
An On-Line Planner for MARIE

Frank Terpstra, Arnoud Visser and Bob Hertzberger

August 2001

Abstract

In this paper we introduce an on-line planner implemented on MARIE, a real autonomous

robot. Planning occurs at a high level, the planner controls other modules such as the path planner,

which contain planners themselves. Plans are represented in a tree structure. The on-line planner

has a library of partial trees to choose from when replanning is needed. We think that our research

is unique in applying on-line planning at such a high level on a real robot. The on-line planner

uses a simple algorithm based on elements of POP [10] in combination with random choice. The

random choice is essential for real world applications with information errors, because it prevents

the robot from taking the ’best’ choice repetitively. Despite being simple the algorithm performs

very well in practice. Tests show that the on-line planner gives a major increase in robustness and

reliability while not being significantly slower than perfect algorithms.

1 Introduction

In planning research most projects using high level planning are “theoretical” planners for the STRIPS

[6] domain [10] [1] [2]. Most of the planning research being done on real robots[8] deals with the lower

levels of planning.

The restriction to the real robot domain [5] is important because assumptions made for theoreti-

cal planners such as Atomic Time1, Deterministic Effects2, Omniscience3 and Sole cause of Change4

cannot hold in the real world. The goal in our research has been to implement a high-level planner on

a real robot leading to an improvement in reliability and robustness.

The robot used is MARIE (Mobile Autonomous Robot in an Industrial Environment) which orig-

inated from the Esprit-MARIE project started in 1989. The workings of MARIE and the MARIE ar-

1An action is uninterruptable. Simultanious actions are impossible.
2The effects of an action are a deterministic function of the action and the world a the time this action takes place.
3The planner has complete knowledge of the world and the effects of its own actions.
4The world only changes through actions performed by the planner.



chitecture will be explained in section 2, while section 3 is dedicated to plan representation because

of its particular relevance to on-line planning.

Figure 1: MARIE

Originally MARIE used an off-line planner; the plans were generated prior to execution. With the

current on-line planner, only a skeleton plan is generated off-line, which represents the goals to be

fulfilled. This skeleton plan is sent to MARIE, and further extended during the execution based on

actual status information. This and other aspects of planning will be discussed in section 4, followed

by a section describing the implementation. Finally the results of our experiments are given, and we

will discuss whether our goals of improved robustness and reliability have been achieved.

2 MARIE Architecture

Here we will give a short description of the hardware and software that MARIE uses. MARIE is an

autonomous robot based on an electric cart for the disabled. It is equipped with wide beam ultrasonic

sensors for collision avoidance and narrow beam sensors for wall following. Positioning is done by

dead reckoning using shaft encoders on all wheels. The robot is controlled by an on-board computer

with 4MB of ram and a Motorola 68030 processor running VxWorks. Finally there is a wireless net-

work connection which among other things allows some control modules, including the planner, to

run remotely.

For the MARIE software a hybrid architecture is used, this means that the software tries to com-

bine the best aspects of functional and behavioral architecture. This results in a system with the mission

planning capability of a functional approach and the fast reactive behavior of a behavioral approach.



Figure 2: The MARIE architecture

On MARIE several tasks are running in parallel, specialized in sensing, planning and driving the ve-

hicle. The datastreams between the tasks can be flexibly arranged via data managers, central to the

MARIE architecture (see figure 2). Through the data manager all tasks communicate and share data.

Control of the tasks is provided by the action dispatcher, as described in [9]. The action dispatcher

is steered by the plan information that is provided by the task generator which now also includes the

on-line planner.

3 Plan representation

As this paper focuses on the on-line planner we will now take a detailed look at how plans are defined

within MARIE. Plans are represented by a tree structure consisting of nodes. The following figure

illustrates the different attributes of the nodes, grouped in three classes.

conditions

node

parameters

node

predecessor

successor

nextprevious node

tree-links operator

type

timeout

max_retriesname

id

initial

during

final

turn_on

turn_off

Figure 3: Some of the attributes of a node

Here we will describe the characteristics of the different classes of attributes:



tree-links The node can contain up to four pointers to other nodes in the tree.

conditions The node contains three different conditions and two lists. The three conditions are called

initial, during and final. The first and latter indicate the status flags to be true respectively before

and after the node is successfully ended. The during condition flags are inherited as initial con-

dition by all the successors of the node. The two lists, turn on and turn off, indicate the changes

of the status-flags.

operator The node also contains the description of the operator it represents. The operator is defined

by a number of parameters. The actual parameters used depend on the type of the node.

There are several types of nodes, AND, OR, Action, ‘elementary operation’ and ‘simple operation’

nodes. The elementary- and simple operation are the leaf nodes. The leaf nodes have no successors,

and represent the actual actions that could be be performed by the robot. The difference between the

elementary- and simple operations is that elementary operations can be executed concurrently. Several

elementary operations can be grouped in an Action-node which defines the type of concurrent behavior.

An Action-node can have only elementary operations as successors.

Action node

Elementry operation

Simple operation

And node

Or node

Figure 4: Example of a plan-tree structure

The AND- and OR-nodes are used to make sure actions and simple operations are performed in

the correct order. The difference between AND- and OR-nodes is the order of execution. An OR-node

executes the first successor it can find with its initial-conditions fulfilled. The successors are always

tested in the same order. An AND-node executes its successors one at a time, in a fixed order. When

for one of its successors the initial-conditions are not fulfilled, the AND node fails. Once executed a

successor is not tried again.

The execution continues (for both the AND- and OR-node), as long as:

� the during-conditions hold,

� the final-conditions are not fulfilled,



� the list of successors is not at its end,

� the number of tries is less than the max retries (OR-node only)

Execution of a plan starts at the root (top) node (see figure 4) and then continues through the tree

until the root node’s final conditions are met (success) or until there are no options left (failure).

4 Planners

This section looks at what constitutes an on-line planner. First we will look at the difference between

on- and off-line planning, then at the possible variations in on-line planning. Finally we will look

at what methods can be used for planning in general. An off-line planner generates a complete plan

before the task is performed. An on-line planner on the other hand generates at least part of its plan

while the task is being executed. This makes an online planner much more appropriate for dynamic

environments such as the one MARIE is operating in. On-line planners exist in various forms. There

are those that generate a plan off-line and then adjust it during execution. There are also those that

start generating a plan when execution starts. Another possible variation is prediction. In this case

the planner tries to predict the next problem and makes a contingency plan so that when the exception

occurs the planning is already done. For the actual planning we looked at several possibilities. For

instance genetic programming/algorithms [8] [7] have the advantage that they have learning ability, the

downside is that they don’t integrate very well in the existing MARIE architecture. Algorithms such

as POP [10] are very interesting because they have great similarities with the existing architecture.

This method starts with the final goals and then searches for actions which satisfy these goals, the

initial conditions of these actions are then added to the final goals. This repeats itself until an action is

found which is compatible with the current state and satisfies one or more of the final goals. Several

constraints are used to minimize the search space by eliminating counter productive actions. Both

POP and the existing plan architecture use actions which have pre and post conditions. Furthermore

the existing architecture uses during conditions as a measure to prevent counter productive actions.

This is why our implementation uses similar techniques to POP but with adaptations for real world

use.

5 Implementation

What follows next is a description of the actual implementation of the on-line planner for MARIE.

The mission goals are specified in the root node of a skeleton plan. This skeleton plan is used by the



planner as a basis to insert new forks into an existing tree structure.

The planner’s search space consists of a library of partial plan trees or macros. These macros per-

form actions like calling the path planner or driving a path or even following a wall for a defined num-

ber of metres. Macros are programmed by hand, this is done because they consist mainly of initializa-

tions which are not of the high level at which our planner operates.

If during the execution of either an AND or an OR node the final conditions have not been met

and all child nodes have been tried then the on-line planner is called. The on-line planner then uses

the algorithm as described in figure 5.

I

II

III

IV

V

VIVII

VIII

IX

X

conditions

conditions

XI

conditions

Select

conditions

conditions

XII

Select
on initial

Select
on final

If the subset is empty
do the following

Collection of allSelect
on finalSubset with all macro’sAdd the initial 

Start again with 
extra mission goals

Collection of all

Collection of all

Select
on initial Subset of all macro’s

Subset of all macro’s

on final Subset of macro’s 

subset exists

subset empty

Choose randomly
from the 
macro’s present 
in the subset

Choose randomly
from the
macro’s present
in the subset

Choose randomly
from the allowed
macro’s (IX)

macro’s

allowed by the
current state

Subset of macro’s 
which achieve a 
mission goal

macro’s

that satisfy a mission
goal

conditions of this
subset to the mission
goals

macro’s

allowed by the
current state

which achieve a 
mission goal

Figure 5: Algorithm of the on-line planner

First it looks at which macros are allowed by the current status of MARIE. Then it looks to see if

any of these allowed macros satisfy a mission goal. If this is the case a random selection is made from

these macros. When there are no macros which satisfy a mission goal a regressive method is used to

create new goals. The planner searches for macros which do satisfy a mission goal but are not allowed

by the current robot status. When such macros are found their pre conditions are added to the mission



goals.5 If these new goals can’t be satisfied either, a random selection is made from the macros that

are allowed by the current state.

At this point theoretical planners such as POP [10] take a breadth first approach. Yet, for real

world operations it is more important to have some variation in the sequence in which actions are per-

formed to allow for non-deterministic effects and information errors. To achieve the variation men-

tioned above random choice was used for selection of nodes instead of for instance breadth first.

6 Experiment

Figure 6: The test begins at 1 and ends at 2 or 2br

To test the capabilities of the on-line planner a test was designed where MARIE would have to travel

approximately 20 metres through the hallways of the university. This test has many difficult situations

for a robot using sonar as its only sensor. There are irregular brick walls, wooden doors with glass

windows, highly reflective metal doorposts and fire extinguishers. All of these elements have the po-

tential to generate exceptions which are difficult to plan for using an off-line planner. As can be seen

in figure 6 the test starts with a narrow curve leading on to the main hallway. Through the hallway

MARIE has to follow the wall until she comes to a hall where she has the option of driving to either

one of two end points.

With these results we will show that the on-line planner was indeed quite successful in providing

better reliability and robustness, in order to do this we will give a detailed explanation. Before starting

with the experiments we expected that the on-line planner would only be capable of completing partial

5Unlike POP [10] this isn’t done recursively at the moment see section 7



0

1

2

3

4

5

6

7

8

9

succes through succes throughtotal number of tests succesful unsuccesful

nu
m

be
r 

of
 te

st
s

"retry" "step by step"

Figure 7: Test results

plans; during testing it became obvious that it could also construct complete plans if it was given a

skeleton plan to start with.

The detailed test logs showed three tests failed. All three failed at the first turn of the test, this turn

is very tight and has metal doorposts nearby. The latter is the largest problem; the metal doorposts

are very reflective and result in inaccurate measurements by the ultrasonic sensors. The result is that

during the failed tests MARIE didn’t notice the wall on the opposite side of the hallway until she ran

into it.

Now for the successful tests. First it has to be noted that an off-line planner using the same search

algorithm would have failed at all tests. This is because the on-line planner was needed in all 6 suc-

cessful tests to get to an end position. The successfull tests can be divided in two categories, suc-

cess through “retry” and success through “step by step”. In the case of “retry” it was always the path-

planner that failed to find a path, but after the addition of one or more macros by the on-line planner a

path was found. “Step by step” always occurred in the last part of the test where MARIE has to drive

from point 2b to either point 2 or 2br (see fig. 6). What happened in these cases was that the during

conditions of the driving module were violated resulting in MARIE only driving part of the planned

path. The on-line planner solves this by repeatedly calling the driving module until the planned path

is completed. Because of the random nature of the algorithm MARIE won’t always pick the right

macro. The average over the tests was that two picks were needed before the right macro was found.

This means that during tests MARIE is spending 4 seconds choosing and executing useless macros.

Since tests consist largely of driving and take 1:30 min to 2:00 min, 4 seconds is not a great problem.



7 Discussion

The tests show that the algorithm performs very well in practice, although several possibilities exist

to optimize the algorithm. In this section we will discuss three of them.

One possibility is to add new goals recursively (box VII), instead of the random choice in box XII

of fig. 6. The algorithm then becomes a regressive partial order planner similar to POP [10]. Doing this

would reduce the choosing of useless nodes. As indicated in the results, 50% of random choices were

useless, which allows room for improvement. Yet, in practice the execution time of the useless nodes

is insignificant when compared to the time taken up by modules other than the planner, which makes

this improvement unnecessary for the time being. Adding a recursive loop creates the possibility of

an endless loop. Additional precautions are then required to prevent this.

The on-line planner isn’t implemented on MARIE. Instead it’s a remote module that uses the wire-

less network connection to communicate with MARIE. This was mainly done to ease development but

also to avoid running into the limits of MARIE’s on-board computer. It is also possible to execute the

on-line planner on the MARIE-robot locally. This possibility is only attractive for increasing robust-

ness. From the perspective of performance it is not necessary because the amount of exchanged data

is not enough to be a bottleneck.

Another option is to let the on-line planner work ahead, which makes it possible to have an plan

available at the moment that it is needed. To implement this option we have to add prediction (as

described in section4) to the planner. To be able to predict the plan that is needed by the robot, the

planner has to have knowledge about the non-nominal path through the plan. At this moment this

knowledge is not available. Also from the perspective of performance it is not needed yet, because

the response time of the workstation is nearly instantaneous, due to the small search space.

Although several optimizations of the on-line planning are possible, they are not yet needed. MARIE

is held back more by other modules than the planning module. For instance: the positioning module

only uses dead reckoning. This works fine to indicate the travelled distance, but the angular informa-

tion is becoming inadequate for longer distances. The implemented algorithm performs very well in

the MARIE architecture in its current state. Changing it will have to be considered only when signif-

icant alterations are made to the size of the search space.

8 Conclusions

The tests clearly show that MARIE can reach her goals even with only a skeleton plan. This means

that MARIE has a great robustness for incomplete plans. Also through the use of the on-line planner



MARIE has greatly improved her reliability. This is shown in the tests by the fact that the on-line

planner is used in all successful tests to rescue a plan that would have failed if an off-line planner had

been used. This research has demonstrated that the use of a high level planner implemented on a real

robot can offer significant benefits.

References

[1] Avrim L. Blum, Merrick L. Furst. Fast Planning Through Graph Analysis. Artificial Intelligence,

90:281-300, 1997.

[2] Avrim L. Blum and John C Langford. Probabilistic Planning in the Graphplan Framework.

[3] G.A. den Boer, G.D. van Albada, L.O. Hertzberger, C. Koburg, M. Mergel, “The MARIE Au-

toomous Mobile Robot”. International Conference on Intelligent Autonomous Systems: IAS-3,

15-19 Februari 1993, Pittsburgh PA, USA.

[4] G.A. den Boer, G.D. van Albada, L.O. Hertzberger, G.R. Meijer, J.B. Thevenon, P. LePage, E.J.

Gaussens, F. Arlabosse, “An exception handling Model applied to Autonomous Mobile Robot-

s”, International Conference on Intelligent Autonomous Systems: IAS-3, 15-19 Februari 1993,

Pittsburgh PA, USA.

[5] R.A. Brooks. Intelligence without reason. MIT AI Memo No. 1293, 1991.

[6] R. Fikes and N. Nilsson. STRIPS: A new approach to the application of theorem proving to prob-

lem solving. Artificial Intelligence, 2(3/4), 1971.

[7] Jing Xiao, Zbigniew Michalewicz, Lixin Zhang, Krzysztof Trojanowski. Adaptive Evolutionary

Planner/Navigator for Mobile Robots. IEEE transactions on evolutionary computation, vol. 1, no

1, April 1997.

[8] Peter Nordin, Wolfgang Banzhaf. An On-Line Method to Evolve Behavior and to Control a

Miniature Robot in Real Time with Genetic Programming. 20-1-1997

[9] A. Visser, G.D. van Albada and L.O. Hertzberger, ”Data and event handling for the MARIE vehi-

cle”, in J.I. Soliman and D. Roller, editors, 28th International Symposium on Automative Tech-

nology and Automation ISATA, Proceedings of the dedicated conference on robotics, motion and

machine vision in the automotive industries, pages 403-410, (Automative Automation Limited,

Croydon, England), Sep. 1995.



[10] Daniel S. Weld. An Introduction to Least Commitment Planning. AI Magazine Summer/Fall

1994.




