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Abstract

This article investigates the prerequisites for a global exploration strategy in an
unknown environment on a virtual disaster site. Assume that a robot equipped
with a laser range scanner can build a detailed map of a previous unknown
environment. The remaining question is how to use this information on this map
for further exploration.

On a map several interesting locations can be present where the exploration
can be continued, referred as exploration frontiers. Typically, a greedy algo-
rithm is used for the decision which frontier to explore next. Such a greedy al-
gorithm only considers interesting locations locally, focused to reduce the move-
ment costs. More sophisticated algorithms also take into account the information
that can be gained along each frontier. This shifts the problem to estimate the
amount of unexplored area behind the frontiers on the global map. Our algo-
rithm exploits the long range of current laser scanners. Typically, during the
previous exploration a small number of laser rays already passed the frontier,
but this number is too low to have major impact on the generated map. Yet, the
few rays through a frontier can be used to estimate the potential information
gain from unexplored area beyond the frontier.

1 Introduction

RoboCup Rescue is a competition in which (teams of) fully autonomous robots
visit a hypothetical disaster site. This situation is either simulated in the real
world [1] or a virtual world within the USARSim simulator [2]. The task for
the robots in the competition is to explore the site and locate victims. There
is a limited amount of time in which the robots can explore. Afterwards the
competing teams will be scored on a various criteria, among them are the size
of the explored area, the quality of the map and most importantly, the number
of located victims (for a more detailed list and scoring see [3]).

An important problem in the competition is the autonomous exploration
problem; to decide on the basis of the current map where to send the robot
to improve the future map [4]. A correct choice would improve the competition
score, which depends on the explored area and the quality of the map. Predictions
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about what would be visible on the edges of the current map could help to make
better decisions for the robot.

In this work we build upon the contribution of the UvA Rescue team [5],
which provided a fully autonomous agent system that controls up to eight vir-
tual robots in the USARSim simulator [2]. The system already has a state of the
art method [6] for simultaneously locating and mapping (SLAM) unknown envi-
ronments, based on the Manifold approach [7] combined with the Weighted Scan
Matching algorithm [8]. The exploration strategy of the robots is kept simple.
The behavior is reactive and makes decision based on direct measurements, not
on the current map. The goal of this work is to improve the exploration strategy
by intelligently using global information that can be derived from the map. As
demonstrated in [9], efficient allocation of the search effort can outperform sim-
ple exploration strategies. In the article the focus is on the exploration behavior
of a single robot (or agent).

The outline of this paper is as follows. In Sect. 2 we will introduce some
theoretical background behind this research. In Sect. 3 our algorithm will be
worked out. The robustness of our method on maps from the RoboCup Rescue
Competition will be demonstrated in Sect. 4. Finally, we draw our conclusions
in Sect. 5.

2 Background

Exploration is the problem of directing a robot through the environment so that
the knowledge about the external world is maximized [10]. Knowledge about the
external world for a mobile robot is typically stored on a map m. Increasing the
knowledge stored on a map can mean that the uncertainty about information
on the map is reduced, or that new information is added to the map. The latter
means that the map coverage is extended with parts of the external world that
the robot has not seen before. Knowledge about the map m can be passively ac-
quired, while the robot is wandering around busy with other tasks (for instance
finding victims), as demonstrated by [11]. Here the focus is on autonomous ex-
ploration; the planning of the next exploration action a which will increase the
knowledge about the world the most. Before this estimate is worked out in more
detail, it should be noticed that such an exploration action can be quite complex
from navigational point of view. Executing such an exploration action can mean
that large parts of the current map are traversed, which can only be efficiently
done with the availability of on-line path-planning functionality.

For a mobile robot it is important to remember were obstacles are located.
This information can be represented with an occupancy grid map [12], where
each grid cell indicates the probability p(x) if that location x is occupied or
free. Active exploration can been seen as minimizing the entropy H(m) [13]
of the probability distribution p(x) for all x on the map m, which requires an
integration over the complete occupancy grid map:

H(m) =
∫
x∈m

p(x)log(p(x)) (1)



When all grid cells are initialized as unknown by giving them a uniform value of
p(x) = 0.5, the entropy of the map H(m) is maximal. When the boundaries of
the map m are not known, the limits of the integral are slowly extended when
new areas are discovered. The interest is not in the absolute value of the entropy,
but in the difference in entropy before H(m) and after H(m|a) an exploration
action a; the information gain ∆I(a) [14–16]. Remember that the exploration
action a could be a complex maneuver, consisting of a number of controls ui and
observations zi for multiple timesteps i.

∆I(a) = H(m|a)−H(m) (2)

Because the set of possible exploration actions can grow very fast when predic-
tions are needed multiple timesteps in the future, this set is approximated. In
existing exploration methods the number of exploration actions is reduced by
considering only the path to a finite number of candidate observation points.
Typically, those candidate observation points are chosen on the boundary of
explored and unexplored areas; frontier-based exploration [17].

One of the most interesting approaches to generate and select those candi-
date observation points is the presented by González-Baños [18]. They model
exploration frontier with free curves; polylines which indicate where the laser
range scanner reported values larger than a threshold rmax. Near those free
curves a number of candidate observation points are considered . This number
of candidate points is generated randomly with a Monte-Carlo method, and for
each point q they simulate a number of laser scans through the free curve. The
amount of area A(q) covered by those rays (with a maximum length rmax) is
taken in account as a measure of the potential information gain ∆I(aq) for the
observation zq at the observation point q.

Fig. 1. The potential information gain of a candidate observation point q is the area
A(q) that may be visible through the two free edges; this area is estimated by casting
rays from q. Courtesy from [18].

The area A(q) is an estimation for the information gained from the obser-
vation zq. This implicitly ignores the information that could be gained by the



observations z1, . . . , zq−1 along the path to the observation point q. When the
robot traverses mainly well known regions on its path to point q this is a reason-
able assumption. Yet, the exploration action aq consists not only of a number
of observations z1, . . . , zq, but also of a number of controls u1, . . . , uq to drive
the path. Because control is never perfect, confidence about the location of the
robot is lost for every control step ui. Probabilities spread out over the map,
resulting in a loss of information. An optimal exploration action a∗ can only be
chosen when the cost of traveling along a path u1, . . . , uq is taken into account.
Typical traveling cost functions are the distance traveled, the time taken or the
energy expended. González-Baños has chosen to use as cost-function the length
L(q) of the path u1, . . . , uq to a candidate observation point q. They combine
the cost of the path u1, . . . , uq and the estimated gain of the observation zq for
the evaluation action aq into the following value function V (q):

V (q) = A(q)e−λL(q) (3)

The constant λ can be used balance the cost of motion L(q) against the expected
gain of information A(q).

For the observation points found in this article an equivalent value function
could be calculated. Note, however, that the area A(q) of González-Baños is ex-
trapolated from the current map by simulating a number of laser-rays through
the frontier, while in our case the area A(q) is directly estimated from the laser
range measurements. Another difference is the generation of observation points.
González-Baños generates multiple candidate observation points on a short ran-
dom distance from the exploration frontiers. In our approach, per frontier a
single candidate observation point is generated, in the center of the exploration
frontier.

3 Estimation of exploration frontiers and observation
points

A good autonomous exploration algorithm should navigate the robot to an op-
timal observation point. This point will be close to an exploration frontier. To
find such an exploration frontier is not trivial. Exploration frontiers can be found
based on an occupancy grid map. The probability that a point is an obstacle or
not on a certain location can be stored in occupancy grid with arbitrary resolu-
tion. An example of such occupancy grid map is given in Fig. 2, an actual map
produced during the Virtual RoboCup Rescue competition by the UvA Rescue
team with a resolution of 1 centimeter. The map gives a top view of an office
environment, where clearly three corridors are visible that are well explored, and
a number of adjacent rooms that are not entered yet.

Grid points on a map can be combined to regions, when the edges of the
regions can be found. As can be seen from the example (Fig. 2), the boundaries
of the safe region are only sharp along walls. Inside the rooms and at the end of
the corridors the boundaries of the safe region are fuzzy. Selecting an absolute



threshold for this boundary is difficult [19]. Still, a human can clearly distin-
guished safe regions and indicate the regions that should be further explored
(observation regions). What is difficult, also for a human, is the precise location
of the boundary between those regions; the exploration frontier.

Fig. 2. The occupancy grid map produced during the semi-final by one the robots.

The method used in this paper to distinguish safe regions from observation
regions is based on a simple ray-casting technique. Ray-casting is used to gener-
ate an occupancy grid from the scan-data stored in the manifold [11]. The trick
is to generate two occupancy grids at the same time; one with a short range
constraint rsafe and one with a long range constraint rmax equal to maximum
range of the laser scanner. A typical value for rsafe is 2 meters and for rmax

20 meters. The occupancy grid with a short range constraint rsafe generates a
conservative estimate of the obstacle free space; the safe region.

An example of such safe region is given in Fig. 3.a. The three corridors of the
office environment can be recognized in this picture. From the contour of the safe
region the exploration frontier can be derived. The contour of the safe region is
indicated in Fig. 3.b. The exploration frontier is only a part of the contour, the
other part of the contour are walls (Fig. 3.c). The part of the safe region contour
that is no wall can be identified as the exploration frontier (Fig. 3.d).

The same ray-tracing can be repeated with the long range constraint rmax.
With the long range constraint a less conservative estimate of free space is gen-
erated. The areas are probably free of obstacles, but not guaranteed to be safe.
The result is visualized in Fig. 4. Outside the corridors new contours are visible:
the rooms along the corridor. These contours are the areas which are probably
free, but not guaranteed to be safe: the observation regions (indicated in yellow).
These observation regions are not equivalent with unknown areas; there also ex-
ist large parts of the map where the probability p(x) is still on its initial value.
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Fig. 3. The safe region of Fig. 2 (90o degrees rotated). From left to right respectively
a) The surface. b) The contour. c) The part of the contour which is an obstacle (wall).
d) The part of the contour which is free (frontier).

The frontiers between the observation regions and the safe regions, as shown in
Fig. 3.d, are also given (indicated in grey). The convex frontiers contours are ex-
tended with a small white point which is the center of the contour. These centers
can be associated with potential observation points. From each point in the safe
region the path to such a potential observation point q can be estimated with a
breath-first algorithm. An example of such path is indicated in green, from the
start position indicated with a large white point in the upper-right corner.

In this example one can also see that the process of frontier estimation is not
completely failsafe. Going from one corridor to another, the robot makes a sharp
turn (top of Fig. 3). During such turn the confidence in the location estimate can
drop. At that moment multiple laserscans of the same wall do not completely
overlap, and the wall as edge is not sharp. In that case a part of the wall is
seen as unknown, and such a contour could be incorrectly identified as frontier.
The effect is visible near the upper right corner in Fig. 3.d. To prevent false
positives like this, the following consistence check is designed. All frontiers are
tested if they are concave or convex. Only convex frontiers generate candidate
observation points q in Fig. 4. Many of the false frontiers can be removed because
they are concave. The result is a slight increase of the number of false negatives,
as indicated in the Sect. 4.



Fig. 4. The interpreted map of Fig. 2. The yellow contours indicate the observation
regions. The grey contours indicate the exploration frontiers. The large white circle
indicates the current position of the robot. The small white circles indicates potential
observation points. The green line indicates a possible path to those observation points.
Red lines indicate the walls.

4 Results

In the previous sections we have illustrated our methods on the map given in
Fig. 2. In this map several potential observation points were identified, as shown
in Fig. 4. To test the reliability of our method the number of observation points
is compared against the number of points that should have been found. After the
2006 competition the environment used during the RoboCup was made available
for inspection1. A top view of this environment is visible in Fig. 5.a. The three
corridors explored on the map can be found in the upper-right corner of Fig. 5.a.

With the provided environment as reference, the number of doorways and
corridors that the robot has passed during its exploration can be counted. For the
map given in Fig. 2 in total 2 corridors and 20 doorways to 20 rooms are passed.
There is another doorway to a 21st room, but this doorway is blocked by a victim.
The algorithm skipped this doorway correctly. The results are summarized in
Tab. 4. Next to the expected and found number of doorways, the number of
false positives and false negatives are given. This is done for both the exploration
frontiers (both convex and concave) and the observation points (center of convex
exploration frontier). One can see that the number of false positives is reduced
by only selecting convex exploration frontiers.

1 http://sourceforge.net/projects/usarsim



expected exploration observation
frontiers & frontiers points
observation false false false false

points found positives negatives found positives negatives

Three corridors 22 27 6 1 21 0 1
(Fig. 2)
Lobby loop 13 17 5 1 11 0 2
(Fig. 5)
Yellow arena 9 17 8 0 9 1 1
(Fig. 6)

To demonstrate the robustness of the algorithm, the procedure is repeated
for two other maps that could have been encountered during the competition.
The first map is tour that begins and ends in the lobby, the light-grey area at the
bottom of Fig. 5.a. During this tour 6 corridors and 7 doorways to rooms should
have been found. For the majority of the corridors and rooms an observation
point is found, as can be seen from Tab. 4 and Fig. 5. The missed corridor and
room are located in the left lower corner. The robot came through the narrow
passage at the left and turned back towards the lobby. Due to this turn the robot
did not get a clear view into the corner. The doorway to the room is visible; the
6th corridor stays mainly hidden behind the robot. The combined frontier of
the corner, doorway and corridor was irregular of shape and not convex, which
resulted in a false negative.

a

b c

Fig. 5. Overview of the indoor area used for the 2006 RoboCup Virtual League Com-
petition. Fig. b and c show the results of exploring a loop starting and ending in the
large lobby at the bottom of Fig. a. On this map 11 of the 13 observation points are
found.



Last, but not least, the algorithm was tested on the Yellow arena. This is
classical benchmark in the RoboCup Rescue competition, where an irregular
office-maze is build with flexible walls. The Yellow arena is also visible in Fig. 5.a,
the large room to the right of the lobby. Fig. 6.a gives a closer look at this
environment. In this office-maze it is less obvious to indicate what the frontiers
are that should have been explored. For instance, central in the Yellow arena is
a bed. The algorithm indicated with the three green paths that an observation
should be made at the left, at the right and under the bed. This was classified as a
correct decision. Another aspect is the open space in the rooms. The rooms were
sometimes so large that frontiers appeared in the corners. These frontiers in the
corner have a convex shape, and could be selected if the observation space behind
the frontier was large enough. Checking the corners of a room is probably quite
robust, but probably not highly efficient. Both the false positive and negative
were related with a corner. At the bottom left of Fig. 6.c a doorway is missed,
because that corner was not explored from close enough distance. On the other
hand an observation point is generated to check the tiny space behind the ’W’-
shaped obstacle. Fortunately many other observation points are generated which
much more area behind the frontier, which make them far more attractive for
exploration. This observation point was classified as a false positive.

a

b c

Fig. 6. Results of the Yellow-Arena map. Fig. b and c show the results of exploring a
loop starting and ending in the curved wall in the center of the figures. On this map
9 observation points are found (one false positive).



Overall, these experiments, summarized in Tab. 4, demonstrate the robust-
ness of the algorithm. The algorithm generated a limited number of potential
observation points. The impact of the false negatives (4 of the 44 potential obser-
vation points were missed) on the exploration behavior will be minor. As long as
there are enough candidate observation points, the robots can coordinate their
actions and distribute the points over the team. They can optimize their effort
by optimizing a joint value function equivalent with equation (3).

5 Conclusion

In this report an algorithm is proposed to generate a limited number of ob-
servation points, and to estimate the information that could be gained at each
location. The method generates exploration frontiers on the contours of safe re-
gions. One observation point is generated per convex exploration frontier. The
potential information gain for each observation point is estimated based on the
area of obstacle free space beyond the exploration frontier. This estimate of the
area is based on measurements, and not on extrapolations from the current map.
The algorithm shows good results in office-environments.

In our future research it will be demonstrated how much the exploration
efficiency will increase by selecting the observation point with highest potential
information gain and the lowest travel costs.
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