
Closing the gap between simulation and reality
in the sensor and motion models

of an autonomous AR.Drone
Arnoud Visser, Nick Dijkshoorn, Martijn van der Veen and Robrecht Jurriaans∗

ABSTRACT

This article describes a method to develop an
advanced navigation capability for the standard
platform of the IMAV indoor competition: the
Parrot AR.Drone. Our development is partly
based on simulation, which requires both a re-
alistic sensor and motion model. This article de-
scribes how a visual map of the indoor environ-
ment can be made, including the effect of sensor
noise. In addition, validation results for the mo-
tion model are presented. On this basis, it should
be possible to learn elevation maps, optimal
paths on this visual map and to autonomously
avoid obstacles based on optical flow.

Keywords: Quadrotor, visual SLAM, monocular vision,
SURF features, noise models

1 INTRODUCTION

Small quadrotors with on-board stabilization which can
be bought off-the-shelf, like the Parrot AR.Drone, make it
possible to shift the research from basic control of the plat-
form towards applications that make use of their versatile
scouting capabilities. Possible applications are surveillance,
inspection and search & rescue. Still, the limited sensor suite
and the fast movements make it quite a challenge to fully au-
tomate the navigation for such platform. One of the prereq-
uisites for autonomous navigation is to capability to make a
map of the environment.

2 RELATED WORK

Our approach was inspired by Steder et al. [1], who pre-
sented a system that allows aerial vehicles to acquire visual
maps of large environments using comparable setup with an
inertia sensor and low-quality camera pointing downward. In
their approach the inertia sensor was used to estimate a num-
ber of parameters in the spatial relation between two camera
poses, which reduces the dimensionality of the pose to be es-
timated. Equivalent with our approach, Steder uses Speeded-
Up Robust Features (SURF) [2] that are invariant with re-
spect to rotation and scale. By matching features between
different images, one can estimate the relative motion of the

∗Intelligent Systems Lab Amsterdam, Universiteit van Amsterdam

camera, and thus, construct the graph that serves as input to
the TORO-based network optimizer [3].

Prior to 2011 no standard platform existed in the Micro
Air Vehicle competition1, which allowed to participants to
construct optimal sensor configurations. For instance, the
team from MIT [4] installed a Hokuyo laser scanner on their
UAV and where able apply many techniques developed for
ground robotics on their flying robot. Another example is the
approach of the team from Canterbury [5], where an omni-
directional camera was mounted on the platform, which was
used to acquire an heading estimation from the optical flow.
At the latest edition of the Micro Air Vehicle competition2

an Parrot AR.Drone was extended with an infrared camera
to be able to follow people [6]. Because the AR.Drone is
a quite novel development, the number of studies based on
this platform is limited. A recent publication is from Cornell
University [7], where an AR.Drone is used to automatically
navigate corridors and staircases based on visual clues.

Figure 1: 3D model of a gym with realistic ground and wall
textures which represents the Micro Air Vehicle pylon chal-
lenge.

As indicated in [8]; an accurate simulation of a quadrotor
is a valuable asset, which allows safe and efficient develop-
ment of control algorithms. Additionally, it gives direct ac-
cess to ground truth values and allows to design repeatable
experiments. To be used in such a way, not only the models
of the actuators and sensors have to be validated. Another key
feature is that the simulation environment is equipped with an
editor which allows detailed modifications to the simulated

1http://www.emav2009.org, http://www.imav2010.org
2http://www.springimav2011.com

1

environment so that the details needed for the experiment can
be easily added as indicated in Figure 1. The environment se-
lected is USARsim [9], which allows physical realistic simu-
lations and a versatile environment editor.

3 METHODS

3.1 Map stitching
Our approach uses image stitching to build a visual map

of an indoor environment. The frames from the AR.Drone’s
low-resolution down-looking camera are aligned together and
drawn on a canvas object. A set of matches between two
camera frames is used to estimate a homographic model for
the apparent image motion. This model can be composed
with the estimated motion of the rest of images in order to
build a mosaic. The sonar sensor is used to detect obstacles
and mask these obstacles in the camera image to make the
image stitching more robust.

The first camera frame I0 is added at the center of the
canvas object without any image transformation. This image
determines the scale of the map, because consecutive images
are related to this image. Each next image is related to the
previous image by calculating a local perspective transforma-
tion H(i−1)i. This perspective transformation H(i−1)i is used
to transforms image Ii such that it matches the scale, orienta-
tion and translation of image Ii−1.

H(i−1)i is computed by matching point features from two
consecutive images. A certain degree of image overlap is re-
quired in order to find features that are present in both im-
ages. We use Speeded-Up Robust Features (SURF) [2] that
are invariant with respect to rotation and scale. Each feature
is represented by a descriptor vector and its position, orienta-
tion, and scale in the image. Each features from image Ii is
matched with a feature from image Ii−1 that has the shortest
Euclidean distance.

The local perspective transformation H(i−1)i is calcu-
lated by minimizing the back-projection using a least-squares
algorithm. However, if not all of the point pairs fit the rigid
perspective transformation (i.e. there are some outliers), this
initial estimate will be poor. We use Random Sample Con-
sensus (RANSAC) [10] to filter the set of matches in order to
detect and eliminate erroneous matches. RANSAC tries dif-
ferent random subsets of four corresponding point pairs. It
estimates the homography matrix using this subset and then
computes the quality of the computed homography by count-
ing the number of inliers.

Now that image Ii is related to image Ii−1, it can be re-
lated to the first image I0 (canvas) by multiplying the local
perspective transformation with the local perspective trans-
formations from all previous matched frames.

Ĥj0 =
1∏

k=j

H(k−1)k (1)

The resulting transformation Ĥj0 is used to warp image Ij .

Finally, the warped image Iw
j is added to the canvas.

The local transformations between consecutive images
can be composed to obtain the global transformation of the
current frame, but local errors lead to a progressive drift in
the transformation of future frames. One faulty local trans-
formation can have disastrous impact on the image stitching.
Therefore, we included several methods to detect faulty lo-
cal transformations. Once a faulty local transformation is de-
tected, the corresponding frame is dropped.

The first method to detect faulty transformations is count-
ing the percentage of outliers. If the percentage exceeds
threshold γ1 the frame is being dropped (ignored). All fea-
ture points from image Ij are transformed with local transfor-
mation H(i−1)i. Then, the Euclidean distance between each
transformed point from image Ii and the matched point from
image Ii−1 is measured. If the distance is larger then thresh-
old ε the point is marked as outlier.

Another method to detect faulty transformations is by cal-
culating the relative change of the global transformation when
a new local transformation H(i−1)i is added. Large relative
changes indicate unlikely local transformations, because con-
secutive frames are likely to have only small differences in
translation, rotation and scaling. If the relative change intro-
duced by a frame’s local transformation exceeds threshold γ2

the frame is being dropped (ignored). The relative change δH
introduced by frame Ij and its local transformation H(i−1)i

is calculated as following:

δH = Ĥ(i−1)0./Ĥi0 (2)

where ./ is a per-element division. The frame is dropped if
〈| δH |〉 > γ2.

Processing a single frame and merging it into the visual
map requires approximately 150ms. The AR.Drone’s framer-
ate is fixed at 15fps, which is too high to process each single
frame in realtime. In order to achieve realtime map stitch-
ing, frames that are receiving while another frame is still be-
ing process, are dropped. However, this reduces the vehicle’s
maximum speed that provides enough overlap between con-
secutive frames. For example, when flying at 1m altitude, the
camera (64 degree FOV) perceives 1.24m floor. The max-
imum horizontal speed to achieve 50% overlap at 15fps is
9.3m/s, which is nearly twice the actual maximum speed of
the AR.Drone (5m/s). With reduced framerate (6.67fps in-
stead of 15 fps), the maximum horizontal speed is 4.13m/s,
83% of the actual maximum speed.

3.1.1 Obstacle masking

The map stitching method just described assumes that the ter-
rain is approximately flat. However, this assumption does not
hold when flying at low altitude. The parallax effect results
in faulty local transformations and errors in the map.

A method to prevent the parallax effect is by removing
obstacles from the camera frames, such that a flat terrain re-

mains. The sonar sensor is used to create an elevation map.
This elevation map is being generated simultaneously with
the visual map and has the same scale and size. When im-
age Ii is received, the corresponding piece from the eleva-
tion map is extracted by transforming the elevation map with
Ĥ−1

i0 . Now, the extracted elevation map has the same size and
scale as the received image. All pixels from image Ii with an
elevation greater then γ3 are masked and not being used for
feature detection. The method is currently under study, de-
tails will be published elsewhere.

3.1.2 Inertia

The motion was in the previous sections purely estimated on
visual clues only. The AR.Drone is equipped with a num-
ber of additional sensors which give constants updates about
the motion. The AR.Drone’s inertial sensor data (body ac-
celeration and attitude) can be used to estimate the current
position. To get a robust estimate an Extended Kalman Fil-
ter is applied. The state vector comprises a position vector
pW , velocity vector vW , acceleration vector aW and attitude
vector qW .

x = [pW vW aW qW] (3)

The resulting position estimate can be used as input for
the map stitching algorithm. This method is applied in one
experiment to study if the map stitching algorithm could ben-
efit from this additional information.

3.2 Simulation model

The AR.Drone is a stabilized system (see Figure 2).
When no control signals are given the quadrotor hovers on
the same location, which is accomplished by a feedback loop
which uses the sonar (for altitude) and the bottom camera
(for horizontal position). The simulation makes use of this
assumption. When no control signal is given, the AR.Drone
stays at the same location. When a control signal for an lon-
gitudinal or lateral velocity is given, it calculates the force
needed to reach that velocity (and assuming that the drag
force Db increases linearly with the velocity). When the con-
trol signal stops, the drag force Db slows the quadrotor down
until it hovers again. The USARSim quadrotor model uses
the Karma physics engine (part of the Unreal Engine [11])
to simulate the force and torque acting on the aircraft. Yet,
only the overall trust is calculated, the differential trust is not
used. When moving in the horizontal plane, a real quadrotor
changes its angle of attack (which is the defined as the an-
gle between direction of motion eV and the body frame eN

[12]). The Karma physics engine does not need this angle to
calculate the resulting horizontal movement. Yet, this angle
of attack has direct consequences for the viewing directions
of the sensors, so the roll and the pitch should be adjusted in
correspondence with horizontal movements.

Figure 2: Free body diagram of a quadrotor helicopter (Cour-
tesy Hoffman et al. [13]). Note that a right-handed orthogo-
nal coordinate system is used with the z-axis pointing down.
Each of the 4 motors has a trust Ti and momentum Mi. To-
gether the motors should generate sufficient vertical trust to
stay airborne, which is indicated by the gravity force mg in
the direction eD. Differential trust between the motors can
provide roll φ and pitch θ torques, which lead to an angle of
attack α. This can result in fast movements of the helicopter
(e.g. in the horizontal plane) in the direction eV which a re-
sulting drag force Db.

Control signals for vertical and rotational movements
(around the z-axis) are calculated in the same manner. For
vertical movements not only the drag force Db is taken into
account. In this case also the gravitational force mg is in-
cluded in the equation. Rotations around the z-axis stop quite
quickly when no control signal is given. For this rotational
movement a 20x larger drag force Dr is used to model the
additional inertia.

Figure 3: 3D model of the Parrot AR.Drone. This is a simpli-
fied model, based on the highly detailed model provided by
Parrot SA.

The result is a simulation model (see Figure 3),
which maneuvers close to the actual AR.Drone. Both
the simulated and real system have the same di-
mensions (0.525, 0.515, 0.115)m. The principal el-
ements of inertia are calculated correspondingly to
(0.0241, 0.0232, 0.0451)kg · m2, assuming a homoge-
neous distribution of the mass.

4 RESULTS

4.1 Map stitching

Three types of experiments have been carried out to eval-
uate the map stitching approach. Each experiment is per-
formed with the AR.Drone and the simulated AR.Drone us-
ing USARSim.

The first experiment measures the performance of the
method without obstacle masking. Four large puzzle pieces
are lead out on the floor within a square of 1.6m x 1.6m.
These puzzle pieces are used as landmarks that are easily rec-
ognizable in the map. Each landmark has a label (A, B, C,
etc). The distance between the centers of the landmarks is
1.3m, except for the distance B-D (

√
1.32 ∗ 1.32 = 1.84m).

Smaller puzzle pieces are lead out inside the square to provide
enough texture for feature detection.

The realtime map stitching method is performed on the
floor as described above. The distances between the land-
marks inside the generated map (red lines) are compared to
the know ground truth to compute the error of the stitched
map.

Figure 4: Map created by the map stitching method. Camera
images are taken by the AR.Drone flying at approximately
0.85m.

The results of this experiment can be found in Table 1
and Figures 4 (real AR.Drone) and 5 (simulated AR.Drone).
Both for the simulated and real AR.Drone a visual map is
created with enough quality for human navigation purposes.
The visual map created by the simulated AR.Drone contains
fewer errors than the map of the real AR.Drone. This is not
an intended result. Care has been taken to reproduce the cir-
cumstances in simulation as good as possible; the camera im-
ages in simulation are post-processed (decreased saturation,
increased brightness, down-sampled resolution) to mimic the
real images as close as possible. The difference between
real and simulated visual map could also be explained by

Figure 5: Map created by the map stitching method. Camera
images are taken by the simulated AR.Drone flying at approx-
imately 0.80m.

landmarks A-B B-C C-D D-A B-D
AR.Drone
mean error (m) 0.385 0.146 0.608 0.156 0.445
error (%) 29.6 11.2 46.8 12.0 24.1
USARSim simulator
mean error (m) 0.019 0.047 0.026 0.075 0.028
error (%) 1.46 3.62 2.00 5.77 2.15

Table 1: Accuracy of the realtime stitched map by measuring
the distance between landmarks. The maps are creating using
the AR.Drone (Figure 4) and the USARSim simulator (Figure
5) .

smoother movements between the frames in simulation. Yet,
also here care has been taken to mimic the dynamics of the
AR.Drone as close as possible (as described in Section 4.2).
Visual inspection of the video stream shows that there are
equivalent changes in the movements between frames. Our
hypothesis is that the remaining difference between simula-
tion and reality are due to the effect of automatic white bal-
ancing of the real camera. In the next experiment this hypoth-
esis will be further studied.

A second experiment is performed to study our hypothesis
that the real AR.Drone produces less accurate maps caused
by the automatic white balancing of the camera. The post-
processing step from the images in simulation is extended
with an additional filter, which changes the brightness ran-
domly (including a non-linear gamma correction). With this
additional error source the map of the simulated AR.drone
(Figure 6) close resembles the map of the real AR.Drone
(Figure 4). Also the quantitive comparison of Table 1 and
2 show now that the errors in simulation increased from max-
imal 7.5cm to 25.4cm, which means an improvement in re-
alism. The maximum error in the real visual map is still a bit
larger (60.8cm), but this can be attributed to a scaling error
(a systematic error in the attitude measurement of the sonar
sensor).

Closer inspection shows that the white balance variations
reduce the stability of the detected features, i.e., less of the
same features are found between consecutive frames. This
finding is supported by a statistical measure: the average Eu-
clidean distance of features that are matched across consec-
utive frames. The post-processing increases the average fea-
ture distance from 22.1px to 32.9px. This resembles the av-
erage feature distance of the real AR.Drone (32.7px).

Figure 6: Map created by the map stitching method. Camera
images are taken by the simulated AR.Drone that mimics the
real AR.Drone’s white balance variations.

landmarks A-B B-C C-D D-A B-D
USARSim simulator (white balance variations)
mean error (m) 0.031 0.181 0.215 0.254 0.190
error (%) 2.21 12.93 15.36 18.14 10.27

Table 2: Accuracy of the realtime stitched map by measuring
the distance between landmarks. The map is creating using
the USARSim simulator (Figure 6) with post-processing of
the camera images to increase realism.

The floorplan from the first and second experiment is re-
peated 3 times in both directions. Now, the texture on the
floor covers 4.8m x 4.8m. The AR.Drone flew in a 8-shape
above the floor to capture an intermediate loop (point A and
E from Figure 7). This experiment is performed on the simu-
lated AR.Drone to show how this method scales up under fa-
vorable conditions (without additional white balance noise).

The third experiment shows the limit of the current
approach without loop-closure or information from other
sources (inertia measurements and controls). Figure 7 and
Table 3 reveal the accumulative error propagation of the cur-
rent stitching method, which was not clearly visible from first
experiment. The error at point A-E can only be reduced with
a global optimization routine. In section 6 an indication is
given how this accumulative error propagation can be battled.

Figure 7: Map created by the map stitching method. Camera
images are taken by the simulated AR.Drone flying at approx-
imately 0.80m.

landmarks A-B B-C C-D D-E E-F
mean error (m) 0.220 0.87 0.579 0.220 0.523
error (%) 10.48 19.33 27.57 4.89 24.90
landmarks F-G G-H H-A B-G
mean error (m) 0.011 0.244 0.788 0.14
error (%) 0.24 11.62 17.51 2.20

Table 3: Accuracy of the realtime stitched map (Figure 7)
by measuring the distance between landmarks. The map is
creating using the USARSim simulator.

To show the effect of additional information, the last ex-
periment is repeated with data from the AR.Drone’s inertial
sensor. The information from this sensor (body acceleration
and attitude) is used in an Extended Kalman Filter to estimate
the current position, as described in Section 3.1.2.

landmarks A-B B-C C-D D-E E-F
mean error (m) 0.029 0.689 0.049 0.565 0.013
error (%) 1.38 15.31 2.33 12.56 0.62
landmarks F-G G-H H-A B-G
mean error (m) 0.596 0.080 0.720 0.243
error (%) 13.24 3.81 16.0 3.83

Table 4: Accuracy of the EKF-based stitched map (Figure 8)
by measuring the distance between landmarks. The map is
creating using the USARSim simulator.

Figure 8 clearly shows that the AR.Drone flew a 8-shaped
trajectory. Also the quantitative comparison showed that the
relative error drops from maximum 27.57% in Table 3 is re-
duced to 16.0% in Table 4.

Figure 8: Map created by an Extended Kalman Filter (EKF).
Camera images are taken by the simulated AR.Drone flying
at approximately 0.80m.

4.2 Validation of the simulation model

To evaluate the USARSim quadrotor model, a set of ma-
neuvers is flown with the actual AR.Drone and simulated
AR.Drone. The differences between the maneuvers are stud-
ied in detail. To enable multiple repetitions of the same ma-
neuver it is described as a set of time points (milliseconds
since initialization) each coupled to a movement command.
We wrote wrappers for the AR.Drone programming inter-
face and for USARSim interface which read these scripts
and output a control signal, using the system clock to man-
age the timing independently from the game engine and the
AR.Drone hardware. Orientation, altitude and horizontal
speed are recorded at a frequency of 200Hz during the ma-
neuvers. These are gathered through the AR.Drone’s inter-
nal sensors and the build-in algorithms, which are also used
by the controller to operate the drone. The filtered output
of the MEMS gyroscope is used for estimating orientation.
The filtered output of the ultrasound distance sensor is used
for estimating altitude. The optical flow algorithm using the
bottom camera is used for estimating the horizontal (linear
and lateral) speeds. The simulator has equivalent sensors. In
addition, simulation can provide ground-truth data. Also for
the real maneuvers an attempt was made to generate ground
truth via an external reference system; the movements were
recorded with a synchronized video system consisting of with
four firewire cameras, capturing images at 20 frames per sec-
ond at a resolution of 1024 x 768 pixels. The position of the
AR.Drone in each frame has been annotated by hand.

Corresponding to NIST guidelines [14] a set of exper-
iments of increasing complexity was performed. For the
AR.Drone four different experiments were designed. The
first experiment is a simple hover, in which the drone tries
to maintain its position (both horizontal and vertical). The
second experiment is linear movement, where the drone ac-
tuates a single movement command. The third experiment

is a small horizontal square. The last experiment is a small
vertical square.

4.2.1 Hovering

Quadrotors have hovering abilities just like a helicopter. The
stability in maintaining a hover depends on environmental
factors (wind, underground, aerodynamic interactions) and
control software. If no noise model is explicitly added, the
USARSim model performs a perfect hover; when no control
signal is given the horizontal speeds are zero and the altitude
stays exactly the same.

For the AR.Drone, this is a good zero-order model. One
of the commercial features of the AR Drone is its ease of op-
eration. As part of this feature it maintains a stable hover
when given no other commands, which is accomplished by
a visual feedback loop. So, the hovering experiment is per-
formed indoors with an underground chosen to have enough
texture for the optical- flow motion estimation algorithm.

As experiment the AR Drone maintains a hover 35 sec-
onds. This experiment was repeated 10 times, collecting 60k
movement samples for a total of 350 seconds. Over all sam-
ples the mean absolute error in horizontal velocity (the Eu-
clidean norm of the velocity vector) is 0.0422m/s with a
sample variance of 0.0012m2/s2. From the samples we ob-
tain the distribution of the linear and lateral velocity compo-
nents.

From the velocity logs the position of the AR Drone dur-
ing the 35 second flight was calculated. The mean absolute
error of the horizontal position is 0.0707m with a sample
variance of 0.0012m2.

4.2.2 Horizontal movement

In this experiment the drone is flown in a straight line. It is
given a control pulse with a constant signal for 5 different
time periods: 0.1s, 1s, 2s, 3s, and 5s. Each pulse is followed
by a null signal for enough time for the drone to make a full
stop and a negative pulse of the same magnitude for the same
period, resulting in a back and forth movement. In Figure
9 the red line shows the control signal, the blue line the re-
sponse of the AR.Drone. The experiment was repeated for 5
different speeds. The control signal s specifies the pitch of
the drone as a factor (between 0 and 1) of the maximum ab-
solute tilt θmax which was set to the default value3. The trails
were performed with the values of 0.05, 0.10, 0.15, 0.20, 0.25
for the control signal s.

Robots in USARSim are controlled with a standardized
interface, which uses SI units. A robot in USARSim ex-
pects a DRIVE command with a speed in m/s and not the
AR.Drone native signal s. Thus in order to fly comparable tri-
als the relation between the drone’s angle of attack α and the
corresponding velocity v has to be investigated. When flying

3ARDrone firmware (1.3.3)

Figure 9: Response of the real AR.Drone on a number of
pulses with a amplitude of s = 0.15 .

straight forwards, the angle of attack α is equivalent with the
pitch θ. In order to do this the samples from the logs where
the drone has achieved maximum velocity has to be selected.
Closer inspection of the velocity logs show that in each trial
there is still constant increase of velocity for the first three
pulses. For the last two pulses there is obvious plateauing,
which indicates that the last two seconds of the five-second
pulses is a good indication for the maximum velocity. There-
fore the velocity at those last two seconds was used to com-
pute mean absolute speeds v̄, which are combined with the
mean absolute pitch θ̄ as measured by the MEMS gyroscope.
The estimates for v̄ and pitch θ̄ are presented in Table 5 to-
gether with their standard deviation. Extrapolating the mean
pitch θ̄ ' 7.5o at control value s = 0.25 to the maximum
control signal gives an indication of the drone’s maximum
pitch θmax ' 30o value. For typical usage, the angle of at-
tack never exceeds 12o degrees.

Control signal s
0.05 0.10 0.15 0.20 0.25

v̄ (m/s) 0.4044 0.6284 1.4427 1.7587 2.2094
σv (m/s) 0.096 0.226 0.070 0.126 0.165
θ̄ (deg) 1.4654 2.9025 4.1227 5.7457 7.4496
σθ (deg) 0.455 0.593 0.482 0.552 0.921

Table 5: Averaged velocity v̄ measured at the end of a 5 sec-
onds pulse of the control signal s, including the correspond-
ing pitch θ̄ as measured by the gyroscope.

To convert the drone’s control signal s to USARSim com-
mands v a least-squares fit through the points of Table 5
is made for the linear function v = c · θ, which gives us
c = 0.2967. Equation 4 gives the final conversion of a control
signal s to a velocity v in m/s given the drone’s maximum
pitch θmax in degrees.

v = 0.2967 · s · θmax (4)

The USARSim model has a parameter Pθ for calculating

the angle in radian given the velocity, which is the value P̂θ =
0.057, as used in subsequent simulations.

The next experiment checks the acceleration of the real
and simulated AR.Drone. First we give an estimate of how
quickly the drone’s controller changes its pitch to match the
commanded pitch and how well it can keep it. For this we
select all samples from 100ms after the start of the 2s, 3s,
and 5s pulses till the first sample at which the commanded
pitch has been reached. This corresponds to the time-span
between which the drone has started to act on the change in
the control signal until it reaches the commanded pitch. The
result is illustrated in Figure 10.

Figure 10: Response of the real (red) and simulated
AR.Drone (blue) on the same pulses as shown in Figure 9.

As one can see, the acceleration has for the real and sim-
ulated AR.Drone nearly the same slope. The deceleration
of the simulated AR.Drone is slightly slower. In the real
AR.Drone the feedbackloop based on the optical flow of the
ground camera actively decelerates the system. Overall, the
dynamic behavior of the simulator closely resembles the dy-
namic behavior of the real system. Additionally, tests with
more complex maneuvers (horizontal and vertical square)
have been recorded, but unfortunately not yet analyzed in de-
tail.

5 CONCLUSION

The current map stitching method is able to map small ar-
eas visually with sufficient quality for human navigation pur-
poses. Both the AR.Drone and USARSim simulator can be
used as source for the mapping algorithm. The visual map
created by the simulated AR.Drone contains fewer errors than
the map of the real AR.Drone. An experiment showed that the
difference can be explained by the effect of automatic white
balancing of the real camera.

The validation effort of the hovering and the forward
movement shows that the dynamic behavior of the simulated
AR.Drone closely resembles the dynamic behavior of the real
AR.Drone. Further improvement would require to include the
characteristics of the Parrot’s proprietary controller into the
simulation model.

6 FUTURE WORK

Future work will use visual slam to build the map and
estimate the position of the robot. Such methods can han-
dle loop-closures events when places are revisited and cor-
rects for drift. Other future work is the integration of graphic
framework to display a visual elevation map similar to [1].

A further improvement would be to include the images of
the high-resolution front camera into the process. Those im-
ages can be used to calculate the optical flow from monocular
stereo vision, which serves as the basis for both creating a dis-
parity map of the environment. The disparity map can be used
to detect obstacles ahead, which can be used in autonomous
navigation. When combined with a time to contact method,
the measurements can be used for a crude 3D reconstruction
of the environment and another source for estimating the ego-
motion.

Once the visual map exists, this map can be extended with
range and bearing information towards landmarks (as the py-
lons from the IMAV challenge). On close distance the bear-
ing information could be derived directly from perception.
By modeling this as an attractive force, the correct heading
could be spread over the map by value iteration. In addi-
tion, obstacles visible in the disparity map of the front camera
could be used as basis for a repulsive force. Both forces could
be combined to a force field that guides a robot on the map.
The availability of a realistic simulation model will add in the
training of these machine-learning approaches.

ACKNOWLEDGEMENTS

We like to thank Parrot S.A. for providing an AR.Drone
for the competition. This research is partly funded by the
EuroStars project ’SmartINSIDE’. We like to thank Carsten
van Weelden for his experiments to validate the motion model
of the AR.Drone.

REFERENCES

[1] B. Steder, G. Grisetti, C. Stachniss, and W. Burgard. Vi-
sual SLAM for flying vehicles. Robotics, IEEE Trans-
actions on, 24(5):1088–1093, 2008.

[2] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and
Luc Van Gool. Speeded-up robust features (surf). Com-
puter Vision and Image Understanding, 110(3):346 –
359, 2008.

[3] G. Grisetti, S. Grzonka, C. Stachniss, P. Pfaff, and
W. Burgard. Efficient estimation of accurate maximum
likelihood maps in 3d. pages 3472–3478, San Diego,
CA (USA), 2007.

[4] Abraham Bachrach, Ruijie He, and Nicholas Roy. Au-
tonomous flight in unknown indoor environments. In-
ternational Journal of Micro Air Vehicles, 1(4):217–
228, December 2009.

[5] John Stowers, Andrew Bainbridge-Smith, Michael
Hayes, and Steven Mills. Optical flow for heading esti-
mation of a quadrotor helicopter. International Journal
of Micro Air Vehicles, 1(4):229–239, December 2009.

[6] E. Jovanov, M. Milosevic, R. Tilly, M. Truex, and
C. Jones. Autonomous Personnel Tracking Help
AR.Drone. In International Micro Air Vehicle Confer-
ence, May 2011.

[7] Cooper Bills, Joyce Chen, and Ashutosh Saxena. Au-
tonomous mav flight in indoor environments using sin-
gle image perspective cues. In International Conference
on Robotics and Automation (ICRA), 2011.

[8] N. Michael, D. Mellinger, Q. Lindsey, and V. Kumar.
The grasp multiple micro-uav testbed. Robotics Au-
tomation Magazine, IEEE, 17(3):56 –65, sept. 2010.

[9] Workshop on robots, games, and research: Success sto-
ries in usarsim. In Stephen Balakirky, Stefano Carpin,
and Mike Lewis, editors, Proceedings of the Interna-
tional Conference on Intelligent Robots and Systems
(IROS 2009). IEEE, October 2009.

[10] M.A. Fischler and R.C. Bolles. Random sample con-
sensus: a paradigm for model fitting with applications
to image analysis and automated cartography. Commu-
nications of the ACM, 24(6):381–395, 1981.

[11] Stefano Carpin, Jijun Wang, Michael Lewis, Andreas
Birk, and Adam Jacoff. High fidelity tools for res-
cue robotics: Results and perspectives. In Ansgar Bre-
denfeld, Adam Jacoff, Itsuki Noda, and Yasutake Taka-
hashi, editors, RoboCup 2005: Robot Soccer World Cup
IX, volume 4020 of Lecture Notes in Computer Science,
pages 301–311. Springer Berlin / Heidelberg, 2006.

[12] T. Yechout, S. Morris, D. Bossert, and W. Hallgren. In-
troduction to Aircraft Flight Mechanics: Performance,
Static Stability, Dynamic Stability, and Classical Feed-
back Control. American Institute of Aeronautics and
Astronautics, Reston, VA, 2003.

[13] Gabriel M. Hoffmann, Haomiao Huang, Steven L. Wasl,
and Claire J. Tomlin. Quadrotor helicopter flight dy-
namics and control: Theory and experiment. In Proc.
of the AIAA Guidance, Navigation and Control Confer-
ence, 2007.

[14] Adam Jacoff, Elena Messina, Hui-Min Huang, Ann
Virts, and Anthony Downs. Standard Test Methods for
Response Robots. ASTM International Committee on
Homeland Security Applications, January 2010. sub-
committee E54.08.01.

