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the PSD-s. This implies that any protective cover (glass) on the PSD-s may result in ghost
images and thus in measurement errors.

Three beam system

The three beam system will consist of a measuring head to be mounted on the robot wrist or
tool and a target plate MS to be mounted in the robot work area. The area of space where
calibration measurements can be obtained is determined by the size of the MS target plate
and the configuration of the PSD-s on this target plate as well as by the angle between the
beams and the symmetry axis of the system.

The angle between the beams must be quite large to obtain a stable system. A good choice
appears to be 90• , i.e. three mutually perpendicular beams. If we consider such a system, and
assume that two beams have been aimed at selected PSD-s, we find that the third beam can
be aimed at any PSD in the region illustrated in Fig. 2.

PSD 1

PSD 2

Figure 2. This figure shows the locations (in grey) where the third PSD may be located for a three beam system
in which the beams are all perpendicular.

If we now consider the design of a target plate, we find that we can use a limited number of
PSD-s to make a large number of measurements possible.

High accuracy measurements can be obtained if a null-technique is used to reposition the
robot until the three beams are centered exactly on their target PSD-s.

A disadvantage inherent to the three-beam system is the lack of redundancy. Displacements
in the PSD-s or the laser diodes cannot be easily detected in the course of the measuring
process. For that reason four-beam-systems have been studied which do allow redundant
measurements to be obtained.

Four beam systems

The four-beam-systems considered are entirely similar to the three beam system, except that
four symmetrically distributed beams are used. The geometry of the four-beam-system is
given in Fig. 3. It is clear that for any opening angle, the four beams can always be aimed at
four PSD-s positioned at the corners of a square.
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The redundancy in the system allows most of the system parameters to be verified and
possibly even to be measured using a least-squares method. It is clear, however, that certain
global characteristics cannot be found in this way, e.g. the position and orientation of the
target plate (6 parameters), its scale (another two) and certain properties of the measuring
head.

θ ϕ

y-axis
x-axis

Sensors at all intersections

Z
0

F
igure 3. The 4-beam system. The full-drawn arrows represent the 4 beams, which are assumed to intersect at the
TCP position. The height of the TCP above the measuring system is Z0.

The minimal configuration of sensors is given in Fig. 4.

This is about the minimal configuration of 
sensors for the four beam system. It 
allows measurements to be done at 6 
positions, in 4 poses each, providing a 
total of 192 data items, from which the 
parameters of each pose and certain 
system parameters can be extracted.

Figure 4. A target plate configuration with only 9 PSD-s.

1.6.    Analyzing the design

1.6.1. Introduction

For many approaches to the calibration problem, it is not immediately clear what quantities
can be measured to what accuracy. E.g. for the space resection problem it is clear that a
displacement or a change in orientation can be measured with good accuracy - but a
combination of the two can actually sometimes produce a null result and be undetectable. A
sound design for a measuring system should not allow such undetectable motions.

A number of measuring systems considered for the CAR project  was investigated with
respect to the sensitivity of the measuring system for various deviations on basis of their
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geometric properties. The approach taken was to linearizing the problem in the neighborhood
of an "ideal" measurement pose. I.e., the Jacobian of the measurements with respect to the
pose was computed. To this Jacobian a singular-value decomposition was applied, which
gives a clear indication of the relative sensitivity of the measuring system for various
deviations from this ideal pose.

To demonstrate this analysis technique we apply this to a camera system and we will show
that this measuring system has some "short-comings" under some circumstances. Then this
technique is used to evaluate the Four Finger Calibration (FFC) sensor system, which will
show that this system cannot detect rotations of the pose around the z-axis (vertical axis) if
the four fingers are placed symmetrically around the cube. Also the new design for the sensor
system (the "three beam" and "four beam" systems) was evaluated that appears promising.

1.6.2. Camera system

A basic problem in image analysis is establishing a relationship between a point in the world
coordinate system (X, Y, Z) and the projection of this point onto the image plane (x, y). One
variation of this problem is called the Location Determination Problem (LDP) which is
formally defined as follows: Given a set of m control points, whose 3-dimensional
coordinates are known in some coordinate frame, and given an image in which some subset
of the m control points is visible, determine the location (X0,Y0, Z0, α, β, γ) (relative to the
coordinate system of the control points) from which the image was obtained. (From Fischler,
1981.) The situation for m = 3 is depicted in Fig. 5.

image plane

center of perspective

3 points in world
coordinate system

X

Y

Z

x
y

Figure 5. This figure shows the geometry of the Location Determination Problem (From Fischler, 1981).

In order to find the singularities of the transformation involved in the previous problem, we
investigate the inverse transformation: Given the location (X0,Y0, Z0, α, β, γ) of the camera
and given a set of m control points in the world coordinate system, determine the projection
of the m control points onto the image plane. We investigate this problem for m = 3. The
geometry of the camera is depicted in Fig. 6, which shows a world coordinate system (X, Y,
Z) used to locate both the camera and 3D points (denoted by w), and the camera coordinate
system (x, y, z) with image points c.
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Figure 6. Imaging geometry with two coordinate systems (From Fu, 1987).

Fu (1987) gives the perspective transformation which maps a point in the world coordinate
system wh = (X, Y, Z, 1) (given in homogeneous coordinates) onto a point ch in the image
plane (also given in homogeneous coordinates):

ch = P R G wh,

with G the transformation matrix which translates the origin of the world coordinate system
to the center of the camera system (= center of image plane), R the matrix which is a
concatenation of the three basic rotation matrices (around the x axis, y axis and z axis) and P
the perspective transformation matrix with focal length λ. The Cartesian coordinates (x, y) of
the imaged point are obtained by dividing the first and second components of ch by the
fourth. This means we have the following functions which are dependent on the position and
orientation of the camera:

fx(X0, Y0, Z0, α, β, γ): X = wh(1) -> x = ch(1) / ch(4)

fy(X0, Y0, Z0, α, β, γ): Y = wh(2) -> y = ch(2) / ch(4).

When we apply this functions to three known points in the world coordinate system we get
six non-linear equations in six variables which give the coordinates of three points in the
image plane. We denote these functions by fx1  , fy1  , fx2  , fy2  , fx3   and fy3  . Now we
compute the Jacobian matrix with the partial differentials of these functions:
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This Jacobian matrix multiplied with the vector consisting of changes in the pose of the
camera gives us the resulting changes of the 3 points in the image plane. If the Jacobian
matrix is singular, some changes in the pose of the camera will not result in any changes of
the three points in the image plane. This means that certain movements (a combination of
translations and rotations) of the camera will not change the triangle (consisting of the 3
image points) in the image plane. In this case the pose of the camera cannot uniquely be
determined from the three image points.

One way to investigate the Jacobian matrix is to apply a singular value decomposition (see
Stewart, 1973) in which a general matrix A is reduced to a diagonal form by pre-multiplying
and post-multiplying it by orthogonal matrices:

A = UTMV,

with M a diagonal matrix, U and V orthogonal (unitary) matrices (UTU = I and VTV = I).
The diagonal elements of M are called the singular values of matrix A. The rank of the
diagonal matrix M is equal to the rank of matrix A, which immediately indicates if matrix A
is singular. If one of the singular values is small,  matrix A is almost singular.

If we apply a singular value decomposition to the Jacobian matrix, the singular values will
characterize the Jacobian matrix. If one of the singular values is small, certain movements in
the camera pose will not result in changes in the triangle in the image plane. If one of the
singular values is big, the resulting changes in the image will also be big.

In Fig. 7 the meaning of the matrices UT, M, and V is given. The matrices UT, M, and V
identify separate, essential properties of the measuring process. The vectors comprising the V
matrix represent distinct transformations of the state space to which the system has a well
defined sensitivity. This sensitivity, or the measurement gains, are given by the associated
number in the singular value matrix M. And the signature of this transformation in the
measured values is given by the column vectors in UT.
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Figure 7. The matrices UT, M, and V of the singular value decomposition.

The ideal pose of the camera is equal to (X0, Y0, Z0, α, β, γ) = (0, 0, 3, 0, 0, 0). This means
the camera is placed on the z axis at height 3 looking downwards. The focal length λ  = 1.
The situation is depicted in Fig. 8.

(X , Y )
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Y

Z

x

y
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2

3

(X , Y )1 1

(X , Y )3 3

2 2

Figure 8. Camera viewing a 3-D scene (From Fu, 1987).

This resulted in the following Jacobian matrix:

J = 







0.5 0   0.25 0.25 -1.75 -0.5

0   0.5 0.25 1.75 -0.25  0.5
0.5 0   0.25 0.   -1.75  0  
0   0.5 0    1.5   0     0.5
0.5 0   0    0    -1.5  -0.5
0   0.5 0.25 1.75  0     0  

  



16

The Jacobian matrix shows for example that when the camera is lifted up, i.e. Z0   is changed

with ∆Z0  , the resulting changes of the images of (X1  ,Y1  ), (X2  ,Y2  ) and (X3  , Y3  ) are
resp.

 (0.25 ∆Z0  , 0.25 ∆Z0  ), (0.25 ∆Z0  , 0) and (0, 0.25 ∆Z0  ).

This result is obtained by multiplying J with vector (0, 0, ∆Z0  , 0, 0, 0)T  . This means that the
y-coordinate of the image of the second world point and the x-coordinate of the image of the
third world point do not change as result of this movement of the camera. The singular value
decomposition of matrix J gives the following diagonal matrix M:

M = 






3.2  0    0    0    0   

0    2.99 0    0    0   
0    0    0.61 0    0   
0    0    0    1.26 0   
0    0    0    0    0.05

  

This shows that the Jacobian is singular and that its rank equals 5. It means that a certain
movement of the camera will not result in a change of the image coordinates, and is therefore
not noticed. Because the camera is placed in vertically above the circumscribed circle of the
three world points, this is exactly what we expected. If the Z = 0 plane is tilted a little bit (i.e.
the camera is rotated around the x and/or y axis over a small angle), the image is not changed.
The fifth singular value is very small, which means that the rank of the Jacobian matrix is
"almost 4". The meaning of this small singular value can be explained as follows. The
Jacobian matrix gives the change of the measurements as a result of the change in the pose of
the system. The singular value decomposition J = UTMV leads us to the remark that matrix V
consists of rows containing a combination of translations and rotations of the camera position.
From this decomposition of the Jacobian matrix it is easy to deduct what the result will be of a
movement defined by for example the fifth row v5   in matrix V. Because V is an orthogonal
matrix

V. v
T
5    = (0, 0, 0, 0, 1)T  .

From this we get:

J.v
T
5    = UT  .M.(0, 0, 0, 0, 1)T   = UT  .(0, 0, 0, 0, 0.05)T   = 0.05 . u5  

with u5   the fifth column of matrix UT  . This means that the singular values on the diagonal
of matrix M act as weighting factors of the movements given by the rows of matrix V. If a
weighting factor is small, the effect of the movement given by the corresponding row in
matrix V is small. From this we deduce that small singular values lead to insensitivities of the
measuring system.

This previous results show that the camera should be placed in a more horizontal direction and
should have the image of the triangle centered around the origin of the image plane. The
Jacobian computed for such a situation appears to be non singular, which means that this
measuring system is sensitive to all possible deviations from the original pose.
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1.6.3. The Four Finger Calibration (FFC) sensor system

Using the previous procedure, we first investigate the Four Finger Calibration sensor system
with the four finger frame placed symmetrically around the cube. Instead of determining the
position and orientation of the TCP from the 8 measured distances, we  look again at the
inverse transformation. Suppose the pose (X0,Y0, Z0, α, β, γ) of the TCP is given, what are
the 8 distances to the cube as a function of the pose. This gives us 8 equations in six variables
for which the Jacobian matrix is computed, which is in this case an 8-6 matrix. The singular
value decomposition for the case with (α, β, γ) =
(0, 0, 0) gives a diagonal matrix M of 5-5,  and

M = 









10.0 0.0 0.0 0.0 0.0

0.0 10.0 0.0 0.0 0.0

0.0 0.0 2.0 0.0 0.0

0.0 0.0 0.0 1.4 0.0

0.0 0.0 0.0 0.0 1.4

  

which means that the Jacobian matrix is singular. This is exactly what we expected, because it
is clear from the geometry of the FFC that rotations around the z axis can not be measured by
this system when it is placed in the symmetric position. Better results are gained when the
system is placed in a position rotated 300   around the z axis (see Fig. 9).

The singular values now are: 10.0, 10.0, 6.67, 2.0, 1.63, 1.63.

The singular value decomposition of the Jacobian matrix gives 6 singular values between 1.63
and 10.0, which means that in this case all deviations can be measured.

Figure 9. Top view of cube with four fingers rotated around the z axis by 30 degrees.

1.6.4. Three beam sensor system

The same mathematical approach was derived for the 3 beam system, consisting of 3 laser
beams mounted on the TCP of the arm, which should each be centered on one of three 2-D
position sensitive devices placed on the working plane in an equilateral triangle. The
geometry of this system is depicted in Fig. 10.
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Figure 10. The geometry of the 3 beam system.

We consider the situation in which the angles between the beams (denoted by ϕ) are the
same. The problem is the following: Given the three locations of the PSD-s with the light
beams centered on the PSD-s, find the position and orientation (X0,Y0, Z0, α, β, γ) of the
TCP. We again study the inverse problem: Given the position and orientation of the TCP,
find the intersection of the 3 beams with the working plane. We define the following
functions which are dependent on the position and orientation of the TCP:

fxi(X0, Y0, Z0, α, β, γ)  : Xi  -> xi  

fyi(X0, Y0, Z0, α, β, γ)  : Yi  -> yi  i = 1, 2, 3,

with (Xi  , Yi  ) the coordinates of the unit vector along the i-th beam in the local coordinate
system  (with the TCP as origin) and (xi  , yi  ) the intersection points of the 3 beams with the
working plane. We form the Jacobian matrix with the partial differentials of the functions fx1  ,
fy1  , fx2  , fy2  , fx3   and fy3  . We computed the Jacobian matrix for the following case. Pose of

the TCP: (X0, Y0, Z0, α, β, γ) = (0, 0, 1, 0, 0, 0) and angle ϕ = 900  . This resulted in the
following Jacobian matrix J:

J = 







1  0  1.22 -0.86 -2.5   0.71

0  1 -0.71  1.5   0.86  1.22
1  0 -1.22  0.86 -2.5   0.71
0  1 -0.71  1.5  -0.86 -1.22
1  0  0     0    -1    -1.41
0  1  1.41  3     0     0   

  .

As an example we make the following remarks about this matrix. Translations of the TCP in
the direction of the x- or y axis result in the same translations of the intersection points. A
rotation of the TCP around the X axis results in no change of the x coordinate of the third point
of the triangle and the change in the y coordinate is weighted with factor 3. The singular value
decomposition of J gives us the following singular values:

(4.18, 4.18, 0.71, 0.71, 2.45, 2.45).
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These are all close to one, which means the measuring system is sensitive to all kinds of
movements of the TCP. These values are pairwise equal because of the symmetry of the
measuring system. It is worthwhile to show matrix V, because it contains mainly rows having
only two components.

V = 







-0.38  0     0     0     0.92  0   

 0     0.38  0     0.92  0     0   
-0.92 -0.02  0     0    -0.38  0   
 0.02 -0.92  0     0.38  0     0   
 0     0     0.46  0     0    -0.88
 0     0     0.88  0     0     0.46

  .

It consists of combinations of translations in the direction of the x or y axis and rotations
around the y resp. x axis. In the last two rows a translation along the z axis and a rotation
around the z axis are combined. The first two rows have the biggest weighting factor (4.18),
which means that the movements represented by the first two rows cause a relative big change
of the 3 intersection points in the plane. As mentioned before matrix UT   contains in the
columns the results of the translations specified in the rows of matrix V. Matrix UT   looks like
this:

UT   =  







-0.64  -0.19   0.04  -0.46  -0.02   0.58

 0.19   0.42  -0.47  -0.48  -0.58  -0.02
-0.64   0.19   0.06   0.46  -0.49  -0.31
-0.19   0.42   0.45  -0.50   0.31  -0.49
-0.31   0     -0.75   0.02   0.51  -0.27
 0      0.75   0.01   0.31   0.27   0.51

  .

The singular value decomposition has another advantage which we didn’t mention until now.
For matrix A with singular value decomposition A =  UT  MV, we can write: A-1   = VT   M-1  
U with M-1   the diagonal matrix with the inverse singular values. Thus the singular value
decomposition clearly shows how the inverse transformation looks like. For the 3 beam system
the singular values of the inverse transformation show that the system is sensitive for
deviations in the measuring points as well.

1.6.5. Four beam sensor system

We now investigate the 4-beam system with the four collimated beams making fixed angles
with each other. Centering the beams on the PSD-s fixes two degrees of freedom. With 3
beams and 3 PSD-s all six degrees of freedom (position of the TCP) can be fixed. A system
of 4 beams centered on 4 PSD-s is used to introduce redundancy which can be used for self-
calibration purposes.

It is clear that for any opening angle, the four beams can always be aimed at four PSD-s
positioned at the corners of a square. This configuration has the advantage that the measuring
head can simply be rotated by 90•  to obtain a new measurement.

A minimal configuration of the PSD-s has been studied, which consists of 9 PSD-s in a 3-3
array. It allows measurements to be done at 6 positions, in 4 poses each, providing a total of
192 data items, from which the parameters of each pose and certain system parameters (4
parameters of each beam) can be extracted. It is clear, however, that certain global
characteristics cannot be found in this way, e.g. the position and orientation of the target plate
(6 parameters), its scale (another 2) and certain properties of the measuring head.
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We first analyze the properties of the set of equations resulting from one measurement, which
reveals a number of geometric properties of the system. These equations are formed by the
Jacobian matrix (J) which gives a relation between errors in the pose of the TCP (X, Y, Z, α,
β, γ) and the resulting deviations from the intersection points of the 4 beams ((xi, yi),  i = 1, 2,
3, 4) with the working plane:

J . 









∆X

∆Y
∆Z
∆α
∆β
∆γ

   = 













∆x
1

∆y
1

∆x
2

∆y
2

∆x
3

∆y
3

∆x
4

∆y
4

  .

From the Jacobian matrix we can deduct the effect of errors in the position and orientation of
the TCP. We first study the effect of varying heights and varying opening angles on the
singular values of the Jacobian matrix. The results of the analysis are given in Table 1, where
the angle θ (= angle between beams and axis of symmetry, see Fig. 3) ranges from 30•  to 70•
and the height Z0 of the TCP is equal to 1 or 2. The table shows that the Jacobian matrix is
non-singular in all cases, which means that the system is sensitive to all kinds of
transformations of the TCP. It shows that the optimal opening angle ϕ (= the angle between
the beams) for the system is equal to about 70• . This corresponds to an angle of about 45•
with the axis of symmetry of the system. The measuring system is more sensitive to
orientation errors (the singular values are bigger), when the TCP is placed in a higher
position.
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θ      ϕ    Z0                  Singular values
        

Smax
Smin

  

    1  3.08   3.08   1.15   1.15   0.22   0.22     14.3

300    41.40      2    5.11   5.11   2.31   1.15   0.26   0.26    19.6

    1  3.41   3.41   1.68   1.68   0.41   0.41      8.3

400   54.10      2  5.92   5.92   3.36   1.68   0.48   0.48     12.4

    1  3.70   3.70   2.00   2.00   0.54   0.54      6.9

450   60.00      2  6.60   6.60   4.00   2.00   0.61   0.61     10.9

    1  4.15   4.15   2.38   2.38   0.68   0.68     6.1

500   65.60      2  7.64   7.64   4.77   2.38   0.74   0.74    10.3

    1  4.88   4.88   2.86   2.86   0.84   0.84      5.8

550   70.80      2  9.23   9.23   5.71   2.86   0.88   0.88     10.4

    1 6.09   6.09   3.46   3.46   0.99   0.99     6.2

600  75.50      2  11.8   11.8   6.93   3.46   1.02   1.02     11.6

    1  12.3   12.3   5.49   5.49   1.23   1.23     10.0

700   83.30      2  24.4   24. 4,11.0   5.49   1.24   1.24     19.7

Table 1:  Singular values for Z0   = 1 and 2.

The condition number of the Jacobian (ratio of largest and smallest eigenvalue), gives a clear
indication of the sensitivity of the system. If this ratio becomes too large, a small offset in a
mode to which the system is very sensitive can easily drown out a larger offset in a mode to
which the system is less sensitive. If the ratio is small, the Jacobian matrix is well-
conditioned.

From Table 1 we can see that the singular values increase as the opening angle ϕ increases,
but the condition number is the smallest when the opening angle is close to 70• . This means
the optimal opening angle of the 4-beam system is about 70• . The singular values for Z0   = 2
are bigger than the values for Z0   = 1. This means that the measuring system is more
sensitive to orientation errors (e.g. the singular values are bigger), when the TCP is placed in
a higher position. All in all, initial analysis of the 4-beam system indicate that it leads to a
viable design.

As a next step, we investigated the self-checking properties of the system. I.e. we included
various relevant system parameters with the unknowns. This requires a complete series of
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measurements in various poses to be treated as a unit. As expected, when all system
parameters were included in this way, a singular system was obtained, i.e. not all parameters
can be measured. Yet, a significant amount of information regarding the system can be
extracted.

Next, we assumed the target plate, i.e. the PSD positions to be fully calibrated, but include
the errors in the beam parameters (4 each) into the system. This means we have to compute
the Jacobian of the measurements with respect to the pose and the beam parameters. This
adds 16 unknowns to system, which means the Jacobian is 8 by 22.

To investigate the system as a whole, we have to study the complete set of equations obtained
from all possible measurement poses for an array of 9 PSD-s. It allows measurements to be
done at 6 positions, in 4 poses each, which provides 6*4*8 = 192 measurement data. The
number of unknowns are the 6*4*6 pose parameters and the 4*4 beam parameters. This
results in a Jacobian matrix of 192 by 160. The singular value decomposition of the Jacobian
matrix of the complete measuring system shows that its rank is equal to 152, which means
the equations cannot be solved. The situation is even worse, because the 4 smallest singular
values are very small (less than 0.005). This means in fact that 12 unknowns still cannot be
determined.

The above implies that, used in this way, the system is self-checking, i.e. when the system is
damaged, this will show up as inconsistencies in the measurements. The system is not self-
calibrating, however, as the cause of the error cannot be precisely identified. More
information has to be added to the system.

This can be done by performing some calibration measurements on the measuring system
itself. A suitable procedure for this is to use a calibration stand in which the position of the
measuring head relative to the target plate can be precisely fixed. By rotating the target plate,
four poses can be measured.

This adds 4*8 equations to the system, which give a relation between errors in the beam
parameters and the resulting errors in the intersection points. The resulting Jacobian is a
matrix of 224 by 160. From the singular value decomposition we deduct that the rank of the
Jacobian is equal to 160. The condition number of the Jacobian (ratio of largest and smallest
eigenvalue), gives a clear indication of the sensitivity of the system. This number would
exceed 23 000 in this case, which means the Jacobian matrix is ill-conditioned. I.e. matrix J
is nearly singular  and J-1 is very large. From the 6 smallest singular values (less than 0.006)
we deduct that 6 unknowns still cannot be determined. Examination of the corresponding row
vectors of the V matrix shows, that the system cannot make a difference between increasing
the angle between the beams and lifting the system as a whole. This is the reason why we
have to measure at known positions from different heights.

So we assume that the parameters of the position at another height are also known,which
adds again 32 equations to the system. The resulting Jacobian of 256 by 160 has rank 160. A
histogram of the singular values is given in Fig. 11. The condition number is about 79 which
means that this Jacobian is sufficiently well-conditioned and that all the parameters can be
deduced from this system. In fact the solution is given by the pseudo-inverse of J defined by
J-1 = VTD-1U. This matrix gives the optimal  solution of the system:

J . ∆(pose parameters and beam parameters) = ∆(measurements)
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in the least square sense.
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Figure 11. Histogram of the singular values.
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