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ABSTRACT

This paper describes the steps taken to create the score cri-
teria aimed at measuring the quality of maps produced by
teams participating in the RoboCup Rescue Virtual Robots
competition. Since metrics have already been developed by
a few research groups, we start by highlighting the most pop-
ular solutions to this problem, emphasizing their strengths
and weaknesses. Having put the difficulty of creating map
benchmarks into perspective, we present our map bench-
mark suite, appropriate for Urban Search and Rescue mis-
sions, along with examples taken from former competitions.

Categories and Subject Descriptors

F.2.3 [Theory of computation]: Analysis of Algorithms
and Problem Features— Tradeoffs among complexity mea-
sures
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1. INTRODUCTION

One of the liveliest competitions in RoboCup is the Vir-
tual Robot Rescue league, where participants are called upon
to deploy teams of robots capable of locating victims and
hazards in highly unstructured areas. Differently from other
RoboCup competitions, the Virtual Robot Rescue league
asks robot teams to map completely unknown environments,
with little or no apriori information. The theme behind the
league is Urban Search and Rescue (USAR), where robots
have to not only work cooperatively as unified teams but
also have to consider humans, whether they be victims or
first responders. As such, the maps that are generated by
the robots need to incorporate useful information that first
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responders can exploit, adding a new dimension to robot
mapping. Indeed, robots now have to generate multiple
maps, some of which are for their own needs (e.g. navi-
gation) while others are explicitly for first-responders (e.g.
victim locations with safest paths to reach them).

The Virtual Robot Rescue League uses USARSim [5] to
simulate disaster scenarios. The simulation is extremely re-
alistic thanks to a dynamic community of users and develop-
ers who strive to validate each robot, sensor, or other phys-
ical properties. This community-based involvement trans-
lates into a remarkably accurate simulation capable of mod-
eling multifaceted disaster environments ranging from traffic
accidents to earthquakes and explosions, each possibly ex-
ploiting the effects of smoke, fires, debris, water, to name a
few. In addition to the near-zero participation cost and the
ability to create realistic city-sized disasters, the simulation
offers ground truth data that would otherwise be awfully
difficult to gather. The large amount of robotic platforms
and sensors that USARSim proposes results in a challeng-
ing situation for map scoring. Indeed, each team solves the
mapping problem differently using a diverse set of robots
and sensor configuration, resulting in a massive mismatch
between maps, from scaling to rotational differences. This
observation put us in the unique position of having to come
up with a map benchmark robust enough to take into ac-
count all of these differences along with the opportunity of
having a tremendous amount of data to test our solution to
this difficult problem.

Evidently, and despite the fact that it is still frequently
employed, a qualitative approach is fundamentally insuffi-
cient for a competition where results have to be both re-
peatable and reliable. Not wanting to develop a map bench-
mark from scratch, and optimistically hoping that a solution
had already been published, we performed an extensive case
study, a subsection of which is shown in Section 2. Realizing
that no current solution was robust enough for the problem
at hand (i.e. teams would be able to take advantage of
the metrics’ weaknesses), we developed a mapping bench-
mark suite comprised of standards and categorized metrics,
which are described in Section 3 and 4, respectively. It is
worthwhile to note that the standards were so well received
that they have subsequently been implemented as part of
the Real Robot Rescue League. We close the paper with
concluding remarks and possible future work in Section 5.
While this paper focuses on mapping, a companion paper
highlights the overall RoboCup 2009 competition [2].



2. CASE STUDY

Map benchmarking is a relatively novel effort, and so is
robot benchmarking in general. Therefore, the amount of
formerly published scholar work is rather limited (the reader
is referred to a forthcoming special issue of the Autonomous
Robots journal on Characterizing mobile robot localization
and mapping). In this section, we quantitatively compare
some of the most popular benchmark metrics that have been
previously published. We run the metrics with two binary
occupancy grid maps, one generated by a robot and the
other being ground truth. Each grid cell can only have a
value of 1 for occupied space or a value of 0 for free space.
Please note that the discussion in this section is entirely
based on our binary map representation and that results
might be different with a probabilistic occupancy grid map.
Even though we have performed a full case study on different
environments, we only present a representative example in
Fig. 1 and Table 1 due to space constraints.

The first set of four metrics, namely the Map Score [8],
Overall Error [4], Normalized Map Score [10], and Occu-
pied Map Score [10], represents an approach requiring pixel-
to-pixel comparisons between the ground truth and robot-
generated maps. The Map Score metric counts the number
of ground truth and robot map pixels that are the same.
As such, the total number of pixels in the maps would be
a perfect score. The Overall Error metric counts the num-
ber of ground truth and robot map pixels that are differ-
ent, where a perfect score would be zero. It is worthwhile
to mention that the Map Score metric measures accuracy
whereas the Overall Error metric measures error and that
adding both metrics together will equal the total number of
pixels. The two aforementioned metrics are utilized over all
the pixels, regardless of what they represent (i.e. occupied
or free space). Consequently, the two metrics are biased
towards maps with large regions of correct free space, as
shown in Fig. 1 and Table 1. From the table, Team A
and Team E have the best scores and, looking at the figure,
the bias is clear: the two maps with the smallest amount
of discovered walls receive a higher score. Research groups
have attempted to remove this bias by introducing the Nor-
malized Map Score and Occupied Map Score metrics. They
work the same way as the Overall Error metric (i.e. look-
ing for pixel mismatches) but are only run on the occupied
space of the maps. The Normalized Map Score runs on the
occupied space of the ground truth map whereas the Oc-
cupied Map Score runs on the occupied space of the robot-
generated map. Unfortunately, these metrics only move the
bias, which is now dependent on the occupied space. Us-
ing the Normalized Score metric, the robot maps that have
thick walls do better, as shown by Team C and Team E,
since they do a better job in replicating the wall thickness
of the ground truth map. In contrast, Team A and Team
B do better with the Occupied Map Score metric, thanks
to their thin walls that allow for a greater margin of error
when compared to the thicker ground truth walls.

Another interesting pixel-to-pixel approach is presented
through the Picture-Distance function [3]. In this metric,
the score represents the Manhattan-distance between an oc-
cupied pixel in the ground truth map and the closest oc-
cupied pixel in the robot-generated map. The process is
repeated over all the occupied pixels of 1) the ground truth
map and 2) the robot-generated maps. Finally, the result
is normalized by dividing it by the total number of pixels

considered. The Picture-Distance function is a measure of
map error and, as such, the best possible score is zero. A
look at Fig. 1 and Table 1 quickly shows that the two teams
who have explored the most, Team C and Team D, do bet-
ter with this metric. From both the method used and the
experiment performed, it is clear that the method is also
biased, towards exploration (i.e. wall discovery).

Moving away from the bias of pixel-to-pixel comparisons
brings us to correlation coefficients, a comparison measures
valued between -1 and 1, with -1, 0, and 1 representing per-
fect inverse correlation, no correlation, and perfect correla-
tion, respectively. The Baron’s Cross Correlation coefficient
[10] attempts to correlate two images by using the ground
truth and robot-generated pixels’ mean and standard devi-
ation. Since averages are used, and the pixel’s values can
only be 0 or 1, the Baron’s coefficient rewards robot maps
that have a similar number of occupied and free pixels to
the ground truth. Consequently, the coefficient is influenced
both by wall thickness and exploration, as can be seen in Fig.
1 and Table 1 where Team C and Team E have the highest
scores. The Pearson’s Correlation coefficient [7] evaluates
the occupied space of the map as a spatial function, trying
to linearly describe one map from the other. The Pearson’s
coefficient requires an approximately similar point distribu-
tion between the two map. This drawback is evidenced by
the results for Team A and Team E, where, even though
both maps are very similar they have extremely different
Pearson’s coefficients. It is worthwhile to note that both
correlation coefficients can be unpredictable, shown by the
scores of Team A and Team B.

Figure 1: Example set of maps used for the Case
Study, the results of which are in Table 1. The first
image is the ground truth with the remaining images
being, from left to right and up to down, Team A,
Team B, Team C, Team D, and Team E, respectively.

3. MAP REPRESENTATION STANDARDS

One of the principal obstacles impeding the development
of a consistent map benchmark comes from the lack of stan-
dards between the incredible amount of mapping algorithms
that have been developed, through the years, by various
research groups. Indeed, each algorithm works differently,
from the way they represent maps (e.g. occupancy grids,
topological, feature-based, etc...) to the different scales and



Metric Team | Team | Team | Team | Team

A B C D E

Map Score | 586779 586192 | 585049 | 585297 | 586815

(8]

Overall 56577 | 57164 | 58307 | 58059 | 56541
Error [4]
Normalized | 56065 | 55785 | 55227 | 55363 | 54367
Map Score

[10]

Occupied 512 1379 3080 2696 | 2174
Map Score
[10]

Baron’s -0.005 0.017 0.036 0.032 | 0.098
Correlation
(10]

Pearson’s 0.298 | -0.060 | 0.479 0.295 | 0.591
Correlation

(7]

Picture- 210.09 | 254.37 | 129.89| 189.44| 221.61
Distance

(3]

Table 1: Metrics comparison for the maps shown in
Fig. 1. The seven rows represent each metric taken
from different publications. The bold font shows the
two best results for a specific metric.

rotations that they may encompass. Having to rank maps
generated by many different robotics groups and, as a con-
sequence, facing the same map representation problems, we
have imposed two mapping standards on participants, the
GeoTIFF image format and the MIF vector format. We have
found, over the years, that participants embrace them, pri-
marily for their ease-of-use, while giving the administrators
powerful tools to generate a fair mapping benchmark.

3.1 GeoTIFF Image Format

The GeoTIFF image format embeds geographical infor-
mation as an integral part of the map. The power of Geo-
TIFF lies in its ease of use, open standard, and layer friend-
liness. Indeed, it is very simple to geo-reference any map,
by providing an additional file comprised of six parameters,
namely the X and Y positions of the upper-left pixel, the
scale of a pixel in the X and Y directions, the rotation, and
the skew. These six parameters take into account any po-
tential differences in scale, translation, and rotation between
maps. GeoTIFF is an open standard, a fact that translates
into a plethora of open tools that work across different plat-
forms and programming languages. Last but not least, it
is very easy to embed multiple layers on top of the original
map, a powerful way to display varied information on the
maps. Evidently, from a map benchmark standpoint, the
GeoTIFF image format allows every map, including ground
truth, to be overlaid on top of each other, as shown in Fig.
2; making it straightforward to evaluate the maps either
quantitatively or qualitatively.

3.2 MIF Vector Format

The MIF vector format is similar to the GeoTIFF for-
mat in that it possesses the same qualities of allowing geo-
referencing, remaining easy to use, being an open standard,
and working well with layers. The difference between the

Figure 2: Examples of two robot-generated maps
(black) overlaid on top of the ground truth map
(gray) for an indoor environment.

two, however, lies in what can be represented. Whereas Geo-
TIFF represents images, MIF works with geometric primi-
tives (e.g. points, lines, polygons) that can have an arbi-
trary number of attributes. The MIF vector format can be
best exploited to display topological or feature-based maps,
where labeled nodes or features can give high-level informa-
tion or particular landmarks of interest to first responders.
Fig. 3 shows some examples of what can be achieved with
a MIF vector file.

Figure 3: Four examples of MIF vector files, overlaid
on top of the robot-generated map. The upper-left
picture shows points representing victims’ location
labeled with various information about each victim.
The upper-right picture shows line segments high-
lighting the best path to reach each victim, labeled
with the victim’s information and path’s length.
The lower pictures display regions of interests, in-
cluding a street (left) and a house (right).

4. MAP BENCHMARK

It is clear from the Case Study that no published algo-
rithm is adequate on its own or as part of a map bench-
marking suite. They each have some sort of bias and cannot
solve the problem of error propagation, the toughest chal-
lenge when evaluating maps, where similar mapping errors
can affect maps differently depending on when the error oc-
curred. For example, an orientation error at the beginning
of a mission will result in a map that is wrong through the
rest of the mission, whereas the same orientation error at
the end of the mission will affect a much smaller portion of
the map. It is our belief that the maps should be equally
deserving, provided that everything else is equal. Addition-
ally, a map is application-specific and, in our case, USAR



and first responders have to be in-the-loop. As such, we de-
vised a categorized benchmark comprised of Metric Quality,
Skeleton Quality, Attribution, Grouping, Utility, and Cre-
ativity. Each category possesses a weight, the combination
of which can be used to steer the competition towards one
or more research agendas.

4.1 Metric Quality

The Metric Quality tries to solve the same problem that
was studied in the Case Study: the comparison of the robot-
generated occupancy grid map to ground truth, from an
accuracy standpoint. In order to bypass the aforementioned
problem of error propagation, we further divide the Metric
Quality into Global and Local Quality. The Global Quality
is a measure of the number and severity of mapping errors
whereas the Local Quality is a measure of accuracy between
these mapping errors. Using Fig. 4 as an example, one can
see that both robot-generated maps are similar in terms of
Global Quality, each having a small error with the lower
hallway. The right map, however, is worst in terms of Local
Quality, since it is missing some walls in the center of the
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Figure 4: Example for the Metric Quality evalua-
tion, where the upper map is ground truth and the
lower-left and lower-right maps are different robot-
generated maps.

4.2 Skeleton Quality

The Skeleton Quality evaluates a topological map rather
than an occupancy grid map, which can be more useful to
first responders. A first responder should be able to follow
a skeleton map to reach a chosen point. In this case, the
quality is determined from the number of false positives and
false negatives. A false positive occurs when a node cannot
be accessed whereas a false negative takes place when a clear
topological location is available but has not been included in
the skeleton map. Fig. 5 shows examples of skeleton maps
with similar qualities. The first map has a lot of false posi-
tives in the lower and right sections of the map, where topo-
logical locations have been identified in unexplored space.
The second map contains both false positives, where a topo-
logical node is inside a wall, and false negatives, along the
left side of the hallway.

4.3 Attribution

The Attribution section of our mapping benchmark aims
to reward teams that can successfully deliver a feature-based
map with valuable information for first responders. The type
of information that can be embedded into the map is fairly
open, even though most teams deliver feature-based maps

Figure 5: Example for the Skeleton Quality evalua-
tion, with two different robot-generated maps.

indicating victim locations and information, best paths to
reach victims, robot paths, and important landmarks. The
Attribution is scored based on the amount and accuracy of
the data. As an example, Fig. 6 shows two maps, each
providing victim locations and best paths to reach them.
Both maps provide accurate victim locations but the left
one offers a lot more information about the victim, ranging
from the sex, the condition, the priority given to get rescued,
the ease of accessibility, etc... Similarly, both maps provide
paths to reach the victims but the paths of the left map
are inaccurate, going through a section of unexplored space.
Based on this example, the right map would get a better
score.

Figure 6: Example for the Attribution metric for
two different-robot generated maps. The left and
right columns each represent a different robot-
generated map. The first row shows the victims’
attribution while the second row shows the victim
paths’ attribution.

4.4 Grouping

The Grouping metric is very similar to the Attribution in
that it is, essentially, a feature-based map aimed at helping
first-responders better navigate the environment. It differs
in that instead of being point-based, it groups and labels
regions of space. Grouping stems from the fact that a section
of occupied pixels represents particular landmarks that can



be labeled. Fig. 7 offers a contrasting example, where the
left map is comprised of a single group labeled "Hazard”
and the right map contains many different groups labeled as
”"House”, ”Street”, "Vehicle”, among others. Once again, the
metric is scored based on the amount and accuracy of the
information provided and, in this example, the right map
would receive a better score than the first one.

Figure 7: Grouping example with two different
robot-generated maps.

4.5 Utility

The map Utility takes a look at the overall information
provided by the teams. In other words, the map Utility
aims at answering the question of how useful are all the
layers to a first responder. This metric regroups the other
metrics together but looks at a larger scope, where teams
have to balance the amount of information they provide with
the way it would look on the screen. As more and more
information is given, it is harder to display it neatly while
still making it easy to understand. The clever use of layers
greatly affects the utility of a given map.

4.6 Creativity

For the purpose of the competition, we have added an un-
orthodox metric that rewards teams for creative new ways of
representing valuable information to first responders. Teams
are given bonus points for innovative map layers that could
help first-responders better do their jobs. In the past, a
team came up with the geo-referencing of victims’ pictures,
a layer that was quickly adopted by the rest of teams in
later competitions. More recently, a team showed the best
communication coverage attained while navigating the en-
vironment so that first-responders could replicate it should
they need to establish a communication network. An exam-
ple is shown in Fig. 8.

Figure 8: Example of a successful Creativity metric,
displaying a communication network. Each trans-
mitter is shown as a point with the lines showing
the connections between each link. The point in the
left represents the base station.

5. CONCLUSIONS

We have presented the necessary steps to come up with a
fair map benchmarking suite capable of scoring maps pro-
duced by USAR robots working in close cooperation with
first responders. We strongly believe in committing to easily-
adoptable, yet powerful, open standards such as GeoTIFF
that take little additional work from programmers while pro-
viding great benefits. Similarly, we value open-source devel-
opment by requiring teams to provide public access to their
software and encouraging participants to share and reuse
code and ideas. In that sense, the competition can be viewed
more as an open workshop where teams are equally looking
to learn as they are to win. From a benchmarking stand-
point, the open-source phenomenon brings an interesting
component, where algorithmic progress can easily be mea-
sured from year to year thanks to the fact that the software
is both available and archived. We hope that the commu-
nity would follow in our footsteps and make algorithms and
data sets public, so that benchmarks can be accepted and
evaluated, by an entire community rather than a relatively
small research group. Two projects going in that direction
are OpenSLAM [9] and Radish [11]. OpenSLAM provides
open-source SLAM algorithms and Radish offers data sets.
While we praise both initiatives, they are not as extensively
used as they should and are missing benchmark tools that
would be used to evaluate the quality of the SLAM algo-
rithms (from a localization or a mapping standpoint) for
specific applications.

Throughout the years, we have devoted our map bench-
marking endeavors to planar occupancy grid maps com-
prised of certainty values (i.e. either 0 for free space or
1 for occupied space). While this restriction has been rea-
sonable over the last few years, mainly due to the popular-
ity of occupancy grid maps, a surge of newly fashionable
robotic platforms ranging from underwater robots to un-
manned air vehicles coupled with highly three-dimensional
terrain is slowly making two-dimensional occupancy grid
maps inadequate. Indeed, teams have already started to ex-
plore three-dimensional mapping algorithms [6]. Evidently,
the switch from two to three dimensional mapping is not
straightforward in terms of map benchmarking and offers
an interesting research avenue for future work. Further-
more, it is important to note that three-dimensional map-
ping does not have a map representation that is well rec-
ognized throughout the robotics community and that occu-
pancy grids do not offer an easy transfer from two to three
dimensions due to the increase of space and time complex-
ities. We contend that more work needs to be achieved to
come up with a community-accepted standard representa-
tion for three-dimensional maps.

All things considered, a general "all-purpose” mapping
benchmark is still far from being developed due to the afore-
mentioned problems of map representation, algorithmic dif-
ferences, lack of open-source data or algorithms, and ap-
plication dependability. We are convinced that mapping
benchmarks need to be tied to the application at hand and,
as such, do not see a generalized map benchmark in the
near-future. It is rewarding to see, however, that there is
an awareness increase as to the importance of the problem
and hope that this paper will help steer map benchmarking
towards the right direction.
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