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Abstract. Road markings play a crucial role in road safety by guiding
traffic and ensuring visibility. As markings deteriorate over time, their
effectiveness diminishes, necessitating timely maintenance. This paper
studies two methods to classify the road-marking damage according to
the Dutch CROW guidelines. The first is a model based approach, which
first uses a regression model to estimate the marking damage, and then
applies the thresholds in the CROW guidelines to classify the damage
class. In contrast, a data driven approach is used, classifying directly the
damage class with a YOLOvVS8 classifier. This results in state-of-the-art
accuracy, demonstrating strong potential for real-time deployment.
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1 Introduction

As cities grow and mobility increases, the pressure on public infrastructure and
the need for efficient maintenance strategies intensifies [1]. Road markings, which
include painted lines, symbols, and patterns on the road surface, play a key role
in managing road safety. These markings help warn road users and ensure smooth
traffic flow [16]. However, they degrade over time and currently rely on manual
inspections that are time-consuming, costly, and often inconsistent [17].

Therefore, Velotech?, in collaboration with Amsterdam University of Applied
Sciences, has developed a Smart Bikes project that uses artificial intelligence (AI)
to automate the inspection of urban infrastructure. By equipping bikes with edge
Al a technology that processes data locally on the device, the system captures
and analyzes road condition data in real-time. This reduces latency, minimizes
dependence on external servers and aligns with municipal privacy standards, as
sensitive visual data never leaves the bike [9]. This integrated approach allows
municipalities to efficiently assess the condition of road markings and prioritize
repairs.

In the Netherlands, such maintenance decisions are guided by CROW guide-
lines, which serve as the national standard for evaluating road infrastructure.
These guidelines categorize road markings into four classes, from A to D, based

% https://velotech.ai/


https://orcid.org/0009-0000-3154-9838
https://orcid.org/0009-0005-5304-5995
https://orcid.org/0000-0002-4329-6687
https://orcid.org/0000-0002-7525-7017
https://velotech.ai/

2 Amanda Jansen , Vivienne Jansen , Jurjen Helmus , and Arnoud Visser

= 5% of the marking is | = 20% of the marking is | < 30% of the marking is | >30% of the marking is
visually damaged visually damaged visually damaged visually damaged

Undamaged Slightly damaged Moderately damaged Severely damaged

Fig. 1: CROW guidelines per severity category (classes A, B, C and D) [6].

on the damage severity [6]. Class A represents road markings in excellent con-
dition, while class D indicates markings in poor condition that require repair
(see Fig. 1). To automate this classification process, this research uses both a
model-based and a data-driven approach.

2 Method

Estimation of the road-marking damage is performed in this study in two differ-
ent ways; first by a regression method which estimates the amount of damaged
paint followed by a decision-model based on the thresholds in the CROW guide-
lines. Because this model has a tendency to overpredict damage severity, this
method is compared with a fully data-driven approach.

2.1 Dataset

The data that was used in this study was collected by Velotech with a ZED-X
stereo camera that was developed by Stereolabs?. The camera was mounted on
both bicycles and cars to simulate real-world mobile inspection scenarios [7].
Data acquisition took place in two distinct urban environments in the Nether-
lands: Geertruidenberg, a small municipality characterized by relatively calm
residential streets, and Amsterdam Oud-Zuid, a densely populated urban district
with a high volume of traffic, varied infrastructure, and complex road markings.
This geographical variation introduces diversity in lighting conditions, road sur-
face materials, marking styles, and levels of wear, and ensures that the dataset
reflects a broad range of real-world conditions that are relevant to road marking
assessment (see Fig. 2).

The combined recordings from Geertruidenberg and Amsterdam Oud Zuid
resulted in a dataset consisting of 15.745 high-resolution images of road mark-
ings. The images were each accompanied by annotations that were stored in
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(a) Arrow marking, not damaged

(b) Line marking, slightly damaged (d) Block marking, severely damaged

Fig.2: Examples Velotech recordings and the individual marking selected for
classification.

a structured JSON file. Each entry described an individual road marking and
included a polygon delineating its shape, a bounding box, a manually assigned
CROW severity class (A, B, C, or D), and a ‘superclass’ indicating the broader
category of the road marking (e.g., line, arrow, or zebrawalking). Polygon and
bounding box annotations were automatically generated using a YOLOvVS seg-
mentation model developed by Velotech. After removing images with missing
severity or polygon annotations, the final dataset contained 15.723 annotated
road markings.

The majority of markings fall into severity classes A (#5.002) and B (#6.572),
while fewer instances are observed in classes C (#1.907) and D (#2.242). The
dataset is strongly dominated by the line category (#13.720), with considerably
fewer examples of other types such as giveawayrow (#807), block (#368), ze-
brawalking (#314), and smaller categories such as arrow (#63) and stopping
(#48) marking.

Although the distribution is imbalanced, care has been taken not to influence
our methods. For the data-driven approach the dataset was divided into training
(70%), test (15%), and validation (15%) subsets using stratified splitting.

2.2 Regression Method

The regression method starts with a high-resolution image recorded by Velotech.
Velotech has an accurate detection model (98% pixel accuracy) [11] which local-
izes road markings and generates a polygon and bounding-box around the road
marking. The polygon is used here to get a region of interest (ROI). The polygon
is not intended to be tight around the road marking, so part of the road surface
is visible at the edges. To prevent that these edges contribute to estimation of
the amount of damaged paint, an erosion algorithm with a kernel of 7 x 7 is
applied to be able to concentrate on the core of the road marking (see Fig. 3).
An estimate of the color of the road surface (in grayscale) surrounding the
road marker is also important, because when the road marking is damaged the
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Fig. 3: Preprocessing method

road surface shines through. Yet, the color of the road surface is not always the
same, nor the lighting conditions, so an outlier mask (see Fig. 3.e) can be used
to estimate the color of the road surface near the road marking.

To distinguish between intact and damaged areas within the marking a dy-
namic threshold is applied, based on Otsu’s method [10]. Otsu’s method used
the histogram of the image to define two clusters of bright and dark pixels as
classes and maximizes the between-class variance to find the optimal threshold.
By calculating the proportion of dark/damaged pixels inside the eroded mask
the damage ratio can be calculated, which can directly be mapped to the CROW
guidelines.

2.3 Data-Driven Method

The road markings are already detected and localized in the images with a
YOLOvS8-based detector [11], so it is logical to see how well a YOLOv8-based
classification would work on this problem. You Only Look Once (YOLO) is a real-
time object detection algorithm known for its speed and accuracy in identifying
and classifying visual elements within images [13]. YOLOvS is an algorithm that
is slightly easier to fine-tune on new types of objects than YOLOv9 [15]. An al-
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ternative would be the most recent YOLOv12 [14], although the attention model
relies on FlashAttention for optimal speed. FlashAttention is only supported on
relatively modern GPU architectures and is less suitable for edge-computing.

Two models were trained with YOLOvS; one for a binary (damaged,/un-
damaged) classification task and one for a multiclass (A/B/C/D) classification
task. The models were initialized with pre-trained weights and trained on road-
marking images. These images were obtained by cropping the original images
to the bounding boxes of the road markings. Training was conducted for 100
epochs with an input image resolution of 640x 640 pixels, a batch size of 32, and
8 data loader workers. Early stopping was applied with a patience of 10 epochs
to prevent overfitting.

To evaluate the learning behavior and generalization capability of both mod-
els during training, the progression of the training and validation loss was mon-
itored. The trained YOLOv8 models were both evaluated on the 15% validation
set, consisting of 2,359 previously unseen road marking instances, each labeled
with one of the four CROW-defined severity classes (A-D). Fig. 4 shows the
loss curves for the binary classification model, and Fig. 5 presents those for the
multiclass model.

train/loss val/loss
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Fig. 4: Training and validation loss functions for the YOLOvS8 binary (damaged
and undamaged) model classification model. Training loss (left) and validation
loss (right) curves over 32 training epochs.

For both models, the training loss steadily decreases, demonstrating that
the model is effectively learning to minimize the error on the training dataset.
Simultaneously, the validation loss shows a similar downward trend and closely
tracks the training loss, indicating that the model generalizes well to unseen data.
The absence of any increase or divergence in validation loss gives confidence that
overfitting did not occur (yet).
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Fig. 5: Training and validation loss functions for the YOLOv8 multiclass (classes
A, B, C and D) model. Training loss (left) and validation loss (right) curves over
30 training epochs

3 Results

Both the regression as data-driven methods were studied extensively, including
multiclass classification with the regression method and analysis of the model
performance per road marking type. For more details, see the theses [4,5].

3.1 Regression Results

When the regression method described in Sec. 2.2 is applied to a binary classi-
fication task, distinguishing between undamaged (class A) and damaged (class
B,C,D) markings, the precision for the undamaged class (0.92) and the recall of
the damaged class (0.99) are quite good. So, from the 15.723 instances in the
dataset, 99% of the damaged markings were correctly identified and when a road
marking was predicted to be undamaged, it is highly likely to be correct.

Table 1: Binary Classification with Dynamic Thresholding

Class Precision|Recall|F1-score|Instances
Undamaged (class A) 0.92 0.26 0.41 5002
Damaged (class B/C/D)| 0.74 0.99 0.85 10721
Accuracy — — 0.76 15723

Yet, as can be seen from Table 1, the model tends to over-detect damage
and frequently misclassifies undamaged markings as damaged. The undamaged
recall is only 0.26 and the precision on damaged markings is only 0.74, leading
to an overall F1-score of 0.76. This makes this model only useful as pre-filtering
tool to reduce the volume of markings requiring manual inspection within the
maintenance workflow of Velotech.
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3.2 Data-Driven Results

The data-driven approach described in Sec. 2.3 improves these results both for
the undamaged recall and the precision on recognizing damaged markings (Ta-
ble 2). Although there is still a slight bias towards flagging damage, the false
negatives are so low that it approaches the operational goal of Velotech.

Table 2: Binary Classification with YOLOvS8

Class Precision|Recall|F1-score|Instances
Undamaged (class A) 0.98 0.95 0.96 749
Damaged (class B/C/D)| 0.97 0.99 0.98 1608
Accuracy — — 0.97 2357

Based on these preliminary numbers, it becomes interesting to look at the
multi-class results, if the data-driven approach makes the distinction between
slightly damaged, moderately damaged, severely damaged (CROW classes B/C/D).

Table 3: Multi-class Classification with YOLO v8

Class Precision|Recall|F1-score|Instances
A 0.95 0.95 0.95 749
B 0.85 0.89 0.87 986
C 0.54 0.40 0.46 288
D 0.70 0.76 0.72 334
Macro-average| 0.76 0.75 0.75 2357
Accuracy — — 0.83 2357

The results for road markings in good condition or only slightly deteriorated
(class A/B) are good, as can be seen in Table 3. In contrast, the performance is
notably lower for moderate or severely damaged road markings (class C/D).

Most errors originate from class C. As can be seen from the confusion matrix
in Fig. 6, where road markings annotated as 'moderated damaged’ are predicted
in 32% of the cases as ’slightly damaged’, 40% of the cases as 'moderated dam-
aged’ and in 27% of the cases as ’severely damaged’. The boundaries between
class B/C (20% damaged surface) and between class C/D (30% damaged sur-
face) seem to be hard to estimate. Also human annotators have difficulty making
this distinction, as can be seen in Section 4.1.
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Fig.6: Confusion matrix of overall severity classification on the test set. The
confusion matrix displays the number of predicted labels versus ground truth
labels across the four CROW severity classes. The diagonal cells represent correct
predictions.

4 Discussion

4.1 Damage severity

The manual annotations of the severity classes were outsourced by Velotech and
carried out by multiple individuals. Velotech has implemented quality control
measures to get consistent annotations between the annotators. Still, differenti-
ating between severity levels B (< 20% damage), C (< 30% damage), and D (>
30% damage) requires annotators to estimate the proportion of damaged surface
area by eye, which is a task prone to individual interpretation and variability.

Consequently, even experienced annotators may produce inconsistent or in-
accurate labels, particularly when the extent of damage is near the boundary
between two severity classes. In cases where the model correctly detects damage
to a road marking, the damage ratio given by the regression model appears to
provide a more objective and consistent assessment of damage severity compared
to manual evaluations of the severity class (see Fig. 7).
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a)

Annotated severity: B, Predicted severity: C, Damage ratio: 0.280

-
Annotated severity: C, Predicted severity: B, Damage ratio: 0.154

Fig. 7: Examples in which the model provides a reasonable damage ratio other
than the severity classification from the manual annotations.

Unfortunately, the regression model fails to always detect damage correctly.
Two common failure cases can be easily demonstrated with two examples. The
first failure case is due to partial shadows. Because the algorithm depends on
brightness, a sharp shadow can be easily judged to be a damaged area (see
Fig. 8).

Annotated severity: A, Predicted severity: C, Damage ratio: 0.224

Fig. 8: Example of a road marking partially covered by shadow. The marking is
labeled as class A (undamaged) in the ground truth, but the model predicts it
as Class C due to the presence of a partial shadow cast by a streetlight. The
reduced brightness in the shadowed region is incorrectly interpreted by the model
as surface damage.

Another common failure case originates from complex road marking shapes.
For some road marking symbols it is difficult to clearly define the inside and
outside regions. When the mask is just a square bounding box, a lot of the
road surface is still visible, which could result in unrealistic high damage ratio
estimates (see Fig. 9).
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Symbol

Annotated severity: A, Predicted severity: D, Damage ratio: 0.845

Fig. 9: Examples of highly imprecise polygon annotations that resemble bounding
boxes rather than accurate segmentations, shown for the bicycle symbol.

Yet, with many borderline cases where class boundaries are open for inter-
pretation, it is hard to train a data-driven approach like YOLO on learning the
decision boundaries more precisely.

4.2 Related research

Datasets focused on road marking damage are scarce. A study of Iparraguirre
et al [3] combined two datasets from Japan & Spain. They added 971 new la-
beled images for Spanish roads. They performed binary classification with three
different convolutional neural networks. Their best result used EfficientDet v1
DO [12], and achieved an Fl-score of 0.93, which was a large improvement com-
pared to the previous result on the Japanese dataset (Fl-score of 0.72) [8]. The
regression results from this study are comparable with the results reported by
Maeda et al, and the data-driven approach is comparable with the results of
Iparraguirre et al. Yet, unfortunately the combined dataset from Japan & Spain
does not contain a labeled level of the severity of the damage.

This information was available in a dataset from the USA. Recent work of
Antariska et al also used a data-driven approach based on YOLOv8 [2]. This
method was trained on 865 images collected along New Jersey State routes. The
dataset concentrated on a subset of road markings used in this study, namely
the center line. Instead of four damage classes, three damage classes were used
(good, moderate, poor). This system achieved a macro-averaged precision of 0.51,
considerably lower than the results in this study. Partly this can be contributed
to the smaller dataset (they only annotated 865 images from the 15,536 available
images). Their study was also limited by the resolution of the images collected
along the New Jersey routes. The road markings cover only part of the image,
so you have to zoom in at the road marking and make (implicit or explicit) an
estimate of the damage ratio. In that case high-resolution images, as provided
by the ZED-X stereo camera, can make the difference.
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5 Conclusion

The model-based approach showed mixed results for different road-marking
types. Simple road markings such as lines and blocks with clear boundaries
could be classified quite well, but the results for complex road markings such as
the bicycle symbol pixel-wise segmentation was required. This method showed
also to be sensitive to the lighting conditions, such as the occurrence of partial
shadows over the road markings.

In contrast, the data-driven approach worked well under all circumstances,
although it suffered from class-imbalance in the training dataset. Yet, the thresh-
olds of the CROW guidelines are quite strict, while the YOLOvVS classification
confused the 'moderately damaged’ class easily with ’slightly damaged’ and
‘severely damaged’ class. Also the human annotators had difficulty with this
distinction.

So, manual verification of the damage is still required. Automatic classifica-
tion could still benefit maintenance operations, by excluding clearly undamaged
road markings and allowing them to give priority to severely damaged road
markings.
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