Analysis of flat terrain for the Atlas robot

Maarten de Waard*, Maarten Inja*, and Arnoud Visser*
*Intelligent Systems Laboratory Amsterdam
Universiteit van Amsterdam

Abstract—This paper gives a description of an approach to
analyze the sensor information of the surroundings to select places
where the foot of a humanoid can be placed. This will allow
apply such robot in a rescue scenario, as foreseen in the DARPA
Robotics Challenge, where a robot is forced to traverse difficult
terrain.

I. INTRODUCTION

On October 24th 2012, the DARPA Robotics Challenge
(DRC) kicked off!. To quote their website:

”The primary technical goal of the DRC is to develop
ground robots capable of executing complex tasks
in dangerous, degraded, human-engineered environ-
ments. Competitors in the DRC are expected to focus
on robots that can use standard tools and equipment
commonly available in human environments, ranging
from hand tools to vehicles, with an emphasis on
adaptability to tools with diverse specifications.”

The robot that is used in this challenge is the Atlas, a
bipedal human sized robot, shown in figure 1. The Atlas robot
is a continuation of the anthropomorphic robot developed in the
Petman project. The Petman project was intended to reproduce
the human movements. The Atlas robot is intended to be
able to traverse difficult terrain. The Atlas has 28 degrees of
freedom (DoF); the skeleton is shown in figure 2. At this
moment the robot is only available in the DRC Simulator
based on the Gazebo environment (see Fig. 3). The first real
prototypes will be delivered later this year. In simulation the
Atlas is equipped with a laser scanner and two cameras located
in the head.

Figure 1. The Atlas is a humanoid robot will be tailored for rescue operations
(Courtesy Boston Dynamics).

lhttp://www.darpa.mil/Our_Work/TTO/Programs/DARPA_Robotics_
Challenge.aspx

@ ink

I 10oF Joint

+ 2 DoF Joint
' 3 DoF Joint

Figure 2. Skeleton of the Atlas showing the degrees of freedom.

Three tasks are part of the virtual DARPA challenge:

e Climb into a utility vehicle, drive along a roadway at
a speed no greater than 16 kph (10 mph), and climb
out of the utility vehicle.

e Walk across progressively more difficult terrain, for
example, progressing from parking lot to short grass to
tall grass to tall grass on slope to ditch to rock field. In
the earlier terrain, the default balancing and walking
behaviors of Atlas will suffice. In the later terrain,
DARPA expects perception and footstep planning will

Al LY RS2

@107 vsaman, s

Figure 3. Screenshot of the GUI of Gazebo showing the rendering of the
Atlas URDF model.

978-1-4673-6315-0/13/$31.00 (©2013 IEEE

be needed.

e Connect hose to spigot. This is purely a manipulation
task, that is, the robot starts with everything within
reach and so does not need to travel to the work site.

For this paper we will try to tackle the second task in
de virtual DARPA challenge. This virtual challenge entails
using the Gazebo? simulator together with the Robot Operating
System® (ROS) to make a model of the robot perform the task.
In the Technical Guide of the Virtual Robotic Challenge [1]
this task is described in more detail. In Fig 4 the arena for the
walking test is displayed. In the front is the starting pen, the
final gate is in the hills at the back. In between those gates
the robot has to walk across flat pavement, cross a mud pit,
climb a gentle incline and traverse a rubble pile. To complete
such challenge, a robot has to interpret the terrain ahead with
its sensors, aggregate the measurements into a world model
and perform footstep planning based on this model. This is
the subject of this paper.

Figure 4.
et al.[1]).

Overview of the arena for the walking test (Courtesy E. Krotkov

This task was split into two parts. The first part consists
of making a model of the surface in front of the robot and
selecting candidate surfaces for foot placement. The second
part consists of computing a path to reach this location with
the foot in a safe way. The candidate surfaces will serve as
input for the walking engine, where it first performs a stable
leg lifting motion, and then put the foot down in the desired
location while keeping the robot balanced.

This paper is organized as follows: in section 2 the related
work that has been done on both subjects will be discussed;
in sections 3 the footstep planning will be described, followed
by results, conclusion and future work.

II. RELATED WORK
A. Footstep Planning

There are several approaches to the planning of footsteps.

To prefer a straight surface over a surface with slopes one
can use A* and include the slope of the ground plane into the
heuristic function [2]. This works well for their application
(crossing an uneven hill). In their algorithm the terrain is

Zhttp://gazebosim.org/
3http://www.ros.org/wiki/

categorized in four categories (flat ground, tilted ground, stairs,
holes), none of which deals with obstacles which could be
encountered at the rubble pile. The A* path planning is divided
into two parts, first a trajectory is planned from the current
position to the goal, then the actual footsteps are planned to
follow the trajectory.

By modeling the robots valid (foot) configurations, estimat-
ing the bounding box for the shape of the robot, and modeling
the environment (obstacles) one can represent the robot and
the world in a mathematical context. This representation can
be used to determine illegal and legal positions and configura-
tions, or states, for the robot. The states can be seen as nodes
in a graph, in which the edges are the transitions from one
configuration, or pose, to another. This results in a searchable
graph that can be searched with a modified A* algorithm
without having to be built entirely (the states do not all have
to be calculated) [3].

A single rock can be seen as an obstacle over which
the robot could step entirely, but if the terrain consists of
many rocks it becomes ‘rough’ terrain. The difference with
the previous methods is that there is no flat surface at all; the
robot should attempt to find the best spot for its foot that would
minimize falling or slipping risk.

Dealing with rough terrain can successfully be learned
through reinforcement learning [4]. The observed terrain is
modeled and matched to models, called templates, which are
enriched with the positions that experts deem the best position
for foot placement.

Ideally, low ceilings should also be dealt with by the robot
by either avoiding such an area or by crouching. However, this
is considered not part of our objective.

III. METHOD
A. Theory

Section II-A describes all the necessities we have to
implement for complete footstep planning. We focused on the
first step by investigating point cloud data and see if we could
extract surfaces and make the distinction between those that
will support the robots foot and those who do not.

A point cloud is a collection of points, in which a point
is defined as an X, y, z value, which might be collected by a
sensor, such as a Kinect sensor or laser range scanner.

The Point Cloud library* which already is integrated into
ROS environment coupled to the DRC Simulator. ROS offers
two methods to do plane segmentation: region growing and
plane segmentation using RANSAC.

1) Region Growing: Region growing segments points
based on their curvature and surface normals, which are both
local features based on the nearest neighbors of the points [5]°

A region is subset of a cloud of points which are classified
as belonging to the region, in our case we mean with a ‘region’
a plane, or surface. So any points that make up a plane
should be considered a region. For different purposes one could

“http://www.pointclouds.org/
Sas implemented by Sergey Ushakov, see http://www.pointclouds.org/blog/
tres/velizhev/.

for example want to find the regions that make up spheres.
Segmentation is the process of dividing, or segmenting, the
point cloud data in to different subsets, or regions.

The nearest neighbors could picked using several methods,
using KD-trees or octrees, but also simply by taking the points
in a radius.

It is easiest to consider the point and its nearest neighbors
as a surface of which the normal is the vector perpendicular
to the surface, and the curvature a scalar value indicating the
curvature of the surface.

Region growing starts at the point with the lowest curvature
value, this point is the start of the region, it is added to a new
set called seeds. The algorithm is as followed:

e For each point in the seeds set, for each neighboring
point:

o Add neighboring point to the region if the
angle between this point and the seed point
is below the angle threshold 6,

o Add the neighboring point to seed set if its cur-
vature value is below the curvature threshold
Cth

o Remove the seed point from the seed set.

e If the seeds set is empty, then a region has been found.

2) Plane Segmentation Using RANSAC: The second
method to plane segmentation in the point cloud library is to
match the model of a plane in the point cloud using RANSAC
(RANdom SAmpling Consensus)[6].

This method combines fast normal computation by only
considering nearby points on 6 integral images. Fast clustering
of points with similar local surface normals is accomplished
by first defining a voxel grid (a course discretization), followed
by merging those grids. The result can be a cluster of points in
the same plane but not geometrically connected. Those planes
can be separated again by splitting them in a segmentation re-
finement step. The found planes can be smoothed by RANSAC
which removes residual outliers.

The RANSAC algorithm informally goes as followed:

e Randomly select a subset of the point cloud and
estimate the free model parameters

e Other data is considered, if a point fits the model a
point is added (considered an inlier)

e The model is re-estimated considering all the inliers

e The model is evaluated by estimating the error relative
to the model

A model is sufficient if a sufficient amount of points are
considered inliers.

3) Plane Evaluation: The planes, or surfaces, that are
found using the region growing or plane modeling should be
evaluated to a scalar that indicates how much the robot would
want to place a foot on that plane.

First the average surface normal vector for a plane is
calculated, normalized. Then the Euclidean distance to the
example unit vector [0, 0, 1] (which is a vector pointing straight

up) is calculated. This scalar should be sufficient for a path
planner similar to [2] to prefer flat and straight surfaces over
slopes.

Additionally we would like the size of the plane to be
considered; planes smaller than the robots feet should be
discarded.

B. Implementation

Some choices were made, to enable easy implementation of
footstep planning. At first, the point cloud sensor was chosen
as the most fitted sensor to find the environmental data that was
needed for accurate footstep planning. This was because point
cloud sensors are capable of collecting a lot of information
about the environment in a small time frame. Using the point
cloud sensor also enabled us to use the C++ Point Cloud
Library (PCL), which enables a user to easily use many state-
of-the-art point cloud processing algorithms [7]. Because of
dependencies between the DRC simulator, ROS and PCL, in
this study, the 1.5 version of PCL was used.

The current implementation® finds planes in the environ-
ment of the robot and gives those planes a measure as to how
badly the robot should want to step on them. This works in
the following three steps. These steps require a robot to have a
working point cloud sensor. Alternatively, a rotary laser range
scanner can be used to simulate one.

1) Find planes in the point cloud
2) For each plane, find its mean surface normal
3) Evaluate each plane and its surface normal

The following subsections will explain the methods in detail.

1) Finding planes in a point cloud: As mentioned in
section III-A, planes can be located in various manners. In
version 1.5 of the point cloud library, Region Growing has
not been implemented yet. That is why our software solution
uses plane segmentation based on Ransac. This is implemented
using the PCL provided SACSegmentation. The exact
parameters for the segmentation differ per goal and sensor.

The planes that are found using this segmentation algorithm
are extracted from the cloud using ExtractIndices, also
provided by PCL. Then the program loops through these
planes, and enters the next step.

2) Finding mean surface normals: Normals of the points
in a point cloud can be found using the pcl class
NormalEstimationOMP, which uses a K-nearest neighbor
search to find other close points, and estimates a normal vector
using those points and, if specified, a camera position for the
correct direction.

The mean surface normal is then calculated by simply
adding them all and dividing by the number of points.

3) Evaluate each plane and its surface normal: The surface
normal of the ideal standing surface is pointing up. That, by
definition, means that a surface is placed horizontally, which
is good to stand on. For that reason, the surface normal of
each found surface is compared with one pointing up (vector

5The code is available at https:/code.google.com/p/voetlos/

Figure 5. The Gazebo environment that was used to test the algorithm with
the points and laser scanners.

(z=0 y=0 z=1)T). Comparison is calculated with
the following equation:

2=/ (in—compare)2H{Uin —Yeompare)2+(Zin —Zcompare)>
2

which is always used on unit vectors, assuring the result is a
scalar between 0 and 1, 0 meaning completely different, and
1 meaning completely alike.

4) Viewer: The last thing we implemented is a ‘viewer’,
which listens to the ROS topics published by the feature
calculation program, and visualizes everything. This viewer
represents the found plane segments in colors between red
and purple. This color is created by a rgb-value based on the
outcome of the comparison. A value of 125 for the red color
is always given, so that every point can be seen. The value for
blue differs from O to 255. For this the measure of equality
is used as follows: equality® * 255 = color. We take the fifth
power of the equality, in order to exaggerate the measure in
which the ground should be horizontal: a 45° slope is fairly
hard to stand on, especially for a robot.

This viewer enables the user to easily see what works and
what works not and is a useful combination between listening
to ROS topics and the PCL Visualizer class.

IV. RESULTS
A. Footstep Planning

In this section we will show the results of our footstep
oriented environment segmentation on various types of point
cloud.

1) Gazebo’s Points2 Sensor: The most logical sensor to try,
in this case, is Gazebo’s built in Points2 sensor. This sensor is
mounted on the MultiSense-SL head. This sensor was used in
a world with some objects, some of which one should want to
stand on, others of which one should not. This world can be
seen in figure 5.

The resulting image can be seen in figure 6. As can be
seen the side of the golf cart is considered bad to stand on,
just like the slope. The table and floor are good. Unfortunately
planes parallel to the slope are also found in the stairs. For that

reason the stairs are also calculated to a red color value. This
problem is mainly caused by two reasons:

1) The PCL plane segmentation function has no way of
setting a threshold of cloud density. In other words:
cloud segments that exist of only five parallel lines
of points can be fitted by a plane model, no matter
how far these lines are apart from each other. This
way, instead of only finding horizontal planes in the
stairs, it is also possible to find planes that are fitted
through several stairs, and are diagonal on the ground
plane. However unwanted this result is, no solution
to this problem could be found.

2) Another problem is that the point cloud finds very

distorted points. As can be seen, only points in a grid
form are found on the ground and on the slope. This
is most probably a result of the manner in which the
point cloud sensor was implemented in Gazebo.
As a result of this noise in the point cloud, the
processing of especially the stairs could have been
worsened. Also finding good segments using any
other algorithm than plane segmentation would be
harder in the slope, because of the vertical stripes
with point clouds, instead a desired dense cloud, like
can be seen on the table top.

2) Gazebo’s Laser Range Scanner: Because of the gaps in
the point cloud, the laser range scanner was put to use. This
scanner returns points over one axis, and is capable of being
rotated. This results in the capability of collecting point data
of the surroundings. When collecting data for 10 seconds, the
point cloud of figure 7 is retrieved. The first thing that can be
seen is that this point cloud is more accurate than the point
cloud retrieved by the Points2 sensor; all planes are straight
and the points are divided more evenly. Another thing that
can be noticed when looking at this data points, is that the
laser range scanner always returns the maximum value, when
no points are found. This results in a dome of invalid points
around the scanned environment. This will later be referred to
as the ‘noise dome’.

Using the laser scanner, and an ‘assembler’ to send the
points of the last 10 seconds in one point cloud, the algorithm

Figure 6.
sensor in the world of figure 5. A purple tint indicates that that part of the
point cloud consists of a surface that is good to stand on. A red tint indicates
the opposite. The white arrows are the calculated mean surface normals. From
left to right part of the golf cart, stairs, slope and table can be seen. Table is
seen as a good solution.

The output image of our algorithm when used with the Points2

Figure 7. An image of the point cloud retrieved when collecting points from
the rotary laser range scanner for 10 seconds, using the Gazebo world of figure
5.

provides the image as seen in figure 8. As can be seen, the
table top, each of the stairs and part of the golf cart are
correctly detected and calculated to be viable stepping planes.
A problem that occurs, however, is that the slope is also
detected as a plane with a mean normal that is pointing straight

up.

This has the following explanation: The plane that is found,
consists of not only the slope, but also numerous points in the
‘noise dome’ that surrounds the environment. This results in a
surface normal that is calculated based on not only the slope
normals, but also on the ‘dome normal’, which is calculated
by only one small ring of points and thus faulty.

3) A Point Cloud from the Real World: To prove that the
algorithm works, and that is should also work in real-life, in
stead of a simulator, we also downloaded a point cloud from
the internet, which was created from a real life sensor. The
point cloud that was used was the one from a Point Cloud
Library tutorial’. This resulted in the image that can be seen
in figure 9. In this image it can be seen that planes for the
ground and walls are found and that the right value is computed
for them. The couch forms a more difficult challenge for the
algorithm, because the seat and backrest are more curved. Still
most of the planes are evaluated correctly.

http://www.pointclouds.org/documentation/tutorials/using_kinfu_large_
scale.php

Figure 8. The output of the algorithm when using a rotary laser range scanner
in the Gazebo world from figure 5. The same color codes as before count.

Figure 9.
retrieved from a real environment.

The output of the algorithm when using a point cloud that was

In the backrest of the couch, some purple planes are found.
These are considered ‘good to stand on’, because they are
returned together with the desk, that can be seen on the right
side of the image. This is due to the same problem as was
treated in the first point in section IV-Al: The points in the
couch are considered as being part of the desktop, whereas
they really should have been part of a plane in the backrest of
the couch.

V. CONCLUSION

From the results shown in section IV-A it can be concluded
that using planar segmentation and normal estimation to find
planes in the environment that can be stepped on by the robot
should work. This should work in the Gazebo Simulator, if a
noiseless point cloud is given and the points that do not have
any value are set to NaN or omitted.

Furthermore it is safe to conclude that some improvements
can be done in the segmentation method, but that this robust
version works in theory.

VI. FUTURE WORK
A. Footstep Planning

Improvements can still be made on the footstep planning.
These improvements can be put in two categories.

1) Improvements on current footstep planning: At first the
current planning algorithm will be treated. The first thing that
could be improved is the planar segmentation. One would
want to find planes that are uninterrupted. Also planes with
a small curve in them should be allowed. Initially this could
be solved by (re)implementing region growing, as explained
in section III-A1. Another solution would be to implement the
segmentation refinement as described in [6].

Ideally other factors for stability of foot placements could
be learned: for example when dealing with a rocky area,
when hill climbing or walking through a ditch, a stable foot
placement might not always be the flattest area, but a V-shaped
hole in the ground.

Another improvement in finding good foot placement lo-
cations is retrieving the size of the plane and comparing that
with the size of the robot’s foot. This would for example make
the robot take bigger stairs, when available, to minimize the
chance of slipping when traversing upwards.

The last improvement that could be made on the current
software is ignoring the points that are in the ‘noise dome’ of
the laser range scanner. This can be done by calculating the
distance of a point from the robot, and discarding it if it is
above a certain threshold. This should improve the precision
of the algorithm, because the computed surface normals of the
planes that are currently found will then be more accurate.

2) Improvements on the overall footstep planning: To ac-
tually be able to use the algorithm, footstep locations should
be found in the planes that are currently found suitable for
walking on. These locations should be based on where the
robot’s current position is, where it wants to go and the
measure of traversal difficulty for the terrain between these
positions. As covered in section II-A, Path planning algorithms
like A* are suitable for this goal.

B. Integration with inverse kinematics

The footstep planning should output a trajectory with sev-
eral Cartesian foot placement coordinates. The path between
each foot placement should be covered by the swing of the
legs, while the robot stays in balance. This is not trivial for
the Atlas robot[8], because it is quite a tall and heavy robot
with relatively small feed.

To keep balance the relation between the contact points
with the walking surface and the center of mass has to be
calculated [9]. ROS contains a humanoid robots kinematics
library, but this library was made for the smaller Nao robot. For
the Nao robot the pelvis is a good reference point to calculate
the center of mass, but for the Atlas robot the hip joints are not
fixed which means that there is no guarantee that the pelvis is
leveled.

Even when the inverse kinematics problem is solved and
the intended swing of the legs can be calculated, a good control
of the upper body (including both arms) is needed to balance
the momentum during a step. At this moment such high level
control of the Atlas robot still has to be developed.

So we can conclude with the observation that the DARPA
Robotics Challenge and the robots developed for this challenge
will revolutionize the application of robots in rescue situations,
but that at the moment there are still enough open issues which
require a substantial research effort.

ACKNOWLEDGEMENTS

We would like Norbert Heijne and Sander Nugteren for
their effort to solve the inverse kinematics problem of the Atlas
robot, to design an animation with resembles a first step and
to make the geometrical calculation how the upper body could
support the balance of the robot.

REFERENCES

[1] E. Krotkov and J. Manzo, “Virtual robotics challenge technical guide,”
DISTAR Case 20776, February 2013, Draft Version 5.

[2] J. Bourgeot, N. Cislo, and B. Espiau, “Path-planning and tracking in a 3d
complex environment for an anthropomorphic biped robot,” in Intelligent
Robots and Systems, 2002. IEEE/RSJ International Conference on, vol. 3.
IEEE, 2002, pp. 2509-2514.

[3] R. Cupec, I. Aleksi, and G. Schmidt, “Step sequence planning for a biped
robot by means of a cylindrical shape model and a high-resolution 2.5
d map,” Robotics and Autonomous Systems, vol. 59, no. 2, pp. 84-100,
2011.

[4] M. Kalakrishnan, J. Buchli, P. Pastor, and S. Schaal, “Learning loco-
motion over rough terrain using terrain templates,” in Intelligent Robots
and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on.
IEEE, 2009, pp. 167-172.

[5] T. Rabbani, F. van Den Heuvel, and G. Vosselmann, “Segmentation
of point clouds using smoothness constraint,” International Archives
of Photogrammetry, Remote Sensing and Spatial Information Sciences,
vol. 36, no. 5, pp. 248-253, 2006.

[6] D. Holz, S. Holzer, R. B. Rusu, and S. Behnke, “Real-time plane
segmentation using rgb-d cameras,” in RoboCup 2011: Robot Soccer
World Cup XV, ser. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2012, vol. 7416, pp. 306-317.

[71 R. Rusu and S. Cousins, “3d is here: Point cloud library (pcl),” in
Robotics and Automation (ICRA), 2011 IEEE International Conference
on. IEEE, 2011, pp. 1-4.

[8] M. Inja, N. Heijne, S. Nugteren, and M. de Waard, “Project ai - the
darpa robotics challange - f.0.0.t.1.0.0.s.e.” Project Report, Universiteit
van Amsterdam, February 2013.

[91 M. Vukobratovi¢ and B. Borovac, “Zero-moment pointthirty five years

of its life,” International Journal of Humanoid Robotics, vol. 1, no. 01,
pp. 157-173, 2004.

